Stabilitet af kølet tankreaktor

Størrelse: px
Starte visningen fra side:

Download "Stabilitet af kølet tankreaktor"

Transkript

1 Stabilitet af kølet tankreaktor Vi betragter en velomrørt tankreaktor, i hvilken den exoterme reaktion B skal gennemføres. Tankreaktorens volumen er V m 3 ), og reaktanten tilføres i en opløsning med den konstante hastighed v m 3 /h) og produktstrømmen udtages med samme hastighed. Fødestrømmens indgangstemperatur er T i t) K) og indgangskoncentrationen af er c i t) mol/m 3 ). Under normal drift tilstræbes det at holde fødestrømmens temperatur og koncentration på henholdsvis T 0 og c 0. Reaktionsblandingen har densiteten ρ kg/m 3 ) og varmekapacitet C J/kg K)). Reaktionsvarmen ved den exotherme reaktion, H J/mol) er ganske høj, og reaktoren er derfor forsynet med et køleaggregat med overflade c m 2 ), gennem hvilket der strømmer et kølemiddel. Strømningshastigheden for kølemidlet er så høj, at dets temperaturændring er minimal, og kølemidlets temperatur fastholdes på værdien T c. Varmeoverganstallet mellem kølemiddel og reaktorindhold er h J/m 2 h K)), og varmekapacitet af såvel køleaggregat som reaktortanken selv kan negligeres. Den kemiske reaktion er af 1. orden, med en temperaturafhængig hastighedskonstant, og hastighedsudtrykket mol/m 3 h)) er givet ved: 1

2 Rc ) = kc exp E ) hvor E J/mol) >0) er reaktionens aktiveringsenergi. R er gaskonstanten. lle fysiske parametre i problemstillingen antages uafhængige af temperatur og sammensætning. Omrøringen af tanken antages endvidere at være så effektiv, at dens indhold overalt har samme temperatur, T, og samme koncentration, c. En massebalance for den reagerende komponent,, fører til følgende differentialligning: V dc dt = vc i vc V kc exp E ) Her angiver leddet på venstre side ændringshastigheden af reaktorindholdet af reaktanten. Første led på højresiden er tilføreselshastigheden med fødestrømmen, andet led afgangshastighed med produktstrømmen, og sidste led forbrugshastigheden ved den kemiske reaktion. En energibalance giver tilsvarende: V ρc dt dt = vρct it) T ) + H)V kc exp E ) h c T T c ) 2) Venstresideleddet er nu ændringshastigheden for energiindholdet. På højre siden refererer første led til energiforskellen mellem tilgang med fødestrøm og afgang med produktstrøm, andet led er varmeudviklingen ved den kemiske reaktion, og sidste led er varmeafgivelsen ved køling. Bemærk, at de to koblede differentialligninger, der beskriver forholdene i reaktoren, er ulineære på grund af leddet med eksponentialfaktoren. 1. Man er ofte interesseret i at holde reaktortilstanden stationær, d.v.s. under et sæt driftbetingelser, hvor koncentration og temperatur ikke ændrer sig med tiden. Dette kræver naturligvis, at indgangskoncentration og indgangstemperatur ligeledes er konstante, f.eks. c i t) = c 0, T i t) = T 0. Vis, at de stationære værdier c s og T s bestemmes af ligningerne: 0 = vc 0 vc s V kc s exp E s 0 = vρct 0 T s ) + H)V kc s exp E s 2. Indfør de dimensionsløse variable: ) ) h c T s T c ) y = c /c 0, y i = c i /c 0, θ = T/T 0, θ i = T i /T 0 og θ c = T c /T 0 1) 2

3 samt den dimensionsløse tid τ = t/t. Vis, at 1,2) kan skrives på den dimensionsløse form: dy dτ = y i y Da y expγ1 1 θ )) = y i + g 1 y, θ) 3) dθ dτ = θ i θ + βda y expγ1 1 θ )) H cθ θ c ) = θ i + g 2 y, θ) 4) og angiv, hvorledes t, Da, γ, β og H c er relateret til de fysiske parametre. Den dimensionsløse gruppe Da kaldes Damköhlertallet og er et mål for forholdet mellem den kemiske reaktionshastighed og tilføreselshastigheden af reaktanten. I spørgsmål 3-7 antages, at T c = T 0. Endvidere sættes β = β. 1 + H c 3. Vis, at systemets stationære tilstande for de fastholdte indgangsbetingelser c i t) = c 0, T i t) = T 0 er bestemt af følgende algebraiske ligninger: hvor fy) betegner funktionen fy) = ln 1 y y Vis, at der gælder θ s = 1 + β 1 y s ) 5) + fy s ) = ln Da 6) γ 1 + β γ, 0 < y < 1 7) 1 y) f y) = β β + γ)z 2 + β 2 γ)z + 1 z1 z)1 + β z) 2 hvor z = 1 y Gør rede for, at f y) < 0 for alle y ]0, 1[, såfremt betingelsen γβ 1 + β < 4 8) er opfyldt. Vis, at der er netop een stationær tilstand, y s, θ s ), for enhver værdi af Da, når 8) er opfyldt. Vis at der gælder Da expγ1 1 θ s )) = 1 y s 1 9) 4. Ved stationær drift af reaktoren er y og θ faste på henholdsvis y s og θ s, og stationær drift er som nævnt betinget af, at indgangsbetingelserne ikke varierer i tid. I praksis er det imidlertid umuligt at undgå små fluktuationer i både indgangskoncentration og indgangstemperatur. 3

