Trigonometri. Trigonometri. Sinus og cosinus... 2 Tangens... 6 Opgaver Side 1

Størrelse: px
Starte visningen fra side:

Download "Trigonometri. Trigonometri. Sinus og cosinus... 2 Tangens... 6 Opgaver... 9. Side 1"

Transkript

1 Trigonometri Sinus og osinus... 2 Tngens... 6 Opgver... 9 Side

2 Sinus og osinus Til lle vinkler hører der to tl, som kldes osinus og sinus. Mn finder sinus og osinus til en vinkel ved t tegne vinklen midt i et koordint-system som vist her. 60º - Mn skl også tegne en irkel med rdius en (r = ) og med entrum midt i koordint-systemet. irklen kldes en enheds-irkel. - osinus til en vinkel er første-koordinten til skæringspunktet mellem vinklens venstre en og enheds-irklen. Sinus til en vinkel er nden-koordinten til skæringspunktet mellem vinklens venstre en og enheds-irklen. Her vil vi kun rejde med vinkler mellem 0º og 90º. osinus og sinus vil være mellem 0 og. ltså i intervllet [0;]. I stedet for osinus til 60º og sinus til 60º skriver mn os(60º) og sin(60º). På regnemskinen finder mn os(60º) ved t trykke os 60 =. Mn får præis 0,5. Mn finder sin(60º) ved t trykke sin 60 =. Mn får et deimltl, som strter med 0,886. På nogle regnemskiner skl mn tste i modst rækkefølge. Fx 60 sin =. (os(60º), sin(60º)) Hvis mn kender osinus eller sinus til en vinkel, kn mn finde vinklen ved t trykke Inv os eller Inv sin. På mnge regnemskiner skl mn tste 2nd i stedet for Inv. Sinus og osinus kldes trigonometriske funktioner. sin(60º) 60º os(60º) Eksempler på opgver Find osinus til 35º Hvilken vinkel hr sinus-værdien 0,94? På regnemskinen trykkes os 35 =. Mn får os(35º) = 0,89 På regnemskinen trykkes Inv sin 0,94 =. Mn får 70º. Side 2

3 Vi skl især rejde med vinkler i retvinklede treknter. Ved siden f er tegnet en retvinklet treknt, hvor (hypotenusen) hr længden en. Nedenfor er treknten pleret i en enhedsirkel. Hypotenusen er rdius i irklen. Trekntens to ndre sider og (kteterne) hr længderne sin( ) og os( ). = Herunder er tegnet to ndre treknter med de smme vinkler som treknt. Treknterne hr præis smme form som, men den ene er formindsket og den nden forstørret. Mn siger, t de tre treknter er ligednnede. = = os( ) = sin( ) Siderne i den lille treknt er hlvt så lnge som i. Siderne i den store treknt er tre gnge så lnge sider som i. 3 3 sin( ) 0,5 0,5 sin( ) 0,5 os( ) 3 os( ) Mn kn finde kteterne i retvinklede treknter med disse formler: Længden f en ktete = længden f hypotenusen osinus til den hosliggende vinkel Længden f en ktete = længden f hypotenusen sinus til den modstående vinkel Hosliggende vinkel Hypotenuse Ktete Modstående vinkel Modstående vinkel Hypotenuse Hosliggende vinkel Ktete Formlerne gælder for egge kteter, men det er svært t huske, hvilken vinkel der er hosliggende, og hvilken vinkel der er modstående. Tænk dig godt om! Side 3

4 Eksempel på opgve I en retvinklet treknt er hypotenusen 5 m og er 53º. Hvor stor er? Hvor lnge er kteterne? = 5 m 53º Vinkelsummen i en treknt er 80º, og den rette vinkel er 90º. Derfor får mn: = 80º 90º 53º = 37º Længden f kteterne kn findes med en f formlerne på forrige side. er hypotenusen. er modstående til kteten. er modstående til kteten. Mn får: = sinus til den modstående vinkel = sin( ) = 5 sin(37º) = 3,009 3 m. = sinus til den modstående vinkel = sin( ) = 5 sin(53º) = 3,993 4 m. Mn kn også ruge formlen med osinus til den hosliggende vinkel. Prøv selv! Eksempel på opgve Skrå side Tegningen viser en gvl på et hus. Husets redde er 8 m, muren er 2,5 m høj, og tgets hældning er 30º. Hvor lng er gvlens skrå side? Hvor højt er huset? 30º 8 m 2,5 m Husets højde Den øverste del f gvlen kn opdeles i to retvinklede treknter. Den skrå side er hypotenusen. er hosliggende til kteten. Mn får: 30º = osinus til den hosliggende vinkel = 4 m = os( ) 4 = os(30º) 4 Ved ligningsløsning fås: = 4,62 m os(30 ) = For t finde huset højde skl mn først finde kteten, som er tgets højde. Mn får: = sinus til den modstående vinkel = sin( ) = 4,62 sin(30º) = 2,3 m Husets højde liver murens højde + tgets højde: 2,5 m + 2,3 m = 4,8 m. Side 4

5 Mn kn finde de ikke-rette vinkler i retvinklede treknter med disse formler: osinus til en vinkel = Den hosliggende ktete Hypotenusen Sinus til en vinkel = Den modstående ktete Hypotenusen Hypotenuse Modstående ktete Vinkel Hosliggende ktete Vinkel Hypotenuse Hosliggende ktete Modstående ktete Formlerne gælder for egge de ikke-rette vinkler, men det er svært t huske, hvilken ktete der er hosliggende, og hvilken ktete der er modstående. Tænk dig godt om! Eksempel på opgve I en retvinklet treknt er hypotenusen 8,5 m, og kteten er 4 m. = 8,5 m = 4 m Hvor stor er? Hvor lng er kteten? Kteten er modstående til. Mn får først: Den modstående ktete 4 sin( ) = = = = 0,47 Hypotenusen 8,5 Derefter tstes: Inv sin 0,74 =, og mn får = 28º Men mn kn også få resulttet i en eregning ved t tste: Inv sin ( 4 8,5 ) =. Mn kn finde kteten på flere måder. Mn kn fx ruge, t er hosliggende til. Mn får: = osinus til den hosliggende vinkel = os( ) = 8,5 os( 28º) = 7,5 m Mn kn også ruge Pythgors formel for sidelængderne i en retvinklet treknt: = 2. Prøv selv! Side 5

6 Tngens Du skl lære endnu en trigonometrisk funktion t kende. Det er tngens. Mn kn finde tngens til en vinkel ved t tegne en lodret linje gennem punktet (,0). Tngens er nden-koordinten til det sted, hvor vinklens venstre en skærer denne linje. Tegningen viser tngens til 40º. Mn skriver lot tn(40º). På regnemskinen finder mn tn(40º) ved t trykke tn 40 =. Mn får et deimltl, der strten med 0,839. Mn kn se, t tn(0º) = 0. Når vinklen vokser liver tngens større, og der er ingen øvre grænse. Mn kn ikke finde tn(90º), d vinklens venstre en går lodret op og ldrig skærer linjen. Når vinklen liver større end 90º, liver tngens negtiv. Men her vil vi kun kikke på tngens til vinkler mellem 0º og 90º. 40º, tn(40º)) tn(40º) Eksempler på opgver Find tngens til 60º Hvilken vinkel hr tngens-værdien? På regnemskinen tstes tn 60 =. Mn får tn(60º) =,732 På regnemskinen tstes Inv tn =. Mn får 45º. Til højre er tegnet en retvinklet treknt, hvor kteten hr længden en. Nederst til højre er treknten pleret i en enhedsirkel. Siden må hve længden tn( ). Nedenfor er tegnet to treknter, som er ligednnede med treknt. I den ene er siderne hlvt så lnge. I den nden er tre gnge så lnge. = 0,5 tn( ) 0,5 3 tn( ) = tn( ) 3 = Side 6

