(studienummer) (underskrift) (bord nr)

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "(studienummer) (underskrift) (bord nr)"

Transkript

1 Danmarks Tekniske Universitet Side 1 af 22 sider. Skriftlig prøve: 13. december 2010 Kursus navn og nr: Introduktion til Statistik, Tilladte hjælpemidler: Alle Dette sæt er besvaret af (studienummer) (underskrift) (bord nr) Opgavesættet består af 30 spørgsmål af multiple choice typen fordelt på 11 opgaver. Besvarelserne af multiple choice spørgsmålene anføres ved at udfylde skemaet på forsiden (denne side), med numrene på de svarmuligheder, du mener er de korrekte. Et forkert svar kan rettes ved at sværte det forkerte svar over og anføre det rigtige i stedet. Er der tvivl om meningen med en rettelse, eller er der anført flere end ét nummer ved et spørgsmål, betragtes spørgsmålet som ubesvaret. Kladde, mellemregninger eller andet tillægges ingen betydning, kun svarene i tabellen tæller. Der gives 5 point for et korrekt multiple choice svar og 1 for et ukorrekt svar. Ubesvarede spørgsmål eller et 6-tal (svarende til ved ikke ) giver 0 point. Det antal point, der kræves for, at et sæt anses for tilfredstillende besvaret, afgøres endeligt ved censureringen af sættene. Den endelige besvarelse af opgaverne gøres ved at udfylde nedenstående skema. Aflever KUN skemaet! Opgave I.1 I.2 I.3 I.4 II.1 II.2 II.3 II.4 II.5 III.1 Spørgsmål (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) Svar Opgave III.2 III.3 IV.1 IV.2 V.1 V.2 V.3 VI.1 VI.2 VI.3 Spørgsmål (11) (12) (13) (14) (15) (16) (17) (18) (19) (20) Svar Opgave VII.1 VII.2 VIII.1 VIII.2 VIII.3 IX.1 IX.2 X.1 XI.1 XI.2 Spørgsmål (21) (22) (23) (24) (25) (26) (27) (28) (29) (30) Svar (3) (1) 3 4 Husk at forsyne opgavesættet med dit nummer. Sættets sidste side er nr 22; blad lige om og se, at den er der. Fortsæt på side 2 1

2 Multiple choice opgaver Der gøres opmærksom på, at ideen med opgaverne er, at der er ét og kun ét rigtigt svar på de enkelte spørgsmål. Endvidere er det ikke givet, at alle de anførte alternative svarmuligheder er meningsfulde. Opgave I Et firma overvejer at lave en reklamekampagne for forskellige typer kiks, der har et særlig højt indhold af fiber, og derfor menes velegnet som slankeprodukt. Desværre viser det sig, at kiksene kan medføre ubehag, blandt andet sure opstød. I et indledende forsøg har man undersøgt tre forskellige typer kiks, bran, fibo og gum. For hver type af kiks har 50 forsøgspersoner svaret på, hvorvidt man fik sure opstød efter at have spist kiksen. I alt 150 personer indgik i undersøgelsen. Resultaterne fra forsøget er givet i nedenstående tabel (hvor eksempelvis de 50 forsøgspersoner for bran fordelte sig med 3, der havde høj grad, 9 der havde middel, 16 der havde lav og 22 der havde ingen grad af opstød): Antal Grad af opstød personer høj middel lav ingen I alt bran fibo gum I alt Spørgsmål I.1 (1): Betragt alene tallene for bran. Andelen af personer i populationen, som slet ikke får sure opstød af bran kaldes nu p. 95% konfidensintervallet for p bliver: ± / ± / /4 ± 1.96 ((3 12.5) 2 + (9 12.5) 2 + ( ) 2 + ( ) 2 )/ /4 ± t (49) ((3 12.5) 2 + (9 12.5) 2 + ( ) 2 + ( ) 2 )/ ± t 0.05 (49) /50 Fortsæt på side 3 2

3 Spørgsmål I.2 (2): Betragt alene tallene for gum. Andelen af personer i populationen, som slet ikke får sure opstød af gum kaldes nu p. Med udgangspunkt i det bedste gæt på p i det foreliggende materiale, hvor mange personer skal man omtrent undersøge, hvis man i en ny undersøgelse ønske at kende p med en præcision svarende til et 99%-konfidensinterval på plus/minus 4%-point? personer personer personer personer personer Spørgsmål I.3 (3): Betragt hele talmaterialet. Den kritiske værdi for det relevante test (på niveau α = 0.05) for hypotesen om, at der ingen forskel er mellem de tre typer af kiks på fordelingen af personer hen over de fire svarkategorier, er: 1 F 0.05 (2, 6) = χ (6) = F 0.05 (2, 3) = χ (1) = z = Fortsæt på side 4 3

4 Betragt følgende akkumulerede tabel: Antal Grad af opstød personer høj, middel eller lav ingen I alt bran/fibo gum I alt Spørgsmål I.4 (4) Andelen af personer i populationen, som slet ikke får sure opstød af bran eller fibo kaldes nu p 1. Andelen af personer i populationen, som slet ikke får sure opstød af gum kaldes p 2. Vi ønsker at teste hypotesen: p 1 = p 2. Hvilken af følgende teststørrelser er et relevant test for dette? 1 ( ) 2 /( ) 2 (55 45) (41 9) (96 54) (100 50) (55 45) 2 + (41 9) 2 + (100 50) 2 + (96 54) ( ) ( ) Fortsæt på side 5 4

5 Opgave II I et idrætsstudie ønsker man at undersøge, om der er en forskel i energiforbrug for forskellige typer af træning. I studiet har man (for en enkelt person) målt energiforbruget for 10 løbeture af 30 minutter og 10 cykelture af 30 minutter. Målingerne, angivet i kcal, er givet i nedenstående tabel: Løbeture Cykelture Følgende R-kode blev kørt: x1=c(314,340,331,333,329,322,332,330,338,325) x2=c(294,317,317,310,327,300,293,321,307,304) var(x1) var(x2) t.test(x1,x2,var.equal=t) t.test(x1,x2,var.equal=t,pair=t,mu=20) med følgende resultater: Fortsæt på side 6 5

6 > var(x1) [1] > var(x2) [1] 132 > t.test(x1,x2,var.equal=t) Two Sample t-test data: x1 and x2 t = , df = 18, p-value = alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval: sample estimates: mean of x mean of y > t.test(x1,x2,var.equal=t,pair=t,mu=20) Paired t-test data: x1 and x2 t = , df = 9, p-value = alternative hypothesis: true difference in means is not equal to percent confidence interval: sample estimates: mean of the differences 20.4 Spørgsmål II.1 (5): Hvad er det mest rigtige svar på spørgsmålet: Er der forskel i middelenergiforbrug mellem de to typer af aktiviteter? (Både konklusion og argument skal være passende) 1 Ja, der er forskel, idet den relevante P-værdi er omkring Nej, der er ikke forskel, idet den relevante P-værdi er omkring Ja, der er forskel, idet den relevante P-værdi er omkring Nej, der er ikke forskel, idet den relevante P-værdi er omkring Ja, der er forskel, idet 20.4 er større end 20 Fortsæt på side 7 6