4 En ændring af værdierne til et vist tidspunkt, τ 0, vil bevirke, at y og θ også flytter sig fra de stationære værdier. Vi kan skrive yτ) = y s + y, θτ) = θ s +, τ > τ 0 Spørgsmålet er nu, om en lille ændring af indgangsværdierne betyder væsentlige ændringer af den stationære tilstand. Hvis indgangskoncentration og temperatur vender tilbage til de oprindelige værdier, vil vi så se, at y 0, 0, for τ eller kan vi risikere, at y, θ) med voksende τ afviger mere og mere fra y s, θ s )? I det første tilfælde kaldes den stationære tilstand stabil, i det andet tilfælde ustabil. Vis ved hjælp af Taylors formel med udviklingspunkt y s, θ s ) at de to ligninger 3) og 4) kan samles på matrixform ved hjælp af Jacobimatricen funktionalmatricen) for gy, θ) =g 1 y, θ), g 2 y, θ)) og skrives således d dτ = Dgy s, θ s ) + ɛ y, ) y, ) 10) hvor ɛ y, ) 0 for y, ) 0. Benyt 9) til at vise, at 1 γ y Dgy s, θ s ) = s θs 2 1 y s ) β 1 βγ 11) 1) y s θs 2 1 y s ) H c + 1) Hvis den stationære tilstand er stabil vil det sidste led på højre side af 10) gå mod 0 for τ. Løsningerne til 10) vil så med tilnærmelse være de samme som løsningerne til det lineære system d dτ = Dgy s, θ s ) 12) Dette system kaldes for det lineariserede system for 10). Hvis den stationære tilstand er ustabil vil det sidste led ikke på samme måde kunne udelades. I spørgsmål 5-8 benyttes følgende parameterværdier: γ = 50, β = 0.30, H c = Vis at der netop er een stationær tilstand for Da = 0.20 og angiv denne 3 decimaler). Hvor stor en procentdel af reaktionsvarmen fjernes i køleaggregatet? Find med MPLE den fuldstændige løsning til 12). Beskriv løsningernes opførsel for τ. Kan man herefter forvente, at den stationære tilstand er stabil? 4

5 6. Man kan grafisk illustrere løsningerne til et differentialligningssystem som f.eks. 3,4) idet y, θ) = yτ), θτ)) jo er en parameterfremstilling for en kurve i y, θ)-planen. Systemet af disse kurver kaldes faseportrættet for differentialligningssystemet. Man kan naturligvis også tale om faseportrættet for 10) eller 12) i en y, )-plan. Benyt MPLE til at tegne en repræsentativ del af faseportrættet for 3,4) nær den fundne stationære tilstand. Tegn også faseportrættet for 12) og sammenlign. Gør rede for, at den stationære tilstand er ustabil. 7. Det besluttes at ændre lidt på reaktorkonfigurationen, således at værdien af y s under de nye betingelser bliver Bestem den hertil svarende værdi af Da. Find med MPLE den fuldstændige løsning til 12) i den nye stationære tilstand og beskriv ligningernes opførsel for τ. Tegn faseportrættet for 3,4) og 12) på samme måde som i spm. 6. Vis, at den nye stationære tilstand er stabil. Hvor stor er omdannelsesgraden af til B ved stationær drift? 8. For at stabilisere reaktoren i spm. 6 ønsker man at forsøge med en regulering af kølevandstemperaturen, således at T c reduceres hvis T > T s og T c forøges, hvis T < T s. Man kan overveje forskellige strategier, f.eks at Kølevandstemperaturen styres direkte efter overtemperaturen i reaktoren. Koblingen er givet ved θ c = K 1 θ s θ) + 1 Undersøg denne strategi og indflydelsen af konstanten K 1 ved hjælp af MPLE. 5

Opholdstidsfordeling i Kemiske Reaktorer

Opholdstidsfordeling i Kemiske Reaktorer Opholdstidsfordeling i Kemiske Reaktorer Køreplan 01005 Matematik 1 - FORÅR 2005 Introduktion Strømningsmønsteret i kemiske reaktorer modelleres ofte gennem to ydertilfælde, Ideal stempelstrømning, hvor

Læs mere

Reaktionskinetik - 1 Baggrund. lineære og ikke-lineære differentialligninger. Køreplan

Reaktionskinetik - 1 Baggrund. lineære og ikke-lineære differentialligninger. Køreplan Reaktionskinetik - lineære og ikke-lineære differentialligninger Køreplan 1 Baggrund På 2. eller 4. semester møder kemi/bioteknologi studerende faget Indledende Fysisk Kemi (26201/26202). Her behandles

Læs mere

Diffusionsbegrænset reaktionskinetik

Diffusionsbegrænset reaktionskinetik Diffusionsbegrænset reaktionskinetik Bimolekylære reaktioner Ved en bimolekylær elementarreaktion afhænger hastigheden såvel af den hyppighed (frekvens), hvormed reaktantmolekylerne kolliderer, som af

Læs mere

Baggrundsmateriale til Minigame 7 side 1 A + B C + D

Baggrundsmateriale til Minigame 7 side 1 A + B C + D Baggrundsmateriale til Minigame 7 side 1 Indhold Kernestof... 1 Supplerende stof... 1 1. Differentialligninger (Baggrundsmateriale til Minigame 3)... 1 2. Reaktionsorden (Nulte-, første- og andenordensreaktioner)...

Læs mere

Oplægget henvender sig primært til specielt interesserede 3g elever med matematik A og kemi A.

Oplægget henvender sig primært til specielt interesserede 3g elever med matematik A og kemi A. OPLÆG TIL STUDIERETNINGSPROJEKT I MATEMATIK-KEMI OM OSCILLERENDE REAKTIONER OG MATEMATISKE MODELLER Indledning De fleste kemiske reaktioner forløber uproblematisk inil der opnås kemisk ligevægt, eksempelvis

Læs mere

Fra spild til penge brug enzymer

Fra spild til penge brug enzymer Fra spild til penge brug enzymer Køreplan 01005 Matematik 1 - FORÅR 2010 Denne projektplan er udarbejdet af Per Karlsson og Kim Knudsen, DTU Matematik, i samarbejde med Jørgen Risum, DTU Food. 1 Introduktion

Læs mere

Temaøvelse i differentialligninger Biokemiske Svingninger

Temaøvelse i differentialligninger Biokemiske Svingninger Temaøvelse i differentialligninger Biokemiske Svingninger Rev. 12. november 2009 I denne temaøvelse studerer vi en simpel model for gærglykolyse. Vi starter i Del 1 med at beskrive modellen. Denne model

Læs mere

SRP Mat A Kemi B Reaktionskinetik Gülcicek Sacma, 3.x 20. december 2012

SRP Mat A Kemi B Reaktionskinetik Gülcicek Sacma, 3.x 20. december 2012 Gülcicek Sacma, 3.x 20. december 202 Indhold Abstract... 2 Indledning:... 3 Hvad er en differentialligning?... 4 Bevis for løsningsmetoden separation af variable.... 5 Reaktionshastighed... 7 Faktorer,

Læs mere

Lektion ordens lineære differentialligninger

Lektion ordens lineære differentialligninger Lektion 11 1. ordens lineære differentialligninger Lineære differentialligninger Lineære differentialligninger af 1. orden 1. homogene 2. inhomogene Lineære differentialligninger af 1. orden med konstante

Læs mere

2. del. Reaktionskinetik

2. del. Reaktionskinetik 2. del. Reaktionskinetik Kapitel 10. Matematisk beskrivelse af reaktionshastighed 10.1. Reaktionshastighed En kemisk reaktions hastighed kan afhænge af flere forskellige faktorer, hvoraf de vigtigste er!

