En karakteristik af de regulære sprog. Ugens emner. FA minimering [ ] MyHill-Nerode-sætningen en algoritme til minimering af FA er

Størrelse: px
Starte visningen fra side:

Download "En karakteristik af de regulære sprog. Ugens emner. FA minimering [5.1-5.2] MyHill-Nerode-sætningen en algoritme til minimering af FA er"

Transkript

1 Ugens emner FA minimering [.-.] MyHill-Nerode-sætningen en algoritme til minimering af FA er En karakteristik af de regulære sprog Et sprog L er regulært hvis og kun hvis L beskrives af et regulært udtryk L genkendes af en FA / NFA / NFA-Λ der ikke findes uendeligt mange strenge, der er parvist skelnelige mht. L Skelnelighed (uge ) x og y er skelnelige mht. L hvis z Σ*: (xz L yz L) (xz L yz L) Hvis skelnelige strenge mht. L køres på en FA, der accepterer L, vil de ende i forskellige tilstande Uskelnelighedsrelationen I L Definition: Givet et sprog L Σ*, definer relationen I L ved: x I L y L/x = L/y for alle x,y Σ* Intuition bag FA-minimering: (dvs. x I L y gælder hvis x og y er uskelnelige mht. L) hvis to strenge er uskelnelige mht. FA ens sprog, er der ingen grund til at den skelner mellem dem!

2 Egenskaber ved I L I L er refleksiv ( x: x I L x) symmetrisk ( x,y: x I L y y I L x) transitiv ( x,y,z: x I L y y I L z x I L z) dvs. I L er en ækvivalensrelation [Martin, kap..] Definition: givet x Σ*, [x] er ækvivalensklassen af x mht. I L (dvs. mængden af strenge, der er uskelnelige fra x mht. L ) L = {,}*{} Quiz! Beskriv ækvivalensklasserne for I L Hint: der er ækvivalensklasser... Hint: find en streng, der er skelnelig fra Λ... Hint: find en streng, der er skelnelig fra både Λ og... : {Λ, } {,}*{} = [Λ] Y: {,}*{} = [] Z: {,}*{} = [] Σ* Y Z en repræsentant for hver ækvivalensklasse MyHill-Nerode-sætningen L er regulært I L har endeligt mange ækvivalensklasser : (uge ) hvis I L har uendeligt mange ækvivalensklasser, så er L ikke regulært Konstruktion af en FA fra I L Givet et sprog L Σ*, antag I L har endeligt mange ækvivalensklasser Vi kan definere en FA, hvor tilstandene er ækvivalensklasserne af I L : Bevis følger

3 Ækvivalensklasserne for I L når L = {,}*{} : : {Λ, } {,}*{} Y: {,}*{} Σ* Z: {,}*{} Y Z M L : Eksempel Y Z Konstruktion af en FA fra I L Definer en FA: M L =(Q, Σ, q, A, δ) hvor Q = Q L hvor Q L er ækvivalensklasserne af I L q = [Λ] A = { q Q q L Ø} δ(q, a) = p hvis q=[x] og p=[xa] for en streng x (δ er veldefineret idet x I L y xa I L ya) Påstand: L(M L ) = L 9 Σ* Quiz! Antag ækvivalensklasserne for I L er = {x {,}* antal er i x er lige} Y = {x {,}* antal er i x er ulige} og L Lav en FA, der accepterer L x Λ x Y Y Bevis for korrekthed af konstruktionen Påstand: L(M L ) = L Lemma: x,y Σ*: δ*([x], y) = [xy] Bevis: induktion i strukturen af y... δ*(q, x) = δ*([λ], x) = [x] (følger af lemmaet og def. af q ) x L(M L ) [x] A [x] L Ø (bruger def. af A) x L [x] L Ø (da x [x]) [x] L Ø x L (bruger def. af I L ) dvs. x L(M L ) x L

4 M L er minimal! Minimering af automater Lad n være antallet af ækvivalensklasser af I L M L har tilstand for hver ækvivalensklasse af I L Vælg en streng x i fra hver ækvivalensklasse For ethvert par x i,x j, i j: x i og x j er skelnelige mht. L dvs. enhver FA der genkender L har mindst n tilstande (jfr. uge ) og M L har netop n tilstande, så M L er minimal! Man kan i visse tilfælde opnå en mindre FA ved at slå tilstande sammen... Kan vi gøre det systematisk? Vil den resulterende FA blive minimal? En algoritme til FA-minimering Fra MyHill-Nerode-sætningen kan vi udlede en algoritme, der givet en vilkårlig FA M=(Q, Σ, q, A, δ), finder en minimal FA M hvor L(M )=L(M) To partitioner af Σ* # Ækvivalensklasserne af I L (svarer til tilstandene i den minimale FA M L ) # En opdeling af alle x Σ* efter værdien af δ*(q, x) (svarer til tilstandene i den givne FA M) Definer for alle q Q: L q = { x Σ* δ*(q, x) = q } Kan vi konstruere # ud fra #?

5 Fjern uopnåelige tilstande Ækvivalensklasserne af I L indeholder alle mindst streng Det er muligt at L q = Ø for en eller flere q Q (hvis q er uopnåelig fra q ) Fra opg..9 (uge ) har vi en algoritme, der kan fjerne uopnåelige tilstande fra en FA uden at ændre sproget Vi kan derfor antage at L q Ø for alle q Q Opnåelige tilstande Givet en FA M=(Q, Σ, q, A, δ) Lad R være den mindste mængde, der opfylder q R q R, a Σ: δ(q, a) R (ligner definitionen af Λ-lukning...) R er mængden af opnåelige tilstande i M 7 8 Eksempel Forholdet mellem partition # og # R kan findes med en fixpunktsalgoritme: R a a,b a δ(, b)= R b δ(, a)= R fixpunkt er nu nået dvs. de opnåelige tilstande er,, a b b Fra uge : δ*(q, x)=δ*(q, y) x I L y Dvs. enhver L q mængde er helt indeholdt i én I L -ækvivalensklasse Enhver ækvivalensklasse af I L er derfor foreningen af en eller flere af L q mængderne Da L q Ø er hver af disse foreninger unik Definition: p q L p og L q er delmængder af samme I L -ækvivalensklasse Dvs. hvis p q, så svarer p og q til samme tilstand i den minimale automat! 9