7 Mn kn finde længden f en ktete i en retvinklet treknt med denne formel: Længden f en ktete = længden f den nden ktete tngens til den modstående vinkel Modstående vinkel Ktete Den nden ktete Modstående vinkel Den nden ktete Ktete Formlerne gælder for egge kteter, men tænk dig godt om, når du ruger dem! Eksempel på opgve Tegningen viser en stige, der står op d en mur. Stigen står,20 m fr muren, og vinklen er 75º. Hvor højt når stigen op på muren? Hvor lng er stigen? Stigen, jorden og muren dnner en retvinklet treknt. er modstående til kteten. Mn kn eregne, hvor lngt stigen når op, således: = tn( ) =,20 tn(75 ) = 4,48 m 75º,20 m 75º =,20 Stigens længde kn findes således: = sin( ) 4,48 = sin(75 ) Ved ligningsløsning fås: 4,48 = 4,64 m sin(75 ) = Mn kn også finde stigens længde med en f de ndre formler med osinus og sinus eller ved t ruge Pythgors formel for sidelængderne i en retvinklet treknt: = 2. Prøv selv! Side 7

8 Mn kn finde de ikke-rette vinkler i en retvinklet treknt med denne formel: Den modstående ktete Tngens til en vinkel = Den hosliggende ktete Vinkel Hosliggende ktete Modstående ktete Modstående ktete Vinkel Hosliggende ktete Formlerne gælder for egge ikke-rette vinkler, men tænk dig godt om, når du ruger dem! Eksempel på opgve I en retvinklet treknt er kteten = 8,5 m og kteten = 5,3 m. = 5,3 m Hvor stor er? Hvor lng er hypotenusen? = 8,5 m Den modstående ktete 5,3 Mn får først: tn( ) = = = = 0, 623 Den hosliggende ktete 8,5 Derefter tstes Inv sin 0,623 =, og mn får = 32º Mn kn også på en gng tste Inv tn ( 5,3 8,5 ) =. Hypotenusen kn findes på flere måder. Mn kn fx gøre således: = os( ) 8,5 = os(32 ) Ved ligningsløsning fås: 8,5 = 0,0 m os(32 ) = I strten f dette fsnit lev tngens eskrevet som nden-koordinten til et punkt som vist på tegningen. sin(v) Den helt rigtige definition er tn(v) =. os(v) De to metoder giver det smme resultt, men den geometriske eskrivelse er lettere t ruge, når mn rejder med retvinklede treknter. - - v (, tn(v)) Side 8

9 Opgver : Til højre er tegnet en kvrt enhedsirkel i et koordintsystem.,00 90º 75º 60º Der er indtegnet vinklerne 0º, 5º, 30º osv. osinus og sinus til vinklerne er mrkeret. 45º : flæs så præist som muligt osinus- og sinus-værdierne. Kontroller også tllene på din regnemskine.. 0,50 30º : Udfyld vh. koordintsystemet tellen herunder. 5º : Tellen og tegningen viser, t der er en vis symetri. Der gælder: os(v) = sin(90 v) sin(v) = os(90 v) 0º 0,50,00 Prøv t forklre hvorfor! Vinkel 0º 5º 30º 45º 60º 75º 90º osinus Sinus 2: Herunder er skitseret to retvinklede treknter. eregn størrelsen på de sider og vinkler, som ikke er ngivet. = 6 m = 6,8 m 50º 30º Side 9

10 3: Til højre er skitseret en retvinklet treknt : eregn sin( ) : Find (ntl grder) : Find (ntl grder) d: Find længden f siden = 3 m = 5 m 4: Til højre er skitseret en retvinklet treknt : eregn tn( ) : Find (ntl grder) = 8 m : Find (ntl grder) d: Find længden f siden = 5 m 5: eregn de ukendte vinkler og sider i de fem retvinklede treknter. O n 45º M = 00 mm E 52º d F m o = 7,2 m f = 25,0 m e N 58º D = 63 mm = 98 mm = 9,8 m =5, m Side 0

11 6: Tegningerne viser et stykke f to trpper. Trppen til venstre stiger 25º, og trinene er 32 m rede. På trppen til højre er trinene 25 m rede og 8 m høje. : Hvor høje er trinene på trppen til venstre? : Hvor mnge grden stiger trppen til højre? : En trppe skl hve en trinredde på 26 m og en stigning på 30º. Find trinhøjden. d: En trppe skl hve en stigning på 45º. Giv et forslg til trinredde og trinhøjde. e: Mål trinene på en trppe på din skole og eregn, hvor mnge grden trppen siger. 25º 32 m 25 m 8 m 7: Tegningen viser en stige, der står op d en mur. Stiger skl helst stå med en hældning på 75º. : En stige er 5 m lng. Hvor højt kn stigen nå op på muren, med en hældning på 75º? : Hvor højt kn stigen på 5 m nå op, hvis den hælder 60º? : Hvor lng skl en stige være, hvis den skl kunne nå 4 m op og hve en hældning på 75º? d: En stige er 420 m lng, og den når 4 m op d muren. Hvd er hældning? e: En stige når 3,5 m op d muren, og unden f stigen står 95 m fr muren. Hvd er hældningen? f: En -stige (en Wiener-stige) hr de viste mål. enenes længde er 2,25 m og fstnden mellem enene er 40 m. Find enenes hældning og stigens højde. 40 m 2,25 m 8: Tegningen viser gvlen på et hus. : Find husets højde : Hvor meget lvere ville huset være, hvis tgets hældning vr 25º? : Hvor meget højere ville huset være, hvis tgets hældning vr 45º? 860 m 525 m 35º 240 m Side

12 9: Tegningerne viser tre figurer. Den ene er opdelt i retvinklede treknter. : Opdel også de to ndre figurer i retvinklede treknter. : Find relet f hver f de tre figurer. Tllene skl være i m 2. Du kn fx gøre det således: - eregn så mnge vinkler som muligt - eregn de mnglende sidelængder i de retvinklede treknter - eregn relerne f de retvinklede treknter 7,50 dm - læg relerne smmen 70º 65º 25 m 0º 3,60 m 5,00 m 46,3º 67,4º 6,50 m 0: I hr sikkert en tvlelinel på præis m i klsseværelset. Stil linelen på skrå op d en væg. Mål vinklen med en vinkelmåler som vist på tegningerne. Mål også den vndrette fstnd x og den lodrette fstnd y. Stil linelen i en ny vinkel og mål igen vinklen, x og y. Fortsæt med flere vinkler. x rug dine målinger til t lve t lve en osinus- og sinus-tel. y Side 2