Læs mere

Nøgleord og begreber Eksistens og entydighed Retningsfelt Eulers metode Hastighedsfelt Stabilitet

Nøgleord og begreber Eksistens og entydighed Retningsfelt Eulers metode Hastighedsfelt Stabilitet Oversigt [S] 7.2, 7.5, 7.6; [LA] 17, 18 Nøgleord og begreber Eksistens og entydighed Retningsfelt Eulers metode Hastighedsfelt Stabilitet Calculus 2-2004 Uge 49.2-1 Ligning og løsning [LA] 17 Generel ligning

Læs mere

GEOMETRI-TØ, UGE 3. og resultatet følger fra [P] Proposition 2.3.1, der siger, at

GEOMETRI-TØ, UGE 3. og resultatet følger fra [P] Proposition 2.3.1, der siger, at GEOMETRI-TØ, UGE 3 Hvis I falder over tryk- eller regne-fejl i nedenstående, må I meget gerne sende rettelser til fuglede@imf.au.dk. Opvarmningsopgave 1. Lad γ : (α, β) R 2 være en regulær kurve i planen.

Læs mere

Prøveeksamen i Calculus

Prøveeksamen i Calculus Prøveeksamen i Calculus Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet Marts 6 Dette eksamenssæt består af 9 nummererede sider med 4 afkrydsningsopgaver.

Læs mere

DesignMat Uge 5 Systemer af lineære differentialligninger II

DesignMat Uge 5 Systemer af lineære differentialligninger II DesignMat Uge 5 Systemer af lineære differentialligninger II Preben Alsholm Efterår 21 1 Lineære differentialligningssystemer 11 Lineært differentialligningssystem af første orden Lineært differentialligningssystem

Læs mere

Noter til kemi A-niveau

Noter til kemi A-niveau Noter til kemi A-niveau Grundlæggende kemi til opgaveregning 2.0 Af Martin Sparre INDHOLD 2 Indhold 1 Kemiske ligevægte 3 1.1 En simpel kemisk ligevægt.................... 3 1.2 Forskydning af ligevægte.....................

Læs mere

Rikke Lund, 3.f Studieretningsprojekt 21/ Reaktionskinetik

Rikke Lund, 3.f Studieretningsprojekt 21/ Reaktionskinetik Rikke Lund,.f Studieretningsprojekt / Abstract Reaktionskinetik This paper examines the subject reaction kinetics and the factors that can affect the speed of the reaction. We investigate how the reaction

Læs mere

Reaktionsmekanisme: 3Br 2 + 3H 2 O. 5Br - + BrO 3 - + 6H + Usandsynligt at alle 12 reaktantpartikler støder sammen samtidig. ca.

Reaktionsmekanisme: 3Br 2 + 3H 2 O. 5Br - + BrO 3 - + 6H + Usandsynligt at alle 12 reaktantpartikler støder sammen samtidig. ca. Reaktionsmekanisme: 5Br - + BrO 3 - + 6H + 3Br 2 + 3H 2 O Usandsynligt at alle 12 reaktantpartikler støder sammen samtidig ca. 10 23 partikler Reaktionen foregår i flere trin Eksperimentel erfaring: Max.

Læs mere

Eulers metode. Tom Pedersen //Palle Andersen. Aalborg University. Eulers metode p. 1/2

Eulers metode. Tom Pedersen //Palle Andersen. Aalborg University. Eulers metode p. 1/2 Eulers metode Tom Pedersen //Palle Andersen pa,tom@es.aau.dk Aalborg University Eulers metode p. 1/2 Differentialligninger m(t) H(t) d(h(t)) dt = 0.0125m(t) 0.001772 H(t) hvor m(t) er kendt og H(t) skal

Læs mere

Reaktionshastighed og ligevægt

Reaktionshastighed og ligevægt Reaktionshastighed og ligevægt Reaktionshastighed Kemiske reaktioners hastigheder er meget forskellige - nogle er så hurtige, at de næsten er umulige at måle, mens andre helt åbenlyst tager tid. Blander

Læs mere

Eksamen i Calculus. Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet. 6.

Eksamen i Calculus. Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet. 6. Eksamen i Calculus Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet 6. juni 16 Dette eksamenssæt består af 1 nummererede sider med 14 afkrydsningsopgaver.

Læs mere

Angiv alle C- og H-atomer i whiskyacton Jeg skal i denne opgave alle C- og H-atomer i whiskyacton. Dette gøre jeg ved hjælp af chemsketch.

Angiv alle C- og H-atomer i whiskyacton Jeg skal i denne opgave alle C- og H-atomer i whiskyacton. Dette gøre jeg ved hjælp af chemsketch. Opgave 1 Angiv alle C- og H-atomer i whiskyacton Jeg skal i denne opgave alle C- og H-atomer i whiskyacton. Dette gøre jeg ved hjælp af chemsketch. Carbon og hydrogenatomer er angivet i følgende struktur

Læs mere

Bestemmelse af stofdispersion

Bestemmelse af stofdispersion Bestemmelse af stofdispersion Ved hjælp af stoffet kaliumklorid (KCl) er det forsøgt at bestemme den stofspredning, som foregår i sandkassen. Der er i forsøget benyttet KCl, eftersom kloridionerne er negativt

Læs mere

Oversigt [S] 7.2, 7.5, 7.6; [LA] 18, 19

Oversigt [S] 7.2, 7.5, 7.6; [LA] 18, 19 Oversigt [S] 7.2, 7.5, 7.6; [LA] 18, 19 Nøgleord og begreber Eksistens og entydighed Elementære funktioner Eksponential af matrix Retningsfelt Eulers metode Hastighedsfelt for system Eulers metode for

Læs mere

Eksamen i Calculus Mandag den 4. juni 2012

Eksamen i Calculus Mandag den 4. juni 2012 Eksamen i Calculus Mandag den 4. juni 212 Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet Nærværende eksamenssæt består af 7 nummererede sider med ialt

Læs mere

HVORDAN BLIVER TOBAK TIL RØG, OG HVAD INDEHOLDER RØGEN?

