Berlin eksempel på opgavebesvarelse i Word m/mathematics

Størrelse: px
Starte visningen fra side:

Download "Berlin eksempel på opgavebesvarelse i Word m/mathematics"

Transkript

1 Berlin eksempel på opgavebesvarelse i Word m/mathematics 1.1 Gennemsnitsfarten findes ved at dividere den kørte strækning med den forbrugte tid i decimaltal. I regnearket bliver formlen =A24/D24. Resultatet kan også fås ved division udenfor regnearket: eller afrundet 102 km/h i overensstemmelse med beregningen i regnearket

2 1.2 Ved at tilføje lodrette gitterlinjer til diagrammet ses, at Mikael på de første fem timer kører ca. 520 km 1.3 Lineær tendenslinje tilføjet og linjens ligning vist, se bilag. Ligningen aflæses til: y = 106,55x - 14, Hældningskoefficienten angiver farten. Da hældningskoefficienten er 106,55 er farten ca. 107 km/h. Farten er beregnet til ca. 102 km/h. Der er altså en klar forskel. Vi kan udnytte yderligere en viden om grafen. Den begynder ved 0 timer og 0 kilometer. Tendenslinjen skal altså gå gennem (0,0).

3 Med denne ændring bliver tendenslinjens ligning: y = 103,54x Det betyder, at farten kan aflæses til ca. 104 km/h, der er meget nærmere det beregnede resultat. 1.5 Diagram oprettet, se bilag. Af diagrammet fremgår, at gennemsnitsfarten er 56,773 km/h eller afrundet 57 km/h. Beregning i regnearket giver 58 km/h, altså god overensstemmelse. I regnearket udregnes celle D42 som =A40/D40.

4 1.6 Det ses af diagrammet, at hældningskoefficienten er 110. Det betyder at farten er 110 km/h. Beregnet i regnearket bliver farten 111 km/h, altså god overensstemmelse. Se bilag 1.7 Her kan farten på tendenslinjens ligning aflæses til 29,361 km/h eller afrundet 29 km/h. Beregningen i regnearket giver 29 km/h. Der er overensstemmelse mellem de to udregninger. Se bilag. 1.8 Kørselsstrækning: Tidsforbrug:

5 3.35 altså 3,35 timer. Udgangspunktet er 1,65 timer, så Mikael vil være ved AD Dreieck: altså efter i alt 5 timer. 1.9 Mikael nåede AD Dreieck 0,47 timer før, så hele turen er 0,47 timer kortere. Den nye gennemsnitsfart bliver derfor: eller afrundet 110 km/h. Beregnet i regnearket: =A62/(D62-0,47). Resultatet bliver det samme: 110 km/h Se bilag Felterne D16 til D20 ændres, som ovenstående viser. Ændringen vises for celle D16. Denne ændring kopieres ned til D20. Fra D21 benyttes ovenstående, der kopieres ned til bunden af tabellen (celle D24) Regnearket bliver med disse ændringer:

6 2.1 Mikaels købspris: Mikaels købspris er altså 7 567,90 kr. 2.2 For kr. kan Mikael få: Mikael kan få 1321,37 Da valutahandleren kun sælger sedler kan han få 1 320

7 2.3 Se desuden bilag 2.4 I tabellen aflæses tabet ved 1000 til 208,10 kr. Tabet ved køb og salg af 4000 bliver Altså 832,40 kr. Mikaels tab vil afvige lidt fra det aflæste, fordi valutahandleren kun giver og modtager sedler. 2.5 De to klip fra regnearket viser indholdet af celle D4 og celle D5

8 2.6 og Prisen aflæses til 10,29 kr. 2.7 Prisen aflæses til 1, Af boksplottet ses at mindstepriserne ligger forholdsvis samlet i Sydeuropa, hvor der i Mellemeuropa er en mindstepris, der skiller sig ud. I tabellen ses, at det drejer sig om Luxembourg. For de høje prisers vedkommende kan man se, at der både i Mellemeuropa og i Sydeuropa er et land, der skiller sig ud. I

9 Sydeuropa er det Grækenland og i Mellemeuropa er det Holland. Ser man på de to boksplot som helhed ses det, at Sydeuropa ligger forskudt mod lavere priser i forhold til Mellemeuropa. 3.1 Mikael sparer Han sparer altså 4, kr. omregnet 23/ kr. svarer til 3,04 103,50 kr. omregnet / ,50 kr. svarer til 13, kr. omregnet 125/ kr. svarer til 16, Se desuden bilag

10 3.4 Udskrevet fra MatematiKan De syv vandrette linjer er dagskort. Den skrå linje er enkeltbilletter og den gennemgående vandrette linje er ugekort. 3.5 Efter fire dage er ugekortet det bedste køb, da linjen for ugekort ses at ligge lige under linjen for dagskort og langt under linjen for enkeltbilletter. 3.6 Udskrevet fra MatematiKan

11 Når de første to dage er gået og under forudsætning af, at der kun bruges fem enkeltbilletter pr. to dage vil den resterende tid kunne afbildes som ovenfor. det ses, at ugekortet først er en fordel, hvis alle syv dage benyttes. det ses samtidig, at enkeltbilletter er billigst, hvis turen afsluttes midt på dagen på en af de resterende dage. 3.8 Prisstigningen i Berlin Prisstigningen er på 3,7 % Prisstigningen i København Prisstigningen er på 21,1 % 4.1 Tagkonstruktionens højde måles til: ca. 9 cm. Målestoksforholdet er derfor 9 cm:2300 cm eller 1: dvs. ca 1: Billedet indsat i geometriprogram og skaleret, så længden er lig med afstanden mellem A og B

12 4.3 En cirkel indtegnet over kuplen. Det ses at cirklen kun følger kuplen nogenlunde i den øverste del af billedet 4.4 En halvcirkel der omtrent følger den øverste kugleformede del 4.5

13 Billedet er ikke skaleret i forhold til de virkelige mål. Radius for cirklen kan udregnes til: Radius er altså ca. 17 m. Rumfanget af den kugleformede del er: 4 3 π Rumfanget er altså ca m Billedet indlæses skaleret i tegneprogrammet, så længder umiddelbart kan aflæses uden omregninger:

14 Det ses, at højden af keglestubben er ca. 7,4 m 4.7 For at beregne rumfanget skal den lille og den store radius kendes. Den store diameter er ca. 40 m. Den store radius er derfor altså R = 20 m Den lille diameter aflæses til ca. 36,4 m. Den lille radius er derfor altså r = 18,2 Keglestubbens rumfang fås ved at indsætte i den angivne formel: 1 3 π 7.4 ( ) eller ca m Det samlede rumfang bliver eller ca m 3

