Faculty of Health Sciences. Basal Statistik. Sammenligning af grupper, Variansanalyse. Lene Theil Skovgaard. 7. februar 2017

Størrelse: px
Starte visningen fra side:

Download "Faculty of Health Sciences. Basal Statistik. Sammenligning af grupper, Variansanalyse. Lene Theil Skovgaard. 7. februar 2017"

Transkript

1 Faculty of Health Sciences Basal Statistik Sammenligning af grupper, Variansanalyse Lene Theil Skovgaard 7. februar / 96

2 Sammenligning af grupper Sammenligning af to grupper: T-test Dimensionering af undersøgelser Sammenligning af flere end to grupper: Ensidet variansanalyse Tosidet variansanalyse Hjemmesider: : Siden er lidt teknisk 2 / 96

3 Vitamin D eksemplet Er der forskel på vitamin D status for kvinder i Danmark og Irland? Hvis der er en forskel på 5 nmol/l, vil det være af interesse. Kode s / 96

4 Praktisk håndtering af data Der er tale om 94 datalinier, en for hver kvinde, men to variable for hver kvinde: Land (DK, EI), repræsenteret ved country (1,4) Vitamin D status, vitd (Serum 25(OH)D, nmol/l) Summary statistics, opdelt efter land (kode s. 83) Analysis Variable : vitd Vitamin D N country Obs N Mean Std Dev Minimum Maximum DK EI / 96

5 Model for uparret sammenligning Antagelser: Alle observationerne er uafhængige personerne har ikke noget med hinanden at gøre Der er samme spredning(varians) i de to grupper bør checkes/sandsynliggøres Observationerne følger en normalfordeling i hver gruppe, med hver deres middelværdi, µ 1 hhv. µ 2 og det er disse 2 middelværdier (µ 1 og µ 2 ), vi gerne vil sammenligne 5 / 96

6 Normalfordelingsmodel for to grupper Bemærk: Selv hvis hver gruppe er eksakt normalfordelt: er det totalt set slet ikke en normalfordeling!! men en blanding af to 6 / 96

7 Typisk output fra et uparret t-test Kode s. 84 The TTEST Procedure Variable: vitd (Vitamin D) country N Mean Std Dev Std Err Minimum Maximum DK EI Diff (1-2) country Method Mean 95% CL Mean Std Dev DK EI Diff (1-2) Pooled Diff (1-2) Satterthwaite Method Variances DF t Value Pr > t Pooled Equal Satterthwaite Unequal Equality of Variances Method Num DF Den DF F Value Pr > F Folded F / 96

8 Kommentarer til output Først nogle summary statistics for hvert land Derefter konfidensintervaller (CI) for de to middelværdi-estimater, samt for deres differens i 2 forskellige udgaver, afhængig af, om spredningerne(varianserne) kan antages at være ens eller ej. Herefter 2 forskellige udgaver af T-testet, igen afhængig af, om spredningerne kan antages at være ens eller ej. Under alle omstændigheder er P = 0.85, dvs. vi kan ikke afvise, at middelværdierne er ens. Til sidst et test for ens varianser (spredninger), som ikke forkastes, idet P= / 96

9 Hvad er det, der udregnes? Estimat for forskel i middelværdier: ˆµ 1 ˆµ 2 = Ȳ1 Ȳ2 = = 0.84 nmol/l med tilhørende usikkerhed ( 1 St.Err.(Ȳ1 Ȳ2) = pooled SD + 1 ) = 4.51 n 1 n 2 og teststørrelse T = Ȳ 1 Ȳ2 = St.Err.(Ȳ1 Ȳ2) = 0.19 som under H 0 er t-fordelt med 92 frihedsgrader 9 / 96

10 Hvad betyder teststørrelsens fordeling? - under H 0 Vi forestiller os mange ens undersøgelser af stikprøver på 94 kvinder fra samme land (svarende til H 0 : ingen landeforskel): 1. Fordel tilfældigt 53 i en gruppe, 41 i en anden, = t 1 2. Fordel tilfældigt 53 i en gruppe, 41 i en anden, = t 2 3. Fordel tilfældigt 53 i en gruppe, 41 i en anden, = t 3 osv. osv. Fordeling af t erne?... kan udregnes til t(92)... Vores faktiske T sammenlignes nu med denne fordeling, Passer den pænt? 10 / 96

11 Fortolkning af P-værdi t-fordelingen (Student fordelingen) med 92 frihedsgrader: Teststørrelsen ses at ligge meget centralt i fordelingen Arealet af området med værre teststørrelser kaldes halesandsynligheden og det er også P-værdien, her / 96

12 Konklusion Der ser ikke ud til at være forskel på vitamin D status i de to lande Vi fandt nemlig en teststørrelse, der passer pænt med dem, vi ville finde, hvis vi havde valgt kvinder fra samme land, altså hvor forskellene udelukkende var tilfældige Men kan vi nu være sikker på, at der ikke er nogen forskel? Nej, konfidensintervallet siger, at forskellen mellem de to lande med 95% sandsynlighed ligger mellem 8.13 i Danmarks favør og 9.81 i Irlands favør. Vi kan altså ikke udelukke en forskel på 5 nmol/l, som var det, vi ønskede at finde ud af... Vi skal måske prøve en større undersøgelse / 96

13 Signifikansbegrebet Statistisk signifikans afhænger af: sand forskel antal observationer den tilfældige variation, dvs. den biologiske variation signifikansniveau Videnskabelig signifikans afhænger af: størrelsen af den påviste forskel 13 / 96

14 Tænkt eksempel To aktive behandlinger: A og B, vs. Placebo: P Resultater fra to trials: 1. trial: A signifikant bedre end P (n=100) 2. trial: B ikke signifikant bedre end P (n=50) Konklusion: A er bedre end B??? Nej, ikke nødvendigvis. 14 / 96