HVORDAN BLIVER TOBAK TIL RØG, OG HVAD INDEHOLDER RØGEN? KAPITEL 2: HVORDAN BLIVER TOBAK TIL RØG, OG HVAD INDEHOLDER RØGEN? 24 www.op-i-røg.dk GÅ OP I RØG Kræftens Bekæmpelse www.op-i-røg.dk 25 Kapitel 2: Indhold Kapitlet giver en indføring i de kemiske processer,

Læs mere

Bevægelsens Geometri

Bevægelsens Geometri Bevægelsens Geometri Vi vil betragte bevægelsen af et punkt. Dette punkt kan f.eks. være tyngdepunktet af en flue, et menneske, et molekyle, en galakse eller hvad man nu ellers har lyst til at beskrive.

Læs mere

BASE. Besvarelse til individuel skriftlig test

BASE. Besvarelse til individuel skriftlig test BASE Besvarelse til individuel skriftlig test Tirsdag d. 21. marts 2006 Tinne Hoff Kjeldsen Bitten Plesner 1 Opgave 1 Vandet i en pool med et volumen på 10.000 gallon indeholder 0,01% klor. Til tiden t

Læs mere

Fysikrapport: Rapportøvelse med kalorimetri. Maila Walmod, 1.3 HTX, Rosklide. I gruppe med Ulrik Stig Hansen og Jonas Broager

Fysikrapport: Rapportøvelse med kalorimetri. Maila Walmod, 1.3 HTX, Rosklide. I gruppe med Ulrik Stig Hansen og Jonas Broager Fysikrapport: Rapportøvelse med kalorimetri Maila Walmod, 1.3 HTX, Rosklide I gruppe med Ulrik Stig Hansen og Jonas Broager Afleveringsdato: 30. oktober 2007* *Ny afleveringsdato: 13. november 2007 1 Kalorimetri

Læs mere

(Prøve)Eksamen i Calculus

(Prøve)Eksamen i Calculus (Prøve)Eksamen i Calculus Sæt 1, april 2011 Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet Nærværende (prøve)eksamenssæt består af 7 nummererede sider

Læs mere

MASO Uge 7. Differentiable funktioner. Jesper Michael Møller. Uge 7. Formålet med MASO. Department of Mathematics University of Copenhagen

MASO Uge 7. Differentiable funktioner. Jesper Michael Møller. Uge 7. Formålet med MASO. Department of Mathematics University of Copenhagen MASO Uge 7 Differentiable funktioner Jesper Michael Møller Department of Mathematics University of Copenhagen Uge 7 Formålet med MASO Oversigt Differentiable funktioner R n R m Differentiable funktioner

Læs mere

Theory Danish (Denmark) Ikke-lineær dynamik i elektriske kredsløb (10 point)

Theory Danish (Denmark) Ikke-lineær dynamik i elektriske kredsløb (10 point) Q2-1 Ikke-lineær dynamik i elektriske kredsløb (10 point) Læs venligst de generelle instruktioner i den separate konvolut før du starter på opgaven. Introduktion Bi-stabile ikke-lineære halvlederkomponenter

Læs mere

Klassisk kaos. Kaotiske systemer. Visse regulariteter universalitet

Klassisk kaos. Kaotiske systemer. Visse regulariteter universalitet Klassisk kaos Deterministiske bevægelsesligninger kan under visse omstændigheder udvise løsninger som er uforudsigelige, dvs. løsninger der opfører sig kaotisk: Faserum Forudsigelige Integrable systemer

Læs mere

Bestemmelse af iltkoncentration i Østerå

Bestemmelse af iltkoncentration i Østerå Bestemmelse af iltkoncentration i Østerå Iltkoncentrationen i danske vandløb varierer over døgnet og over året. I grøderige vandløb med lav strømningshastighed som Østerå, kan variationen over døgnet om

Læs mere

Sætning (Kædereglen) For f(u), u = g(x) differentiable er den sammensatte funktion F = f g differentiabel med

Sætning (Kædereglen) For f(u), u = g(x) differentiable er den sammensatte funktion F = f g differentiabel med Oversigt [S] 3.5, 11.5 Nøgleord og begreber Kædereglen i en variabel Kædereglen to variable Test kædereglen Kædereglen i tre eller flere variable Jacobimatricen Kædereglen på matrixform Test matrixform

Læs mere

Workshop i differentialligninger

Workshop i differentialligninger Workshop i differentialligninger Indholdsfortegnelse Eksempler på eksamensopgaver side 1 Opgave 1 7: side 1 Projekter: side 3 8. Isokliner side 3 9. Logistisk vækst med jagt/fiskeri side 4 10. Romeo og

Læs mere

Matematisk modellering og numeriske metoder. Lektion 11

Matematisk modellering og numeriske metoder. Lektion 11 Matematisk modellering og numeriske metoder Lektion 11 Morten Grud Rasmussen 5. november 2016 1 Partielle differentialligninger 1.1 Udledning af varmeligningen Vi vil nu på samme måde som med bølgeligningen

Læs mere

Exoterme og endoterme reaktioner (termometri)

Exoterme og endoterme reaktioner (termometri) AKTIVITET 10 (FAG: KEMI) NB! Det er i denne øvelse ikke nødvendigt at udføre alle forsøgene. Vælg selv hvilke du/i vil udføre er du i tvivl så spørg. Hvis du er interesseret i at måle varmen i et af de

Læs mere

Introduktion til Laplace transformen (Noter skrevet af Nikolaj Hess-Nielsen sidst revideret marts 2013)