13 : Skitsen viser to huse, som egge er 8 m lnge og 8 m rede. Tget på huset til venstre hr en hældning på 25º. Tget på huset til højre hr en hældning på 45º. Smmenlign relet f tgene på de to huse. 25º 45º 2: Tegningen viser en yklist på vej op d en kke. kken er indtegnet som en retvinklet treknt. Mn kn ngive en kkes stigning på to måder: Som et ntl grder og som et ntl proent. ntl grder er størrelsen f. ntl proent er den lodrette stigning som proent f den kørte strækning. ltså som proent f. : Mål længden f, og på tegningen : Find stigningen på tegningen målt i proent. : Find stigningen på tegningen målt i grder. Du må gerne måle vinklen på tegningen men prøv også t eregne tllet. d: Vurder om det er relistisk t ykle op d en sådn stigning. e: Omregn en stigning på 0% til grder. f: Omregn en stigning på 8º til proent. Side 3

Matematik. Kompendium i faget. Tømrerafdelingen. 1. Hovedforløb. a 2 = b 2 + c 2 2 b c cos A. cos A = b 2 + c 2 - a 2 2 b c

Matematik. Kompendium i faget. Tømrerafdelingen. 1. Hovedforløb. a 2 = b 2 + c 2 2 b c cos A. cos A = b 2 + c 2 - a 2 2 b c Kompendium i fget Mtemtik Tømrerfdelingen 1. Hovedforlø. Trigonometri nvendes til eregning f snd længde og snd vinkel i profiler. Sinus Cosinus Tngens 2 2 + 2 2 os A os A 2 + 2-2 2 Svendorg Erhvervsskole

Læs mere

Trigonometri. Matematik A niveau

Trigonometri. Matematik A niveau Trigonometri Mtemtik A niveu Arhus Teh EUX Niels Junge Trigonometri Sinus Cosinus Tngens Her er definitionen for Cosinus Sinus og Tngens Mn kn sige t osinus er den projierede på x-ksen og sinus er den

Læs mere

3. Vilkårlige trekanter

3. Vilkårlige trekanter 3. Vilkårlige treknter 3. Vilkårlige treknter I dette fsnit vil vi beskæftige os med treknter, der ikke nødvendigvis er retvinklede. De formler, der er omtlt i fsnittet om retvinklede treknter, kn ikke

Læs mere

Eksponentielle Sammenhænge

Eksponentielle Sammenhænge Kort om Eksponentielle Smmenhænge 011 Krsten Juul Dette hæfte indeholder pensum i eksponentielle smmenhænge for gymnsiet og hf. Indhold 1. Procenter på en ny måde... 1. Hvd er en eksponentiel smmenhæng?....

Læs mere

Potens- sammenhænge. inkl. proportionale og omvendt proportionale variable. 2010 Karsten Juul

Potens- sammenhænge. inkl. proportionale og omvendt proportionale variable. 2010 Karsten Juul Potens- smmenhænge inkl. proportionle og omvendt proportionle vrible 010 Krsten Juul Dette hæfte er en fortsættelse f hæftet "Eksponentielle smmenhænge, udgve ". Indhold 1. Hvd er en potenssmmenhæng?...1.

Læs mere

Kompendium. Matematik HF C niveau. Frederiksberg HF Kursus. Lars Bronée 2014

Kompendium. Matematik HF C niveau. Frederiksberg HF Kursus. Lars Bronée 2014 Kompendium Mtemtik HF C niveu π Frederiksberg HF Kursus Lrs Bronée 04 Mil: post@lrsbronee.dk Web: www.lrsbronee.dk Indholdsfortegnelse: Forord Det grundlæggende Ligningsløsning 8 Procentregning Rentesregning

Læs mere

FORMELSAMLING. Indholdsfortegnelse

FORMELSAMLING. Indholdsfortegnelse FOMELSAMLNG ndholdsfortegnelse ndholdsfortegnelse... EL-LÆE...3 Ohm s lov:...3 Effekt lov:...3 egler ved måling:...3 egler ved serieforbindelser:...3 egler ved prllelforbindelser:...4 egler ved blndede

Læs mere

Integralregning. 2. del. 2006 Karsten Juul

Integralregning. 2. del. 2006 Karsten Juul Integrlregning del ( ( 6 Krsten Juul Indhold 6 Uestemt integrl8 6 Sætning om eksistens stmunktioner 8 6 Oplæg til "regneregler or integrl"8 6 Regneregler or uestemt integrl 9 68 Foreredelse til "integrtion

Læs mere

Hvad ved du om mobning?

Hvad ved du om mobning? TEST: Hvd ved du om moning? I testen her kn du fprøve, hvor meget du ved om moning på rejdspldsen. Testen estår f tre dele: Selve testen, hvor du skl sætte ét kryds for hvert f de ti spørgsmål. Et hurtigt

Læs mere

Elementær Matematik. Algebra Analytisk geometri Trigonometri Funktioner

Elementær Matematik. Algebra Analytisk geometri Trigonometri Funktioner Elementær Mtemtik Alger Anlytisk geometri Trigonometri Funktioner Ole Witt-Hnsen Køge Gymnsium 0 Indhold Indhold... Kp. Tl og regning med tl.... De nturlige tl.... Regneregler for nturlige tl.... Kvdrtsætningerne.....

Læs mere

TAL OG REGNEREGLER. Vi ser nu på opbygningen af et legeme og noterer os samtidig, at de reelle tal velkendte regneoperationer + og er et legeme.

TAL OG REGNEREGLER. Vi ser nu på opbygningen af et legeme og noterer os samtidig, at de reelle tal velkendte regneoperationer + og er et legeme. TAL OG REGNEREGLER Inden for lgeren hr mn indført egreet legeme. Et legeme er en slgs konstruktion, hvor mn fstsætter to regneregler og nogle sætninger (ksiomer), der gælder for disse. Pointen med en sådn

Læs mere

Regneregler for brøker og potenser

Regneregler for brøker og potenser Regneregler for røker og potenser Roert Josen 4. ugust 009 Indhold Brøker. Eksempler......................................... Potenser 7. Eksempler......................................... 8 I de to fsnit

Læs mere

MATEMATIK-KOMPENDIUM TIL KOMMENDE ELEVER PÅ DE GYMNASIALE UNGDOMSUDDANNELSER I SILKEBORG (HF, HHX, HTX & STX)

MATEMATIK-KOMPENDIUM TIL KOMMENDE ELEVER PÅ DE GYMNASIALE UNGDOMSUDDANNELSER I SILKEBORG (HF, HHX, HTX & STX) Silkeorg -0- MATEMATIK-KOMPENDIUM TIL KOMMENDE ELEVER PÅ DE GYMNASIALE UNGDOMSUDDANNELSER I SILKEBORG (HF, HHX, HTX & STX) FACITLISTE Udrejdet f mtemtiklærere fr HF, HHX, HTX & STX. PS: Hvis du opdger

Læs mere

Regneregler. 1. Simple regler for regning med tal.