7 Spørgsmål II.2 (6): Vi ønsker at teste hypotesen (på niveau α = 0.10) om, at varianserne i de to grupper er ens. Hvad er den relevante teststørrelse, her kaldet Q, og tilhørende kritiske værdi? 1 Q = ( )/2 med kritisk værdi: Q = /10 med kritisk værdi: Q = 4 Q = med kritisk værdi: med kritisk værdi: Q = med kritisk værdi: 4.85 Betragt i resten af opgaven kun data for cykelturene. Spørgsmål II.3 (7): Hvad er henholdsvis nedre kvartil, median og øvre kvartil for disse data? (Det antages, at lærebogens definitioner anvendes. Disse adskiller sig en anelse fra R s definitioner.) 1 77, 232, , 308.5, , 309, , 309, , 308.5, 317 Fortsæt på side 8 7

8 Spørgsmål II.4 (8): Kald det sande middelenergiforbrug ved cykeltturene for µ. Et 99%- konfidensinterval for µ er: 1 0 ± / ± / ± / ± / ± /10 Spørgsmål II.5 (9): Et nyt studie i energiforbrug ved cykelture planlægges. Der ønskes et 95%-konfidensinterval for µ med en samlet bredde på 8kCal. Hvor mange cykelture skal omtrent foretages for at opnå denne præcision? 1 Omtrent 62 2 Omtrent 90 3 Omtrent Omtrent 32 5 Omtrent 3 Fortsæt på side 9 8

9 Opgave III Biler bliver crash testet ved Euro NCAP. I nedenstående tabel ses resultaterne for 18 biler, 6 inden for hver af tre biltyper. Tallet angiver en rating, som egentlig er en procent, men som her betragtes som en kvantitativ måling. Supermini Lille familie Stor familie Gennemsnit Varians Det oplyses at 3 6 (y ij ȳ) 2 = og i=1 j=1 3 6 (y ij ȳ i ) 2 = , i=1 j=1 hvor y ij er målingen for den j te bil inden for den i te type, i = 1, 2, 3 og j = 1,..., 6. Den sædvanlige model for denne situation tænkes anvendt. Spørgsmål III.1 (10): Estimatet for variansen σ 2 bliver: / /15 3 ( )/15 4 ( )/ /3 Fortsæt på side 10 9

10 Spørgsmål III.2 (11): Vi ønsker at teste for forskel i middelrating på biltyperne. Den relevante teststørrelse kaldes nu Q. Det mest korrekte formulerede resultat af dette test er: 1 Ja, der er forskel idet Q = 1.55 med en P-værdi over Nej, der er ikke forskel idet Q = 1.29 med en P-værdi over Nej, der er ikke forskel idet Q = 1.55 med en P-værdi over Ja, der er forskel idet Q = 4.1 med en P-værdi under Ja, der er forskel idet Q = 4.1 med en P-værdi under 0.05 Spørgsmål III.3 (12): Det bedste 95% konfidensinterval for forskellen mellem typerne Lille familie og Supermini er givet ved: 1 7 ± ± ± ± ± Fortsæt på side 11 10

11 Opgave IV I et forsøg fik man følgende 20 målinger: med gennemsnit x = 4.02 mm og spredning s = mm. Spørgsmål IV.1 (13): Vi ønsker at teste hypotesen H 0 : σ 2 = 4 mod H 1 : σ 2 > 4 på et 5% signifikansniveau. Hvad bliver resultatet? (Både resultat og argument skal være i orden) 1 Accepter H 0 idet ( )/4 < Accepter H 0 idet /4 < Forkast H 0 idet > Forkast H 0 idet > Forkast H 0 idet > 4 Spørgsmål IV.2 (14): I fortsættelse af undersøgelsen af σ vil man gerne konstruere et 99% konfidensinterval for spredningen σ. Dette interval bliver < σ < < σ < < σ < < σ < < σ < Fortsæt på side 12 11

12 Opgave V Man ønsker at vurdere, om der er en sammenhæng mellem årlige atmosfæriske CO 2 -målinger og årlige globale gennemsnitstemperaturer. Følgende resultater for 10 år haves: CO 2 (ppm) Temp (Celcius) Det oplyses, at middelværdi og spredning for temperatur-målingerne, x, er estimeret til: x = s x = Middelværdi og spredning for CO 2 -målingerne, y, er estimeret til: ȳ = s y = Videre er (xi x)(y i y) = ( )( ) ( )( ) = I det følgende antages observationerne at kunne beskrives ved følgende model: y i = α + βx i + ɛ i hvor y i og x i er i te måling af henholdsvis CO 2 og temperatur. Leddet ɛ i er den tilfældige afvigelse for i te observation fra α + βx i. Afvigelserne ɛ i antages at have middelværdi 0 og varians σ 2. Et plot af data sammen med den bedste rette linie er: co temp Fortsæt på side 13 12

13 Spørgsmål V.1 (15): Estimatet for β bliver: = = = = = Spørgsmål V.2 (16): 95% konfidensintervallet for hældningskoefficienten bliver: 1 ˆβ ( ) 1 ± ˆβ ( ) 1 ± ˆβ ( ) 1 ± ˆβ ± /10 5 ˆβ ± /10 Spørgsmål V.3 (17): Hvor stor en del af variationen i CO 2 -målingerne kan forklares af temperatur-forskellene? 1 Omtrent 20% 2 Omtrent 50% 3 Omtrent 80% 4 Omtrent 90% 5 100% Fortsæt på side 14 13

14 Opgave VI Der foreligger data for tre forskellige metoder til at bestemme nogle personers reaktionshastighed på: (angivet i milisekunder) Metode Person Person Person Person Person Person De samme 6 personer er altså blevet testet med alle tre metoder. En kørsel i R gav følgende output: (hvor 3 tal dog er erstattet af bogstaverne A, B og C.) > anova(lm(y~metode+person)) Analysis of Variance Table Response: y Df Sum Sq Mean Sq F value Pr(>F) Metode A e-06 *** Person B e-14 *** Residuals C Signif. codes: 0 *** ** 0.01 * Spørgsmål VI.1 (18): Hvad er A, B og C? 1 A = 6, B = 3 og C = 15 2 A = 3, B = 6 og C = 18 3 A = 5, B = 2 og C = 10 4 A = 3, B = 5 og C = 15 5 A = 2, B = 5 og C = 10 Fortsæt på side 15 14

15 Spørgsmål VI.2 (19): Konklusionerne vedrørende mulige forskelle på personer og metoder kan kort opsummeres som: 1 Der er kun forskel på personer, ikke på metoder idet Person P-værdien er meget mindre en Metode P-værdien 2 Der er forskel på både personer og metoder, idet begge P-værdier er meget små 3 Der er kun forskel på metoder, ikke på personer idet Person P-værdien er meget mindre en Metode P-værdien 4 Der er ingen statistiske forskelle i datamaterialet, idet begge P-værdier er meget små og spredningen stor 5 Der er ingen statistiske forskelle i datamaterialet, idet spredningen er langt større end 0.05 Spørgsmål VI.3 (20): Antag, at kun metode 1 og 2 var blevet undersøgt, men nu med 12 personer, hvor alle 12 blev testet med begge metoder. Hvad ville det mest relevante test (blandt de angivne muligheder) være for hypotesen om ingen metodeforskel? 1 Et uafhængigt t-test med 22 frihedsgrader 2 Et parret t-test med 11 frihedsgrader 3 Et χ 2 -test med 1 frihedsgrad 4 Et F-test med frihedsgraderne 12 og 22 5 Et ensidet z-test. Fortsæt på side 16 15