15 Hvis der ikke er signifikans kan det skyldes At der ikke er en forskel At forskellen er så lille, at den er vanskelig at opdage At variationen er så stor, at en evt. forskel drukner At materialet er for lille til at kunne påvise nogensomhelst forskel af interesse. Kan vi så konkludere, at der ikke er forskel? Nej!!, ikke nødvendigvis Se på konfidensintervallet for forskellen 15 / 96

16 Risiko for fejlkonklusioner Signifikansniveauet α (sædvanligvis 0.05) angiver den risiko, vi er villige til at løbe for at forkaste en sand nulhypotese, også betegnet som fejl af type I. accept forkast H 0 sand 1-α α fejl af type I H 0 falsk β 1-β fejl af type II styrke 1-β kaldes styrken, den angiver sandsynligheden for at forkaste en falsk hypotese. 16 / 96

17 Styrke Men hvad betyder H 0 falsk? Hvor store forskelle er der? Styrken er en funktion af forskellen - og af antallet af observationer Styrkefunktion: Hvis forskellen er xx, hvad er så styrken, dvs. sandsynligheden for at opdage denne forskel på 5% niveau? 17 / 96

18 Vigtigt Styrken udregnes for at dimensionere en undersøgelse Når resultaterne er i hus, præsenteres i stedet konfidensintervaller Post-hoc styrkebetragtninger giver kun mening, hvis man skal i gang med en ny undersøgelse - som f.eks. for vitamin D, fordi resultatet var inkonklusivt 18 / 96

19 Dimensionering af undersøgelser Hvor mange patienter skal vi medtage? Dette afhænger naturligvis af datas beskaffenhed, samt af, hvad man ønsker at opnå: Hvilken forskel i respons er vi interesserede i at opdage? Fastsæt MIREDIF (mindste relevante differens) Med hvilken sandsynlighed (styrke = power)? På hvilket signifikansniveau? Hvor stor er spredningen (den biologiske variation)? 19 / 96

20 Hvordan skaffer man de nødvendige oplysninger? Klinisk relevant forskel (MIREDIF) Dette er noget, man fastsætter ud fra teoretiske/praktiske overvejelser om, hvilken forskel, der skønnes at være stor nok til at være vigtig. Det er altså ikke noget, man skal regne sig frem til! Her var vi interesseret i at kunne påvise forskellen, hvis den oversteg 5 nmol/l Styrke: bør være stor, mindst 80% Signifikansniveau: Sædvanligvis 5% I tilfælde af mange sammenligninger, eller hvis det kan have fatale konsekvenser at forkaste en sand hypotese, bør det sættes lavere, f.eks. 1% Spredning: Dette er det sværeste, se næste side 20 / 96

21 Fornuftigt gæt på spredning kan være ganske vanskeligt og kræver sædvanligvis et pilot-studie. Her har vi oplysninger fra T-testet (se s. 7 og kode s.84): The TTEST Procedure Variable: vitd (Vitamin D) country N Mean Std Dev Std Err Minimum Maximum DK EI Diff (1-2) country Method 95% CL Std Dev DK EI Diff (1-2) Pooled Diff (1-2) Satterthwaite For at være på den sikre side, bør vi vælge et spredningsskøn på 25 eller 28, hvorimod let kan vise sig at være for lavt 21 / 96

22 Output fra dimensionering Kode s. 85 The POWER Procedure Two-sample t Test for Mean Difference Fixed Scenario Elements Distribution Normal Method Exact Mean Difference 5 Alpha 0.05 Computed N Per Group Std Nominal Actual N Per Index Dev Power Power Group Vi skal altså op på ca. 500 personer fra hvert land for at kunne detektere en forskel af den relevante størrelse. 22 / 96

23 Vigtigheden af antagelserne for uparret sammenligning Uafhængighed: meget vigtig Hvis enkelte målinger (en lille procentdel) viser sig at stamme fra samme person eller nært beslægtede individer, gør det næppe nogen stor skade, men hvis designet er parret, eller der konsekvent er flere målinger på hvert individ, kan det have dramatiske konsekvenser Kodeordet her er gentagne målinger = repeated measurements Ens spredninger: relativt vigtig, specielt hvis grupperne ikke har nogenlunde samme størrelse Normalfordelingen: ikke så vigtig, specielt hvis grupperne har nogenlunde samme størrelse (afvigelse mindre end en faktor 1.5) 23 / 96

24 Hvis antagelserne (slet) ikke holder Uafhængighed: Brug metoder fra repeated measurements Ens spredninger: Brug test og konfidensintervaller, der er angivet med Sattertwaite (Welch test) Transformer outcome variabel Normalfordeling: Transformer outcome variabel Lav et ikke-parametrisk test 24 / 96

25 Nonparametrisk uparret sammenligning Mann-Whitney test tester om sandsynligheden for, at den ene gruppe resulterer i større værdier end den anden, er 0.5 eller om medianerne er ens (hvis der kun er tale om en forskydning) Her giver Mann-Whitney P=0.91, men intet konfidensinterval (kode s.86) Permutationstest en ide, der kan benyttes i mange sammenhænge / 96

26 Pitman s test: Permutationstest...et alternativt nonparametrisk test konstrueret ved hjælp af resampling Fremgangsmåde: Bland alle vitamin-d observationer fra de to lande sammen Fordel dem tilfældigt ud i to grupper af størrelse 53 og 41 Udregn et passende test, f.eks. T-testet og et estimat for forskellen Gør ovenstående mange gange og se på fordelingen af de fremkomne størrelser: Hvordan er fordelingen af vores estimater? Hvordan passer vores T-teststørrelse i denne fordeling? Kode og output s / 96