15 4.9 Rundetårns rumfang kan beregnes ved hjælp af formlen for en cylinder der iflg. formelsamlingen er: V = π r 2 h Indsættes målene fra opgaven fås: V = π V = π Rumfanget bliver ca m Forskellen i rumfang på kuplen på rigsdagsbygningen og Rundetårn er: altså m

16 5.1 Resultaterne fremgår af regnearket og beregningsmetoden af celle D6 5.2

17 Kortet i geometriprogram 5.3 Arealet af en cirkel er A = π r 2 r = A or r = π A, A 0. π hvor vi kun kan bruge den positive løsning, da r er positiv. Vi ved, at en befolkning på 1 million skal have en diameter i befolkningscirklen på 1 dvs. en radius på 0,5. Vi kan derfor finde en faktor vi skal bruge på befolkningstallet for at kunne bruge formlen til at finde radius i de forskellige tilfælde: LøsLigning 0,5 1 k,k 0, Ligning løst i MatematiKan, da denne type ligning ikke kan løses i Word Mathematics. Efterfølgende også løst i Matematikan, da resultatet så kan genbruges nemt. Herefter kan radius findes for de forskellige hovedstæder:

18 Oslo LøsLigning r 0, Stockholm LøsLigning r 0, København LøsLigning r 0, Berlin LøsLigning r 0, London LøsLigning r 1, Paris LøsLigning r 0, , ` 1, ` 0, ` 3, ` 7, ` 2, `,r,r,r,r,r,r De fundne radier kan nu benyttes i tegneprogrammet:

19 5.4 Berlinere, der ikke tilhører en trosretning i procent: ,1 % af berlinerne tilhører ikke en trosretning 5.5

20 Konstrueret i MatematiKan, da Word Mathematics ikke understøtter cirkeldiagrammer 5.6 Ved aflæsning af bogens diagram ses, at gruppen af ikke-religiøse udgør ca. 56 grader. I procent udgør gruppen derfor: eller ca. 15,6 % af indbyggerne 5.7 Sammenlignes diagrammerne kan man se at de fleste berlinere ikke er religiøse, mens de fleste indbyggere i London er religiøse. For de religiøse er kristendommen begge steder den dominerende religion. Muslimer udgør en større del af Berlins befolkning end andelen af muslimer udgør af Londons befolkning. Der er meget få jøder i Berlin (er under andre religioner), men en tydelig jødisk population i London. Desuden har London mange tilhængere af religioner, der ikke er specificeret.

Benyt regnearket Prislisten til at løse opgaverne 1.1, 1.2, 1.3, 1.4 og 1.8.

Benyt regnearket Prislisten til at løse opgaverne 1.1, 1.2, 1.3, 1.4 og 1.8. 1. Isabellas rabatkort På sin fødselsdag fik Isabella et rabatkort til køb af is i Iskiosken. Rabatkortet kan bruges både for at spare penge og som en gave. På Isabellas kort var der indsat 200 kr., og

Læs mere

Uafhængig og afhængig variabel

Uafhængig og afhængig variabel Uddrag fra http://www.emu.dk/gym/fag/ma/undervisningsforloeb/hf-mat-c/introduktion.doc ved Hans Vestergaard, Morten Overgaard Nielsen, Peter Trautner Brander Variable og sammenhænge... 1 Uafhængig og afhængig

Læs mere

Rumfang af væske i beholder

Rumfang af væske i beholder Matematikprojekt Rumfang af væske i beholder Maila Walmod, 1.3 HTX Roskilde Afleveringsdato: Fredag d. 7. december 2007 1 Fru Hansen skal have en væskebeholder, hvor rumfanget af væsken skal kunne aflæses

Læs mere

Beregninger Microsoft Excel 2010 Grundforløb Indhold

Beregninger Microsoft Excel 2010 Grundforløb Indhold Indhold Arealberegning... 2 Kvadrat/rektangulær... 2 Rektangel... 2 Kvadrat... 2 Cirkel... 2 Omkredsberegning... 3 Kvadrat/rektangulær... 3 Rektangel... 3 Kvadrat... 3 Cirkel... 3 Rumfangsberegning...

Læs mere

Vejledende løsning. Ib Michelsen. hfmac123

Vejledende løsning. Ib Michelsen. hfmac123 Vejledende løsning hfmac123 Side 1 Opgave 1 På en bankkonto indsættes 30.000 kr. til en rentesats på 2,125 % i 7 år. Beregning af indestående Jeg benytter formlen for kapitalfremskrivning: K n=k 0 (1+r

Læs mere

Lineære sammenhænge. Udgave 2. 2009 Karsten Juul

Lineære sammenhænge. Udgave 2. 2009 Karsten Juul Lineære sammenhænge Udgave 2 y = 0,5x 2,5 2009 Karsten Juul Dette hæfte er en fortsættelse af hæftet "Variabelsammenhænge, 2. udgave 2009". Indhold 1. Lineære sammenhænge, ligning og graf... 1 2. Lineær

Læs mere

Opgave 1 10. Opgave 2 Andengradsligningen løses, idet. Opgave 3. 11 er en løsning til ligningen, da:

Opgave 1 10. Opgave 2 Andengradsligningen løses, idet. Opgave 3. 11 er en løsning til ligningen, da: 7. marts 0 FVU AVU HF X FAG : Matematik B ark nr. antal ark 8 Opgave 0 a b 5 a b 5 = b 3 er en løsning til ligningen, da: = 9 = 3 Opgave Andengradsligningen løses, idet a = b = 3 c = 4 d (diskriminanten)

Læs mere

Excel tutorial om lineær regression

Excel tutorial om lineær regression Excel tutorial om lineær regression I denne tutorial skal du lære at foretage lineær regression i Microsoft Excel 2007. Det forudsættes, at læseren har været igennem det indledende om lineære funktioner.