16 Opgave VII En trick-terning er konstrueret så den har følgende sandsynligheder for de 6 mulige udfald: 1 er 2 er 3 er 4 er 5 er 6 er Lad X være det tilfældige udfald af et enkelt kast med terningen. Kald middelværdien for X, µ og kald variansen for X, σ 2. Spørgsmål VII.1 (21): Lad nu Y være det samlede antal øjne i 50 kast med denne terning. Hvad er middelværdi og varians for Y? 1 E(Y ) = 50µ og V ar(y ) = 2500σ 2 2 E(Y ) = µ og V ar(y ) = σ 2 3 E(Y ) = 50 og V ar(y ) = σ 2 4 E(Y ) = µ og V ar(y ) = σ 2 /50 5 E(Y ) = 50µ og V ar(y ) = 50σ 2 Spørgsmål VII.2 (22): Hvad er µ og σ 2? 1 µ = 4.2 og σ 2 = µ = og σ 2 = µ = 3.5 og σ 2 = µ = 4.2 og σ 2 = µ = 3.5 og σ 2 = 1/6 Fortsæt på side 17 16

17 Opgave VIII Otte forskellige fladskærms TV-apparater blev kvalitetsvurderet. I nedenstående tabel ses sammenhørende værdier for pris (i kr) og kvalitet (på en skala fra 0 til 100) Pris (Kr) Kvalitet En kørsel i R gav følgende output: > summary(lm(tvpris~tvkval)) Call: lm(formula = tvpris ~ tvkval) Residuals: Min 1Q Median 3Q Max Coefficients: Estimate Std. Error t value Pr(> t ) (Intercept) tvkval Residual standard error: 2113 on 6 degrees of freedom Multiple R-squared: 0.295, Adjusted R-squared: F-statistic: on 1 and 6 DF, p-value: Spørgsmål VIII.1 (23): Korrelationskoefficienten mellem pris og kvalitet er: 1 r = r = r = r = r = Fortsæt på side 18 17

18 Spørgsmål VIII.2 (24): Kan man statistisk påvise en sammenhæng mellem pris og kvalitet? (Både resultat og argument skal være i orden) 1 Nej, idet den relevante P-værdi er Nej, idet den relevante P-værdi er Ja, idet den relevante P-værdi er Nej, idet den relevante P-værdi er Nej, idet afskæringen med y-aksen er Spørgsmål VIII.3 (25): Hvad bør et tilsvarende fladskærms-tv med en kvalitet på 72 omtrent koste ifølge den estimerede model? = = ȳ = = Ingen af ovenstående Fortsæt på side 19 18

19 Opgave IX I følgende tabel ses antallet af såkaldte challenges i en tennisturnering, der bruger det elektroniske instant replay system Hawk-Eye, opgjort efter køn af tennisspilleren og om den var berettiget eller ej: (Foklaring: En challenge af spilleren giver mulighed for øjeblikkeligt at se, om dommernes vurdering af en bold (inde/ude) er korrekt eller ej) Berettiget Ja Nej Kvinder Mænd Spørgsmål IX.1 (26): Et relevant test for om der er forskel på succes-sandsynligheden for kvinder og mænd er givet ved: (success er her defineret som en berettiget challenge, som altså igen betyder at spilleren fik påpeget en fejlagtig dommerkendelse) 1 ( ) ( ) ( ) 2 + ( ) 2 3 ( ) 2 + ( ) 2 4 ( ) ( ) ( ) ( ) Spørgsmål er: IX.2 (27): Et 95% konfidensinterval for kønsforskellen i succes-sandsynlighederne ± ± ± ± ± 1.96 Fortsæt på side 20 19

20 Opgave X I en undersøgelse af holdninger til global opvarmning fik man følgende svar fra 1106 personer: Menneskeskabt Naturlig årsager Ved ikke/intet svar Kvinder Mænd Spørgsmål X.1 (28): Vi ønsker at teste hypotesen (på niveau α = 0.05) om, at der ikke er forskel på de to køns holdninger til den globale opvarmning. Hvad er den kritiske værdi for den relevante teststørrelse? 1 χ (1) = F 0.05 (1, 3) = F 0.05 (2, 6) = χ (2) = z = 1.96 Fortsæt på side 21 20

21 Opgave XI Herunder ses et plot af fem sammenhørende (x,y)-værdier samt den bedste rette linie: y I det følgende antages observationerne at kunne beskrives ved følgende model: x y i = α + βx i + ɛ i Leddet ɛ i er den tilfældige afvigelse for i te observation fra α + βx i. Afvigelserne ɛ i antages at have middelværdi 0 og varians σ 2 Spørgsmål XI.1 (29): Kun et sæt af følgende mulige estimater for de tre ukendte parametre i modellen kan være det rigtige. Hvilket er det? 1 ˆα = 0, ˆβ = 1 og ˆσ = ˆα = 0, ˆβ = 1 og ˆσ = ˆα = 4, ˆβ = 1 og ˆσ = ˆα = 4, ˆβ = 1 og ˆσ = ˆα = 1, ˆβ = 4 og ˆσ = 0 Fortsæt på side 22 21

22 Spørgsmål XI.2 (30): Den bedste rette linie ŷ i = a + bx i er den linie, der 1 gør 5 i=1 (y i a bx i ) mindst mulig 2 gør (b β) 2 + (a α) 2 størst mulig 3 gør 5 i=1 (y i ȳ) 2 mindst mulig 4 gør 5 i=1 (y i a bx i ) 2 mindst mulig 5 gør 5 i=1 (x i a by i ) 2 mindst mulig Slut på opgavesættet. 22

Side 1 af 19 sider. Danmarks Tekniske Universitet. Skriftlig prøve: 15. december 2007 Kursus navn og nr: Introduktion til Statistik, 02402

Side 1 af 19 sider. Danmarks Tekniske Universitet. Skriftlig prøve: 15. december 2007 Kursus navn og nr: Introduktion til Statistik, 02402 Danmarks Tekniske Universitet Side 1 af 19 sider. Skriftlig prøve: 15. december 2007 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (studienummer)

Læs mere

(studienummer) (underskrift) (bord nr)

(studienummer) (underskrift) (bord nr) Danmarks Tekniske Universitet Side 1 af 20 sider. Skriftlig prøve: 15. december 2008 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (studienummer)

Læs mere

Side 1 af 17 sider. Danmarks Tekniske Universitet. Skriftlig prøve: 25. maj 2007 Kursus navn og nr: Introduktion til Statistik, 02402

Side 1 af 17 sider. Danmarks Tekniske Universitet. Skriftlig prøve: 25. maj 2007 Kursus navn og nr: Introduktion til Statistik, 02402 Danmarks Tekniske Universitet Side 1 af 17 sider. Skriftlig prøve: 25. maj 2007 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (navn) (underskrift)

Læs mere

(studienummer) (underskrift) (bord nr)

(studienummer) (underskrift) (bord nr) Danmarks Tekniske Universitet Side 1 af 19 sider. Skriftlig prøve: 14. december 2013 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (studienummer)

Læs mere

(studienummer) (underskrift) (bord nr)

(studienummer) (underskrift) (bord nr) Danmarks Tekniske Universitet Side 1 af 20 sider. Skriftlig prøve: 15. december 2012 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (studienummer)

Læs mere

(studienummer) (underskrift) (bord nr)

(studienummer) (underskrift) (bord nr) Danmarks Tekniske Universitet Side 1 af 18 sider. Skriftlig prøve: 14. december 2009 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (studienummer)

Læs mere

(studienummer) (underskrift) (bord nr)

(studienummer) (underskrift) (bord nr) Danmarks Tekniske Universitet Side 1 af 21 sider. Skriftlig prøve: 27. maj 2010 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (studienummer)