6 Relationen Konstruktion af (minimeringsalgoritmen) Antag p,q Q, x L p, y L q (dvs. δ*(q, x)=p og δ*(q, y)=q) Lemma: Følgende udsagn er ækvivalente:. p q. x I L y. z Σ*: δ*(p, z) A δ*(q, z) A Vi vil vha. pkt. udlede en algoritme til at finde Lad S være den mindste mængde, der opfylder:. (p A q A) (p A q A) (p, q) S. ( a Σ: (δ(p, a), δ(q, a)) S) (p, q) S Påstand: p q hvis og kun hvis (p, q) S S kan beregnes med en fixpunktsalgoritme i stil med R tidligere... Eksempel på FA-minimering 7 7. Fjern uopnåelige tilstande (ingen i denne FA). Find ved at udfylde en tabel for S (fixpunktsberegning). Kombiner tilstande, der svarer til umærkede par Bevis for korrekthed Påstand: p q hvis og kun hvis (p, q) S Iflg. lemmaet: p q ( z Σ*: (δ*(p, z) A δ*(q, z) A) (δ*(p, z) A δ*(q, z) A)) p q (p, q) S (brug lemmaet, lav induktion i z) (p, q) S p q (brug lemmaet, lav induktion i S)

7 FA minimering i dregaut Java-pakken pseudo-kode : uformel mellemting mellem de matematiske definitioner og Java-koden FA.findReachableStates() Set findreachablestates() { reachable = Ø pending = { q } while pending Ø do q = pending.removeoneelement() reachable.add(q) for each c Σ do p = δ(q, c) if p reachable then pending.add(p) return reachable } Ved hjælp af pending undgår vi at besøge hver tilstand flere gange FA.minimize() FA.minimize(), phase FA minimize() { q FA f = this.removeunreachablestates() define some ordering on the states Q of f initialize marks: Q Q to marks(q)=ø for all q Q 7 phase : divide into accept/reject states phase : iteration phase : build resulting minimal automaton n return n p } marks(q) indeholder en tilstand p hvis (q,p) er markeret i tabellen og q >p for each pair r,s Q where r>s do if (r A s A) then add s to marks(r) 7 8

8 FA.minimize(), phase FA.minimize(), phase done = false while done do done = true // assume that we have a fixed point until we detect otherwise for each pair r,s Q where r>s do if s marks(r) then for each c Σ do p = δ(r, c) q = δ(s, c) if p marks(q) or q marks(p) then add s to marks(r) done = false FA n = new FA with same alphabet as f but with no states or transitions yet initialize empty maps oldnew: f.q n.q for each state r in f in order do if s marks(r) for each s<r then and newold: n.q f.q // choose r as the representative for its equivalence class add a new state p to n.q add oldnew(r) = p and newold(p) = r if r f.a then add p to n.a else add oldnew(r) = oldnew(s) if r = f.q then set n.q = oldnew(r) for each state p in n do add n.δ(p,c) = oldnew(f.δ(newold(p),c)) for each c Σ finder tilstandene finder transitionerne 9 Eksempel Resume Alphabet a = new Alphabet(, ); RegExp r = new RegExp( +(*+*+*+*)**, a); NFALambda n = r.tonfalambda(); NFA n = n.removelambdas(); FA n = n.determinize(); System.out.println( Før: +n.getnumberofstates()); FA n = n.minimize(); System.out.println( Efter: +n.getnumberofstates()); MyHill-Nerode-sætningen: endnu en karakteristik af de regulære sprog en algoritme til FA minimering en algoritme til at fjerne uopnåelige tilstande i en FA Før: Efter:

9 Opgaver [Martin]: Øvelser med I L -relationen og minimeringsalgoritmen Java: Studér udleverede programdele: findreachablestates, removeunreachablestates minimize Konstruér en minimal FA for gyldige CPR-numre Ugens finurlige opgave: Brzozowskis minimeringsalgoritme Afleveringsopgave: Udfør minimeringsalgoritmen på en FA

Regulære udtryk og endelige automater

Regulære udtryk og endelige automater Regulære udtryk og endelige automater Regulære udtryk: deklarative dvs. ofte velegnede til at specificere regulære sprog Endelige automater: operationelle dvs. bedre egnet til at afgøre om en given streng

Læs mere

Regularitet og Automater. Tobias Brixen Q4-2012

Regularitet og Automater. Tobias Brixen Q4-2012 Regularitet og Automater Tobias Brixen Q4-2012 1 Noterne er skrevet med inspiration fra http://cs.au.dk/ illio/courses/dregaut/dregautnoter.pdf Contents 1 Regulære udtryk 3 1.1 RegEx.................................

Læs mere

Regularitet & Automater Eksamensnotater

Regularitet & Automater Eksamensnotater Regularitet & Automater Eksamensnotater Michael Lind Mortensen, 20071202, DAT4 10. juni 2008 Indhold 1 Regulære udtryk (1.5 & 3.1) 4 1.1 Disposition............................ 4 1.2 Noter...............................

Læs mere

Nogle grundlæggende begreber

Nogle grundlæggende begreber BE2-kursus 2010 Jørgen Larsen 5. februar 2010 Nogle grundlæggende begreber Lidt simpel mængdelære Mængder består af elementer; mængden bestående af ingen elementer er, den tomme mængde. At x er element

Læs mere

Seminar 1 Regularitet og Automater 28/1-2012

Seminar 1 Regularitet og Automater 28/1-2012 Seminar 1 Regularitet og Automater 28/1-2012 Jesper Gulmann Henriksen jgh@wincubate.net Agenda Introduktion Hvad er Regularitet og Automater? Praktiske Oplysninger om Kurset Regulære Udtryk + Øvelser Induktion

Læs mere

Regularitet og Automater

Regularitet og Automater Plan dregaut 2007 Regularitet og Automater Hvad er Regularitet og Automater? Praktiske oplysninger om kurset Ugens emner Introduktion til ugens opgaver 2 Regularitet og Automater Formål med kurset: at

Læs mere

Skriftlig Eksamen Automatteori og Beregnelighed (DM17)

Skriftlig Eksamen Automatteori og Beregnelighed (DM17) Skriftlig Eksamen Automatteori og Beregnelighed (DM17) Institut for Matematik & Datalogi Syddansk Universitet Odense Campus Lørdag, den 15. Januar 2005 Alle sædvanlige hjælpemidler (lærebøger, notater