Læs mere

Regneark Excel fortsat

Regneark Excel fortsat Regneark Excel fortsat Indhold SÅDAN TEGNES GRAFER I REGNEARK EXCEL... 1 i Excel 97-2003... 1 I Excel 2007... 1 ØVELSE... 2 I Excel 97-2003:... 2 I Excel 2007... 3 OM E-OPGAVER 12A... 4 Sådan tegnes grafer

Læs mere

bruge en formel-samling

bruge en formel-samling Geometri Længdemål og omregning mellem længdemål... 56 Omkreds og areal af rektangler og kvadrater... 57 Omkreds og areal af andre figurer... 58 Omregning mellem arealenheder... 6 Nogle geometriske begreber

Læs mere

AVU trin 2 prøver i matematik Facitforslag Dec. 2005. ISBN: 87-90652-65-7 ISSN: 1603-9432 EH-Mat 2006

AVU trin 2 prøver i matematik Facitforslag Dec. 2005. ISBN: 87-90652-65-7 ISSN: 1603-9432 EH-Mat 2006 Denne udgave på internettet er ment som en gennemsynsudgave. Ønsker du at anvende materialet, kan du købe materialet i en trykt version. Et VUC eller en anden undervisningsinstitution kan købe en digital

Læs mere

Matematik D. Almen forberedelseseksamen. Skriftlig prøve. (4 timer)

Matematik D. Almen forberedelseseksamen. Skriftlig prøve. (4 timer) Matematik D Almen forberedelseseksamen Skriftlig prøve (4 timer) AVU101-MAD Torsdag den 27. maj 2010 kl. 9.00-13.00 Post Danmark Matematik niveau D Skriftlig matematik Opgavesættet består af: Opgavehæfte

Læs mere

Tennis eksempel på opgaveløsning i MatematiKan.nb

Tennis eksempel på opgaveløsning i MatematiKan.nb Opgave 1 1.1 Caroline alder, da hun blev profeionel: 2005-1990 15 18-11 7 Caroline var 15 år og 7 dage gammel. 1.2-1.6 1.5 Det er ud til, at den ekponentielle tendenlinje følger punkterne bedt. 1.6 R-kvadreret

Læs mere

TAL OG ALGEBRA/GEOMETRI

TAL OG ALGEBRA/GEOMETRI Navn: CPR: TAL OG ALGEBRA/GEOMETRI 1. 376 + 2489 = 2. 367 120 = 3. 16 40 = 4. 216 : 12 = Løs ligningen 14. x - 6 = 4 x = 15. 3x = 24 x = Afrund til nærmeste hele tal 5. 21,88 6. 3 3 1 16. 17. 1 4 + 6 6

Læs mere

fs10 1 Rejsen til New York 2 Fra fahrenheit til celsius 3 Højde og vægt 4 Sukkerroer 5 Afstand til en båd 6 Regulær ottekant Matematik

fs10 1 Rejsen til New York 2 Fra fahrenheit til celsius 3 Højde og vægt 4 Sukkerroer 5 Afstand til en båd 6 Regulær ottekant Matematik fs10 10.-klasseprøven Matematik December 2012 Et svarark er vedlagt som bilag til dette opgavesæt 1 Rejsen til New York 2 Fra fahrenheit til celsius 3 Højde og vægt 4 Sukkerroer 5 Afstand til en båd 6

Læs mere

Målestoksforhold. Navn: Klasse: Matematik Opgave Kompendium. Opgaver: 25 Ekstra: 10 Mdt mat: 1 Point:

Målestoksforhold. Navn: Klasse: Matematik Opgave Kompendium. Opgaver: 25 Ekstra: 10 Mdt mat: 1 Point: Navn: Klasse: Matematik Opgave Kompendium Målestoksforhold Følgende gennemgås: Målestoksforhold Regnetrekanten Fra virkelighed til tegning Skitse & målestokstegning Fra tegning til virkelighed At finde

Læs mere

d Kopier formlen fra celle A3 ned i kolonne A. Kopier formlen fra celle C3 ned i kolonne C. Undersøg, hvad der sker med formlen, når den kopieres.

d Kopier formlen fra celle A3 ned i kolonne A. Kopier formlen fra celle C3 ned i kolonne C. Undersøg, hvad der sker med formlen, når den kopieres. KOPIARK 17 # ligninger og formler i excel 2007, 1 1 Du skal lave et regneark, som kan bruges til at løse ligningen 5 x 11 = 7 + 3 x. a Lav et regneark som vist. HUSK: Gør en kolonne bredere Man kan gøre

Læs mere

Uge Emne Formål Faglige mål Evaluering

Uge Emne Formål Faglige mål Evaluering Uge Emne Formål Faglige mål Evaluering (Der evalueres løbende på følgende hovedpunkter) 33-36 Regneregler Vedligeholde og udbygge forståelse og færdigheder inden for de fire regningsarter Blive fortrolig

Læs mere

Foreløbig udgave af læringsmål til: Kapitel 1 Regn med store tal Fælles Mål Læringsmål Forslag til tegn på læring

Foreløbig udgave af læringsmål til: Kapitel 1 Regn med store tal Fælles Mål Læringsmål Forslag til tegn på læring Foreløbig udgave af læringsmål til: Kapitel 1 Regn med store tal Fælles Mål Læringsmål Forslag til tegn på læring udføre beregninger med de fire regningsarter inden for naturlige tal, herunder beregninger

Læs mere

5. KLASSE UNDERVISNINGSPLAN MATEMATIK

5. KLASSE UNDERVISNINGSPLAN MATEMATIK Lærer: SS Forord til faget i klassen Vi vil i matematik arbejde differentieret i hovedemnerne geometri, statistik og sandsynlighed samt tal og algebra. Vi vil i 5. kl. dagligt arbejde med matematisk kommunikation

Læs mere

MATEMATIK A-NIVEAU 2g

MATEMATIK A-NIVEAU 2g NETADGANGSFORSØGET I MATEMATIK APRIL 2009 MATEMATIK A-NIVEAU 2g Prøve April 2009 1. delprøve: 2 timer med formelsamling samt 2. delprøve: 3 timer med alle hjælpemidler Hver delprøve består af 14 spørgsmål,

Læs mere

Kapitel 2 Tal og variable

Kapitel 2 Tal og variable Tal og variable Uden tal ingen matematik - matematik handler om tal og anvendelse af tal. Matematik beskæftiger sig ikke udelukkende med konkrete problemer fra andre fag, og de konkrete tal fra andre fagområder

Læs mere

Årsplan matematik 7.klasse 2014/2015

Årsplan matematik 7.klasse 2014/2015 Årsplan matematik 7.klasse 2014/2015 Emne Indhold Mål Tal og størrelser Arbejde med brøktal som repræsentationsform på omverdenssituationer. Fx i undersøgelser. Arbejde med forskellige typer af diagrammer.