Læs mere

Opgave I.1 II.1 II.2 II.3 III.1 IV.1 IV.2 IV.3 V.1 VI.1 Spørgsmål (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) Svar

Opgave I.1 II.1 II.2 II.3 III.1 IV.1 IV.2 IV.3 V.1 VI.1 Spørgsmål (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) Svar Danmarks Tekniske Universitet Side 1 af 19 sider. Skriftlig prøve: 30. maj 2006 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (navn) (underskrift)

Læs mere

Opgave I.1 I.2 II.1 II.2 III.1 III.2 IV.1 V.1 VI.1 VI.2 Spørgsmål (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) Svar

Opgave I.1 I.2 II.1 II.2 III.1 III.2 IV.1 V.1 VI.1 VI.2 Spørgsmål (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) Svar Danmarks Tekniske Universitet Side 1 af 18 sider. Skriftlig prøve: 15. december 2006 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (navn) (underskrift)

Læs mere

(studienummer) (underskrift) (bord nr)

(studienummer) (underskrift) (bord nr) Danmarks Tekniske Universitet Side 1 af 20 sider. Skriftlig prøve: 1. december 2011 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (studienummer)

Læs mere

Oversigt. 1 Gennemgående eksempel: Højde og vægt. 2 Korrelation. 3 Regressionsanalyse (kap 11) 4 Mindste kvadraters metode

Oversigt. 1 Gennemgående eksempel: Højde og vægt. 2 Korrelation. 3 Regressionsanalyse (kap 11) 4 Mindste kvadraters metode Kursus 02402 Introduktion til Statistik Forelæsning 11: Kapitel 11: Regressionsanalyse Oversigt 1 Gennemgående eksempel: Højde og vægt 2 Korrelation 3 Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse

Læs mere

Forelæsning 11: Kapitel 11: Regressionsanalyse

Forelæsning 11: Kapitel 11: Regressionsanalyse Kursus 02402 Introduktion til Statistik Forelæsning 11: Kapitel 11: Regressionsanalyse Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

(studienummer) (underskrift) (bord nr)

(studienummer) (underskrift) (bord nr) Danmarks Tekniske Universitet Side 1 af 20 sider. Skriftlig prøve: 26. maj 2011 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (studienummer)

Læs mere

Ovenstående figur viser et (lidt formindsket billede) af 25 svampekolonier på en petriskål i et afgrænset felt på 10x10 cm.

Ovenstående figur viser et (lidt formindsket billede) af 25 svampekolonier på en petriskål i et afgrænset felt på 10x10 cm. Multiple choice opgaver Der gøres opmærksom på, at ideen med opgaverne er, at der er ét og kun ét rigtigt svar på de enkelte spørgsmål. Endvidere er det ikke givet, at alle de anførte alternative svarmuligheder

Læs mere

Den endelige besvarelse af opgaverne gøres ved at udfylde nedenstående skema. Aflever KUN skemaet!

Den endelige besvarelse af opgaverne gøres ved at udfylde nedenstående skema. Aflever KUN skemaet! Danmarks Tekniske Universitet Side 1 af 19 sider. Skriftlig prøve: 2. juni 2008 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (studienummer)

Læs mere

Statistik og Sandsynlighedsregning 2. Repetition og eksamen. Overheads til forelæsninger, mandag 7. uge

Statistik og Sandsynlighedsregning 2. Repetition og eksamen. Overheads til forelæsninger, mandag 7. uge Statistik og Sandsynlighedsregning 2 Repetition og eksamen Overheads til forelæsninger, mandag 7. uge 1 Normalfordelingen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange

Læs mere

Løsning eksamen d. 15. december 2008

Løsning eksamen d. 15. december 2008 Informatik - DTU 02402 Introduktion til Statistik 2010-2-01 LFF/lff Løsning eksamen d. 15. december 2008 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition, 7th

Læs mere

Opgave I II III IV V VI Spørgsmål (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) Svar 5 4 4 2 3 1 1 5 4 1

Opgave I II III IV V VI Spørgsmål (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) Svar 5 4 4 2 3 1 1 5 4 1 Danmarks Tekniske Universitet Side 1 af 18 sider. Skriftlig prøve: 1. juni 2005 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle sædvanlige Dette sæt er besvaret af (navn)

Læs mere

Ensidet eller tosidet alternativ. Hypoteser. tosidet alternativ. nul hypotese testes mod en alternativ hypotese

Ensidet eller tosidet alternativ. Hypoteser. tosidet alternativ. nul hypotese testes mod en alternativ hypotese Kursus 02402 Introduktion til Statistik Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6 Per Bruun Brockhoff DTU Compute, Statistik Bygning 305/324 Danmarks Tekniske Universitet

Læs mere

men nu er Z N((µ 1 µ 0 ) n/σ, 1)!! Forkaster hvis X 191 eller X 209 eller

men nu er Z N((µ 1 µ 0 ) n/σ, 1)!! Forkaster hvis X 191 eller X 209 eller Type I og type II fejl Type I fejl: forkast når hypotese sand. α = signifikansniveau= P(type I fejl) Program (8.15-10): Hvis vi forkaster når Z < 2.58 eller Z > 2.58 er α = P(Z < 2.58) + P(Z > 2.58) =

Læs mere

(studienummer) (underskrift) (bord nr)

(studienummer) (underskrift) (bord nr) Danmarks Tekniske Universitet Side 1 af 20 sider. Skriftlig prøve: 23. maj 2012 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (studienummer)

Læs mere

Løsning til eksamen d.27 Maj 2010

Løsning til eksamen d.27 Maj 2010 DTU informatic 02402 Introduktion til Statistik Løsning til eksamen d.27 Maj 2010 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition, 7th edition]. Opgave I.1

Læs mere

(studienummer) (underskrift) (bord nr)

(studienummer) (underskrift) (bord nr) Danmarks Tekniske Universitet Side 1 af 20 sider. Skriftlig prøve: 27. maj 2014 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (studienummer)

Læs mere

Klasseøvelser dag 2 Opgave 1

Klasseøvelser dag 2 Opgave 1 Klasseøvelser dag 2 Opgave 1 1.1. Vi sætter først working directory og data indlæses: library( foreign ) d

Læs mere

Kursus Introduktion til Statistik. Forelæsning 12: Variansanalyse. Per Bruun Brockhoff

Kursus Introduktion til Statistik. Forelæsning 12: Variansanalyse. Per Bruun Brockhoff Kursus 02402 Introduktion til Statistik Forelæsning 12: Variansanalyse Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail:

Læs mere

Løsning til eksaminen d. 14. december 2009

Løsning til eksaminen d. 14. december 2009 DTU Informatik 02402 Introduktion til Statistik 200-2-0 LFF/lff Løsning til eksaminen d. 4. december 2009 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition,

Læs mere

Økonometri Lektion 1 Simpel Lineær Regression 1/31

Økonometri Lektion 1 Simpel Lineær Regression 1/31 Økonometri Lektion 1 Simpel Lineær Regression 1/31 Simpel Lineær Regression Mål: Forklare variablen y vha. variablen x. Fx forklare Salg (y) vha. Reklamebudget (x). Statistisk model: Vi antager at sammenhængen

Læs mere

Normalfordelingen. Statistik og Sandsynlighedsregning 2

Normalfordelingen. Statistik og Sandsynlighedsregning 2 Statistik og Sandsynlighedsregning 2 Repetition og eksamen T-test Normalfordelingen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange variable, blandt andet tilfældige

Læs mere

Tema. Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse.