27 Husk at skelne parret fra uparret Som regel gør det ingen synderlig forskel i P-værdi om man benytter parametriske eller non-parametriske metoder. Men det er vigtigt at respektere sit design! Eks: Målemetoderne MF og SV (fra forelæsningen sidste uge): Parret T-test: t = 0.16, f = 20 P = 0.88 Sikkerhedsinterval: (-2.93 cm 3, 3.41 cm 3 ) Uparret T-test (galt): t = 0.04, f = 40 P = 0.97 Sikkerhedsinterval: ( cm 3, cm 3 ) 27 / 96

28 T-test kontra non-parametrisk alternativ T-test giver pr. automatik et konfidensinterval for forskellen på middelværdierne Man skal sno sig - og have stor tålmodighed - for at få et konfidensinterval baseret på et non-parametrisk test T-testet er lidt stærkere, dvs. man kan nøjes med lidt færre observationer - men det er jo fordi man lægger en antagelse ind i stedet for... Man skal ikke være så bange for normalfordelingsantagelsen, for det er i virkeligheden kun gennemsnittene, der behøver at være pænt normalfordelte, og det er de sædvanligvis, når man har mange observationer i hver gruppe Det er kun, hvis man skal udtale sig om enkeltindivider, at man skal være forsigtig med normalfordelingsantagelsen, altså ved prediktioner. 28 / 96

29 Vitamin D i alle 4 lande Kode s. 82 Polen synes at ligge lavere, både i niveau og spredning. 29 / 96

30 Sammenligning af alle 4 lande Vi har set, at Danmark og Irland ikke adskiller sig signifikant fra hinanden Er det simpelthen sådan, at alle landene er mere eller mindre identisk mht vitamin D status? Man kunne sammenligne alle landene parvis, men det er farligt pga risikoen for massesignifikans (kommer senere...) I stedet kan man se på hypotesen om ens middelværdier for alle lande under et: H 0 : µ 1 = µ 2 = µ 3 = µ 4 (= µ) Det kaldes ensidet variansanalyse eller one-way anova 30 / 96

31 Ensidet variansanalyse, ANOVA ensidet: fordi der kun er et inddelingskriterium, f.eks. som her country variansanalyse: fordi man sammenligner variansen mellem grupper med variansen indenfor grupper Varianser indenfor grupper: Analysis Variable : vitd Vitamin D N country Obs N Mean Std Dev Variance DK SF EI PL Poolet gennemsnit: = Varians mellem de 4 gennemsnit: = / 96

32 Antagelser for ensidet ANOVA Alle observationer er uafhængige (personerne går ikke igen flere gange, er ikke tvillinger o.l.) Der er samme spredning (samme varians, dvs. biologisk variation) i alle grupper Inden for hver gruppe er observationerne normalfordelt Disse antagelser bør checkes efter estimationen, og før fortolkningen. 32 / 96

33 Ensidet ANOVA i praksis Data skal være sat op i 2 kolonner, en med outcome (vitd) og en med klassifikationsvariablen (country). Kode s. 88 Den typiske start på outputtet (den mindre brugbare del): The GLM Procedure Dependent Variable: vitd Vitamin D Sum of Source DF Squares Mean Square F Value Pr > F Model <.0001 Error Corrected Total Dette er en såkaldt variansanalysetabel, som her giver testet for ens middelværdier, men som generelt ikke kan bruges til så fordærdeligt meget. 33 / 96

34 Output, fortsat Nu den mere brugbare del: R-Square Coeff Var Root MSE vitd Mean Source DF Type III SS Mean Square F Value Pr > F country <.0001 Standard Parameter Estimate Error t Value Pr > t Intercept B <.0001 country DK B country EI B country PL B <.0001 country SF B... Parameter 95% Confidence Limits Intercept country DK country EI country PL country SF.. 34 / 96

35 Bemærkninger til output, I Spredningen σ s, Root MSE: Den poolede variation indenfor de 3 grupper (within groups) F Value: Teststørrelsen for test af ens middelværdier i de 4 grupper, med tilhørende P-værdi: P < , dvs. de 4 middelværdier kan ikke antages at være ens. Vi forkaster nulhypotesen om ens middelværdier, hvis F er stor, dvs. hvis variationen mellem grupper er for stor i forhold til variationen indenfor grupper. 35 / 96

36 Bemærkninger til output, II Estimater: Intercept svarer til niveauet for referencegruppen (sidste gruppe, alfabetisk eller numerisk), dvs. Finland (SF) Estimatet ud for f.eks. country DK er forskellen i niveau mellem DK og SF (referencegruppen) Bemærk: Ved omkodning af grupper kan man få vilkårlige forskelle frem. Dette er årsagen til, at man risikerer at få en NOTE om noget med en singulær matrix... og den er altså ikke farlig 36 / 96

37 Modelantagelse 1: Uafhængighed Dette er noget, man skal vide ingen tvillinger, søskende etc. kun en observation for hver person (ellers hører det hjemme under emnet Korrelerede målinger, kursets sidste emne) Hvis observationerne er korrelerede (afhængige af hinanden), kan man få ganske betydelige fejl i sin analyse, hovedsagelig i form af forkerte standard errors, forkerte konfidensintervaller og P-værdier, og dermed forkerte konklusioner. 37 / 96

38 Modelantagelse 2: Identiske spredninger i grupperne Kaldes som regel varianshomogenitet, og checkes ud fra Box plot (eller Scatter plot), se s. 29 Test af hypotese om ens varianser (sædvanligvis Levenes test, se næste side) Residualer tegnet op mod predikterede (=forventede=fittede) værdier, skal være jævnt 38 / 96

39 Levenes test for identiske spredninger Vi har allerede set, at Polen måske har mindre spredning end de andre tre lande - men det kunne jo være en tilfældighed: (kode s. 89) Levene s Test for Homogeneity of vitd Variance ANOVA of Squared Deviations from Group Means Sum of Mean Source DF Squares Square F Value Pr > F country Error Ved sammenligning af de 4 variansestimater fås en P-værdi på P=0.0008, og altså kraftig signifikans! Dette vil vi gerne gøre noget ved lige om lidt. 39 / 96