Læs mere

Grundlæggende Matematik

Grundlæggende Matematik Grundlæggende Matematik Hayati Balo, AAMS August 2012 1. Matematiske symboler For at udtrykke de verbale udsagn matematisk korrekt, så det bliver lettere og hurtigere at skrive, indføres en række matematiske

Læs mere

Skriftlig Eksamen Beregnelighed (DM517)

Skriftlig Eksamen Beregnelighed (DM517) Skriftlig Eksamen Beregnelighed (DM517) Institut for Matematik & Datalogi Syddansk Universitet Torsdag den 1 November 212, kl. 1 14 Alle sædvanlige hjælpemidler (lærebøger, notater etc.) samt brug af computer

Læs mere

Types, tokens og rationalisme i matematikkens filosofi

Types, tokens og rationalisme i matematikkens filosofi Types, tokens og rationalisme i matematikkens filosofi Klaus Frovin Jørgensen Afdelingen Filosofi og Videnskabsteori, RUC 6. marts, 2010 1 / 29 Hilbert og den aksiomatiske metode David Hilbert (1862-1943)

Læs mere

1 Program for forelæsningen

1 Program for forelæsningen 1 Program for forelæsningen Udvidelser af Bims (Kontrolstrukturer) Repeat-løkker For-løkker Non-determinisme God Ond parallelitet Alle emner hører under semantisk ækvivalens. 1.0.1 Fra tidligere.. Bims

Læs mere

Matematisk induktion

Matematisk induktion Induktionsbeviser MT01.0.07 1 1 Induktionsbeviser Matematisk induktion Sætninger der udtaler sig om hvad der gælder for alle naturlige tal n N, kan undertiden bevises ved matematisk induktion. Idéen bag

Læs mere

Grundlæggende Matematik

Grundlæggende Matematik Grundlæggende Matematik Hayati Balo, AAMS Juli 2013 1. Matematiske symboler For at udtrykke de verbale udsagn matematisk korrekt, så det bliver lettere og hurtigere at skrive, indføres en række matematiske

Læs mere

Matematik: Videnskaben om det uendelige 1

Matematik: Videnskaben om det uendelige 1 Matematik: Videnskaben om det uendelige 1 Ottende forelæsning: Den aksiomatiske metode II Klaus Frovin Jørgensen 15. november, 2010 1 / 30 Fra sidste gang (1/2) Generelt har vi set, at: Et basalt element

Læs mere

Oversættere. Vejledende løsninger til Skriftlig eksamen onsdag d. 20. april 2005

Oversættere. Vejledende løsninger til Skriftlig eksamen onsdag d. 20. april 2005 Københavns Universitet Naturvidenskabelig Embedseksamen Oversættere Vejledende løsninger til Skriftlig eksamen onsdag d. 20. april 2005 Eksamenstiden er to timer. Opgavernes vægt i procent er angivet ved

Læs mere

1. Seminar EVU RegAut

1. Seminar EVU RegAut 1. Seminar EVU RegAut Sigurd Meldgaard Datalogisk Institut Århus Universitet stm@cs.au.dk 27/08 2010 S. Meldgaard (AU) 1. Seminar EVU RegAut 27/08 2010 1 / 105 Plan Introduktion Hvad er Regularitet og

Læs mere

Bevisteknikker. Bevisteknikker (relevant både ved design og verifikation) Matematisk induktion. Matematisk induktion uformel beskrivelse

Bevisteknikker. Bevisteknikker (relevant både ved design og verifikation) Matematisk induktion. Matematisk induktion uformel beskrivelse Bevisteknikker Bevisteknikker (relevant både ved design og verifikation) Bevisførelse ved modstrid (indirekte bevis) Antag, at det givne teorem er falsk Konkluder, at dette vil føre til en modstrid Teorem:

Læs mere

Dynamisk programmering

Dynamisk programmering Dynamisk programmering Dynamisk programmering Et algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Har en hvis lighed med divide-and-conquer: Begge opbygger løsninger til større problemer

Læs mere

Orienterede grafer. Orienterede grafer. Orienterede grafer. Orienterede grafer

Orienterede grafer. Orienterede grafer. Orienterede grafer. Orienterede grafer Philip Bille Orienteret graf. Mængde af knuder forbundet parvis med orienterede kanter. deg + (7) =, deg - (7) = Lemma. v V deg - (v) = v V deg + (v) = m. Bevis. Hver kant har netop en startknude og slutknude.

Læs mere

Matematisk Metode Notesamling

Matematisk Metode Notesamling Matematisk Metode Notesamling Anders Bongo Bjerg Pedersen Stud.Scient, Matematisk Institut, KU 21. november 2005 Bemærkninger til noterne: Hosliggende noter er fra faget Matematisk Metode, afholdt i blok

Læs mere

Bevisteknikker (relevant både ved design og verifikation)

Bevisteknikker (relevant både ved design og verifikation) Bevisteknikker 1 Bevisteknikker (relevant både ved design og verifikation) Bevisførelse ved modstrid (indirekte bevis) Antag, at det givne teorem er falsk Konkluder, at dette vil føre til en modstrid Teorem:

Læs mere

6. december. Motivation. Internettet: Login til DIKU (med password) Handel med dankort Fortrolig besked Digital signatur

6. december. Motivation. Internettet: Login til DIKU (med password) Handel med dankort Fortrolig besked Digital signatur 6. december Talteoretiske algoritmer, RSA kryptosystemet, Primtalstest Motivation Definitioner Euclids algoritme Udvidet Euclid RSA kryptosystemet Randominserede algoritmer Rabin-Miller primtalstest Svært

Læs mere

Orienterede grafer. Orienterede grafer. Orienterede grafer. Vejnetværk

Orienterede grafer. Orienterede grafer. Orienterede grafer. Vejnetværk Philip Bille Orienteret graf (directed graph). Mængde af knuder forbundet parvis med orienterede kanter. Vejnetværk Knude = vejkryds, kant = ensrettet vej. deg + (6) =, deg - (6) = sti fra til 6 8 7 9

Læs mere

Skriftlig Eksamen DM507 Algoritmer og Datastrukturer

Skriftlig Eksamen DM507 Algoritmer og Datastrukturer Skriftlig Eksamen DM507 Algoritmer og Datastrukturer Institut for Matematik og Datalogi Syddansk Universitet, Odense Tirsdag den 24. juni 2014, kl. 10:00 14:00 Besvarelsen skal afleveres elektronisk. Se