Tema. Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. Tema Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. (Fx. x. µ) Hypotese og test. Teststørrelse. (Fx. H 0 : µ = µ 0 ) konfidensintervaller

Læs mere

Normalfordelingen. Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: 1 2πσ

Normalfordelingen. Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: 1 2πσ Normalfordelingen Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: f(x) = ( ) 1 exp (x µ)2 2πσ 2 σ 2 Frekvensen af observationer i intervallet

Læs mere

Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19

Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19 Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19 For test med signifikansniveau α: p < α forkast H 0 2/19 p-værdi Betragt tilfældet med test for H 0 : µ = µ 0 (σ kendt). Idé: jo større

Læs mere

Kursus 02402 Introduktion til Statistik. Forelæsning 7: Kapitel 7 og 8: Statistik for to gennemsnit, (7.7-7.8,8.1-8.5) Per Bruun Brockhoff

Kursus 02402 Introduktion til Statistik. Forelæsning 7: Kapitel 7 og 8: Statistik for to gennemsnit, (7.7-7.8,8.1-8.5) Per Bruun Brockhoff Kursus 02402 Introduktion til Statistik Forelæsning 7: Kapitel 7 og 8: Statistik for to gennemsnit, (7.7-7.8,8.1-8.5) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks

Læs mere

Normalfordelingen. Statistik og Sandsynlighedsregning 2

Normalfordelingen. Statistik og Sandsynlighedsregning 2 Normalfordelingen Statistik og Sandsynlighedsregning 2 Repetition og eksamen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange variable, blandt andet tilfældige fejl på

Læs mere

MLR antagelserne. Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som

MLR antagelserne. Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som MLR antagelserne Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som y = β 0 + β 1 x 1 + β 2 x 2 + + β k x k + u, hvor β 0, β 1, β 2,...,β k er ukendte parametere,

Læs mere

Kursus navn og nr: Introduktion til Statistik (02323, og 02593) (studienummer) (underskrift) (bord nr)

Kursus navn og nr: Introduktion til Statistik (02323, og 02593) (studienummer) (underskrift) (bord nr) Danmarks Tekniske Universitet Side 1 af 26 sider. Skriftlig prøve: 16. august 2015 Kursus navn og nr: Introduktion til Statistik (02323, 02402 og 02593) Tilladte hjælpemidler: Alle Dette sæt er besvaret

Læs mere

3.600 kg og den gennemsnitlige fødselsvægt kg i stikprøven.

3.600 kg og den gennemsnitlige fødselsvægt kg i stikprøven. PhD-kursus i Basal Biostatistik, efterår 2006 Dag 1, onsdag den 6. september 2006 Eksempel: Sammenhæng mellem moderens alder og fødselsvægt I dag: Introduktion til statistik gennem analyse af en stikprøve

Læs mere

Hvis α vælges meget lavt, bliver β meget stor. Typisk vælges α = 0.01 eller 0.05

Hvis α vælges meget lavt, bliver β meget stor. Typisk vælges α = 0.01 eller 0.05 Statistik 7. gang 9. HYPOTESE TEST Hypotesetest ved 6 trins raket! : Trin : Formuler hypotese Spørgsmål der ønskes testet vha. data H : Nul hypotese Formuleres som en ligheds hændelse H eller H A : Alternativ

Læs mere

02402 Vejledende løsninger til Splus-opgaverne fra hele kurset

02402 Vejledende løsninger til Splus-opgaverne fra hele kurset 02402 Vejledende løsninger til Splus-opgaverne fra hele kurset Vejledende løsning SPL3.3.1 Der er tale om en binomialfordeling med n =10ogp=0.6, og den angivne sandsynlighed er P (X =4) som i bogen også

Læs mere

Lineær regression. Simpel regression. Model. ofte bruges følgende notation:

Lineær regression. Simpel regression. Model. ofte bruges følgende notation: Lineær regression Simpel regression Model Y i X i i ofte bruges følgende notation: Y i 0 1 X 1i i n i 1 i 0 Findes der en linie, der passer bedst? Metode - Generel! least squares (mindste kvadrater) til

Læs mere

Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6

Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6 Kursus 02402 Introduktion til Statistik Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6 Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220

Læs mere

2 X 2 = gennemsnitligt indhold af aktivt stof i én tablet fra et glas med 200 tabletter

2 X 2 = gennemsnitligt indhold af aktivt stof i én tablet fra et glas med 200 tabletter Opgave I I mange statistiske undersøgelser benytter man binomialfordelingen til at beskrive den tilfældige variation. Spørgsmål I.1 (1): For hvilken af følgende 5 stokastiske variable kunne binomialfordelingen

Læs mere

Model. k = 3 grupper: hvor ǫ ij uafhængige og normalfordelte med middelværdi nul og varians σi 2, i = 1,2,3.

Model. k = 3 grupper: hvor ǫ ij uafhængige og normalfordelte med middelværdi nul og varians σi 2, i = 1,2,3. Model Program (8.15-10): 1. ensidet variansanalyse. 2. forsøgsplanlægning: blocking. Bruger nu to indices: i = 1,...,k for gruppenr. og j = 1,...,n i for observation indenfor gruppe. k = 3 grupper: µ 1

Læs mere

(studienummer) (underskrift) (bord nr)

(studienummer) (underskrift) (bord nr) Danmarks Tekniske Universitet Side 1 af 25 sider. Skriftlig prøve: 13. december 2016 Kursus navn og nr: Introduktion til Statistik (02323 og 02402) Tilladte hjælpemidler: Alle Dette sæt er besvaret af

Læs mere

En Introduktion til SAS. Kapitel 5.

En Introduktion til SAS. Kapitel 5. En Introduktion til SAS. Kapitel 5. Inge Henningsen Afdeling for Statistik og Operationsanalyse Københavns Universitet Marts 2005 6. udgave Kapitel 5 T-test og PROC UNIVARIATE 5.1 Indledning Dette kapitel

Læs mere

Konfidensintervaller og Hypotesetest

Konfidensintervaller og Hypotesetest Konfidensintervaller og Hypotesetest Konfidensinterval for andele χ -fordelingen og konfidensinterval for variansen Hypoteseteori Hypotesetest af middelværdi, varians og andele Repetition fra sidst: Konfidensintervaller

Læs mere

Tænk på a og b som to n 1 matricer. a 1 a 2 a n. For hvert i = 1,..., n har vi y i = x i β + u i.

Tænk på a og b som to n 1 matricer. a 1 a 2 a n. For hvert i = 1,..., n har vi y i = x i β + u i. Repetition af vektor-regning Økonometri: Lektion 3 Matrix-formulering Fordelingsantagelse Hypotesetest Antag vi har to n-dimensionelle (søjle)vektorer a 1 b 1 a 2 a =. og b = b 2. a n b n Tænk på a og

Læs mere

Økonometri: Lektion 5. Multipel Lineær Regression: Interaktion, log-transformerede data, kategoriske forklarende variable, modelkontrol

Økonometri: Lektion 5. Multipel Lineær Regression: Interaktion, log-transformerede data, kategoriske forklarende variable, modelkontrol Økonometri: Lektion 5 Multipel Lineær Regression: Interaktion, log-transformerede data, kategoriske forklarende variable, modelkontrol 1 / 35 Veksekvirkning: Motivation Vi har set på modeller som Price

Læs mere

Eksamen i Statistik for biokemikere. Blok

Eksamen i Statistik for biokemikere. Blok Eksamen i Statistik for biokemikere. Blok 2 2007. Vejledende besvarelse 22-01-2007, Niels Richard Hansen Bemærkning: Flere steder er der givet en argumentation (f.eks. baseret på konfidensintervaller)

Læs mere

1 Hb SS Hb Sβ Hb SC = , (s = )

1 Hb SS Hb Sβ Hb SC = , (s = ) PhD-kursus i Basal Biostatistik, efterår 2006 Dag 6, onsdag den 11. oktober 2006 Eksempel 9.1: Hæmoglobin-niveau og seglcellesygdom Data: Hæmoglobin-niveau (g/dl) for 41 patienter med en af tre typer seglcellesygdom.