40 Modelantagelse 3: Normalfordelingsantagelsen Det er antaget, at observationerne følger en normalfordeling inden for hver gruppe. Dette kan checkes: ved at tegne histogrammer eller fraktildiagrammer for hver gruppe (kun hvis man har rigtig mange observationer) ved at tegne histogram eller fraktildiagram for residualerne = observation - fittet værdi som her blot er observation minus det relevante gruppegennemsnit Det er ikke nogen god ide at lave normalfordelingstest Hvis man har mange observationer, bliver det stort set altid forkastet - uden at det betyder noget i praksis Hvis man har få observationer, bliver det stort set altid godkendt - uden at man derved har påvist at der er tale om en normalfordeling 40 / 96

41 Modelkontrol: Diagnostics Panel Kode s / 96

42 Bemærkninger til Diagnostics Panel Foreløbig beskæftiger vi os kun med første søjle (S1) på s. 41 Figur (R1,S1): residualer mod predikterede værdier Har de samme spredning? Næh, den stiger vist lidt med den predikterede værdi Figur (R2-R3,S1): Fraktildiagram og histogram af residualerne: Ser de normalfordelte ud? Næsten, dog lidt hængekøje =skævhed=hale mod højre 42 / 96

43 Hvad gør vi ved forskellen i spredninger? Er det slemt? Tja, ikke at dømme ud fra grafikken... Kan vi slippe for forudsætningen ligesom for T-testet? Ja: vi kan lave et welch test i stedet for (kode s. 91) Welch s ANOVA for vitd Source DF F Value Pr > F country <.0001 Error Vi kan altså godt føle os sikre på den fundne forskel - men vi få ikke revideret vores sammenligninger landene imellem / 96

44 Konklusion...? Modellen er ikke helt rimelig F-test viser helt klart en forskel på middelværdien af vitamin D i de fire lande, men var det i virkeligheden det, vi gerne ville vide? Eller ville vi hellere vide, hvilke lande, der adskiller sig fra hvilke andre? 44 / 96

45 Multiple sammenligninger Parvise t-test giver problemer med massesignifikans Hvis man sammenligner k grupper (lande) parvist, er der m = k(k 1)/2 mulige test, hver med signifikansniveau α = Den totale risiko for at begå en type 1 fejl er derfor reelt væsentlig højere, men hvor høj? Hvis testene var uafhængige af hinanden (det er de dog ikke), ville signifikansniveauet være: 1 (1 α) m, f.eks. som her, for k=4: / 96

46 Type 1 fejl ved uafhængige multiple sammenligninger Øverste graf: Alle grupper sammenlignes med alle andre Nederste graf: Alle grupper sammenlignes med en enkelt kontrolgruppe 46 / 96

47 Korrektion for multiple sammenligninger Bonferroni Sidak benytter signifikansniveau α m stærkt konservativ, dvs. for høje P-værdier (lav styrke) benytter signifikansniveau 1 (1 α) 1 m α m for små m lidt mindre konservativ, men stadig ret lav styrke Tukey eller Games-Howell Dunnett 47 / 96 sidstnævnte i tilfælde af uens varianser (findes ikke i SAS) giver større styrke korrigerer kun for test mod referencegruppe (typisk en kontrolgruppe eller tid 0 )

48 Hvilken korrektion skal man vælge? Dette er et meget vanskeligt spørgsmål, fordi: Der findes rigtig mange med hver deres fordele og ulemper og hvilke (hvor mange) tests skal man korrigere for? dem i denne publikation? alle de, der vedrører dette projekt? hele min videnskabelige produktion? mine kollegers?..? 48 / 96

49 Hvilken korrektion skal man vælge?, II Jeg bruger oftest Tukey (eller Dunnett), fordi: Den sikrer lav type 1 fejls risiko Den tillader forskelle i gruppestørrelse men den tillader ikke vilkårlige sammenligninger, f.eks. Polen mod gruppen bestående af de 3 andre (i så fald skal man bruge Scheffee) Hvis det ikke drejer sig om en 1-way anova, kan man altid pr. håndkraft benytte Bonferroni eller Sidak. 49 / 96

50 Tukey korrektion for vitamin D Kode s. 92 Least Squares Means Adjustment for Multiple Comparisons: Tukey-Kramer country vitd LSMEAN LSMEAN Number DK EI PL SF Least Squares Means for effect country Pr > t for H0: LSMean(i)=LSMean(j) Dependent Variable: vitd i/j < <.0001 Difference Simultaneous 95% Between Confidence Limits for i j Means LSMean(i)-LSMean(j) /

51 Kommentarer til Tukey korrektion Selv om Tukey-korrektionen ikke er optimal pga de uens varianser, er P-værdierne så tydelige, at vi kan tillade os at konkludere, at: Land nr. 3 (Polen) adskiller sig signifikant fra de 3 øvrige. Herudover er der ingen forskelle, dvs. Danmark, Irland og Finland adskiller sig ikke parvist fra hinanden 51 / 96

52 ANOVA vs Multiple Sammenligninger (MS) Kan man risikere, at ANOVA er insignifikant, men at parvise tests findes signifikante? Ja, nemt, fordi ANOVA er et svagt test pga mange frihedsgrader Også efter Tukey-korrektion? Formentlig Kan man risikere at ANOVA er signifikant, uden at der er nogensomhelst parvise T-tests, der er signifikante? Formentlig kun, hvis de er Tukey-korrigerede...? Er vi overhovedet interesseret i ANOVA; eller skal vi bare gå direkte til MS? Det kunne vi godt, men de laves i praksis i tilslutning til ANOVA en, såe / 96