Regneregler. 1. Simple regler for regning med tal. Regneregler. Simple regler for regning med tl. Vi rejder l.. med følgende fire regningsrter: plus (), minus ( ), gnge () og dividere (: eller røkstreg, se senere), eller med fremmedord : ddition, sutrktion,

Læs mere

TAL OG BOGSTAVREGNING

TAL OG BOGSTAVREGNING TAL OG BOGSTAVREGNING De elementære regnerter I mtemtik kn vi regne med tl, men vi kn også regne med bogstver, som gør det hele en smugle mere bstrkt. Først skl vi se lidt på de fire elementære regnerter,

Læs mere

DANSK ARBEJDER IDRÆTSFORBUND. Cross Boule

DANSK ARBEJDER IDRÆTSFORBUND. Cross Boule DANSK ARBEJDER IDRÆTSFORBUND Cross Boule 1 Forord Cross Boule når som helst og hvor som helst Dnsk Arejder Idrætsforund er glde for t kunne præsentere Cross Boule - et oldspil, hvor lle kn være med. Spillet

Læs mere

Opstakning og afstakning, fremadregning og tilbageregning

Opstakning og afstakning, fremadregning og tilbageregning 1 Opstkning og fstkning, fremdregning og tilgeregning 1.1 Fremdregning og tilgeregning...2 1.2 Æskeregning...2 1.3 Høseringe-regning, indkodning og fkodning...3 1.4 Vndret tilgeregning, t dnse en ligning...3

Læs mere

Analyse 30. januar 2015

Analyse 30. januar 2015 30. jnur 2015 Større dnsk indkomstulighed skyldes i høj grd stigende kpitlindkomster Af Kristin Thor Jkosen Udgivelsen f Thoms Pikettys Kpitlen i det 21. århundrede hr fstedkommet en del diskussion f de

Læs mere

Spil- og beslutningsteori

Spil- og beslutningsteori Spil- og eslutningsteori Peter Hrremoës Niels Brock 26. novemer 2 Beslutningsteori De økonomiske optimeringssitutioner, vi hr set på hidtil, hr været helt deterministiske. Det vil sige t vores gevinst

Læs mere

gudmandsen.net y = b x a Illustration 1: potensfunktioner i 5 forskellige grupper

gudmandsen.net y = b x a Illustration 1: potensfunktioner i 5 forskellige grupper gudmndsen.net Dette dokument er publiceret på http://www.gudmndsen.net/res/mt_vejl/. Ophvsret: Indholdet stilles til rådighed under Open Content License[http://opencontent.org/openpub/]. Kopiering, distribution

Læs mere

Michel Mandix (2010) INDHOLDSFORTEGNELSE:... 2 EN TREKANTS VINKELSUM... 3 PYTHAGORAS LÆRESÆTNING... 4 SINUSRELATIONERNE... 4 COSINUSRELATIONERNE...

Michel Mandix (2010) INDHOLDSFORTEGNELSE:... 2 EN TREKANTS VINKELSUM... 3 PYTHAGORAS LÆRESÆTNING... 4 SINUSRELATIONERNE... 4 COSINUSRELATIONERNE... MATEMATIK NOTAT MATEMATISKE EVISER AF: CAND. POLYT. MICHEL MANDIX SIDSTE REVISION: FERUAR 04 Michel Mndi (00) Side f 35 Indholdsfortegnelse: INDHOLDSFORTEGNELSE:... EN TREKANTS VINKELSUM... 3 PYTHAGORAS

Læs mere

Diverse. Ib Michelsen

Diverse. Ib Michelsen Diverse Ib Michelsen Ikst 2008 Forsidebilledet http://www.smtid.dk/visen/billede.php?billedenr69 Version: 0.02 (2-1-2009) Diverse (Denne side er A-2 f 32 sider) Indholdsfortegnelse Regning med procent

Læs mere

Gymnasie-Matematik. Søren Toftegaard Olsen

Gymnasie-Matematik. Søren Toftegaard Olsen Gmnsie-Mtemtik Søren Toftegrd Olsen Søren Toftegrd Olsen Skovvænget 6-B 7080 Børkop Gmnsie-Mtemtik. udgve, revision 0 ISBN 978-87-99996-0-0 VIGTIGT: Denne og må ikke sælges eller ændres; men kn frit kopieres.

Læs mere

Trekantsberegning 25 B. 2009 Karsten Juul

Trekantsberegning 25 B. 2009 Karsten Juul Trekantsberegning 7,0 3 5 009 Karsten Juul ette häfte indeholder den del af trekantsberegningen som skal kunnes på - niveau i gymnasiet (stx) og hf ra sommer 0 kräves mere remstillingen undgår at forudsätte

Læs mere

Bogstavregning. En indledning for stx og hf 2. del. 2008 Karsten Juul

Bogstavregning. En indledning for stx og hf 2. del. 2008 Karsten Juul Bogstvregning En indledning for st og f. del 008 Krsten Juul ) )( ( ) ( ) ( Indold 0. Gnge to prenteser....,, osv... 7. Kvdrtsætninger... 0. Brøer. del... Bogstvregning. En indledning for st og f.. del.

Læs mere

Differentialregning. integralregning

Differentialregning. integralregning Differentilregning og integrlregning Ib Micelsen Ikst 013 Indoldsfortegnelse Tegneøvelser...3 Introduktion... Definition f differentilkvotient og tngent...6 Tngentældninger...7 Den fledte funktion...7

Læs mere

Pythagoras sætning. I denne note skal vi give tre forskellige beviser for Pythagoras sætning:

Pythagoras sætning. I denne note skal vi give tre forskellige beviser for Pythagoras sætning: Pythgors sætning I denne note skl i gie tre forskellige eiser for Pythgors sætning: Pythgors sætning I en retinklet treknt, hor den rette inkel etegnes med, gælder: + = eis 1 Ld os tegne et stort kdrt

Læs mere

Kort om. Potenssammenhænge. 2011 Karsten Juul

Kort om. Potenssammenhænge. 2011 Karsten Juul Kot om Potenssmmenhænge 011 Ksten Juul Dette hæfte indeholde pensum i potenssmmenhænge, heunde popotionle og omvendt popotionle vible, fo gymnsiet og hf. Indhold 1. Ligning og gf fo potenssmmenhænge...

Læs mere

Potens regression med TI-Nspire

Potens regression med TI-Nspire Potensvækst og modellering - Mt-B/A 2.b 2007-08 Potens regression med TI-Nspire Vi tger her udgngspunkt i et eksempel med tovværk, hvor mn får oplyst en tbel over smmenhængen mellem dimeteren (xdt) i millimeter

Læs mere

Fælles for disse typer af funktioner er, at de som grundfunktion indeholder varianter af udtrykket x a.

Fælles for disse typer af funktioner er, at de som grundfunktion indeholder varianter af udtrykket x a. 5. FORSKRIFT FOR EN POTENSFUNKTION Vi hr i vores gennemgng f de forskellige funktionstper llerede være inde på udtrk, som indeholder forskellige potenser f I dette kpitel skl vi se på forskellige tper

Læs mere

Matematikkens mysterier - på et højt niveau. 3. Differentialligninger

Matematikkens mysterier - på et højt niveau. 3. Differentialligninger Mtemtikkens msterier - på et højt niveu f Kenneth Hnsen 3. Differentilligninger N N N 3 A A k k Indholdsfortegnelse 3. Introduktion 3. Dnmiske sstemer 3 3.3 Seprtion f de vrible 8 3.4 Vækstmodeller 8 3.5

Læs mere

Trigonometri og afstandsbestemmelse i Solsystemet

Trigonometri og afstandsbestemmelse i Solsystemet Trigonometri og afstandsbestemmelse i Solsystemet RT1: fstandsberegning (Fra katederet) 5 RT2: Bold og Glob 6 OT1:Bestemmelse af Jordens radius 9 OT2:Modelafhængighed 11 OT3:fstanden til Månen 12 OT4:Månens