Læs mere

CIVILINGENIØREKSAMEN Side 1 af 18 sider. Skriftlig prøve, den: XY. december 200Z Kursus nr : (navn) (underskrift) (bord nr)

CIVILINGENIØREKSAMEN Side 1 af 18 sider. Skriftlig prøve, den: XY. december 200Z Kursus nr : (navn) (underskrift) (bord nr) CIVILINGENIØREKSAMEN Side 1 af 18 sider Skriftlig prøve, den: XY. december 200Z Kursus nr : 02405 Kursus navn: Sandsynlighedsregning Tilladte hjælpemidler: Alle Dette sæt er besvaret af: (navn) (underskrift)

Læs mere

2 X 2 = Antal mygstik på enpersoniløbetaf1minut

2 X 2 = Antal mygstik på enpersoniløbetaf1minut Opgave I I mange statistiske undersøgelser bygger man analysen på anvendelse af normalfordelingen til (eventuelt tilnærmelsesvist) at beskrive den tilfældige variation. Spørgsmål I.1 (1): Forén af følgende

Læs mere

Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression

Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression Logistisk Regression Repetition Fortolkning af odds Test i logistisk regression Logistisk Regression: Definitioner For en binær (0/) variabel Y antager vi P(Y)p P(Y0)-p Eksempel: Bil til arbejde vs alder

Læs mere

Anvendt Statistik Lektion 6. Kontingenstabeller χ 2- test [ki-i-anden-test]

Anvendt Statistik Lektion 6. Kontingenstabeller χ 2- test [ki-i-anden-test] Anvendt Statistik Lektion 6 Kontingenstabeller χ 2- test [ki-i-anden-test] Kontingenstabel Formål: Illustrere/finde sammenhænge mellem to kategoriske variable Opbygning: En celle for hver kombination af

Læs mere

Reeksamen i Statistik for Biokemikere 6. april 2009

Reeksamen i Statistik for Biokemikere 6. april 2009 Københavns Universitet Det Naturvidenskabelige Fakultet Reeksamen i Statistik for Biokemikere 6. april 2009 Alle hjælpemidler er tilladt, og besvarelsen må gerne skrives med blyant. Opgavesættet er på

Læs mere

Tema. Dagens tema: Indfør centrale statistiske begreber.

Tema. Dagens tema: Indfør centrale statistiske begreber. Tema Dagens tema: Indfør centrale statistiske begreber. Model og modelkontrol Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. konfidensintervaller Vi tager udgangspunkt i Ex. 3.1 i

Læs mere

Mindste kvadraters tilpasning Prædiktion og residualer Estimation af betinget standardafvigelse Test for uafhængighed Konfidensinterval for hældning

Mindste kvadraters tilpasning Prædiktion og residualer Estimation af betinget standardafvigelse Test for uafhængighed Konfidensinterval for hældning 1 Regressionsproblemet 2 Simpel lineær regression Mindste kvadraters tilpasning Prædiktion og residualer Estimation af betinget standardafvigelse Test for uafhængighed Konfidensinterval for hældning 3

Læs mere

Appendiks Økonometrisk teori... II

Appendiks Økonometrisk teori... II Appendiks Økonometrisk teori... II De klassiske SLR-antagelser... II Hypotesetest... VII Regressioner... VIII Inflation:... VIII Test for SLR antagelser... IX Reset-test... IX Plots... X Breusch-Pagan

Læs mere

Dagens Emner. Likelihood-metoden. MLE - fortsat MLE. Likelihood teori. Lineær regression (intro) Vi har, at

Dagens Emner. Likelihood-metoden. MLE - fortsat MLE. Likelihood teori. Lineær regression (intro) Vi har, at Likelihood teori Lineær regression (intro) Dagens Emner Likelihood-metoden M : X i N(µ,σ 2 ) hvor µ og σ 2 er ukendte Vi har, at L(µ,σ 2 1 ) = ( 2πσ 2)n/2 e 1 2 P n (xi µ)2 er tætheden som funktion af

Læs mere

Naturvidenskabelig Bacheloruddannelse Forår 2006 Matematisk Modellering 1 Side 1

Naturvidenskabelig Bacheloruddannelse Forår 2006 Matematisk Modellering 1 Side 1 Matematisk Modellering 1 Side 1 I nærværende opgavesæt er der 16 spørgsmål fordelt på 4 opgaver. Ved bedømmelsen af besvarelsen vægtes alle spørgsmål lige. Endvidere lægges der vægt på, at det af besvarelsen

Læs mere

Økonometri: Lektion 4. Multipel Lineær Regression: F -test, justeret R 2 og aymptotiske resultater

Økonometri: Lektion 4. Multipel Lineær Regression: F -test, justeret R 2 og aymptotiske resultater Økonometri: Lektion 4 Multipel Lineær Regression: F -test, justeret R 2 og aymptotiske resultater 1 / 35 Hypotesetest for én parameter Antag vi har model y = β 0 + β 1 x 2 + β 2 x 2 + + β k x k + u. Vi

Læs mere

Løsning til eksamensopgaven i Basal Biostatistik (J.nr.: 1050/06)

Løsning til eksamensopgaven i Basal Biostatistik (J.nr.: 1050/06) Afdeling for Biostatistik Bo Martin Bibby 23. november 2006 Løsning til eksamensopgaven i Basal Biostatistik (J.nr.: 1050/06) Vi betragter 4699 personer fra Framingham-studiet. Der er oplysninger om follow-up

Læs mere

Oversigt. Kursus Introduktion til Statistik. Forelæsning 9: Inferens for andele (kapitel 10) Per Bruun Brockhoff

Oversigt. Kursus Introduktion til Statistik. Forelæsning 9: Inferens for andele (kapitel 10) Per Bruun Brockhoff Kursus 02402 Introduktion til Statistik Forelæsning 9: Inferens for andele (kapitel 10) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Oversigt. 1 Motiverende eksempel: Højde-vægt. 2 Lineær regressionsmodel. 3 Mindste kvadraters metode (least squares)

Oversigt. 1 Motiverende eksempel: Højde-vægt. 2 Lineær regressionsmodel. 3 Mindste kvadraters metode (least squares) Kursus 02402/02323 Introducerende Statistik Forelæsning 8: Simpel lineær regression Oversigt Motiverende eksempel: Højde-vægt 2 Lineær regressionsmodel 3 Mindste kvadraters metode (least squares) Klaus

Læs mere

CIVILINGENIØREKSAMEN Side?? af?? sider. Skriftlig prøve, den: 16. december 2004 Kursus nr : (navn) (underskrift) (bord nr)

CIVILINGENIØREKSAMEN Side?? af?? sider. Skriftlig prøve, den: 16. december 2004 Kursus nr : (navn) (underskrift) (bord nr) CIVILINGENIØREKSAMEN Side?? af?? sider Skriftlig prøve, den: 6. december 2004 Kursus nr : 02405 Kursus navn: Sandsynlighedsregning Tilladte hjælpemidler: Alle Dette sæt er besvaret af: (navn) (underskrift)