Læs mere

Arbejdsplan generel Tema 4: Statistik

Arbejdsplan generel Tema 4: Statistik Arbejdsplan generel Tema 4: Statistik Formål: Eleverne skal få kendskab til og kunne forklare forskellige begreber inden for det statistiske emne. Der bliver alene arbejdet med enkelobservationer. Grupperede

Læs mere

Fortsættelse af Regneark II. Indhold. Side 1 af 14. Regneark EXCEL

Fortsættelse af Regneark II. Indhold. Side 1 af 14. Regneark EXCEL Side 1 af 14 Fortsættelse af Regneark II Indhold Telefonliste...2 Budget...4 Diagram...7 Regning...9 Underskrift...9 Rundt om Jorden...11 Matematisk problem...13 Et sidste eksempel...14 Side 2 af 14 Telefonliste

Læs mere

Kapitel 3 Lineære sammenhænge

Kapitel 3 Lineære sammenhænge Matematik C (må anvendes på Ørestad Gymnasium) Lineære sammenhænge Det sker tit, at man har flere variable, der beskriver en situation, og at der en sammenhæng mellem de variable. Enhver formel er faktisk

Læs mere

Tak for kaffe! 17-10-2004 Tak for kaffe! Side 1 af 16

Tak for kaffe! 17-10-2004 Tak for kaffe! Side 1 af 16 Tak for kaffe! Jette Rygaard Poulsen, Frederikshavn Gymnasium og HF-kursus Hans Vestergaard, Frederikshavn Gymnasium og HF-kursus Søren Lundbye-Christensen, AAU 17-10-2004 Tak for kaffe! Side 1 af 16 Tak

Læs mere

matematik Demo excel trin 2 bernitt-matematik.dk 1 excel 2 2007 by bernitt-matematik.dk

matematik Demo excel trin 2 bernitt-matematik.dk 1 excel 2 2007 by bernitt-matematik.dk matematik excel trin 2 bernitt-matematik.dk 1 excel 2 2007 by bernitt-matematik.dk matematik excel 2 1. udgave som E-bog 2007 by bernitt-matematik.dk Kopiering af denne bog er kun tilladt efter aftale

Læs mere

VisiRegn og folkeskolens skriftlige afgangsprøve i matematik, maj 2001 Inge B. Larsen (ibl@dpu.dk) Juni 2001

VisiRegn og folkeskolens skriftlige afgangsprøve i matematik, maj 2001 Inge B. Larsen (ibl@dpu.dk) Juni 2001 VisiRegn og folkeskolens skriftlige afgangsprøve i matematik, maj 2001 Inge B. Larsen (ibl@dpu.dk) Juni 2001 I det følgende gives et forslag til, hvordan en elev i 9. klasse med programmet VisiRegn til

Læs mere

Matematiske færdigheder opgavesæt

Matematiske færdigheder opgavesæt Matematiske færdigheder opgavesæt SÆT + 0 :, 0 000 9 0 cm m 0 liter dl ton kg Hvilket år var der flest privatbiler i Danmark? Cirka hvor mange privatbiler var der i 99? 00 0 000 Priser i Tivoli, 00: Turpas

Læs mere

sammenhänge for C-niveau i stx 2013 Karsten Juul

sammenhänge for C-niveau i stx 2013 Karsten Juul LineÄre sammenhänge for C-niveau i stx y 0,5x 2,5 203 Karsten Juul : OplÄg om lineäre sammenhänge 2 Ligning for lineär sammenhäng 2 3 Graf for lineär sammenhäng 2 4 Bestem y når vi kender x 3 5 Bestem

Læs mere

Elevbog s. 14-25 Vi opsummerer hvad vi ved i. kendskab til geometriske begreber og figurer.

Elevbog s. 14-25 Vi opsummerer hvad vi ved i. kendskab til geometriske begreber og figurer. Årsplan 5. LH. Matematik Lærer Pernille Holst Overgaard (PHO) Lærebogsmateriale. Format 5 Tid og fagligt Aktivitet område Uge 33-37 Tal Uge 38-41 (efterårsferie uge 42) Figurer Elevbog s. 1-13 Vi opsummerer

Læs mere

fsa 1 Befolkningen i København i 2007 2 Københavns folketal i fremtiden 3 Turen går til København 4 Amalienborg 5 Overnatninger i København i 2007

fsa 1 Befolkningen i København i 2007 2 Københavns folketal i fremtiden 3 Turen går til København 4 Amalienborg 5 Overnatninger i København i 2007 fsa Folkeskolens Afgangsprøve Matematisk problemløsning december 2009 Som bilag til dette opgavesæt er vedlagt et svarark 1 Befolkningen i København i 2007 2 Københavns folketal i fremtiden 3 Turen går

Læs mere

Eksempel på logistisk vækst med TI-Nspire CAS

Eksempel på logistisk vækst med TI-Nspire CAS Eksempel på logistisk vækst med TI-Nspire CAS Tabellen herunder viser udviklingen af USA's befolkning fra 1850-1910 hvor befolkningstallet er angivet i millioner: Vi har tidligere redegjort for at antallet

Læs mere

Lærervejledning til Træn matematik på computer. Lærervejledning. Træn matematik på computer. ISBN 978-87-992954-5-6 www.learnhow.dk v/rikke Josiasen

Lærervejledning til Træn matematik på computer. Lærervejledning. Træn matematik på computer. ISBN 978-87-992954-5-6 www.learnhow.dk v/rikke Josiasen Lærervejledning Træn matematik på computer Materialet består af 31 selvrettende emner til brug i matematikundervisningen i overbygningen. De fleste emner består af 3 sider med stigende sværhedsgrad. I

Læs mere

Opgaver til C# - Beregninger og udskrift til skærm

Opgaver til C# - Beregninger og udskrift til skærm Opgaver til C# - Beregninger og udskrift til skærm Opgave 1 Indtast følgende programkode (som er en tillempning af en klassiker) og afvikl den System.Console.WriteLine("Jeg ælsker C#"); Prøv at skriv en

Læs mere

Blandede opgaver (2) Maler-Biksen. Matematik på VUC Modul 3c Opgaver

Blandede opgaver (2) Maler-Biksen. Matematik på VUC Modul 3c Opgaver Blandede opgaver (2) 1: Tegningen viser et værelse med skråvæg. To af væggene kaldes A og B. a: Find arealet af væg A. b: Find arealet af væg B. A B 1 m 465 cm 4 m c: Tegn væggene i målestoksforhold 1:50.

Læs mere

Middelværdi med mere... 76 Hyppighed og frekvens... 77 Diagrammer... 78 Hvilket diagram er bedst?... 80 Grupperede observationer...

Middelværdi med mere... 76 Hyppighed og frekvens... 77 Diagrammer... 78 Hvilket diagram er bedst?... 80 Grupperede observationer... Statistik Middelværdi med mere... 76 Hyppighed og frekvens... 77 Diagrammer... 78 Hvilket diagram er bedst?... 80 Grupperede observationer... 81 Statistik Side 75 Når man skal holde styr på mange oplysninger,

Læs mere

Funktioner - supplerende eksempler

Funktioner - supplerende eksempler - supplerende eksempler Oversigt over forskellige typer af funktioner... 9b Omvendt proportionalitet og hyperbler... 9c Eksponentialfunktioner... 9e Potensfunktioner... 9g Side 9a Oversigt over forskellige

Læs mere

Evaluering af matematikundervisningen december 2014

Evaluering af matematikundervisningen december 2014 Evaluering af matematikundervisningen december 0 Evalueringen er udarbejdet på baggrund af et ønske om dokumentation for elevernes udbytte af matematikundervisningen. Af forskellige årsager er evalueringen

Læs mere

Du skal lave en tegning af bordet set lige på fra alle sider (fra langsiden, den korte side, fra oven og fra neden - 4 tegninger i alt).