Læs mere

Tlf.: 96 17 02 02 info@artof.dk www.artof.dk

Tlf.: 96 17 02 02 info@artof.dk www.artof.dk Vielsesringe Designer og guldsmed Jn Jørgensen Siden 1995 hr Jn Jørgensen hft egen virksomhed, hvor nturen i det rske og åne Nordjyllnd hr givet inspirtion til det meste f designet. Smykker i de ædleste

Læs mere

Integralregning. Erik Vestergaard

Integralregning. Erik Vestergaard Integrlregning Erik Vestergrd Erik Vestergrd www.mtemtikfysik.dk Erik Vestergrd, Hderslev 4 Erik Vestergrd www.mtemtikfysik.dk Indholdsfortegnelse Indholdsfortegnelse. Indledning 4. Stmfunktioner 4. Smmenhængen

Læs mere

hvor A er de ydre kræfters arbejde på systemet og Q er varmen tilført fra omgivelserne til systemet.

hvor A er de ydre kræfters arbejde på systemet og Q er varmen tilført fra omgivelserne til systemet. !#" $ "&% (')"&*,+.-&/102%435"&6,+879$ *1')*&: or et system, hvor kun den termiske energi ændres, vil tilvæksten E term i den termiske energi være: E term A + Q hvor A er de ydre kræfters rbejde på systemet

Læs mere

Matematik - introduktion. Martin Lauesen February 23, 2011

Matematik - introduktion. Martin Lauesen February 23, 2011 Mtemtik - introduktion Mrtin Luesen Februry 23, 2011 1 Contents 1 Aritmetik og elementær lgebr 3 1.1 Symboler............................... 3 1.1.1 ligheder............................ 4 1.1.2 uligheder...........................

Læs mere

Tip til 1. runde af Georg Mohr-Konkurrencen Geometri

Tip til 1. runde af Georg Mohr-Konkurrencen Geometri Tip til. runde af - Geometri, Kirsten Rosenkilde. Tip til. runde af Geometri Her er nogle centrale principper om og strategier for hvordan man løser geometriopgaver. et er ikke en særlig teoretisk indføring,

Læs mere

Sådan gør du i GeoGebra.

Sådan gør du i GeoGebra. Sådan gør du i GeoGebra. Det første vi skal prøve er at tegne matematiske figurer. Tegne: Lad os tegne en trekant. Klik på trekant knappen Klik på punktet ved (1,1), (4,1) (4,5) og til sidst igen på (1,1)

Læs mere

dvs. vinkelsummen i enhver trekant er 180E. Figur 11

dvs. vinkelsummen i enhver trekant er 180E. Figur 11 Sætning 5.8: Vinkelsummen i en trekant er 180E. Bevis: Lad ÎABC være givet. Gennem punktet C konstrueres en linje, som er parallel med linjen gennem A og B. Dette lader sig gøre på grund af sætning 5.7.

Læs mere

UGESEDDEL 52. . Dette gøres nedenfor: > a LC

UGESEDDEL 52. . Dette gøres nedenfor: > a LC UGESEDDE 52 Opgve 1 Denne opgve er et mtemtisk eksempel på Ricrdo s én-fktor model, der præsenteres i Krugmn & Obstfeld kpitel 2 side 12-19. Denne model beskriver hndel som et udslg f komprtive fordele

Læs mere

Undervisningen skal lede frem mod, at eleverne har tilegnet sig kundskaber og færdigheder, der sætter dem i stand til i arbejdet med geometri at:

Undervisningen skal lede frem mod, at eleverne har tilegnet sig kundskaber og færdigheder, der sætter dem i stand til i arbejdet med geometri at: Noter til læreren side 1 I Trinmål for faget matematik står der bl.a. Undervisningen skal lede frem mod, at eleverne har tilegnet sig kundskaber og færdigheder, der sætter dem i stand til i arbejdet med

Læs mere

Pleje af fugtige vedvarende græsarealer ved kombination af græssende kvæg og maskiner Hvad sker der med planterne?

Pleje af fugtige vedvarende græsarealer ved kombination af græssende kvæg og maskiner Hvad sker der med planterne? Pleje f fugtige vedvrende græsreler ved komintion f græssende kvæg og mskiner Hvd sker der med plnterne? Liseth Nielsen og Ann Bodil Hld, Ntur & Lndrug ApS www.ntln.dk I det følgende eskrives: Opsummering

Læs mere

2 Erik Vestergaard www.matematikfysik.dk

2 Erik Vestergaard www.matematikfysik.dk Erik Vestergaard www.matematikfysik.dk Erik Vestergaard www.matematikfysik.dk 3 Lineære funktioner En vigtig type funktioner at studere er de såkaldte lineære funktioner. Vi skal udlede en række egenskaber

Læs mere

Kalkulus 1 - Opgaver. Anne Ryelund, Anders Friis og Mads Friis. 20. januar 2015

Kalkulus 1 - Opgaver. Anne Ryelund, Anders Friis og Mads Friis. 20. januar 2015 Kalkulus 1 - Opgaver Anne Ryelund, Anders Friis og Mads Friis 20. januar 2015 Mængder Opgave 1 Opskriv følgende mængder med korrekt mængdenotation. a) En mængde A indeholder alle hele tal fra og med 1

Læs mere

Komplekse tal Matematik og naturfag i verdensklasse, 2004. Komplekse tal

Komplekse tal Matematik og naturfag i verdensklasse, 2004. Komplekse tal Komplekse tl Mtemtik og turfg i verdesklsse, 004 Komplekse tl Dette mterile er ereget til udervisig i mtemtik i gymsiet. Der forudsættes kedsk til løsig f degrdsligiger, trigoometri og e lille smule vektorregig.

Læs mere

Mine matematik noter C

Mine matematik noter C Mine matematik noter C Ib Michelsen mimimi.dk Ikast 2006 Indholdsfortegnelse Indledning...5 Geometri...7 Om geometri...9 Navne...11 Definition: Trekanten...11 Ensvinklede og ligedannede trekanter13 Definition:

Læs mere

Den grønne kontakt til dine kunder. Kontakt med omtanke for miljø og økonomi

Den grønne kontakt til dine kunder. Kontakt med omtanke for miljø og økonomi Den grønne kontkt til dine kunder Kontkt med omtnke for miljø og økonomi 2 En fbryder der slukker lt, og en stikkontkt der reducerer stndby forbruget Energy Efficiency Energieffektivitet hndler ikke kun

Læs mere

Bogstavregning - supplerende eksempler. Reduktion... 54 b Ligninger... 54 d

Bogstavregning - supplerende eksempler. Reduktion... 54 b Ligninger... 54 d Mtetik på AVU Eksepler til iveu F, E og D Bogstvregig - supplerede eksepler Reduktio... Ligiger... d Bogstvregig Side Mtetik på AVU Eksepler til iveu F, E og D Reduktio M gger to preteser ed hide ved -

Læs mere

netsikker nu! Alder ingen hindring

netsikker nu! Alder ingen hindring netsikker nu! O k t o e r 2 0 0 7 Alder ingen hindring Flere og flere seniorer tger internettet til sig. De hr nemlig opdget, t internettet yder på et utl f muligheder. Derfor sætter denne udgve f netsikker

Læs mere

ICF - DEN DANSKE VEJLEDNING OG EKSEMPLER FRA PRAKSIS

ICF - DEN DANSKE VEJLEDNING OG EKSEMPLER FRA PRAKSIS ICF - DEN DANSKE VEJLEDNING OG EKSEMPLER FRA PRAKSIS INTERNATIONAL KLASSIFIKATION AF FUNKTIONSEVNE, FUNKTIONSEVNENEDSÆTTELSE OG HELBREDSTILSTAND Udrbejdet f MrselisborgCentret, 2005 En spørgeskemundersøgelse

Læs mere

Den grønne kontakt til dine kunder Kontakt med omtanke for miljø og økonomi

Den grønne kontakt til dine kunder Kontakt med omtanke for miljø og økonomi Den grønne kontkt til dine kunder Kontkt med omtnke for miljø og økonomi Stort energi- og stndby forbrug? En fbryder der slukker lt, og en stikkontkt der reducerer stndby forbruget Sluk for det hele......