Læs mere

Ugens emner. Regulære sprog og digitale billeder. Adressering af områder. Et alfabet. Dette billede: kan repræsenteres af en FA med 832 tilstande

Ugens emner. Regulære sprog og digitale billeder. Adressering af områder. Et alfabet. Dette billede: kan repræsenteres af en FA med 832 tilstande Ugens emner Regulære sprog og digitale billeder Digitale billeder og regulære sprog Regulære udtryk i Java og Unix Dette billede: Turing-maskiner [uddrag af Martin kap. 9-0] Church-Turing tesen, beregnelighed

Læs mere

University of Southern Denmark Syddansk Universitet. DM502 Forelæsning 2

University of Southern Denmark Syddansk Universitet. DM502 Forelæsning 2 DM502 Forelæsning 2 Repetition Kompilere og køre Java program javac HelloWorld.java java HeloWorld.java Debugge Java program javac -g HelloWorld.java jswat Det basale Java program public class HelloWorld

Læs mere

Definition : Et træ er en sammenhængende ikke-orienteret graf uden simple kredse. Sætning : En ikke-orienteret graf er et træ hvis og kun hvis der er

Definition : Et træ er en sammenhængende ikke-orienteret graf uden simple kredse. Sætning : En ikke-orienteret graf er et træ hvis og kun hvis der er Definition : Et træ er en sammenhængende ikke-orienteret graf uden simple kredse. Sætning : En ikke-orienteret graf er et træ hvis og kun hvis der er en unik simpel vej mellem ethvert par af punkter i

Læs mere

Orienterede grafer. Introduktion Repræsentation Søgning Topologisk sortering og DAGs Stærke sammenhængskomponenter Implicitte grafer.

Orienterede grafer. Introduktion Repræsentation Søgning Topologisk sortering og DAGs Stærke sammenhængskomponenter Implicitte grafer. Orienterede grafer Introduktion Repræsentation Søgning Topologisk sortering og DAGs Stærke sammenhængskomponenter Implicitte grafer Philip Bille Orienterede grafer Introduktion Repræsentation Søgning Topologisk

Læs mere

Talteori: Euklids algoritmer, modulær aritmetik

Talteori: Euklids algoritmer, modulær aritmetik Talteori: r, modulær aritmetik Videregående algoritmik Cormen et al. 31.1 31.4 Tirsdag den 6. januar 2009 1 1 2 Restklasseringene modulo n Grupper og undergrupper Modulær division Divisorer De hele tal

Læs mere

Løsning af skyline-problemet

Løsning af skyline-problemet Løsning af skyline-problemet Keld Helsgaun RUC, oktober 1999 Efter at have overvejet problemet en stund er min første indskydelse, at jeg kan opnå en løsning ved at tilføje en bygning til den aktuelle

Læs mere

t a l e n t c a m p d k Matematiske Metoder Anders Friis Anne Ryelund 25. oktober 2014 Slide 1/42

t a l e n t c a m p d k Matematiske Metoder Anders Friis Anne Ryelund 25. oktober 2014 Slide 1/42 Slide 1/42 Hvad er matematik? 1) Den matematiske metode 2) Hvad vil det sige at bevise noget? 3) Hvor begynder det hele? 4) Hvordan vælger man et sæt aksiomer? Slide 2/42 Indhold 1 2 3 4 Slide 3/42 Mængder

Læs mere

Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Ideen er simpel:

Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Ideen er simpel: Grådige algoritmer Grådige algoritmer Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Ideen er simpel: Opbyg løsningen skridt for skridt ved hele tiden af vælge lige

Læs mere

Mindste udspændende træ

Mindste udspændende træ Mindste udspændende træ Introduktion Repræsentation af vægtede grafer Egenskaber for mindste udspændende træer Prims algoritme Kruskals algoritme Philip Bille Mindste udspændende træ Introduktion Repræsentation

Læs mere

Matematik. 1 Matematiske symboler. Hayati Balo,AAMS. August, 2014

Matematik. 1 Matematiske symboler. Hayati Balo,AAMS. August, 2014 Matematik Hayati Balo,AAMS August, 2014 1 Matematiske symboler For at udtrykke de verbale udsagn matematisk korrekt, så det bliver lettere og hurtigere at skrive, indføres en række matematiske symboler.

Læs mere

Mindste udspændende træ. Mindste udspændende træ. Introduktion. Introduktion

Mindste udspændende træ. Mindste udspændende træ. Introduktion. Introduktion Philip Bille Introduktion (MST). Udspændende træ af minimal samlet vægt. Introduktion (MST). Udspændende træ af minimal samlet vægt. 0 0 Graf G Ikke sammenhængende Introduktion (MST). Udspændende træ af

Læs mere

Eksamen i Diskret Matematik

Eksamen i Diskret Matematik Eksamen i Diskret Matematik Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet 10. juni, 2016. Kl. 9-13. Nærværende eksamenssæt består af 11 nummererede sider med ialt 16 opgaver. Alle opgaver

Læs mere

Konstruktion af de reelle tal

Konstruktion af de reelle tal Konstruktion af de reelle tal Rasmus Villemoes 17. oktober 2005 Indledning De fleste tager eksistensen af de reelle tal R for givet. I Matematisk Analyse-bogen Funktioner af en og flere variable af Ebbe

Læs mere

01017 Diskret Matematik E12 Alle bokse fra logikdelens slides

01017 Diskret Matematik E12 Alle bokse fra logikdelens slides 01017 Diskret Matematik E12 Alle bokse fra logikdelens slides Thomas Bolander 1 Udsagnslogik 1.1 Formler og sandhedstildelinger symbol står for ikke eller og ( A And) hvis... så... hvis og kun hvis...