Du skal lave en tegning af bordet set lige på fra alle sider (fra langsiden, den korte side, fra oven og fra neden - 4 tegninger i alt). Mit bord. Tegn det bord, du sidder ved. Du skal lave en tegning af bordet set lige på fra alle sider (fra langsiden, den korte side, fra oven og fra neden - 4 tegninger i alt). Tegningerne skal laves på

Læs mere

Lineære funktioner. Erik Vestergaard

Lineære funktioner. Erik Vestergaard Lineære funktioner Erik Vestergaard Erik Vestergaard www.matematikfsik.dk Erik Vestergaard www.matematikfsik.dk Lineære funktioner En vigtig tpe funktioner at studere er de såkaldte lineære funktioner.

Læs mere

Matematik Delmål og slutmål

Matematik Delmål og slutmål Matematik Delmål og slutmål Ferritslev friskole 2006 SLUTMÅL efter 9. Klasse: Regning med de rationale tal, såvel som de reelle tal skal beherskes. Der skal kunne benyttes og beherskes formler i forbindelse

Læs mere

VisiRegn og folkeskolens skriftlige afgangsprøve i matematik, maj-juni 2000 Inge B. Larsen (ibl@dpu.dk)

VisiRegn og folkeskolens skriftlige afgangsprøve i matematik, maj-juni 2000 Inge B. Larsen (ibl@dpu.dk) VisiRegn og folkeskolens skriftlige afgangsprøve i matematik, maj-juni 2000 Inge B. Larsen (ibl@dpu.dk) I det følgende gives et forslag til, hvordan en elev i 9. klasse med programmet VisiRegn til rådighed

Læs mere

Lineære modeller. Taxakørsel: Et taxa selskab tager 15 kr. pr. km man kører i deres taxa. Hvis vi kører 2 km i taxaen koster turen altså

Lineære modeller. Taxakørsel: Et taxa selskab tager 15 kr. pr. km man kører i deres taxa. Hvis vi kører 2 km i taxaen koster turen altså Lineære modeller Opg.1 Taxakørsel: Et taxa selskab tager 15 kr. pr. km man kører i deres taxa. Hvis vi kører 2 km i taxaen koster turen altså Hvor meget koster det at køre så at køre 10 km i Taxaen? Sammenhængen

Læs mere

Matematik for malere. praktikopgaver. Tegneopgave Ligninger Areal Materialeberegning Procent Rumfang og massefylde Trekantberegninger.

Matematik for malere. praktikopgaver. Tegneopgave Ligninger Areal Materialeberegning Procent Rumfang og massefylde Trekantberegninger. Matematik for malere praktikopgaver 3 Tilhører: Tegneopgave Ligninger Areal Materialeberegning Procent Rumfang og massefylde Trekantberegninger 2 Indhold: Tegneopgave... side 4 Ligninger... side 8 Areal...

Læs mere

Fagårsplan 13/14 Fag: Matematik Klasse: 7.B Lærer: LBJ Fagområde/ emne

Fagårsplan 13/14 Fag: Matematik Klasse: 7.B Lærer: LBJ Fagområde/ emne Fagårsplan 13/14 Fag: Matematik Klasse: 7.B Lærer: LBJ Fagområde/ emne Periode Mål Eleverne skal: Tal og enheder arbejde med tal og enheder, som bruges i hverdagen blive bedre til at omregne mellem enheder

Læs mere

TAL OG ALGEBRA/GEOMETRI

TAL OG ALGEBRA/GEOMETRI AEU 2 december 2010 syge Navn: CPR: TAL OG ALGEBRA/GEOMETRI 1. 1265 + 743 = 2. 1024 732 = 3. 38 3150 = Afrund til nærmeste hele tal 14. 0,8 15. 98,3 4. 4860 : 5 = Løs ligningen 5. x - 12 = 68 x = 6. 54x

Læs mere

matematik Demo excel trin 1 preben bernitt bernitt-matematik.dk 1 excel 1 2007 by bernitt-matematik.dk

matematik Demo excel trin 1 preben bernitt bernitt-matematik.dk 1 excel 1 2007 by bernitt-matematik.dk matematik excel trin 1 preben bernitt bernitt-matematik.dk 1 excel 1 2007 by bernitt-matematik.dk matematik excel 1 1. udgave som E-bog 2007 by bernitt-matematik.dk Kopiering af denne bog er kun tilladt

Læs mere

Dig og din puls. 17-10-2004 Dig og din puls Side 1 af 17

Dig og din puls. 17-10-2004 Dig og din puls Side 1 af 17 Dig og din puls Jette Rygaard Poulsen, Frederikshavn Gymnasium og HF-kursus Hans Vestergaard, Frederikshavn Gymnasium og HF-kursus Søren Lundbye-Christensen, AAU 17-10-2004 Dig og din puls Side 1 af 17

Læs mere

TAL OG ALGEBRA/GEOMETRI

TAL OG ALGEBRA/GEOMETRI Navn: CPR: TAL OG ALGEBRA/GEOMETRI 1. 888 + 74 = 2. 342 67 = 3. 34 8 = Afrund til nærmeste hele tal 14. 11,37 15. 4,52 4. 256 : 8 = Løs ligningen 5. x - 6 = 31 x = 6. 4x = 28 x = 16. 17. 3 5 + 6 6 = 4

Læs mere

Et CAS program til Word.

Et CAS program til Word. Et CAS program til Word. 1 WordMat WordMat er et CAS-program (computer algebra system) som man kan downloade gratis fra hjemmesiden www.eduap.com/wordmat/. Programmet fungerer kun i Word 2007 og 2010.