Læs mere

Foreløbig udgave af læringsmål til: Kapitel 1 Regn med store tal Fælles Mål Læringsmål Forslag til tegn på læring

Foreløbig udgave af læringsmål til: Kapitel 1 Regn med store tal Fælles Mål Læringsmål Forslag til tegn på læring Foreløbig udgave af læringsmål til: Kapitel 1 Regn med store tal Fælles Mål Læringsmål Forslag til tegn på læring udføre beregninger med de fire regningsarter inden for naturlige tal, herunder beregninger

Læs mere

brikkerne til regning & matematik geometri F+E+D preben bernitt

brikkerne til regning & matematik geometri F+E+D preben bernitt brikkerne til regning & matematik geometri F+E+D preben bernitt brikkerne til regning & matematik geometri, F+E+D ISBN: 978-87-92488-16-9 1. Udgave som E-bog 2010 by bernitt-matematik.dk Kopiering er kun

Læs mere

Løsninger til eksamensopgaver på B-niveau 2015

Løsninger til eksamensopgaver på B-niveau 2015 Løsninger til eksamensopgaver på B-niveau 2015 22. maj 2015: Delprøven UDEN hjælpemidler Opgave 1: Ligningen løses ved at isolere x i det åbne udsagn: 4 x 7 81 4 x 88 88 x 22 4 Opgave 2: y 87 0,45 x Det

Læs mere

FP9. 1 Esters fritidsjob 2 Katrine maler 3 Backgammon 4 Halvmaratonløb 5 Babyloniernes formel for arealet af en firkant.

FP9. 1 Esters fritidsjob 2 Katrine maler 3 Backgammon 4 Halvmaratonløb 5 Babyloniernes formel for arealet af en firkant. FP9 9.-klasseprøven Matematisk problemløsning December 2014 Et svarark er vedlagt til dette opgavesæt 1 Esters fritidsjob 2 Katrine maler 3 Backgammon 4 Halvmaratonløb 5 Babyloniernes formel for arealet

Læs mere

Retningslinier for udarbejdelse af dokumentation til brug for registrering efter bilag 8 i registreringsbekendtgørelsen 1

Retningslinier for udarbejdelse af dokumentation til brug for registrering efter bilag 8 i registreringsbekendtgørelsen 1 for udrejdelse f dokumenttion til rug for registrering efter ilg 8 i registreringsekendtgørelsen 1 Af nedenstående skemer fremgår, hvilke oplysninger Plntedirektortet hr rug for ved vurdering f, om virksomheden

Læs mere

A/S J. PETERSENS BESLAGFABRIK SYSTEMBESLAG

A/S J. PETERSENS BESLAGFABRIK SYSTEMBESLAG /S J. PETERSENS ESLGFRIK SYSTEMESLG - grundlagt 189 - /S J. PETERSENS ESLGFRIK FORSLG TIL TRÆPROFILER ESLG FOR SIDEHÆNGTE OG SIDESTYREDE VINDUER OG DØRE ESLG FOR TOPHÆNGTE OG TOPSTYREDE VINDUER SIKRINGSESLG

Læs mere

Den europæiske købekraftsundersøgelse - PPP

Den europæiske købekraftsundersøgelse - PPP Den europæiske køekrftsundersøgelse - PPP Den europæiske køekrftsundersøgelse - PPP... 2 1.Bggrund... 2 2.Køekrftpritet hvd er det?... 2 3.Formål og orgnistion... 3 4.Brugere og nvendelsesområder... 3

Læs mere

Brandsikring af ventilationskanaler

Brandsikring af ventilationskanaler Brndsikring f ventiltionsknler Klsse EI 30/E 60 A2-s1, d0 November 2 010 Monteringsvejledning for brndisolering iht. DS428, 3. udgve, 2009 - og lukninger med Conlit Brndskotplde, EI60 [BS60] Runde knler

Læs mere

Kirsten Isager, perspektivkasse 1. Forudsætninger: øjet står 2 m foran rummet og rummet bliver 1,5 m dybt, men skal se ud som om det er 3,85 m dybt:

Kirsten Isager, perspektivkasse 1. Forudsætninger: øjet står 2 m foran rummet og rummet bliver 1,5 m dybt, men skal se ud som om det er 3,85 m dybt: Kirsten Isager, perspektivkasse 1 Projektopgave nr 2: Geoetri, Perspektivkasse. uet skal være et snydeperspektiv. Først tager vi ålene i det virkelige ålestoksforhold. Forudsætninger: øjet står 2 foran

Læs mere

(a k cos kx + b k sin kx) k=1. cos θk = sin θ 1 ak. , b k. k=1

(a k cos kx + b k sin kx) k=1. cos θk = sin θ 1 ak. , b k. k=1 SEKTION 7 FOURIERANALYSE 7 Fouriernlyse Periodiske funktioner er vigtige i mnge smmenhænge, både videnskbeligt og teknisk Vi vil normlisere, så ntger, t perioden er π Disse funktioner er bedst nlyseret

Læs mere

CONLIT BRANDSIKRING AF VENTILATIONSKANALER

CONLIT BRANDSIKRING AF VENTILATIONSKANALER CONLIT BRANDSIKRING AF VENTILATIONSKANALER Monteringsvejledning for brndisolering iht. DS428, 4. udgve, 2011 - og lukninger med Conlit Brndskotplde, EI60 [BS60] Klsse EI 30/E 60 A2-s1, d0 1 2013 Runde

Læs mere

AIRCONDITIONANLÆG Til almindelig brug

AIRCONDITIONANLÆG Til almindelig brug OWNER S MANUAL BRUGERVEJLEDNING AIRCONDITIONANLÆG Til lmindelig brug (SPLIT TYPE) DANSK DN Indendørs enhed RAS-07PKVP-E RAS-10PKVP-E RAS-13PKVP-E RAS-16PKVP-E RAS-18PKVP-E RAS-07PKVP-ND RAS-10PKVP-ND RAS-13PKVP-ND

Læs mere

Blowerdoor test med Termograferingsrapport

Blowerdoor test med Termograferingsrapport Blowerdoor test med Termogrferingsrpport For Skætterivej 53 4300 Holbæk. Udført d. 6.2 & 12.2.12008 Af Ole Lentz Hnsen Sknsehgevej 5, 4581 Rørvig. Tlf.: 59 91 94 80 & 61 60 43 86 www.olelentz.dk mil@olelentz.dk

Læs mere

Ekstraktion af spektre og chromatogrammer vha. kemometriske teknikker

Ekstraktion af spektre og chromatogrammer vha. kemometriske teknikker Ekstrktion f spektre og chromtogrmmer vh kemometriske teknikker Nogle kemometriske teknikker til seprtion f spektre og chromtogrmmer er undersøgt mhp utomtisering f dtehndlingen f NMR-chromtogrmmer Teknikkerne

Læs mere

Gør rede for begrebet fremskrivningsfaktor og giv eksempler på anvendelse heraf.