53 Hvis antagelserne ikke holder Vægtet analyse (Welch s test, som vi så tidligere) Transformation (ofte logaritmer) kan afhjælpe såvel variansinhomogenitet som dårlig normalfordelingstilpasning Non-parametrisk sammenligning Kruskal-Wallis test Permutationstest Husk: Antagelserne er ikke altid lige vigtige, vigtigst når man skal udtale sig om enkeltindivider 53 / 96

54 Non-parametrisk Kruskal-Wallis test Udvidelse af Mann-Whitney testet til flere end 2 grupper (kode s.93): Kruskal-Wallis Test Chi-Square DF 3 Pr > Chi-Square <.0001 Bemærk: Dette er et approksimativt test Man kan også få en eksakt vurdering af teststørrelsen (se side 93), men pas på i tilfælde af store materialer (som f.eks. her) Det tager forfærdeligt lang tid - dagevis 54 / 96

55 Sammenligning af Finland og Polen...som om vi kun havde disse to lande, dvs. et T-test: The TTEST Procedure Variable: vitd (Vitamin D) country N Mean Std Dev Std Err Minimum Maximum 2:SF :PL Diff (1-2) country Method Mean 95% CL Mean Std Dev 2:SF :PL Diff (1-2) Pooled Diff (1-2) Satterthwaite Method Variances DF t Value Pr > t Pooled Equal <.0001 Satterthwaite Unequal <.0001 Equality of Variances Method Num DF Den DF F Value Pr > F Folded F Hvorfor mon der er den forskel? Kan de godt lide sol i Finland? 55 / 96

56 Solvaner i Finland og Polen Vi definerer en variabel sol som 0 Solhadere: Folk, der undgår solen (sunexp=1) 1 Solelskere: Folk, der godt kan lide solen (sunexp=2,3) En simpel optælling af solelskere: Finland: 40 ud af 54, dvs. 74.1% Polen: 39 ud af 65, dvs. 60.0% Kan denne forskel i sol-præferencer være forklaringen på forskellen i Vitamin-D? 56 / 96

57 Solvanernes betydning Kode s / 96

58 Tosidet variansanalyse: Additiv model Tosidet, fordi der nu er to inddelingskriterier: Land: Finland, Polen Solvaner: Kan lide / kan ikke lide Additiv betyder: Uden interaktion Vi vil sammenligne folk fra Finland og Polen, der har samme præference for sol, dvs. for fastholdt værdi af solvaner, dvs. 14 finner vs. 26 polakker, der ikke kan lide sol 40 finner vs. 39 polakker, der godt kan lide sol og disse to forskelle pooles så til en fælles effekt af sol. Vi siger, at vi (vi korrigerer for solvaner). 58 / 96

59 Output fra 2-sidet ANOVA af Vitamin D Kode s. 95 Class Level Information Class Levels Values country 2 2:SF 6:PL sol 2 ja nej Number of Observations Used 119 R-Square Coeff Var Root MSE vitd Mean Source DF Type III SS Mean Square F Value Pr > F country <.0001 sol Standard Parameter Estimate Error t Value Pr > t 95% Confidence Limits Intercept B < country 2:SF B < country 6:PL B..... sol ja B sol nej B / 96

60 Fortolkning af 2-sidet ANOVA Effekter: Finland vs. Polen, for fastholdte solvaner: Finland estimeres til at ligge nmol/l højere end Polen, med 95% CI: (8.71, 19.95) Dette afviger noget fra T-testet (s. 55), hvor vi fik estimatet 15.43, med 95% CI: (9.51, 21.35). Vi fik her indsnævret konfidensintervallet en anelse fordi vi fjernede noget af residualvariationen Folk, der kan lide sol har et 7.83 højere niveau end de fra samme land, som ikke kan lide sol, med 95% CI: (1.91, 13.76), P= / 96

61 Modelkontrolplots Kode s / 96

62 Den additive model Observationer og predikterede værdier Predikterede værdier svarende til sol-gruppe er forbundet 62 / 96

63 Vurderinger af sol-effekt Effekten af sol kunne tænkes at afhænge af landet (breddegraden eller vejret) Før antog vi, at effekten var den samme i begge lande (additivitet=parallelle linier på plottet s. 62) Vi opdeler nu efter land (helt separate T-tests): Vitamin D for solelskere vs. solhadere: i Finland: (5.64), 95% CI: (0.48, 23.10), P=0.04 i Polen: 5.21 (3.11), 95% CI: (-1.01, 11.42), P=0.10 Er de to vurderinger af solvanernes betydning forskellige? I så fald siger vi, at der er interaktion 63 / 96

64 Modellen med interaktion Er der forskel på sol-effekten? Ikke så meget, ser det ud til... så her er nok ikke nogen interaktion. 64 / 96

65 Vekselvirkning = Interaktion Tænkt eksempel: To inddelingskriterier: køn og rygestatus Outcome: FEV 1 Effekten af rygning afhænger af køn Forskellen på kønnene afhænger af rygestatus 65 / 96

66 Mulige forklaringer biologisk kønsforskel på effekt af rygning holder vist ikke i praksis, men eksemplet er jo også blot tænkt måske ryger kvinderne ikke helt så meget antal pakkeår confounder for køn måske virker rygningen som en relativ (%-vis) nedsættelse af FEV 1 kunne undersøges ved en longitudinel undersøgelse 66 / 96

67 Eksempel: Rygnings effekt på fødselsvægt 67 / 96

68 Interaktion mellem mængden og varigheden af rygningen Der er effekt af mængden, men kun hvis man har røget længe. Der er effekt af varigheden, og denne effekt øges med mængden. Effekten af mængden afhænger af... og effekten af varigheden afhænger af / 96