Læs mere

For at få tegnet en graf trykkes på knappen for graftegning. Knap for graftegning

For at få tegnet en graf trykkes på knappen for graftegning. Knap for graftegning Graftegning på regneark. Ved hjælp af Excel regneark kan man nemt tegne grafer. Man åbner for regnearket ligger under Microsoft Office. Så indtaster man tallene fra tabellen i regnearkets celler i en vandret

Læs mere

Matematik. Trinmål 2. Nordvestskolen 2006 Forord. Trinmål 2 (4. 6. klasse)

Matematik. Trinmål 2. Nordvestskolen 2006 Forord. Trinmål 2 (4. 6. klasse) Matematik Trinmål 2 Nordvestskolen 2006 Forord Forord For at sikre kvaliteten og fagligheden i folkeskolen har Undervisningsministeriet udarbejdet faghæfter til samtlige fag i folkeskolen med bindende

Læs mere

Matematik - undervisningsplan

Matematik - undervisningsplan I 4. klasse starter man på andet forløb i matematik, der skal lede frem mod at eleverne kan opfylde fagets trinmål efter 6. klasse. Det er dermed det som undervisningen tilrettelægges ud fra og målsættes

Læs mere

Funktioner generelt. for matematik pä B-niveau i stx. 2013 Karsten Juul

Funktioner generelt. for matematik pä B-niveau i stx. 2013 Karsten Juul Funktioner generelt for matematik pä B-niveau i st f f ( ),8 0 Karsten Juul Funktioner generelt for matematik pä B-niveau i st Funktion, forskrift, definitionsmångde Find forskrift StÇrste og mindste vårdi

Læs mere

MATEMATIK, MUNDTLIG PRØVE TEMA: PYRAMIDER

MATEMATIK, MUNDTLIG PRØVE TEMA: PYRAMIDER MATEMATIK, MUNDTLIG PRØVE TEMA: PYRAMIDER I oldtiden regnede man med 7 underværker, hvilket var seværdigheder, som man fremhævede på grund af deres størrelse, skønhed og udseende. Kun et enkelt af disse

Læs mere

En funktion kaldes eksponentiel, hvis den har en regneforskrift, der kan skrives således: f(x) = b a x eller y = b a x, idet a og b er positive tal.

En funktion kaldes eksponentiel, hvis den har en regneforskrift, der kan skrives således: f(x) = b a x eller y = b a x, idet a og b er positive tal. Eksponentielle funktioner Indhold Definition:... 1 Om a og b... 2 Tegning af graf for en eksponentiel funktion... 3 Enkeltlogaritmisk koordinatsstem... 4 Logaritmisk skala... 5 Fordoblings- og halveringskonstant...

Læs mere

Rumfangs. umfangsberegning. Rumfang af en cylinder. På illustrationen til højre er indtegnet en lineær funktion indenfor et afgrænset interval, hvor

Rumfangs. umfangsberegning. Rumfang af en cylinder. På illustrationen til højre er indtegnet en lineær funktion indenfor et afgrænset interval, hvor Rumfang af en cylinder På illustrationen til øjre er indtegnet en lineær funktion indenfor et afgrænset interval, vor 0;. Funktionen () kan skrives på formen: = (vor a er en konstant) Det markerede grå

Læs mere

AEU-2 Matematik - problemregningsdel.

AEU-2 Matematik - problemregningsdel. NAMMINERSORLUTIK OQARTUSSAT/GRØNLANDS SELVSTYRE/GREENLAND HOME RULE AEU-2 Matematik - problemregningsdel. Sygeprøve Piffissami nal. Ak./Tidspunkt.: 09.00 11.30 Ulloq misilitsiffik/dato: 16. januar 2013

Læs mere

Graph brugermanual til matematik C

Graph brugermanual til matematik C Graph brugermanual til matematik C Forord Efterfølgende er en guide til programmet GRAPH. Programmet kan downloades gratis fra nettet og gemmes på computeren/et usb-stik. Det betyder, det også kan anvendes

Læs mere

areal og rumfang trin 2 brikkerne til regning & matematik preben bernitt

areal og rumfang trin 2 brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik areal og rumfang trin 2 preben bernitt brikkerne til regning & matematik areal og rumfang, trin 2 ISBN: 978-87-92488-18-3 1. Udgave som E-bog 2003 by bernitt-matematik.dk

Læs mere

Lektion 9s Statistik - supplerende eksempler

Lektion 9s Statistik - supplerende eksempler Lektion 9s Statistik - supplerende eksempler Middelværdi for grupperede observationer... Summeret frekvens og sumkurver... Indekstal... Lektion 9s Side 1 Grupperede observationer Hvis man stiller et spørgsmål,

Læs mere

Lærervejledning Modellering (3): Funktioner (1):

Lærervejledning Modellering (3): Funktioner (1): Lærervejledning Formål Gennem undersøgelsesbaseret undervisning anvendes lineære sammenhænge, som middel til at eleverne arbejder med repræsentationsskift og aktiverer algebraiske teknikker. Hvilke overgangsproblemer

Læs mere

Vejledende besvarelse

Vejledende besvarelse Ib Michelsen Svar: stx B 29. maj 2013 Side 1 1. Udfyld tabellen Vejledende besvarelse Givet funktionen f (x)=4 5 x beregnes f(2) f (2)=4 5 2 =4 25=100 Den udfyldte tabel er derfor: x 0 1 2 f(x) 4 20 100

Læs mere

Matematik D. Almen voksenuddannelse. Skriftlig prøve. (4 timer)

Matematik D. Almen voksenuddannelse. Skriftlig prøve. (4 timer) Matematik D Almen voksenuddannelse Skriftlig prøve (4 timer) AVU131-MAT/D Torsdag den 12. december 2013 kl. 9.00-13.00 Bier og biavl Matematik niveau D Skriftlig matematik Opgavesættet består af: Opgavehæfte

Læs mere

FRANSK BEGYNDERSPROG HØJT NIVEAU FORTSÆTTERSPROG TILVALGSFAG HØJERE FORBEREDELSESEKSAMEN AUGUST 2009 HØJERE FORBEREDELSESEKSAMEN AUGUST 2009

FRANSK BEGYNDERSPROG HØJT NIVEAU FORTSÆTTERSPROG TILVALGSFAG HØJERE FORBEREDELSESEKSAMEN AUGUST 2009 HØJERE FORBEREDELSESEKSAMEN AUGUST 2009 STUDENTEREKSAMEN MAJ 2005 2005-11-2 SPROGLIG OG MATEMATISK LINJE HØJERE FORBEREDELSESEKSAMEN MAJ 2005 HØJERE FORBEREDELSESEKSAMEN AUGUST 2009 HØJERE FORBEREDELSESEKSAMEN AUGUST 2009 FRANSK BEGYNDERSPROG

Læs mere

Årsplan for 5. klasse, matematik

Årsplan for 5. klasse, matematik Årsplan for 5. klasse, matematik I matematik bruger vi bogsystemet Sigma som grundmateriale. I systemet er der, ud over også kopiark og tests tilknyttet de enkelte kapitler. Systemet er udarbejdet så det

Læs mere

Undervisningsplan: Matematik Skoleåret 2014/2015 Strib Skole: 5B Ugenumre: Hovedområder: Emner og temaer: Side 1 af 5

Undervisningsplan: Matematik Skoleåret 2014/2015 Strib Skole: 5B Ugenumre: Hovedområder: Emner og temaer: Side 1 af 5 Ugenumre: Hovedområder: Emner og temaer: 33 Addition og subtraktion Anvendelse af regningsarter 34 Multiplikation og division Anvendelse af regningsarter 35 Multiplikation med decimaltal Anvendelse af