Gør rede for begrebet fremskrivningsfaktor og giv eksempler på anvendelse heraf. Eksamensspørgsmål 1a sommeren 2009 (reviderede) 1. Procent- og rentesregning Gør rede for begrebet fremskrivningsfaktor og giv eksempler på anvendelse heraf. Forklar renteformlen og forklar hvorledes hver

Læs mere

En aktiv NY fluorformel i Danmark

En aktiv NY fluorformel i Danmark En ktiv NY fluorformel i Dnmrk Fordeler målrettet fluorid på tndoverflderne Giver øget fluoridkonentrtion i og omkring tnden Fremmer reminerlisering f egyndende riesngre Øger tændernes modstndskrft over

Læs mere

Introduktion til GeoGebra

Introduktion til GeoGebra Introduktion til GeoGebra Om navne Ib Michelsen Herover ses GeoGebra's brugerflade. 1 I øverste linje finder du navnet GeoGebra og ikoner til at minimere vinduet, ændre til fuldskærm og lukke I næste linje

Læs mere

Undervisningsbeskrivelse Mat A 2007-2010

Undervisningsbeskrivelse Mat A 2007-2010 Undervisningsbeskrivelse Mat A 2007-2010 Termin Maj 2010 Institution HTX-Sukkertoppen Uddannelse HTX Fag og Niveau Matematik A Lærer Reza Farzin Hold HTX 3.L / science Titel 1 Titel 2 Titel 4 Titel 5 Titel

Læs mere

Tredimensional grafik

Tredimensional grafik Teimensionl gfi 6 Ksten Juul Inhol I Homogene oointsæt og gngning f mtie sie Vi vil fose og eje figue i ummet og æne ees støelse Defo inføe vi homogene oointsæt og gngning f mtie II th sie Et olsninge

Læs mere

DEN NY VERDEN vol. 37, nr. 1 International handel og vandel - WTO fra Marrakesh til Cancún

DEN NY VERDEN vol. 37, nr. 1 International handel og vandel - WTO fra Marrakesh til Cancún Interntionl hndel og vndel - WTO fr Mrrkesh til Cncún DIIS - Københvn - 2004 1 Efter gennemførelsen f ftlen om tekstil og beklædning (ATC) Fr MFA til ATC Beklædningsindustrien hr spillet en fgørende rolle

Læs mere

Hva ka jeg bruge mine fødder til? 2. oplag

Hva ka jeg bruge mine fødder til? 2. oplag Rytmik Grete Downlodversion i Den Dynmiske Trio Grete Møller Andersen Vivi Grøn Sune Slminen Hv k jeg bruge mine fødder til? 2. oplg Rytmik Grete i Den Dynmiske Trio Grete Møller Andersen Vivi Grøn Sune

Læs mere

geometri trin 2 brikkerne til regning & matematik preben bernitt

geometri trin 2 brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik geometri trin 2 preben bernitt brikkerne til regning & matematik geometri, trin 2 ISBN: 978-87-92488-16-9 1. Udgave som E-bog 2003 by bernitt-matematik.dk Kopiering er

Læs mere

Vejledende besvarelse

Vejledende besvarelse Ib Michelsen Svar: stx B 29. maj 2013 Side 1 1. Udfyld tabellen Vejledende besvarelse Givet funktionen f (x)=4 5 x beregnes f(2) f (2)=4 5 2 =4 25=100 Den udfyldte tabel er derfor: x 0 1 2 f(x) 4 20 100

Læs mere

Side 1 af 10. Undervisningsbeskrivelse. Stamoplysninger til brug ved prøver til gymnasiale uddannelser. Termin Maj-juni 2009/10

Side 1 af 10. Undervisningsbeskrivelse. Stamoplysninger til brug ved prøver til gymnasiale uddannelser. Termin Maj-juni 2009/10 Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2009/10 Institution Uddannelse Fag og niveau Lærer(e) Hold Handelsskolen Sjælland Syd, Vordingborg

Læs mere

Kompendium i faget. Matematik. Tømrerafdelingen. 2. Hovedforløb. Y = ax 2 + bx + c. (x,y) Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard

Kompendium i faget. Matematik. Tømrerafdelingen. 2. Hovedforløb. Y = ax 2 + bx + c. (x,y) Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard Kompendium i faget Matematik Tømrerafdelingen 2. Hovedforløb. Y Y = ax 2 + bx + c (x,y) X Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard Indholdsfortegnelse for H2: Undervisningens indhold...

Læs mere

Computerundervisning

Computerundervisning Frederiksberg Seminarium Computerundervisning Koordinatsystemer og Funktioner Lærervejledning 12-02-2009 Udarbejdet af: Pernille Suhr Poulsen Christina Klitlyng Julie Nielsen Indhold Introduktion... 3

Læs mere

Inspirationsforløb i faget matematik i 7.- 9. klasse. Trekanter et inspirationsforløb om geometri i 8. klasse

Inspirationsforløb i faget matematik i 7.- 9. klasse. Trekanter et inspirationsforløb om geometri i 8. klasse Inspirationsforløb i faget matematik i 7.- 9. klasse Trekanter et inspirationsforløb om geometri i 8. klasse Indhold Indledning 2 Undervisningsforløbet 3 Mål for forløbet 3 Relationsmodellen 3 Planlægningsfasen

Læs mere

gratis magasin Opskrifter på lækker og hurtig mad Friske frosne grøntsager & frugt hele året rundt n u m m e r 01 / 2 012

gratis magasin Opskrifter på lækker og hurtig mad Friske frosne grøntsager & frugt hele året rundt n u m m e r 01 / 2 012 minus 18 grtis mgsin o Opskrifter på lækker og hurtig md Friske frosne grøntsger & frugt hele året rundt n u m m e r 01 / 2 012 En frisk verden på frost 2 Let middgsmden med frosne grøntsger Md med mnge

Læs mere

MATEMATIK, MUNDTLIG PRØVE TEMA: PYRAMIDER

MATEMATIK, MUNDTLIG PRØVE TEMA: PYRAMIDER MATEMATIK, MUNDTLIG PRØVE TEMA: PYRAMIDER I oldtiden regnede man med 7 underværker, hvilket var seværdigheder, som man fremhævede på grund af deres størrelse, skønhed og udseende. Kun et enkelt af disse

Læs mere

Uge Emne Formål Faglige mål Evaluering

Uge Emne Formål Faglige mål Evaluering Uge Emne Formål Faglige mål Evaluering (Der evalueres løbende på følgende hovedpunkter) 33-36 Regneregler Vedligeholde og udbygge forståelse og færdigheder inden for de fire regningsarter Blive fortrolig

Læs mere

Oversigt over undervisningen i matematik - 1x 04/05

Oversigt over undervisningen i matematik - 1x 04/05 Oversigt over undervisningen i matematik - 1x 04/05 side1 Der undervises efter: TGF Claus Jessen, Peter Møller og Flemming Mørk : Tal, Geometri og funktioner. Gyldendal 1997 EKS Knud Nissen : TI-84 familien

Læs mere

Differentiation af potensfunktioner

Differentiation af potensfunktioner Hvd er mtemti? B, i-bog ISBN 978 87 766 494 3 Hjemmesideevisig: Differetitio f potesfutioer, Kpitel 4, side 76 Differetitio f potesfutioer. Pscls tret og biomilformle Vi strter med t mide om t poteser

Læs mere

BIH FOREBYGGELSE AF REVNER. Notat. Vejledningen omfatter: Konstruktive forhold...side 3-6. Svind i letbeton og beton...side 7. Udtørring...