69 Interaktion mellem solvaner og land? Kode s. 96 Dependent Variable: vitd Vitamin D R-Square Coeff Var Root MSE vitd Mean Source DF Type III SS Mean Square F Value Pr > F country <.0001 sol country*sol Standard Parameter Estimate Error t Value Pr > t 95% Confidence Limits Intercept B < country 2:SF B country 6:PL B..... sol ja B sol nej B..... country*sol 2:SF ja B country*sol 2:SF nej B..... country*sol 6:PL ja B..... country*sol 6:PL nej B / 96

70 Fortolkning af estimater Betydningen af de enkelte estimater, fra outputtet på forrige side: Intercept=29.44: Det estimerede niveau (her blot gennemsnittet) af vitamin D for referencegruppen, dvs. solhadere fra Polen. country 2:SF=9.82: Finlands forspring frem for Polen for sol-referencegruppen, dvs. for solhadere sol ja=5.21: Effekten af at kunne lide sol vs. at hade den, for country-referencegruppen, dvs. for polakker 70 / 96

71 Estimater, fortsat country*sol 2:SF ja=6.59: Den ekstra effekt af soldyrkning i Finland i forhold til i Polen, eller Den ekstra fordel af at være finne, blandt soldykere i forhold til blandt solhadere Den totale effekt af solen i Finland er således =11.80, som vi også fandt før, se s. 63 Denne ekstra effekt er ikke signifikant, men konfidensintervallet er (-5.50, 18.67), altså meget bredt, set i relation til effekternes størrelse, så vi kan faktisk ikke afgøre, om der er interaktion eller ej!! 71 / 96

72 Estimater Referenceniveauerne er: country=6:pl, sol=nej (de sidste i den alfabetiske rækkefølge) Denne gruppe har et forventet vitamin D niveau på intercept=29.44 For de andre niveauer skal der adderes et eller flere ekstra led, som angivet i skemaet: country solelsker? Finland Polen ja =51.05 = nej =39.26 Disse estimater er de predikterede værdier, som her også blot er gennemsnittene 72 / 96

73 Fokus på effekt af sol Soldyrkere vs. solhadere, stadig kun Finland og Polen: Model estimat CI indeholder kun solvaner (3.63, 16.51) (T-test) solvaner 7.83 (1.91, 13.76) og country solvaner, kun SF (0.48, 23.10) solvaner, kun PL 5.21 (-1.01, 11.42) Confounding mellem land og sol (se s. 56) giver forskellen i de to første linier. De to sidste linier viser den insignifikante interaktion (P=0.28) 73 / 96

74 Sammenligning af Danmark og Irland (ganske som Finland vs. Polen, s. 57 og 94) 74 / 96

75 Sammenligning af Danmark og Irland Prediktion i interaktionsmodel, dvs. gennemsnit (se tilsvarende s. 64) 75 / 96

76 Fokus på effekt af sol Soldyrkere vs. solhadere, nu for Danmark og Irland: Model estimat CI indeholder kun solvaner (-9.276, 9.079) solvaner (-9.658, 9.702) og country solvaner, kun DK (-4.869, ) solvaner, kun EI ( , 3.124) Her er ingen confounding (de to første linier giver stort set det samme), men en tydelig interaktion (modsatrettede effekter for Danmark og Irland) 76 / 96

77 Fokus på effekt af land dvs. forskel mellem Danmark og Irland: Model estimat CI indeholder kun land (-9.808, 8.125) solvaner (-9.943, 8.255) og land DK vs. EI, solelskere 5.42 (-6.12, 16.95) DK vs. EI, solhadere (-27.85, 0.61) Helt analogt til forrige side ses her ingen confounding, men tydelig interaktion. 77 / 96

78 Interaktion mellem solvaner og land? for Danmark og Irland: Class Level Information Class Levels Values country 2 1:DK 4:EI sol 2 ja nej Number of Observations Used 94 R-Square Coeff Var Root MSE vitd Mean Source DF Type III SS Mean Square F Value Pr > F country sol country*sol Standard Parameter Estimate Error t Value Pr > t 95% Confidence Limits Intercept B < country 1:DK B country 4:EI B..... sol ja B sol nej B..... country*sol 1:DK ja B country*sol 1:DK nej B..... country*sol 4:EI ja B..... country*sol 4:EI nej B / 96

79 Kommentarer til Danmark vs. Irland Der er næsten interaktion (P=0.0503) men effekterne er modsatrettede! - mystisk... Forskellen i sol-effekt kan være fra ca. 0 og helt op til en forskel på 38.1, svarende til, at danskere får en effekt på 38.1 nmaol/l mere ud af at dyrke sol i forhold til Irland Det er godt nok en meget stor forskel... vi ved ikke ret meget om den 79 / 96

80 Effekt af sol, alle 4 lande Class Level Information Class Levels Values country 4 DK EI PL SF sol Number of Observations Read 213 Source DF Type III SS Mean Square F Value Pr > F country <.0001 sol country*sol Standard Parameter Estimate Error t Value Pr > t Intercept B <.0001 country DK B country EI B country PL B <.0001 country SF B... sol B sol B... country*sol DK B country*sol DK B... country*sol EI B country*sol EI B... country*sol PL B country*sol PL B... country*sol SF B... country*sol SF B / 96

81 APPENDIX med SAS-programbidder svarende til nogle af slides T-tests mv.: s Ensidet ANOVA: s Tosidet ANOVA: s / 96

82 Boxplots Slide 3 proc sgplot data=women; where country in (1,4); vbox vitd / category=country; run; Slide 29 proc sgplot data=women; vbox vitd / category=country; run; 82 / 96

83 Summary statistics Slide 4 proc means data=women; where country in (1,4); class country; var vitd; run; where-sætningen udvælger de to lande, vi vil se på 83 / 96

84 Uparret T-test Slide 7 proc ttest data=women; where country in (1,4); class country; var vitd; run; where-sætningen udvælger de to lande, vi vil se på 84 / 96