Læs mere

Skriftlig eksamen, Programmer som Data Onsdag 6. januar Spørgsmål 1 (20 %): Regulære udtryk og automater

Skriftlig eksamen, Programmer som Data Onsdag 6. januar Spørgsmål 1 (20 %): Regulære udtryk og automater Skriftlig eksamen, Programmer som Data Onsdag 6. januar 2010 Dette eksamenssæt har 5 sider. Tjek med det samme at du har alle siderne. Eksamens varighed er 4 timer. Der er fire spørgmål. For at få fuldt

Læs mere

Bits DM534. Rolf Fagerberg, 2012

Bits DM534. Rolf Fagerberg, 2012 Bits DM534 Rolf Fagerberg, 2012 Resume af sidst Overblik over kursus Introduktion. Tre pointer: Datalogi er menneskeskabt og dynamisk. Tidslinie over fremskridt mht. ideer og hardware. Algoritme er et

Læs mere

3 Algebraisk Specifikation af Abstrakte Datatyper.

3 Algebraisk Specifikation af Abstrakte Datatyper. 3 Algebraisk Specifikation af Abstrakte Datatyper. Specifikation kontra program. Bestanddele af en algebraisk specifikation. Klassificering af funktioner i en ADT. Systematisk definition af ligninger.

Læs mere

Reeksamen i Diskret Matematik

Reeksamen i Diskret Matematik Reeksamen i Diskret Matematik Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet 21. august 2015 Nærværende eksamenssæt består af 10 nummererede sider med ialt 17 opgaver. Tilladte hjælpemidler:

Læs mere

Skriftlig Eksamen Diskret Matematik (DM528)

Skriftlig Eksamen Diskret Matematik (DM528) Skriftlig Eksamen Diskret Matematik (DM528) Institut for Matematik & Datalogi Syddansk Universitet Tirsdag den 20 Januar 2009, kl. 9 13 Alle sædvanlige hjælpemidler (lærebøger, notater etc.) samt brug

Læs mere

DATALOGI 1E. Skriftlig eksamen torsdag den 3. juni 2004

DATALOGI 1E. Skriftlig eksamen torsdag den 3. juni 2004 Københavns Universitet Naturvidenskabelig Embedseksamen DATALOGI 1E Skriftlig eksamen torsdag den 3. juni 2004 Opgaverne vægtes i forhold til tidsangivelsen herunder, og hver opgaves besvarelse bedømmes

Læs mere

Grådige algoritmer. Et algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer.

Grådige algoritmer. Et algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Grådige algoritmer Grådige algoritmer Et algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Grådige algoritmer Et algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer.

Læs mere

8 Regulære flader i R 3

8 Regulære flader i R 3 8 Regulære flader i R 3 Vi skal betragte særligt pæne delmængder S R 3 kaldet flader. I det følgende opfattes S som et topologisk rum i sportopologien, se Definition 5.9. En åben omegn U af p S er således

Læs mere

1 Sætninger om hovedidealområder (PID) og faktorielle

1 Sætninger om hovedidealområder (PID) og faktorielle 1 Sætninger om hovedidealområder (PID) og faktorielle ringe (UFD) 1. Introducér ideal, hovedideal 2. I kommutativt integritetsområde R introduceres primelement, irreducibelt element, association 3. Begrebet

Læs mere

Hamilton-veje og kredse:

Hamilton-veje og kredse: Hamilton-veje og kredse: Definition: En sti x 1, x 2,...,x n i en simpel graf G = (V, E) kaldes en hamiltonvej hvis V = n og x i x j for 1 i < j n. En kreds x 1, x 2,...,x n, x 1 i G kaldes en hamiltonkreds

Læs mere

Mindste udspændende træ

Mindste udspændende træ Mindste udspændende træ Introduktion Repræsentation af vægtede grafer Egenskaber for mindste udspændende træer Prims algoritme Kruskals algoritme Philip Bille Mindste udspændende træ Introduktion Repræsentation

Læs mere

Oversættere Skriftlig eksamen onsdag d. 24. januar 2007

Oversættere Skriftlig eksamen onsdag d. 24. januar 2007 Københavns Universitet Naturvidenskabelig Embedseksamen Oversættere Skriftlig eksamen onsdag d. 24. januar 2007 Eksamenstiden er to timer. Opgavernes vægt i procent er angivet ved hver opgave. Den skriftlige

Læs mere

Om begrebet relation

Om begrebet relation Om begrebet relation Henrik Stetkær 11. oktober 2005 Vi vil i denne note diskutere det matematiske begreb en relation, herunder specielt ækvivalensrelationer. 1 Det abstrakte begreb en relation Som ordet

Læs mere

Diskrete Matematiske Metoder. Jesper Lützen

Diskrete Matematiske Metoder. Jesper Lützen Diskrete Matematiske Metoder Jesper Lützen Juni 2013 ii Indhold Introduktion. ix 0.1 Den aksiomatisk-deduktive metode................. ix 0.2 Diskret matematik; hvad er det?.................. x 1 Tal,

Læs mere

Dynamisk programmering. Flere eksempler

Dynamisk programmering. Flere eksempler Dynamisk programmering Flere eksempler Eksempel 1: Længste fælles delstreng Alfabet = mængde af tegn: {a,b,c,...,z}, {A,C,G,T}, {,1} Streng = sekvens x 1 x 2 x 3... x n af tegn fra et alfabet: helloworld

Læs mere

University of Southern Denmark Syddansk Universitet. DM502 Forelæsning 4

University of Southern Denmark Syddansk Universitet. DM502 Forelæsning 4 DM502 Forelæsning 4 Flere kontrolstrukturer for-løkke switch-case Metoder Indhold Arrays og sortering af arrays String-funktioner for-løkke Ofte har man brug for at udføre det samme kode, for en sekvens

Læs mere

Algoritmer og invarianter

Algoritmer og invarianter Algoritmer og invarianter Iterative algoritmer Algoritmen er overordnet set een eller flere while eller for-løkker. Iterative algoritmer Algoritmen er overordnet set een eller flere while eller for-løkker.

Læs mere

Algoritmer og Datastrukturer 1

Algoritmer og Datastrukturer 1 Algoritmer og Datastrukturer 1 Gerth Stølting Brodal Analyseværktøjer [CLRS, 1-3.1] Eksempler på en beregningsprocess Puslespil ved ombytninger Maximum delsum Hvad er udførselstiden for en algoritme? Maskinkode

Læs mere

Tal. Vi mener, vi kender og kan bruge følgende talmængder: N : de positive hele tal, Z : de hele tal, Q: de rationale tal.