Læs mere

VEUD ekstraopgave Opgave nr. 62-11

VEUD ekstraopgave Opgave nr. 62-11 Opgavens art: Opgaveformulering: Fagområde: Opgavens varighed: Teoretisk Gennemgang af lommeregner Sprøjtestøbning 4 lektioner Niveau, sammenlignet med uddannelsen: Henvisning til hjælpemidler: Grunduddannelse

Læs mere

STUDENTEREKSAMEN GUX MAJ 2007 2014 MATEMATIK A-NIVEAU. Prøveform b. Kl. 9.00 14.00 GUX-MAA

STUDENTEREKSAMEN GUX MAJ 2007 2014 MATEMATIK A-NIVEAU. Prøveform b. Kl. 9.00 14.00 GUX-MAA STUDENTEREKSAMEN GUX MAJ 007 014 MATEMATIK A-NIVEAU Prøveform b 014 Kl. 9.00 14.00 GUX-MAA Matematik A Prøvens varighed er 5 timer. Delprøven uden hjælpemidler består af opgaverne 1 til 6 med i alt 6 spørgsmål.

Læs mere

grafer og funktioner trin 1 brikkerne til regning & matematik preben bernitt

grafer og funktioner trin 1 brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik grafer og funktioner trin 1 preben bernitt brikkerne til regning & matematik grafer og funktioner, trin 1 ISBN: 978-87-92488-11-4 1. Udgave som E-bog 2003 by bernitt-matematik.dk

Læs mere

2 Erik Vestergaard www.matematikfysik.dk

2 Erik Vestergaard www.matematikfysik.dk Erik Vestergaard www.matematikfysik.dk Erik Vestergaard www.matematikfysik.dk 3 Lineære funktioner En vigtig type funktioner at studere er de såkaldte lineære funktioner. Vi skal udlede en række egenskaber

Læs mere

GrundlÄggende variabelsammenhänge

GrundlÄggende variabelsammenhänge GrundlÄggende variabelsammenhänge for C-niveau i hf 2014 Karsten Juul LineÄr sammenhäng 1. OplÄg om lineäre sammenhänge... 1 2. Ligning for lineär sammenhäng... 1 3. Graf for lineär sammenhäng... 2 4.

Læs mere

Ib Michelsen Vejledende løsning stxb 101 1

Ib Michelsen Vejledende løsning stxb 101 1 Ib Michelsen Vejledende løsning stxb 101 1 Opgave 1 Løs ligningen: 3(2 x+1)=4 x+9 Løsning 3(2 x+1)=4 x+9 6 x+3=4 x+9 6 x+3 3=4 x+9 3 6 x=4 x+6 6x 4 x=4 x+6 4 x 2 x=6 2 x 2 = 6 2 x=3 Opgave 2 P(3,1) er

Læs mere

Hvor hurtigt kan du køre?

Hvor hurtigt kan du køre? Fart Hvor hurtigt kan du køre? I skal nu lave beregninger over jeres testresultater. I skal bruge jeres testark og ternet papir. Mine resultater Du skal beregne gennemsnittet af dine egne tider. Hvilket

Læs mere

fs10 1 På rejse til VM i fodbold 2 VM-fodbolden Brazuca 3 Brasilien og Danmark 4 Fodboldkampe og odds 5 Korde i en cirkel Matematik 10.

fs10 1 På rejse til VM i fodbold 2 VM-fodbolden Brazuca 3 Brasilien og Danmark 4 Fodboldkampe og odds 5 Korde i en cirkel Matematik 10. fs10 10.-klasseprøven Matematik Maj 2014 1 På rejse til VM i fodbold 2 VM-fodbolden Brazuca 3 Brasilien og Danmark 4 Fodboldkampe og odds 5 Korde i en cirkel 1 På rejse til VM i fodbold Ane og Bjarne planlægger

Læs mere

Matematik i 5. klasse

Matematik i 5. klasse Matematik i 5. klasse Igen i år benytter vi os af Faktor i femte. Systemet indeholder en grundbog, hvortil der er supplerende materiale i form af kopiark, som er tilpasset de gennemgåede emner. Grundbogen

Læs mere

Beregning til brug for opmåling, udfoldning og konstruktion

Beregning til brug for opmåling, udfoldning og konstruktion VVS-branchens efteruddannelse Beregning til brug for opmåling, udfoldning og konstruktion Beregning til brug for opmåling, udfoldning og konstruktion Med de trigonometriske funktioner, kan der foretages

Læs mere

1gma_tændstikopgave.docx

1gma_tændstikopgave.docx ulbh 1gma_tændstikopgave.docx En lille simpel opgave med tændstikker Læg 10 tændstikker op på en række som vist Du skal nu danne 5 krydser med de 10 tændstikker, men du skal overholde 3 regler: 1) når

Læs mere

Deformation af stålbjælker

Deformation af stålbjælker Deformation af stålbjælker Af Jimmy Lauridsen Indhold 1 Nedbøjning af bjælker... 1 1.1 Elasticitetsmodulet... 2 1.2 Inertimomentet... 4 2 Formelsamling for typiske systemer... 8 1 Nedbøjning af bjælker

Læs mere

ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER

ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER INDHOLDSFORTEGNELSE 0. FORMELSAMLING TIL FORMLER OG LIGNINGER... 2 Tal, regneoperationer og ligninger... 2 Isolere en ubekendt... 3 Hvis x står i første brilleglas...

Læs mere

Matematik D. Almen forberedelseseksamen. Skriftlig prøve. (4 timer)

Matematik D. Almen forberedelseseksamen. Skriftlig prøve. (4 timer) Matematik D Almen forberedelseseksamen Skriftlig prøve (4 timer) AVU122-MAT/D Torsdag den 24. maj 2012 kl. 9.00-13.00 Olympiske Lege London 2012 Matematik niveau D Skriftlig matematik Opgavesættet består

Læs mere

fsa 1 Besøg i Eiffeltårnet 2 Bygningen af Den Kinesiske Mur 3 Panamakanalen - en genvej 4 Solstråler i Pantheon 5 En trappepyramide i centicubes

fsa 1 Besøg i Eiffeltårnet 2 Bygningen af Den Kinesiske Mur 3 Panamakanalen - en genvej 4 Solstråler i Pantheon 5 En trappepyramide i centicubes fsa Folkeskolens Afgangsprøve Matematisk problemløsning Maj 2010 Som bilag til dette opgavesæt er vedlagt et svarark 1 Besøg i Eiffeltårnet 2 Bygningen af Den Kinesiske Mur 3 Panamakanalen - en genvej