85 Dimensionering i SAS Slide 22 proc power; twosamplemeans test=diff meandiff=5 stddev=20,28 npergroup=. power=0.8,0.9; run; Bemærk, at man kan foretage adskillige dimensioneringer på samme tid 85 / 96

86 Nonparametrisk uparret test i SAS Slide 25 Mann-Whitney test eller Kruskal-Wallis test (approksimation for n > 25) proc npar1way wilcoxon data=women; where country in (1,4); class country; * exact hl; var vitd; run; For små samples kan sætningen "exact hl;" give et eksakt test, men her ville det tage frygtelig lang tid 86 / 96

87 Permutationstest i SAS Slide 26 proc npar1way scores=data data=women; where country in (1,4); class country; var vitd; run; med output: Data Scores Two-Sample Test Statistic Z One-Sided Pr > Z Two-Sided Pr > Z Data Scores One-Way Analysis Chi-Square DF 1 Pr > Chi-Square / 96

88 Ensidet ANOVA i SAS Slide 33 proc glm data=women; class country; model vitd=country / solution clparm; run; 88 / 96

89 Levenes test for identiske spredninger Slide 39 Benyt hovtest i means-sætningen: proc glm data=women; class country; model vitd=country / solution clparm; means country /hovtest; run; 89 / 96

90 Modelkontrolplots for Vitamin D eksemplet Slide 41 Med ODS-systemet og option plots=all: ods graphics on; proc glm plots=all data=women; class country; model vitd=country / solution clparm; run; ods graphics off; 90 / 96

91 Welch test - ANOVA for uens varianser Slide 43 Option welch i means-sætningen: proc glm data=women; class country; model vitd=country / solution clparm; means country / welch; run; 91 / 96

92 Tukey korrektion for vitamin D Slide 50 Option adjust=tukey i lsmeans-sætningen: proc glm data=women; class country; model vitd=country / solution clparm; LSMEANS country / ADJUST=TUKEY pdiff cl; run; 92 / 96

93 Non-parametrisk Kruskal-Wallis test Slide 54 proc npar1way wilcoxon data=women; class country; var vitd; run; Bemærk: Man kan også få en eksakt vurdering af teststørrelsen ved at tilføje linien exact hl; men pas på i tilfælde af store materialer 93 / 96

94 Box-plot, opdelt efter to kategorier Slide 57 proc sgplot data=women; where country in (2,6); vbox vitd / category=country group=sol; run; category angiver X-aksen group angiver farven 94 / 96

95 Additiv tosidet ANOVA dvs. uden interaktion Slide 59, 61 og 62 ods graphics on; proc glm plots=all data=women; where country in (2,6); class country sol; model vitd=country sol / solution clparm; run; ods graphics off; 95 / 96

96 Tosidet ANOVA med interaktion Slide 69 og 64 ods graphics on; proc glm plots=all data=women; where country in (2,6); class country sol; model vitd=country sol country*sol / solution clparm; run; ods graphics off; 96 / 96

Basal Statistik. Sammenligning af grupper. Vitamin D eksemplet. Praktisk håndtering af data. Faculty of Health Sciences

Basal Statistik. Sammenligning af grupper. Vitamin D eksemplet. Praktisk håndtering af data. Faculty of Health Sciences Faculty of Health Sciences Sammenligning af grupper Basal Statistik Sammenligning af grupper, Variansanalyse Lene Theil Skovgaard 7. februar 2017 Sammenligning af to grupper: T-test Dimensionering af undersøgelser

Læs mere

Faculty of Health Sciences. Basal Statistik. Sammenligning af grupper, Variansanalyse. Lene Theil Skovgaard. 12. september / 116

Faculty of Health Sciences. Basal Statistik. Sammenligning af grupper, Variansanalyse. Lene Theil Skovgaard. 12. september / 116 Faculty of Health Sciences Basal Statistik Sammenligning af grupper, Variansanalyse Lene Theil Skovgaard 12. september 2017 1 / 116 Sammenligning af grupper Sammenligning af to grupper: T-test Dimensionering

Læs mere

Hypoteser om mere end to stikprøver ANOVA. k stikprøver: (ikke ordinale eller højere) gælder også for k 2! : i j

Hypoteser om mere end to stikprøver ANOVA. k stikprøver: (ikke ordinale eller højere) gælder også for k 2! : i j Hypoteser om mere end to stikprøver ANOVA k stikprøver: (ikke ordinale eller højere) H 0 : 1 2... k gælder også for k 2! H 0ij : i j H 0ij : i j simpelt forslag: k k 1 2 t-tests: i j DUER IKKE! Bonferroni!!

Læs mere

SPSS appendix SPSS APPENDIX. Box plots. Indlæsning. Faculty of Health Sciences. Basal Statistik: Sammenligning af grupper, Variansanalyse

SPSS appendix SPSS APPENDIX. Box plots. Indlæsning. Faculty of Health Sciences. Basal Statistik: Sammenligning af grupper, Variansanalyse Faculty of Health Sciences SPSS APPENDIX SPSS appendix Basal Statistik: Sammenligning af grupper, Variansanalyse Lene Theil Skovgaard 12. september 2017 med instruktioner til SPSS-analyse svarende til

Læs mere

Opgaver til ZAR II. Afdeling for Anvendt Matematik og Statistik Michael Sørensen Oktober Opgave 1

Opgaver til ZAR II. Afdeling for Anvendt Matematik og Statistik Michael Sørensen Oktober Opgave 1 Københavns Universitet Afdeling for Anvendt Matematik og Statistik Statistik for biokemikere Inge Henningsen Michael Sørensen Oktober 2003 Opgaver til ZAR II Opgave 1 Et datasæt består af 20 observationer.