Introduktion til Laplace transformen (Noter skrevet af Nikolaj Hess-Nielsen sidst revideret marts 2013) Introduktion til Laplace transformen (oter skrevet af ikolaj Hess-ielsen sidst revideret marts 23) Integration handler ikke kun om arealer. Tværtimod er integration basis for mange af de vigtigste værktøjer

Læs mere

Heisenbergs usikkerhedsrelationer. Abstrakt. Hvorfor? Funktionsrum. Nils Byrial Andersen Institut for Matematik. Matematiklærerdag 2013

Heisenbergs usikkerhedsrelationer. Abstrakt. Hvorfor? Funktionsrum. Nils Byrial Andersen Institut for Matematik. Matematiklærerdag 2013 Heisenbergs usikkerhedsrelationer Nils Byrial Andersen Institut for Matematik Matematiklærerdag 013 1 / 17 Abstrakt Heisenbergs usikkerhedsrelationer udtrykker at man ikke på samme tid både kan bestemme

Læs mere

Studieretningsopgave

Studieretningsopgave Virum Gymnasium Studieretningsopgave Harmoniske svingninger i matematik og fysik Vejledere: Christian Holst Hansen (matematik) og Bodil Dam Heiselberg (fysik) 30-01-2014 Indholdsfortegnelse Indledning...

Læs mere

Koblede differentialligninger.

Koblede differentialligninger. 2. 3. 4. Koblede differentialligninger. En udvidelse af Newtons afkølingslov løst numerisk ved hjælp af integralkurver. Sidste gang så vi på, hvordan vi kunne opstille og løse en model for afkølingen af

Læs mere

Afprøvning af betoners styrkeudvikling ved forskellige lagringstemperaturer Test til eftervisning af prøvningsmetode TI-B 103

Afprøvning af betoners styrkeudvikling ved forskellige lagringstemperaturer Test til eftervisning af prøvningsmetode TI-B 103 Afprøvning af betoners styrkeudvikling ved forskellige lagringstemperaturer Test til eftervisning af prøvningsmetode TI-B 103 Baggrund Modenhedsbegrebet, som beskriver temperaturens indflydelse på hærdehastigheden,

Læs mere

Prøveeksamen MR1 januar 2008

Prøveeksamen MR1 januar 2008 Skriftlig eksamen Matematik 1A Prøveeksamen MR1 januar 2008 Tilladte hjælpemidler Alle sædvanlige hjælpemidler er tilladt (lærebøger, notater, osv.), og også elektroniske hjælpemidler som lommeregner og

Læs mere

Bernoulli s lov. Med eksempler fra Hydrodynamik og aerodynamik. Indhold

Bernoulli s lov. Med eksempler fra Hydrodynamik og aerodynamik. Indhold Bernoulli s lov Med eksempler fra Indhold 1. Indledning...1 2. Strømning i væsker...1 3. Bernoulli s lov...2 4. Tømning af en beholder via en hane i bunden...4 Ole Witt-Hansen Køge Gymnasium 2008 Bernoulli

Læs mere

DesignMat Lineære differentialligninger I

DesignMat Lineære differentialligninger I DesignMat Lineære differentialligninger I Preben Alsholm Uge 9 Forår 2010 1 Lineære differentialligninger af første orden 1.1 Normeret lineær differentialligning Normeret lineær differentialligning En

Læs mere

hvor a og b er konstanter. Ved middelværdidannelse fås videre

hvor a og b er konstanter. Ved middelværdidannelse fås videre Uge 3 Teoretisk Statistik. marts 004. Korrelation og uafhængighed, repetition. Eksempel fra sidste gang (uge ) 3. Middelværdivektor, kovarians- og korrelationsmatrix 4. Summer af stokastiske variable 5.Den

Læs mere

Projekt 4.6 Løsning af differentialligninger ved separation af de variable

Projekt 4.6 Løsning af differentialligninger ved separation af de variable Projekt 4.6 Løsning af differentialligninger ved separation af de variable Differentialligninger af tpen d hx () hvor hx ()er en kontinuert funktion, er som nævnt blot et stamfunktionsproblem. De løses

Læs mere

er en n n-matrix af funktioner

er en n n-matrix af funktioner Oversigt [S] 7.2, 7.5, 7.6; [LA] 18, 19 Ligning og løsning Nøgleord og begreber Eksistens og entdighed Elementære funktioner Eksponential af matrix Retningsfelt Hastighedsfelt for sstem for sstem Stabilitet

Læs mere

Oversigt [S] 7.3, 7.4, 7.5, 7.6; [LA] 15, 16, 17

Oversigt [S] 7.3, 7.4, 7.5, 7.6; [LA] 15, 16, 17 Oversigt [S] 7.3, 7.4, 7.5, 7.6; [LA] 15, 16, 17 Nøgleord og begreber 1. ordens lineær ligning Løsningsmetode August 2002, opgave 7 1. ordens lineært system Løsning ved egenvektor Lille opgave Stor opgave

Læs mere

Diffusionsligningen. Fællesprojekt for FY520 og MM502. Marts Hans J. Munkholm og Paolo Sibani. Besvarelse fra Hans J.

Diffusionsligningen. Fællesprojekt for FY520 og MM502. Marts Hans J. Munkholm og Paolo Sibani. Besvarelse fra Hans J. Diffusionsligningen Fællesprojekt for FY50 og MM50 Marts 009 Hans J. Munkholm og Paolo Sibani Besvarelse fra Hans J. Munkholm 1 (a) Lad [x, x + x] være et lille delinterval af [a, b]. Den masse, der er

Læs mere

Lektion 8 Differentialligninger

Lektion 8 Differentialligninger Lektion 8 Differentialligninger Implicit differentiation Differentialligninger Separable differentialligninger 0.5 Implicit differentiation 0.4 0.2 0.2 0.4 0.6 0.8 0 0.5 y Vi kan finde måske løse ligningen.5

Læs mere

Lineære 1. ordens differentialligningssystemer

Lineære 1. ordens differentialligningssystemer enote enote Lineære ordens differentialligningssystemer Denne enote beskriver ordens differentialligningssystemer og viser, hvordan de kan løses enoten er i forlængelse af enote, der beskriver lineære