Læs mere

CIVILINGENIØREKSAMEN Side 1 af 16 sider. Skriftlig prøve, den: 16. december 2010 Kursus nr : (navn) (underskrift) (bord nr)

CIVILINGENIØREKSAMEN Side 1 af 16 sider. Skriftlig prøve, den: 16. december 2010 Kursus nr : (navn) (underskrift) (bord nr) CIVILINGENIØREKSAMEN Side 1 af 16 sider Skriftlig prøve, den: 16. december 2010 Kursus nr : 02405 Kursus navn: Sandsynlighedsregning Tilladte hjælpemidler: Alle Dette sæt er besvaret af: (navn) (underskrift)

Læs mere

Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup)

Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup) Kursus 02402 Introduktion til Statistik Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske

Læs mere

Multipel Lineær Regression

Multipel Lineær Regression Multipel Lineær Regression Trin i opbygningen af en statistisk model Repetition af MLR fra sidst Modelkontrol Prædiktion Kategoriske forklarende variable og MLR Opbygning af statistisk model Specificer

Læs mere

Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved

Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved Matematisk Modellering 1 (reeksamen) Side 1 Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved { 1 hvis x {1, 2, 3}, p X (x) = 3 0 ellers,

Læs mere

DANMARKS TEKNISKE UNIVERSITET Side 1 af 17 sider. Skriftlig prøve, den: 30. maj 2016 Kursus nr : (navn) (underskrift) (bord nr)

DANMARKS TEKNISKE UNIVERSITET Side 1 af 17 sider. Skriftlig prøve, den: 30. maj 2016 Kursus nr : (navn) (underskrift) (bord nr) DANMARKS TEKNISKE UNIVERSITET Side af 7 sider Skriftlig prøve, den: 0. maj 206 Kursus nr : 02405 Kursus navn: Sandsynlighedsregning Varighed : 4 timer Tilladte hjælpemidler: Alle Dette sæt er besvaret

Læs mere

Reminder: Hypotesetest for én parameter. Økonometri: Lektion 4. F -test Justeret R 2 Aymptotiske resultater. En god model

Reminder: Hypotesetest for én parameter. Økonometri: Lektion 4. F -test Justeret R 2 Aymptotiske resultater. En god model Reminder: Hypotesetest for én parameter Antag vi har model Økonometri: Lektion 4 F -test Justeret R 2 Aymptotiske resultater y = β 0 + β 1 x 2 + β 2 x 2 + + β k x k + u. Vi ønsker at teste hypotesen H

Læs mere

Kapitel 12 Variansanalyse

Kapitel 12 Variansanalyse Kapitel 12 Variansanalyse Peter Tibert Stoltze stat@peterstoltzedk Elementær statistik F2011 Version 7 april 2011 1 / 43 Indledning Sammenligning af middelværdien i to grupper indenfor en stikprøve kan

Læs mere

2 0.9245. Multiple choice opgaver

2 0.9245. Multiple choice opgaver Multiple choice opgaver Der gøres opmærksom på, at ideen med opgaverne er, at der er ét og kun ét rigtigt svar på de enkelte spørgsmål. Endvidere er det ikke givet, at alle de anførte alternative svarmuligheder

Læs mere

Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression

Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression Logistisk Regression Repetition Fortolkning af odds Test i logistisk regression Logisitks Regression: Repetition Y {0,} binær afhængig variabel X skala forklarende variabel π P( Y X x) Odds(Y X x) π /(-π

Læs mere

02402 Vejledende løsninger til hjemmeopgaver og øvelser i uge 5

02402 Vejledende løsninger til hjemmeopgaver og øvelser i uge 5 02402 Vejledende løsninger til hjemmeopgaver og øvelser i uge 5 Opgave 5.117, side 171 (7ed: 5.116 side 201 og 6ed: 5.116 side 197) I denne opgave skal vi benytte relationen mellem den log-normale fordeling

Læs mere

Test nr. 6 af centrale elementer 02402

Test nr. 6 af centrale elementer 02402 QuizComposer 2001- Olaf Kayser & Gunnar Mohr Contact: admin@quizcomposer.dk Main site: www.quizcomposer.dk Test nr. 6 af centrale elementer 02402 Denne quiz angår forståelse af centrale elementer i kursus

Læs mere

Anvendt Statistik Lektion 8. Multipel Lineær Regression

Anvendt Statistik Lektion 8. Multipel Lineær Regression Anvendt Statistik Lektion 8 Multipel Lineær Regression 1 Simpel Lineær Regression (SLR) y Sammenhængen mellem den afhængige variabel (y) og den forklarende variabel (x) beskrives vha. en SLR: ligger ikke

Læs mere

Program: 1. Repetition: fordeling af observatorer X, S 2 og t. 2. Konfidens-intervaller, hypotese test, type I og type II fejl, styrke.

Program: 1. Repetition: fordeling af observatorer X, S 2 og t. 2. Konfidens-intervaller, hypotese test, type I og type II fejl, styrke. Program: 1. Repetition: fordeling af observatorer X, S 2 og t. 2. Konfidens-intervaller, hypotese test, type I og type II fejl, styrke. 1/23 Opsummering af fordelinger X 1. Kendt σ: Z = X µ σ/ n N(0,1)

Læs mere

NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET.

NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET. NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET. Eksamen i Statistik 1 Tag-hjem prøve 1. juli 2010 24 timer Alle hjælpemidler er tilladt. Det er tilladt at skrive med blyant og benytte viskelæder,

Læs mere

Kapitel 12 Variansanalyse

Kapitel 12 Variansanalyse Kapitel 12 Variansanalyse Peter Tibert Stoltze stat@peterstoltzedk Elementær statistik F2011 Version 7 april 2011 1 Indledning 2 Ensidet variansanalyse 3 Blokforsøg 4 Vekselvirkning 1 Indledning 2 Ensidet

Læs mere

Anvendt Statistik Lektion 5. Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele

Anvendt Statistik Lektion 5. Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele Anvendt Statistik Lektion 5 Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele Motiverende eksempel Antal minutter brugt på rengøring/madlavning: Rengøring/Madlavning

Læs mere

Skriftlig eksamen Science statistik- ST501

Skriftlig eksamen Science statistik- ST501 SYDDANSK UNIVERSITET INSTITUT FOR MATEMATIK OG DATALOGI Skriftlig eksamen Science statistik- ST501 Torsdag den 21. januar Opgavesættet består af 5 opgaver, med i alt 13 delspørgsmål, som vægtes ligeligt.