Læs mere

MATEMATIK, MUNDTLIG PRØVE TEMA: PYRAMIDER

MATEMATIK, MUNDTLIG PRØVE TEMA: PYRAMIDER MATEMATIK, MUNDTLIG PRØVE TEMA: PYRAMIDER I oldtiden regnede man med 7 underværker, hvilket var seværdigheder, som man fremhævede på grund af deres størrelse, skønhed og udseende. Kun et enkelt af disse

Læs mere

Tip til 1. runde af Georg Mohr-Konkurrencen Geometri

Tip til 1. runde af Georg Mohr-Konkurrencen Geometri Tip til. runde af - Geometri, Kirsten Rosenkilde. Tip til. runde af Geometri Her er nogle centrale principper om og strategier for hvordan man løser geometriopgaver. et er ikke en særlig teoretisk indføring,

Læs mere

https://www.uvm.dk/~/media/uvm/filer/udd/folke/pdf14/nov/141127_initiativer_til_videreudvikling _af_folkeskolens_proever.pdf

https://www.uvm.dk/~/media/uvm/filer/udd/folke/pdf14/nov/141127_initiativer_til_videreudvikling _af_folkeskolens_proever.pdf Digitalt prøvesæt Dette er et opgavesæt, som jeg har forsøgt at forestille mig, det kan se ud, hvis det skal leve op til ordene i det der er initiativ 3 i rækken af initiativer til videreudvikling af folkeskolens

Læs mere

TAL OG ALGEBRA/GEOMETRI

TAL OG ALGEBRA/GEOMETRI Navn: CPR: TAL OG ALGEBRA/GEOMETRI 1. 467 + 3546 = 2. 354 214 = Afrund til 2 decimaler 14. 21,488 3. 42 23 = 4. 615 : 5 = Løs ligningen 5. x + 9 = 46 x = x 6. = 35 8 x = 15. 16. 17. 1 56 8 7 2 + = 8 8

Læs mere

AT-forløb Jordskælv i Chile 1.u

AT-forløb Jordskælv i Chile 1.u Kapitel 1 AT-forløb Jordskælv i Chile 1.u 1.1 Indgående fag I forløbet indgår fagene naturgeografi v. Mikkel Røjle Bruun (BR), samfundsfag v. Ann Britt Wolsing (AW) og matematik v. Flemming Pedersen (FP).

Læs mere

vækst trin 2 brikkerne til regning & matematik preben bernitt

vækst trin 2 brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik vækst trin 2 preben bernitt brikkerne til regning & matematik vækst, trin 2 ISBN: 978-87-92488-05-3 1. Udgave som E-bog 2003 by bernitt-matematik.dk Kopiering er kun tilladt

Læs mere

Lektion 7 Funktioner og koordinatsystemer

Lektion 7 Funktioner og koordinatsystemer Lektion 7 Funktioner og koordinatsystemer Brug af grafer og koordinatsystemer Lineære funktioner Andre funktioner lignnger med ubekendte Lektion 7 Side 1 Pris i kr Matematik på Åbent VUC Brug af grafer

Læs mere

TAL OG ALGEBRA/GEOMETRI 6 =

TAL OG ALGEBRA/GEOMETRI 6 = AEU Syge Sommer 011 Navn: CPR: TAL OG ALGEBRA/GEOMETRI 1. 1465 + 87 =. 456-47 =. 16 = 4. 56 : 8 = Løs ligningen 5. x - 8 = 56 x = 6. 1 x = 1 x = Afrund til 4 decimaler 14. 6,7841 15. 16,5686 16. 17. 1

Læs mere

Kapital- og rentesregning

Kapital- og rentesregning Rentesregning Rettet den 28-12-11 Kapital- og rentesregning Kapital- og rentesregning Navngivning ved rentesregning I eksempler som Niels Oles, hvor man indskyder en kapital i en bank (én gang), og banken

Læs mere

TAL OG ALGEBRA/GEOMETRI Afrund til nærmeste hele tal 1. 128 + 197 = 14. 18,3 2. 242-157 = 15. 54,8 3. 6 120 =

TAL OG ALGEBRA/GEOMETRI Afrund til nærmeste hele tal 1. 128 + 197 = 14. 18,3 2. 242-157 = 15. 54,8 3. 6 120 = AEU Modul 1 maj 2010 Navn: CPR: TAL OG ALGEBRA/GEOMETRI Afrund til nærmeste hele tal 1. 128 + 197 = 14. 18,3 2. 242-157 = 15. 54,8 3. 6 120 = 4. 168 : 4 = Løs ligningen 5. x + 4 = 39 x = 6. 6x = 42 x =

Læs mere

Matematik. Matematiske kompetencer

Matematik. Matematiske kompetencer Matematiske kompetencer formulere sig skriftligt og mundtligt om matematiske påstande og spørgsmål og have blik for hvilke typer af svar, der kan forventes (tankegangskompetence) løse matematiske problemer

Læs mere

Mathcad Survival Guide

Mathcad Survival Guide Mathcad Survival Guide Mathcad er en blanding mellem et tekstbehandlingsprogram (Word), et regneark (Ecel) og en grafisk CAS-lommeregner. Programmet er velegnet til matematikopgaver, fysikrapporter og

Læs mere

I denne opgave arbejder vi med følgende matematiske begreber:

I denne opgave arbejder vi med følgende matematiske begreber: I denne opgave arbejder vi med følgende matematiske begreber: En meter: 1 m. En kvadratmeter: 1 m. 1 m 2 1 m. En kubikmeter: 1 m 3 Radius-beregning af træet Find omkredsen af træet, mål i brysthøjde. Ca.

Læs mere

Hvilke overgangsproblemer løses med aktiviteten?

Hvilke overgangsproblemer løses med aktiviteten? Lærervejledning Formål Formålet med opgaven er, at eleverne gennem forløbet får styrket deres kompetencer inden for matematisk modellering samt lineære sammenhænge og proportionalitet. Hvilke overgangsproblemer

Læs mere

Computerundervisning

Computerundervisning Frederiksberg Seminarium Computerundervisning Koordinatsystemer og Funktioner Lærervejledning 12-02-2009 Udarbejdet af: Pernille Suhr Poulsen Christina Klitlyng Julie Nielsen Indhold Introduktion... 3

Læs mere

Klassen er sammenlæst, altså 5 og 6 klasse på en og samme tid. Samtidig er klassen pt på ca 11 elever ialt.

Klassen er sammenlæst, altså 5 og 6 klasse på en og samme tid. Samtidig er klassen pt på ca 11 elever ialt. Introduktion til mat i 5/6 klasse Vejle Privatskole 13/14: Klassen er sammenlæst, altså 5 og 6 klasse på en og samme tid. Samtidig er klassen pt på ca 11 elever ialt. Udgangspunktet bliver en blød screening,

Læs mere