Tal. Vi mener, vi kender og kan bruge følgende talmængder: N : de positive hele tal, Z : de hele tal, Q: de rationale tal. 1 Tal Tal kan forekomme os nærmest at være selvfølgelige, umiddelbare og naturgivne. Men det er kun, fordi vi har vænnet os til dem. Som det vil fremgå af vores timer, har de mange overraskende egenskaber

Læs mere

Oversættere Vejledende løsninger til Skriftlig eksamen onsdag d. 24. januar 2007

Oversættere Vejledende løsninger til Skriftlig eksamen onsdag d. 24. januar 2007 Københavns Universitet Naturvidenskabelig Embedseksamen Oversættere Vejledende løsninger til Skriftlig eksamen onsdag d. 24. januar 2007 Eksamenstiden er to timer. Opgavernes vægt i procent er angivet

Læs mere

Noter om primtal. Erik Olsen

Noter om primtal. Erik Olsen Noter om primtal Erik Olsen 1 Notation og indledende bemærkninger Vi lader betegne de hele tal, og Z = {... 3, 2, 1, 0, 1, 2, 3...} N = {0, 1, 2, 3...} Z være de positive hele tal. Vi minder her om et

Læs mere

Analyse 2. Bevis af Fatous lemma (Theorem 9.11) Supplerende opgave 1. Øvelser

Analyse 2. Bevis af Fatous lemma (Theorem 9.11) Supplerende opgave 1. Øvelser Analyse 2 Øvelser Rasmus Sylvester Bryder 24. og 27. september 203 Bevis af Fatous lemma (Theorem 9.) Hvis (u j ) j er en følge af positive, målelige, numeriske funktioner (dvs. med værdier i [, ]) over

Læs mere

Om at løse problemer En opgave-workshop Beregnelighed og kompleksitet

Om at løse problemer En opgave-workshop Beregnelighed og kompleksitet Om at løse problemer En opgave-workshop Beregnelighed og kompleksitet Hans Hüttel 27. oktober 2004 Mathematics, you see, is not a spectator sport. To understand mathematics means to be able to do mathematics.

Læs mere

Skriftlig eksamen i Datalogi

Skriftlig eksamen i Datalogi Roskilde Universitetscenter side 1 af 9 sider Skriftlig eksamen i Datalogi Modul 1 Vinter 1999/2000 Opgavesættet består af 6 opgaver, der ved bedømmelsen tillægges følgende vægte: Opgave 1 5% Opgave 2

Læs mere

A Profile for Safety Critical Java

A Profile for Safety Critical Java A Profile for Safety Critical Java Martin Schoeberl Hans Søndergaard Bent Thomsen Anders P. Ravn Præsenteret af: Henrik Kragh-Hansen November 8, 2007 Forfatterne Martin Schoeberl Udvikler af JOP processoren

Læs mere

DM507 Algoritmer og datastrukturer

DM507 Algoritmer og datastrukturer DM507 Algoritmer og datastrukturer Forår 2012 Projekt, del II Institut for matematik og datalogi Syddansk Universitet 15. marts, 2012 Dette projekt udleveres i tre dele. Hver del har sin deadline, således

Læs mere

Øvelse 9. Klasser, objekter og sql-tabeller insert code here

Øvelse 9. Klasser, objekter og sql-tabeller insert code here Øvelse 9. Klasser, objekter og sql-tabeller Denne opgave handler om hvordan man opbevarer data fra databasekald på en struktureret måde. Den skal samtidig give jer erfaringer med objekter, der kommer til

Læs mere

Affine rum. a 1 u 1 + a 2 u 2 + a 3 u 3 = a 1 u 1 + (1 a 1 )( u 2 + a 3. + a 3. u 3 ) 1 a 1. Da a 2

Affine rum. a 1 u 1 + a 2 u 2 + a 3 u 3 = a 1 u 1 + (1 a 1 )( u 2 + a 3. + a 3. u 3 ) 1 a 1. Da a 2 Affine rum I denne note behandles kun rum over R. Alt kan imidlertid gennemføres på samme måde over C eller ethvert andet legeme. Et underrum U R n er karakteriseret ved at det er en delmængde som er lukket

Læs mere

Sortering. Sortering ved fletning (merge-sort) Del-og-hersk. Merge-sort

Sortering. Sortering ved fletning (merge-sort) Del-og-hersk. Merge-sort Sortering Sortering ved fletning (merge-sort) 7 2 9 4! 2 4 7 9 7 2! 2 7 9 4! 4 9 7! 7 2! 2 9! 9 4! 4 1 2 Del-og-hersk Merge-sort Del-og-hersk er et generelt paradigme til algoritmedesign Del: opdel input-data

Læs mere

Matematiske metoder - Opgaver

Matematiske metoder - Opgaver Matematiske metoder - Opgaver Anders Friis, Anne Ryelund 25. oktober 2014 Logik Opgave 1 Find selv på tre udtalelser (gerne sproglige). To af dem skal være udsagn, mens det tredje ikke må være et udsagn.

Læs mere

Differentialregning. Ib Michelsen

Differentialregning. Ib Michelsen Differentialregning Ib Michelsen Ikast 2012 Forsidebilledet Tredjegradspolynomium i blåt med rød tangent Version: 0.02 (18-09-12) Denne side er (~ 2) Indholdsfortegnelse Introduktion...5 Definition af

Læs mere

UNION-FIND. UNION-FIND-problemet. Forbundethed kan være svær at afgøre (især for en computer) Eksempel på udførelse

UNION-FIND. UNION-FIND-problemet. Forbundethed kan være svær at afgøre (især for en computer) Eksempel på udførelse UNION-FIND-problemet UNION-FIND inddata: en følge af heltalspar (p, q); betydning: p er forbundet med q uddata: intet, hvis p og q er forbundet, ellers (p, q) Eksempel på anvendelse: Forbindelser i computernetværk

Læs mere

Kombinatorisk Spilteori

Kombinatorisk Spilteori Bachelorprojekt i matematik Institut for matematiske fag, Københavns Universitet Kombinatorisk Spilteori Skrevet af: Thomas Nielsen Vejleder: Søren Eilers Contents 1 abstract 2 2 Sureelle tal 2 2.1 Konstruktion......................................