Læs mere

To-sidet varians analyse

To-sidet varians analyse To-sidet varians analyse Repetition En-sidet ANOVA Parvise sammenligninger, Tukey s test Model begrebet To-sidet ANOVA Tre-sidet ANOVA Blok design SPSS ANOVA - definition ANOVA (ANalysis Of VAriance),

Læs mere

Opgave 10.1, side 282 (for 6. og 7. ed. af lærerbogen se/løs opgave 9.1)

Opgave 10.1, side 282 (for 6. og 7. ed. af lærerbogen se/løs opgave 9.1) Kursus 02402: Besvarelser til øvelsesopgaver i uge 9 Opgave 10.1, side 282 (for 6. og 7. ed. af lærerbogen se/løs opgave 9.1) Som model benyttes en binomialfordeling, som beskriver antallet, X, blandt

Læs mere

Program. 1. ensidet variansanalyse. 2. forsøgsplanlægning: blocking. 1/12

Program. 1. ensidet variansanalyse. 2. forsøgsplanlægning: blocking. 1/12 Program 1. ensidet variansanalyse. 2. forsøgsplanlægning: blocking. 1/12 Ensidet variansanalyse: analyse af grupperede data Nedbrydningsrate for tre typer af opløsningsmidler (opgave 13.8 side 523) Sorption

Læs mere

Module 4: Ensidig variansanalyse

Module 4: Ensidig variansanalyse Module 4: Ensidig variansanalyse 4.1 Analyse af én stikprøve................. 1 4.1.1 Estimation.................... 3 4.1.2 Modelkontrol................... 4 4.1.3 Hypotesetest................... 6 4.2

Læs mere

CIVILINGENIØREKSAMEN Side 1 af 16 sider. Skriftlig prøve, den: 28. maj 2010 Kursus nr : (navn) (underskrift) (bord nr)

CIVILINGENIØREKSAMEN Side 1 af 16 sider. Skriftlig prøve, den: 28. maj 2010 Kursus nr : (navn) (underskrift) (bord nr) CIVILINGENIØREKSAMEN Side af 6 sider Skriftlig prøve, den: 8. maj 00 Kursus nr : 005 Kursus navn: Sandsynlighedsregning Tilladte hjælpemidler: Alle Dette sæt er besvaret af: navn underskrift bord nr Der

Læs mere

Anvendt Statistik Lektion 7. Simpel Lineær Regression

Anvendt Statistik Lektion 7. Simpel Lineær Regression Anvendt Statistik Lektion 7 Simpel Lineær Regression 1 Er der en sammenhæng? Plot af mordraten () mod fattigdomsraten (): Scatterplot Afhænger mordraten af fattigdomsraten? 2 Scatterplot Et scatterplot

Læs mere

Side 1 af 21 sider. Danmarks Tekniske Universitet. Skriftlig prøve: 15. december 2003. Kursus navn og nr: Introduktion til Statistik, 02402

Side 1 af 21 sider. Danmarks Tekniske Universitet. Skriftlig prøve: 15. december 2003. Kursus navn og nr: Introduktion til Statistik, 02402 Danmarks Tekniske Universitet Side 1 af 21 sider Skriftlig prøve: 15. december 2003 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle sædvanlige Dette sæt er besvaret af

Læs mere

Forelæsning 9: Inferens for andele (kapitel 10)

Forelæsning 9: Inferens for andele (kapitel 10) Kursus 02402 Introduktion til Statistik Forelæsning 9: Inferens for andele (kapitel 10) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Billedanalyse, vision og computer grafik. NAVN :..Lærerne... Underskrift :... Bord nr. :...

Billedanalyse, vision og computer grafik. NAVN :..Lærerne... Underskrift :... Bord nr. :... År: 3 Kursusnr: 5 Billedanalyse, vision og computer grafik Skriftlig prøve, den 5. december 3. Kursus navn: Billedanalyse, vision og computer grafik. Tilladte hjælpemidler: Alle sædvanlige. "Vægtning":

Læs mere

Anvendt Statistik Lektion 5. Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele

Anvendt Statistik Lektion 5. Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele Anvendt Statistik Lektion 5 Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele Motiverende eksempel Antal minutter brugt på rengøring/madlavning: Rengøring/Madlavning

Læs mere

Modul 6: Regression og kalibrering

Modul 6: Regression og kalibrering Forskningsenheden for Statistik ST501: Science Statistik Bent Jørgensen Modul 6: Regression og kalibrering 6.1 Årsag og virkning................................... 1 6.2 Kovarians og korrelation...............................

Læs mere

CIVILINGENIØREKSAMEN Side 1 af 16 sider. Skriftlig prøve, den: 27. maj 2011 Kursus nr : (navn) (underskrift) (bord nr)

CIVILINGENIØREKSAMEN Side 1 af 16 sider. Skriftlig prøve, den: 27. maj 2011 Kursus nr : (navn) (underskrift) (bord nr) CIVILINGENIØREKSAMEN Side af 6 sider Skriftlig prøve, den: 27. maj 20 Kursus nr : 02405 Kursus navn: Sandsynlighedsregning Tilladte hjælpemidler: Alle Dette sæt er besvaret af: (navn) (underskrift) (bord

Læs mere

Stikprøver og stikprøve fordelinger. Stikprøver Estimatorer og estimater Stikprøve fordelinger Egenskaber ved estimatorer Frihedsgrader

Stikprøver og stikprøve fordelinger. Stikprøver Estimatorer og estimater Stikprøve fordelinger Egenskaber ved estimatorer Frihedsgrader Stikprøver og stikprøve fordelinger Stikprøver Estimatorer og estimater Stikprøve fordelinger Egenskaber ved estimatorer Frihedsgrader Statistik Statistisk Inferens: Prediktere og forekaste værdier af

Læs mere

Kursus 02402/02323 Introducerende Statistik

Kursus 02402/02323 Introducerende Statistik Kursus 02402/02323 Introducerende Statistik Forelæsning 8: Simpel lineær regression Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark

Læs mere

Program. t-test Hypoteser, teststørrelser og p-værdier. Hormonkonc.: statistisk model og konfidensinterval. Hormonkoncentration: data

Program. t-test Hypoteser, teststørrelser og p-værdier. Hormonkonc.: statistisk model og konfidensinterval. Hormonkoncentration: data Faculty of Life Sciences Program t-test Hypoteser, teststørrelser og p-værdier Claus Ekstrøm E-mail: ekstrom@life.ku.dk Resumé og hængepartier fra sidst. Eksempel: effekt af foder på hormonkoncentration

Læs mere

(student number) (signature) (table number)

(student number) (signature) (table number) Technical University of Denmark Page 1 of 25 pages. Written examination: 13. december 2016 Course name and number: Introduktion til Statistik (02323 og 02402) Aids and facilities allowed: All The questions

Læs mere

Økonometri: Lektion 6 Emne: Heteroskedasticitet

Økonometri: Lektion 6 Emne: Heteroskedasticitet Økonometri: Lektion 6 Emne: Heteroskedasticitet 1 / 32 Konsekvenser af Heteroskedasticitet Antag her (og i resten) at MLR.1 til MLR.4 er opfyldt. Antag MLR.5 ikke er opfyldt, dvs. vi har heteroskedastiske

Læs mere

DANMARKS TEKNISKE UNIVERSITET Side 1 af 17 sider. Skriftlig prøve, den: 19. december 2012 Kursus nr : 02405. (navn) (underskrift) (bord nr)

DANMARKS TEKNISKE UNIVERSITET Side 1 af 17 sider. Skriftlig prøve, den: 19. december 2012 Kursus nr : 02405. (navn) (underskrift) (bord nr) DANMARKS TEKNISKE UNIVERSITET Side af 7 sider Skriftlig prøve, den: 9. december 0 Kursus nr : 0405 Kursus navn: Sandsynlighedsregning Varighed : 4 timer Tilladte hjælpemidler: Alle Dette sæt er besvaret

Læs mere

Modul 11: Simpel lineær regression

Modul 11: Simpel lineær regression Forskningsenheden for Statistik ST01: Elementær Statistik Bent Jørgensen Modul 11: Simpel lineær regression 11.1 Regression uden gentagelser............................. 1 11.1.1 Oversigt....................................

Læs mere