Læs mere

Modeldannelse og simulering

Modeldannelse og simulering Modeldannelse og simulering Tom S. Pedersen, Palle Andersen tom@es.aau.dk pa@es.aau.dk Aalborg Universitet, Institut for Elektroniske Systemer Automation and Control Modeldannelse og simulering p. 1/21

Læs mere

Udledning af den barometriske højdeformel. - Beregning af højde vha. trykmåling. af Jens Lindballe, Silkeborg Gymnasium

Udledning af den barometriske højdeformel. - Beregning af højde vha. trykmåling. af Jens Lindballe, Silkeborg Gymnasium s.1/5 For at kunne bestemme cansatsondens højde må vi se på, hvorledes tryk og højde hænger sammen, når vi bevæger os opad i vores atmosfære. I flere fysikbøger kan man læse om den Barometriske højdeformel,

Læs mere

Modul 12: Regression og korrelation

Modul 12: Regression og korrelation Forskningsenheden for Statistik ST01: Elementær Statistik Bent Jørgensen Modul 12: Regression og korrelation 12.1 Sammenligning af to regressionslinier........................ 1 12.1.1 Test for ens hældning............................

Læs mere

Skriftlig eksamen i Kemi F2 (Fysisk kemi)

Skriftlig eksamen i Kemi F2 (Fysisk kemi) Skriftlig eksamen i Kemi F2 (Fysisk kemi) Tirsdag d. 7 April 2009 Læs først denne vejledning! Du får udleveret to eksemplarer af dette opgavesæt. Kontroller først, at begge hæfter virkelig indeholder 9

Læs mere

Dosering af anæstesistoffer

Dosering af anæstesistoffer Dosering af anæstesistoffer Køreplan 01005 Matematik 1 - FORÅR 2005 1 Formål Formålet med opgaven er at undersøge hvordan man kan opnå kendskab til koncentrationen af anæstesistoffer i vævet på en person

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Termin hvori undervisningen afsluttes: maj-juni 2012 Københavns

Læs mere

Differentialligninger med TI Nspire CAS version 3.1

Differentialligninger med TI Nspire CAS version 3.1 Differentialligninger med TI Nspire CAS version 3.1 Der er tilføjet en ny graftype til Graf værkstedet kaldet Diff lign. Denne nye graftype er en implementering af differentialligningerne som vi kender

Læs mere

CIVILINGENIØREKSAMEN Side 1 af 18 sider. Skriftlig prøve, den: PQ. juli 200Z Kursus nr : (navn) (underskrift) (bord nr)

CIVILINGENIØREKSAMEN Side 1 af 18 sider. Skriftlig prøve, den: PQ. juli 200Z Kursus nr : (navn) (underskrift) (bord nr) CIVILINGENIØREKSAMEN Side 1 af 18 sider Skriftlig prøve, den: PQ. juli 200Z Kursus nr : 02405 Kursus navn: Sandsynlighedsregning Tilladte hjælpemidler: Alle Dette sæt er besvaret af: (navn) (underskrift)

Læs mere

Dampmaskinen. 2-3) Opvarmning I tanken tilføres varme, hvorved vandet varmes op til kogepunktet, fordamper og forlader tanken ved samme tryk.

Dampmaskinen. 2-3) Opvarmning I tanken tilføres varme, hvorved vandet varmes op til kogepunktet, fordamper og forlader tanken ved samme tryk. Dampmaskinen I en dampmaskine udnyttes energi i vanddamp til mekanisk arbejde. For at fordampe vand inden det føres ind i dampmaskinen tilføres der energi f.eks. ved forbrænding af kul. Vanddampen kan

Læs mere

MATEMATIK A-NIVEAU. Kapitel 1

MATEMATIK A-NIVEAU. Kapitel 1 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 01 Kapitel 1 016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 01

Læs mere

Matematik A. Højere teknisk eksamen. Forberedelsesmateriale. htx112-mat/a-26082011

Matematik A. Højere teknisk eksamen. Forberedelsesmateriale. htx112-mat/a-26082011 Matematik A Højere teknisk eksamen Forberedelsesmateriale htx112-mat/a-26082011 Fredag den 26. august 2011 Forord Forberedelsesmateriale til prøverne i matematik A Der er afsat 10 timer på 2 dage til

Læs mere

Dansk Fysikolympiade 2007 Landsprøve. Prøven afholdes en af dagene tirsdag den 9. fredag den 12. januar. Prøvetid: 3 timer

Dansk Fysikolympiade 2007 Landsprøve. Prøven afholdes en af dagene tirsdag den 9. fredag den 12. januar. Prøvetid: 3 timer Dansk Fysikolympiade 2007 Landsprøve Prøven afholdes en af dagene tirsdag den 9. fredag den 12. januar Prøvetid: 3 timer Opgavesættet består af 6 opgaver med tilsammen 17 spørgsmål. Svarene på de stillede

Læs mere

Lektion 9 Vækstmodeller

Lektion 9 Vækstmodeller Lektion 9 Vækstmodeller Eksponentiel vækst 1. Eksponentielt voksende funktioner 2. Eksponentielt aftagende funktioner 3. Halverings- og fordoblingstider Vækst mod asymptotisk grænse Logistisk vækst 1.

Læs mere

MATEMATIK A-NIVEAU-Net

MATEMATIK A-NIVEAU-Net STUDENTEREKSAMEN STUDENTEREKSAMEN PRØVESÆT MAJ 22007 2010/2011 MATEMATIK A-NIVEAU-Net Prøvesæt 2 2010/2011 Kl. 09.00 14.00 Prøvesæt 2 2010/2011 Opgavesættet er delt i to dele. Delprøve 1: 2 timer med autoriseret

Læs mere

Teoretiske Øvelser Mandag den 13. september 2010

Teoretiske Øvelser Mandag den 13. september 2010 Hans Kjeldsen hans@phys.au.dk 6. september 00 eoretiske Øvelser Mandag den 3. september 00 Computerøvelse nr. 3 Ligning (6.8) og (6.9) på side 83 i Lecture Notes angiver betingelserne for at konvektion

Læs mere

Løsningsforslag til opgavesæt 5

Løsningsforslag til opgavesæt 5 Matematik F Matematik F Løsningsforslag til opgavesæt 5 Opgave : Se kursushjemmesiden. Opgave : a) π dθ 5 + 4 sin θ = e iθ, = ie iθ dθ, dθ = i sin θ = eiθ e iθ i = i(5 + 4( / )) = i = + 5i Integranden

Læs mere

Reaktionskinetik

Reaktionskinetik [PJ] Kemi.dfw Reaktionskinetik Kemi A-niveau Vi starter med at repetere siderne 38-4 i Kemi Nulte ordens kemisk reaktion Det kunne fx være den enzymkatalyseret proces: A + E -> B + E Vi følger hvordan

Læs mere

Lineære systemer med hukommelse.