BIH FOREBYGGELSE AF REVNER. Notat. Vejledningen omfatter: Konstruktive forhold...side 3-6. Svind i letbeton og beton...side 7. Udtørring... Nott FOREBYGGELSE AF REVNER Vejledningen omftter: Konstruktive forhold...side 3-6 Svind i letbeton og beton...side 7 Udtørring...side 8-9 Fugtmåling...side 10 Mlerbehndling...side 11 Fliseopsætning...side

Læs mere

Grafisk Design give-aways 2

Grafisk Design give-aways 2 Grfk Degn k f r G Degn y w e v g 2 Grfk Degn ntore 3 Grfk Degn outdoor 4 k f r G Degn onlne 5 Grfk Degn Redegørele Opgven Jeg kulle mmen med en f vore AD'ere - Rmu, lve et oplæg tl Skorngen hvor v vlgte

Læs mere

H Å N D B O G M A T E M A T I K 2. U D G A V E

H Å N D B O G M A T E M A T I K 2. U D G A V E H Å N D B O G M A T E M A T I K C 2. U D G A V E ÁÒ ÓÐ Indhold 1 1 Procentregning 3 1.1 Delingsprocent.............................. 3 1.2 Vækstprocent.............................. 4 1.3 Renteformlen..............................

Læs mere

Èn samlet leasingløsning

Èn samlet leasingløsning Vi smler din håndtering f IT Vi hr kombineret vores kompetencer med hrdwre og softwre således, t du kun skl bruge et enkelt telefonnummer når du skl hve styr på din IT. For et fst beløb pr. måned kn du

Læs mere

Matematisk induktion

Matematisk induktion Induktionsbeviser MT01.0.07 1 1 Induktionsbeviser Matematisk induktion Sætninger der udtaler sig om hvad der gælder for alle naturlige tal n N, kan undertiden bevises ved matematisk induktion. Idéen bag

Læs mere

Projektstyring. Dag 5

Projektstyring. Dag 5 Akdemifget Projektstyring Dg 5 m/u PRINCE2 Foundtion certificering i smrbejde med PRINCE2 is Registered Trde Mrk of the Office of Government Commerce in the United Kingdom nd other countries. Humn fctor

Læs mere

SPAM 7. netsikker nu!

SPAM 7. netsikker nu! netsikker nu! Mj 2006 Test dig selv Hvor sikker er du på nettet? Tg testen på gsiden og se, hvor højt du sorer, når du går i krig med spim, spm og psswords. 16 Bliv online med dine ørn Hvorfor styrer kvinder

Læs mere

ffi' Røg- og varmealarm Betjen ingsvejled n ing

ffi' Røg- og varmealarm Betjen ingsvejled n ing %«ide Fyrnetics ffi' Røg- g vrmelrm Betjen ingsvejled n ing z3 VAC netdrevne lrmer med mutighed fr smmenkbling, mde[: 2SF23l9Ht, 2SF23l9 H I R, 2S F23l9H I RE, 35F23/9H1, 35F23/9HlR s 35F23/9HlRE Alrmer

Læs mere

Matematisk formelsamling til A-niveau - i forsøget med netadgang til skriftlig eksamen 1

Matematisk formelsamling til A-niveau - i forsøget med netadgang til skriftlig eksamen 1 Mtemtisk fomelsmling til A-niveu - i fosøget med netdgng til skiftlig eksmen Food Mtemtisk fomelsmling til A-niveu e udejdet fo t give et smlet ovelik ove de fomle og det symolspog, de knytte sig til kenestoffet

Læs mere

Undervisningsbeskrivelse for MATEMATIK C, 1. 2. semester 2013-2014. Stamoplysninger til brug ved prøver til gymnasiale uddannelser

Undervisningsbeskrivelse for MATEMATIK C, 1. 2. semester 2013-2014. Stamoplysninger til brug ved prøver til gymnasiale uddannelser Undervisningsbeskrivelse for MATEMATIK C, 1. 2. semester 2013-2014 Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni 2014 Institution Uddannelse Fag og niveau Lærer(e) Hold

Læs mere

Mat1GB Minilex. Henrik Dahl, Hold 8. 29. maj 2003. 1 Definitioner 2

Mat1GB Minilex. Henrik Dahl, Hold 8. 29. maj 2003. 1 Definitioner 2 Mt1GB Minilex Henrik Dhl, Hold 8 29. mj 2003 Indhold 1 Definitioner 2 2 Sætninger m.v. 18 2.1 Begrænsethed, åben/lukket..................... 18 2.2 Differentition............................ 18 2.3 Differentilligninger.........................

Læs mere

Her er et spørgsmål, du måske aldrig har overvejet: kan man finde to trekanter med samme areal?

Her er et spørgsmål, du måske aldrig har overvejet: kan man finde to trekanter med samme areal? Her er et spørgsmål, du måske aldrig har overvejet: kan man finde to trekanter med samme areal? Det er ret let at svare på: arealet af en trekant, husker vi fra vor kære folkeskole, findes ved at gange

Læs mere

Årsprøve i matematik 1y juni 2007

Årsprøve i matematik 1y juni 2007 Opgave 1 Årsprøve i matematik 1y juni 2007 Figuren viser to ensvinklede trekanter PQR og P 1 Q 1 R 1 a) Bestem længden af siden P 1 Q 1 Skalafaktoren beregnes : k = 30/24 P 1 Q 1 = 20 30/24 P 1 Q 1 = 25

Læs mere

Induktive, fotoceller, kapacitive og ultralydssensorer

Induktive, fotoceller, kapacitive og ultralydssensorer Induktive, fotoceller, kpcitive og ultrlydssensorer HOVEDKATALOG NEW Op til 500 br induktive følere med lng tstefstnd til højtryksinstlltioner (series 500P) Op til 500 br induktive følere i miniture byggeform

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Termin maj-juni 2013 Institution ZBC Ringsted Uddannelse Fag og niveau Lærer(e) Hold HTX Matematik B Jacob Debel 12HTX11 Oversigt over gennemførte undervisningsforløb Titel 1 Titel

Læs mere

Perspektiv. At illustrerer rumligt. Forsvindingspunkt Horisont

Perspektiv. At illustrerer rumligt. Forsvindingspunkt Horisont Rumlig afbildning For at illustrere en bygning eller et Rum, i et sprog der er til at forstå, for ikke byggefolk, kan det være en fordel at lave en gengivelse af virkeligheden. Perspektiv At illustrerer

Læs mere

IPA FITTINGS TIL REHAU NORDIC

IPA FITTINGS TIL REHAU NORDIC IP FITTINGS TIL REHU NORDIC DESIGN PLUS 2014 /S J. PETERSENS BESLGFBRIK JCOB PETERSENSVEJ 9, DK-9240 NIBE TEL: (+45) 98 35 15 00 3 BESLG TIL REHU NORDIC DESIGN PLUS Indholdsfortegnelse REHU Nordic Design

Læs mere