Læs mere

Talteoriopgaver Træningsophold ved Sorø Akademi 2007

Talteoriopgaver Træningsophold ved Sorø Akademi 2007 Talteoriopgaver Træningsophold ved Sorø Akademi 2007 18. juli 2007 Opgave 1. Vis at når a, b og c er positive heltal, er et sammensat tal. Løsningsforslag: a 4 + b 4 + 4c 4 + 4a 3 b + 4ab 3 + 6a 2 b 2

Læs mere

GEOMETRI-TØ, UGE 8. X = U xi = {x i } = {x 1,..., x n }, U α, U α = α. (X \ U α )

GEOMETRI-TØ, UGE 8. X = U xi = {x i } = {x 1,..., x n }, U α, U α = α. (X \ U α ) GEOMETRI-TØ, UGE 8 Hvis I falder over tryk- eller regne-fejl i nedenstående, må I meget gerne sende rettelser til fuglede@imf.au.dk. Opvarmningsopgave 1. Lad X være en mængde og T familien af alle delmængder

Læs mere

Algebra. Anders Thorup. Matematisk Afdeling Københavns Universitet

Algebra. Anders Thorup. Matematisk Afdeling Københavns Universitet Algebra Anders Thorup Matematisk Afdeling Københavns Universitet Anders Thorup, e-mail: thorup@math.ku.dk Algebra, 3. udgave Matematisk Afdeling Universitetsparken 5 2100 København Ø ISBN 87-91180-28-7

Læs mere

BRP 6.9.2006 Kursusintroduktion og Java-oversigt

BRP 6.9.2006 Kursusintroduktion og Java-oversigt BRP 6.9.2006 Kursusintroduktion og Java-oversigt 1. Kursusintroduktion 2. Java-oversigt (A): Opgave P4.4 3. Java-oversigt (B): Ny omvendings -opgave 4. Introduktion til næste kursusgang Kursusintroduktion:

Læs mere

Divisorer. Introduktion. Divisorer og delelighed. Divisionsalgoritmen. Definition (Divisor) Lad d og n være hele tal. Hvis der findes et helt tal q så

Divisorer. Introduktion. Divisorer og delelighed. Divisionsalgoritmen. Definition (Divisor) Lad d og n være hele tal. Hvis der findes et helt tal q så Introduktion 1) Hvad er Taleteori? Læren om de hele tal Primtal 2) Formalistisk struktur Definition Lemma Divisorer Definition (Divisor) Lad d og n være hele tal Hvis der findes et helt tal q så d q =

Læs mere

DDD Runde 2, 2015 Facitliste

DDD Runde 2, 2015 Facitliste DDD Runde 2, 2015 Facitliste Søren Dahlgaard og Mathias Bæk Tejs Knudsen Opgaver og løsninger til 2. runde af DDD 2015. 1 4. 19. februar, 2015 linetest DK v1.0 Line Test Sigurd er begyndt i gymnasiet og

Læs mere

.. if L(u) + w(u, v) < L(v) then.. begin... L(v) := L(u) + w(u, v)... F (v) := u.. end. med længde L(z)}

.. if L(u) + w(u, v) < L(v) then.. begin... L(v) := L(u) + w(u, v)... F (v) := u.. end. med længde L(z)} Procedure Dijkstra(G = (V, E): vægtet sh. graf,. a, z: punkter) { Det antages at w(e) > 0 for alle e E} For alle v V : L(v) := L(a) := 0, S := while z / S begin. u := punkt ikke i S, så L(u) er mindst

Læs mere

Kapitel 3: Præferencer. Hvordan skal vi modellere præferencer?

Kapitel 3: Præferencer. Hvordan skal vi modellere præferencer? Kapitel 3: Præferencer Hvordan skal vi modellere præferencer? 1. Paradigme (husk fra forrige kapitel): Forbrugeren vælger det bedste varebundt som han/hun har råd til. 2. Vi har set på hvordan man kan

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af sider Danmarks Tekniske Universitet Skriftlig prøve, den 6. maj 0. Kursusnavn: Algoritmer og datastrukturer I Kursus nr. 005. Tilladte hjælpemidler: Skriftlige hjælpemidler. Varighed: timer Vægtning

Læs mere

Hvad er matematik? C, i-bog ISBN 978 87 7066 499 8. 2011 L&R Uddannelse A/S Vognmagergade 11 DK-1148 København K Tlf: 43503030 Email: info@lru.

Hvad er matematik? C, i-bog ISBN 978 87 7066 499 8. 2011 L&R Uddannelse A/S Vognmagergade 11 DK-1148 København K Tlf: 43503030 Email: info@lru. 1.1 Introduktion: Euklids algoritme er berømt af mange årsager: Det er en af de første effektive algoritmer man kender i matematikhistorien og den er uløseligt forbundet med problemerne omkring de inkommensurable

Læs mere

DATALOGI 1E. Skriftlig eksamen fredag den 7. juni 2002

DATALOGI 1E. Skriftlig eksamen fredag den 7. juni 2002 Københavns Universitet Naturvidenskabelig Embedseksamen DATALOGI 1E Skriftlig eksamen fredag den 7. juni 2002 Opgaverne vægtes i forhold til tidsangivelsen, og hver opgaves besvarelse bedømmes som en helhed.

Læs mere

Matematisk modellering og numeriske metoder. Lektion 16

Matematisk modellering og numeriske metoder. Lektion 16 Matematisk modellering og numeriske metoder Lektion 16 Morten Grud Rasmussen 6. november, 2013 1 Interpolation [Bogens afsnit 19.3 side 805] 1.1 Interpolationspolynomier Enhver kontinuert funktion f på

Læs mere

16. december. Resume sidste gang

16. december. Resume sidste gang 16. december Resume sidste gang Abstrakt problem, konkret instans, afgørlighedsproblem Effektiv kodning (pol. relateret til binær kodning) Sprog L : mængden af instanser for et afgørlighedsproblem hvor

Læs mere

Skriftlig Eksamen Algoritmer og Datastrukturer (DM507)

Skriftlig Eksamen Algoritmer og Datastrukturer (DM507) Skriftlig Eksamen Algoritmer og Datastrukturer (DM507) Institut for Matematik og Datalogi Syddansk Universitet, Odense Onsdag den 0. juni 009, kl. 9 Alle sædvanlige hjælpemidler (lærebøger, notater, osv.)

Læs mere

BOSK F2012, 1. del: Prædikatslogik

BOSK F2012, 1. del: Prædikatslogik ε > 0. δ > 0. x. x a < δ f (x) L < ε February 8, 2012 Prædikater Vi skal lære om prædikatslogik lad os starte med prædikater. Et prædikat er et orakel der svarer ja eller nej. Eller mere præcist: Prædikater

Læs mere

Projekt 1.4 De reelle tal og 2. hovedsætning om kontinuitet

Projekt 1.4 De reelle tal og 2. hovedsætning om kontinuitet Projekt 1.4 De reelle tal og 2. hovedsætning om kontinuitet Mens den 1. hovedsætning om kontinuerte funktioner kom forholdsvis smertefrit ud af intervalrusebetragtninger, så er 2. hovedsætning betydeligt

Læs mere

Forén og find. Introduktion Hurtig find Hurtig forening Vægtet forening Stikompression Dynamiske sammenhængskomponenter.