Lineære systemer med hukommelse. Lineær Response Teori. I responseteorien interesserer man sig for, hvad der kan siges generelt om sammenhængen mellem input φ(t) og output γ(t) for et system. Valg af variable. Det betragtede systems forskellige

Læs mere

Analyse af ombytningspuslespil

Analyse af ombytningspuslespil Analyse af ombytningspuslespil 1 / 7 Konkret eksempel på algoritmeanalyse Prøv ombytningspuslespillet på kurset webside. 2 / 7 Konkret eksempel på algoritmeanalyse Prøv ombytningspuslespillet på kurset

Læs mere

Hastighedsprofiler og forskydningsspænding

Hastighedsprofiler og forskydningsspænding Hastighedsprofiler og forskydningsspænding Formål Formålet med de gennemførte forsøg er at anvende og sammenligne 3 metoder til bestemmelse af bndforskydningsspændingen i strømningsrenden. Desden er formålet,

Læs mere

Spørgsmål 1 Kemisk ligevægt

Spørgsmål 1 Kemisk ligevægt Spørgsmål 1 Kemisk ligevægt Du skal redegøre for den teori der ligger op til forståelsen af eksperimentet Indgreb i et ligevægtssystem. Du skal som minimum inddrage begreberne: Reversibel og irreversibel

Læs mere

Opgave 1 Opskriv følgende vinkler i radianer 180, 90, 135, 270, 60, 30.

Opgave 1 Opskriv følgende vinkler i radianer 180, 90, 135, 270, 60, 30. Opgaver Polære koordinater Opgave 1 Opskriv følgende vinkler i radianer 180, 90, 15, 70, 60, 0. Opgave Bestem sin π Opgave. Et punkt p i xy-planen er givet ved de kartesiske koordinater,. Bestem p s polære

Læs mere

Oversigt [S] 7.1, 7.2, 7.3, 7.4, 7.5

Oversigt [S] 7.1, 7.2, 7.3, 7.4, 7.5 Oversigt [S] 7.1, 7.2, 7.3, 7.4, 7.5 Nøgleord og begreber Vækstmodel Bevægelsesligninger Retningsfelt Eulers metode Separable ligninger Logistisk ligning Eksponentiel vækst Begyndelsesværdiproblem Calculus

Læs mere

Projekt 4.9 Bernouillis differentialligning

Projekt 4.9 Bernouillis differentialligning Projekt 4.9 Bernouillis differentialligning (Dette projekt dækker læreplanens krav om supplerende stof vedr. differentialligningsmodeller. Projektet hænger godt sammen med projekt 4.0: Fiskerimodeller,

Læs mere

Skriftlig eksamen i Kemi F2 (Fysisk kemi)

Skriftlig eksamen i Kemi F2 (Fysisk kemi) Skriftlig eksamen i Kemi F2 (Fysisk kemi) Onsdag 23 Januar 2008 kl. 900 1300 Læs først denne vejledning! Du får udleveret to eksemplarer af dette opgavesæt. Kontroller først, at begge hæfter virkelig indeholder

Læs mere

Højere Teknisk Eksamen maj Kemi A. - løse opgaverne korrekt. - tegne og aflæse grafer. Ved bedømmelsen vægtes alle opgaver ens.

Højere Teknisk Eksamen maj Kemi A. - løse opgaverne korrekt. - tegne og aflæse grafer. Ved bedømmelsen vægtes alle opgaver ens. 054129 18/05/06 12:21 Side 1 Højere Teknisk Eksamen maj 2006 Kemi A Ved bedømmelsen lægges der vægt på eksaminandens evne til at - løse opgaverne korrekt - begrunde løsningerne med relevante beregninger,

Læs mere

Spontan biologisk mønsterdannelse på basis af reaktions-diffusions mekanismer: Turing strukturer

Spontan biologisk mønsterdannelse på basis af reaktions-diffusions mekanismer: Turing strukturer Spontan biologisk mønsterdannelse på basis af reaktions-diffusions mekanismer: Turing strukturer Axel Hunding Spontan dannelse af komplekse strukturer i biologien kan synes at stride mod sund fornuft (og

Læs mere

Spørgsmål 1 Struktur og egenskaber

Spørgsmål 1 Struktur og egenskaber Spørgsmål 1 Struktur og egenskaber Der ønskes en gennemgang af de forskellige former for intermolekylære bindinger, samt deres betydning for stoffernes fysiske og kemiske egenskaber. Inddrag øvelsen Carbonhydrider

Læs mere

Matematisk modellering og numeriske metoder. Lektion 11

Matematisk modellering og numeriske metoder. Lektion 11 Matematisk modellering og numeriske metoder Lektion 11 Morten Grud Rasmussen 17. oktober, 2013 1 Partielle differentialligninger 1.1 D Alemberts løsning af bølgeligningen [Bogens sektion 12.4 på side 553]

Læs mere

Eksamensopgaver i kemi b uden bilag (med forbehold for censors godkendelse)

Eksamensopgaver i kemi b uden bilag (med forbehold for censors godkendelse) Eksamensopgaver i kemi b uden bilag (med forbehold for censors godkendelse) Jern korrosion 1 redoxreaktioner 1. Metallers generelle egenskaber. Stikord: malm, tilstandsform, formbarhed, bindingstype, kuglepakning,

Læs mere

Vejledning. Prøven Opgavesættet består af 4 opgaver med i alt 16 delopgaver. Alle hjælpemidler er tilladt.

Vejledning. Prøven Opgavesættet består af 4 opgaver med i alt 16 delopgaver. Alle hjælpemidler er tilladt. Vejledning Prøven Opgavesættet består af 4 opgaver med i alt 16 delopgaver. Alle hjælpemidler er tilladt. Opgavebesvarelsen Din opgavebesvarelse skal afleveres i et samlet dokument. Kildehenvisning Du

Læs mere

Matematisk modellering og numeriske metoder. Lektion 1

Matematisk modellering og numeriske metoder. Lektion 1 Matematisk modellering og numeriske metoder Lektion 1 Morten Grud Rasmussen 4. september, 2013 1 Ordinære differentialligninger ODE er 1.1 ODE er helt grundlæggende Definition 1.1 (Ordinære differentialligninger).

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Termin hvori undervisningen afsluttes: maj-juni 2011 Københavns Tekniske

Læs mere

DIFFERENTIALLIGNINGER NOTER TIL CALCULUS 2003 AARHUS UNIVERSITET

DIFFERENTIALLIGNINGER NOTER TIL CALCULUS 2003 AARHUS UNIVERSITET DIFFERENTIALLIGNINGER NOTER TIL CALCULUS 2003 AARHUS UNIVERSITET H.A. NIELSEN INDHOLD. Lineær ligning 2 2. Lineært system 8 3. Generel ligning 6 4. Stabilitet 8 Litteratur 2 Noterne er til 4 timers forelæsninger

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj-juni 2014 Københavns

Læs mere

EKSAMENSSPØRGSMÅL 2x Ke/s 2015 med Jørgen Mogensen

EKSAMENSSPØRGSMÅL 2x Ke/s 2015 med Jørgen Mogensen EKSAMENSSPØRGSMÅL 2x Ke/s 2015 med Jørgen Mogensen Eksamensdato: Tirsdag den 2. juni 2015 Antal elever: 2 Information til elever: Nedenfor er eksamensspørgsmålene anført. Der er 8 forskellige. Bilag til

Læs mere

Boligmodellens tilpasningstid til en stationær tilstand

Boligmodellens tilpasningstid til en stationær tilstand Danmarks Statistik MODELGRUPPEN Arbejdspapir* Lena Larsen 10. april 1997 Boligmodellens tilpasningstid til en stationær tilstand Resumé: Papiret tager sit udgangspunkt i de multiplikator eksperimenter,

Læs mere

Differentialligninger med TI-Interactive!

Differentialligninger med TI-Interactive! Differentialligninger med TI-Interactive! Jan Leffers (2008) Indholdsfortegnelse Indholdsfortegnelse...3 1. ordens differentialligninger... 4 Den fuldstændige løsning... 4 Løsning med bibetingelse...4

Læs mere

Udledning af Keplers love

Udledning af Keplers love Udledning af Keplers love Kristian Jerslev 8. december 009 Resumé Her præsenteres en udledning af Keplers tre love ud fra Newtonsk tyngdekraft. Begyndende med en analyse af et to-legeme problem vil jeg

Læs mere

2 Den lineære bølgeligning

2 Den lineære bølgeligning Sidse Damgaard Årskortnummer 20062443 1 Indledning I denne opgave skal vi se på den numeriske løsning af den ikke-lineære bølgeligning. Den ikke-lineære bølgeligning beskriver longitudinale trykbølger

Læs mere

Gør rede for begrebet reaktionshastighed. Kom herunder ind på de faktorer, der påvirker reaktionshastigheden.

Gør rede for begrebet reaktionshastighed. Kom herunder ind på de faktorer, der påvirker reaktionshastigheden. 1 Reaktionshastighed Gør rede for begrebet reaktionshastighed. Kom herunder ind på de faktorer, der påvirker reaktionshastigheden. Bilaget samt eksperimentet Reaktionshastighed skal inddrages i din gennemgang.

Læs mere

Skriftlig eksamen i Kemi F2 (Fysisk kemi)

Skriftlig eksamen i Kemi F2 (Fysisk kemi) Skriftlig eksamen i Kemi F2 (Fysisk kemi) Fredag d 29 januar 2010 Læs først denne vejledning! Du får udleveret to eksemplarer af dette opgavesæt. Kontroller først, at begge hæfter virkelig indeholder 6

Læs mere

Mini SRP. Afkøling. Klasse 2.4. Navn: Jacob Pihlkjær Hjortshøj, Jonatan Geysner Hvidberg og Kevin Høst Husted

Mini SRP. Afkøling. Klasse 2.4. Navn: Jacob Pihlkjær Hjortshøj, Jonatan Geysner Hvidberg og Kevin Høst Husted Mini SRP Afkøling Klasse 2.4 Navn: Jacob Pihlkjær Lærere: Jørn Christian Bendtsen og Karl G Bjarnason Roskilde Tekniske Gymnasium SO Matematik A og Informations teknologi B Dato 31/3/2014 Forord Under

Læs mere

Lineære 1. ordens differentialligningssystemer

Lineære 1. ordens differentialligningssystemer enote enote Lineære ordens differentialligningssystemer Denne enote beskriver ordens differentialligningssystemer og viser, hvordan de kan løses enoten er i forlængelse af enote, der beskriver lineære

Læs mere

Modulpakke 3: Lineære Ligningssystemer

Modulpakke 3: Lineære Ligningssystemer Chapter 4 Modulpakke 3: Lineære Ligningssystemer 4. Homogene systemer I teknikken møder man meget ofte modeller der leder til systemer af koblede differentialligninger. Et eksempel på et sådant system

Læs mere

Test grafisk afledede Højere partielle afledede Differentiationsordenen er ligegyldig Partielle differentialligninger Test Laplaces ligning

Test grafisk afledede Højere partielle afledede Differentiationsordenen er ligegyldig Partielle differentialligninger Test Laplaces ligning Oversigt [S] 2.7, 3.1, 3.4, 11.3 Nøgleord og begreber Differentiabel funktion i en variabel Partielle afledede i flere variable Notation og regneregler for partielle afledede Test partielle afledede Grafisk

Læs mere

Reeksamen i Calculus Tirsdag den 20. august 2013

Reeksamen i Calculus Tirsdag den 20. august 2013 Reeksamen i Calculus Tirsdag den 20. august 2013 Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet Nærværende eksamenssæt består af 7 nummererede sider

Læs mere