Forén og find. Introduktion Hurtig find Hurtig forening Vægtet forening Stikompression Dynamiske sammenhængskomponenter. Forén og find Introduktion Hurtig find Hurtig forening Vægtet forening Stikompression Dynamiske sammenhængskomponenter Philip Bille Forén og find Introduktion Hurtig find Hurtig forening Vægtet forening

Læs mere

Teoretiske Øvelsesopgaver:

Teoretiske Øvelsesopgaver: Teoretiske Øvelsesopgaver: TØ-Opgave 1 Subtraktion division i legemer: Er subtraktion division med elementer 0 i legemer veldefinerede, eller kan et element b have mere end ét modsat element -b eller mere

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet ksamen 06, side af sider anmarks Tekniske Universitet Skriftlig prøve, den 6. maj 0. ursusnavn: lgoritmer og datastrukturer ursus nr. 06. Tilladte hjælpemidler: Skriftlige hjælpemidler. Varighed: timer

Læs mere

DM02 opgaver ugeseddel 2

DM02 opgaver ugeseddel 2 DM0 opgaver ugeseddel af Fiona Nielsen 16. september 003 Øvelsesopgaver 9/9, 10/9 og 11/9 1. Vis, at 1 3 + 3 3 + 5 3 +... + (n 1) 3 = n 4 n. Omskriver til summationsformel: (i 1) 3 = n 4 n Bevis ved induktion

Læs mere

Primtal - hvor mange, hvordan og hvorfor?

Primtal - hvor mange, hvordan og hvorfor? Johan P. Hansen 1 1 Institut for Matematiske Fag, Aarhus Universitet Gult foredrag, EULERs Venner, oktober 2009 Disposition 1 EUKLIDs sætning. Der er uendelig mange primtal! EUKLIDs bevis Bevis baseret

Læs mere

Hashing og hashtabeller

Hashing og hashtabeller Datastrukturer & Algoritmer, Datalogi C Forelæsning 16/11-2004 Hashing og hashtabeller Teknik til at repræsentere mængder Konstant tid for finde og indsætte men ingen sortering af elementerne Specielt

Læs mere

Korteste veje. Korteste veje. Introduktion. Introduktion. Introduktion Egenskaber for korteste veje Dijkstras algoritme Korteste veje på DAGs

Korteste veje. Korteste veje. Introduktion. Introduktion. Introduktion Egenskaber for korteste veje Dijkstras algoritme Korteste veje på DAGs Kortete veje Egenkaber for kortete veje Dijktra algoritme Kortete veje på DAG Kortete veje Egenkaber for kortete veje Dijktra algoritme Kortete veje på DAG Philip Bille Introduktion Kortete veje. Givet

Læs mere

1 Punktmængdetopologi. metriske rum, fuldstændighed

1 Punktmængdetopologi. metriske rum, fuldstændighed Punktmængdetopologi, metriske rum, fuldstændighed Morten Grud Rasmussen 23. november 2015 1 Punktmængdetopologi I algebra beskæftiger man sig bl.a. med abstrakte strukturer, hvori forskellige regneoperationer

Læs mere

Forén og find. Introduktion Hurtig find Hurtig forening Vægtet forening Stikompression Dynamiske sammenhængskomponenter.

Forén og find. Introduktion Hurtig find Hurtig forening Vægtet forening Stikompression Dynamiske sammenhængskomponenter. Forén og find Introduktion Hurtig find Hurtig forening Vægtet forening Stikompression Dynamiske sammenhængskomponenter Philip Bille Forén og find Introduktion Hurtig find Hurtig forening Vægtet forening

Læs mere

Opskriv følgende funktioner efter stigende orden med hensyn til O-notationen: 23n log n. 4 n (log n) log n

Opskriv følgende funktioner efter stigende orden med hensyn til O-notationen: 23n log n. 4 n (log n) log n Eksamen. kvarter 00 Algoritmer og Datastrukturer (00-ordning) Side af sider Opgave (%) Ja Nej n er O(n )? n er O(n )? n er O(n + 0 n)? n + n er O(n )? n log n er Ω(n )? Opgave (%) Opskriv følgende funktioner

Læs mere

Korteste veje. Korteste veje. Introduktion. Introduktion. Introduktion Egenskaber for korteste veje Dijkstras algoritme Korteste veje på DAGs

Korteste veje. Korteste veje. Introduktion. Introduktion. Introduktion Egenskaber for korteste veje Dijkstras algoritme Korteste veje på DAGs Kortete veje Egenkaber for kortete veje Dijktra algoritme Kortete veje på DAG Kortete veje Egenkaber for kortete veje Dijktra algoritme Kortete veje på DAG Philip Bille Introduktion Kortete veje. Givet

Læs mere

Opskriv følgende funktioner efter stigende orden med hensyn til O-notationen: n 2 n (log n) 2. 3 n /n 2 n + (log n) 4

Opskriv følgende funktioner efter stigende orden med hensyn til O-notationen: n 2 n (log n) 2. 3 n /n 2 n + (log n) 4 Eksamen. kvarter 00 Side 1 af sider Opgave 1 ( %) Ja Nej n log n er O(n / )? n 1/ er O(log n)? n + n er O(n )? n( n + log n) er O(n / )? n er Ω(n )? Opgave ( %) Opskriv følgende funktioner efter stigende

Læs mere

"# $%$ " # $ % $ $ " & ( ) *+!,! Sum_Cost >= 5000SirName = Beltov Continue = %!- + ( ( - True) Continue *! If Antal <= 20 Then EnhedsOmk = 1.

# $%$  # $ % $ $  & ( ) *+!,! Sum_Cost >= 5000SirName = Beltov Continue = %!- + ( ( - True) Continue *! If Antal <= 20 Then EnhedsOmk = 1. "# $$ " # $ && & ' $ $ " & ) *+, Sum_Cost >= 5000SirName = Beltov Continue = True) Continue *, + If Antal

Læs mere