Læs mere

Vejledende besvarelse af hjemmeopgave

Vejledende besvarelse af hjemmeopgave Vejledende besvarelse af hjemmeopgave Basal statistik, efterår 2013 Udleveret 1. oktober, afleveres senest ved øvelserne i uge 44 (29. oktober-1. november) I forbindelse med en undersøgelse af vitamin

Læs mere

Lineær regression. Simpel regression. Model. ofte bruges følgende notation:

Lineær regression. Simpel regression. Model. ofte bruges følgende notation: Lineær regression Simpel regression Model Y i X i i ofte bruges følgende notation: Y i 0 1 X 1i i n i 1 i 0 Findes der en linie, der passer bedst? Metode - Generel! least squares (mindste kvadrater) til

Læs mere

1. Lav en passende arbejdstegning, der illustrerer samtlige enkeltobservationer.

1. Lav en passende arbejdstegning, der illustrerer samtlige enkeltobservationer. Vejledende besvarelse af hjemmeopgave Basal statistik, efterår 2008 En gruppe bestående af 45 patienter med reumatoid arthrit randomiseres til en af 6 mulige behandlinger, nemlig placebo, aspirin eller

Læs mere

Det kunne godt se ud til at ikke-rygere er ældre. Spredningen ser ud til at være nogenlunde ens i de to grupper.

Det kunne godt se ud til at ikke-rygere er ældre. Spredningen ser ud til at være nogenlunde ens i de to grupper. 1. Indlæs data. * HUSK at angive din egen placering af filen; data framing; infile '/home/sro00/mph2016/framing.txt' firstobs=2; input id sex age frw sbp sbp10 dbp chol cig chd yrschd death yrsdth cause;

Læs mere

1 Hb SS Hb Sβ Hb SC = , (s = )

1 Hb SS Hb Sβ Hb SC = , (s = ) PhD-kursus i Basal Biostatistik, efterår 2006 Dag 6, onsdag den 11. oktober 2006 Eksempel 9.1: Hæmoglobin-niveau og seglcellesygdom Data: Hæmoglobin-niveau (g/dl) for 41 patienter med en af tre typer seglcellesygdom.

Læs mere

Normalfordelingen. Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: 1 2πσ

Normalfordelingen. Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: 1 2πσ Normalfordelingen Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: f(x) = ( ) 1 exp (x µ)2 2πσ 2 σ 2 Frekvensen af observationer i intervallet

Læs mere

Øvelser til basalkursus, 5. uge. Opgavebesvarelse: Knogledensitet hos unge piger

Øvelser til basalkursus, 5. uge. Opgavebesvarelse: Knogledensitet hos unge piger Øvelser til basalkursus, 5. uge Opgavebesvarelse: Knogledensitet hos unge piger I alt 112 piger har fået målt knogledensitet (bone mineral density, bmd) i 11-års alderen (baseline værdi). Pigerne er herefter

Læs mere

Multipel regression. M variable En afhængig (Y) M-1 m uafhængige / forklarende / prædikterende (X 1 til X m ) Model

Multipel regression. M variable En afhængig (Y) M-1 m uafhængige / forklarende / prædikterende (X 1 til X m ) Model Multipel regression M variable En afhængig (Y) M-1 m uafhængige / forklarende / prædikterende (X 1 til X m ) Model Y j 1 X 1j 2 X 2j... m X mj j eller m Y j 0 i 1 i X ij j BEMÆRK! j svarer til individ

Læs mere

Vejledende besvarelse af hjemmeopgave, forår 2016

Vejledende besvarelse af hjemmeopgave, forår 2016 Vejledende besvarelse af hjemmeopgave, forår 2016 Udleveret 1. marts, afleveres senest ved øvelserne i uge 13 (29. marts-1. april) Denne opgave fokuserer på at beskrive niveauet af hormonet AMH (højt niveau

Læs mere

Variansanalyse i SAS. Institut for Matematiske Fag December 2007

Variansanalyse i SAS. Institut for Matematiske Fag December 2007 Københavns Universitet Statistik for Biokemikere Det naturvidenskabelige fakultet Institut for Matematiske Fag December 2007 Variansanalyse i SAS 2 Tosidet variansanalyse Residualplot Tosidet variansanalyse

Læs mere

Vejledende besvarelse af hjemmeopgave i Basal statistik for lægevidenskabelige forskere, forår 2013

Vejledende besvarelse af hjemmeopgave i Basal statistik for lægevidenskabelige forskere, forår 2013 Vejledende besvarelse af hjemmeopgave i Basal statistik for lægevidenskabelige forskere, forår 2013 I forbindelse med reagensglasbehandling blev 100 par randomiseret til to forskellige former for hormonstimulation.

Læs mere

Reeksamen i Statistik for Biokemikere 6. april 2009

Reeksamen i Statistik for Biokemikere 6. april 2009 Københavns Universitet Det Naturvidenskabelige Fakultet Reeksamen i Statistik for Biokemikere 6. april 2009 Alle hjælpemidler er tilladt, og besvarelsen må gerne skrives med blyant. Opgavesættet er på

Læs mere

En Introduktion til SAS. Kapitel 5.

En Introduktion til SAS. Kapitel 5. En Introduktion til SAS. Kapitel 5. Inge Henningsen Afdeling for Statistik og Operationsanalyse Københavns Universitet Marts 2005 6. udgave Kapitel 5 T-test og PROC UNIVARIATE 5.1 Indledning Dette kapitel

Læs mere

Variansanalyse i SAS 1. Institut for Matematiske Fag December 2007

Variansanalyse i SAS 1. Institut for Matematiske Fag December 2007 Københavns Universitet Statistik for Biokemikere Det naturvidenskabelige fakultet Institut for Matematiske Fag December 2007 Variansanalyse i SAS 1 Ensidet variansanalyse Bartlett s test Tukey s test PROC

Læs mere

Program. 1. ensidet variansanalyse. 2. forsøgsplanlægning: blocking. 1/12

Program. 1. ensidet variansanalyse. 2. forsøgsplanlægning: blocking. 1/12 Program 1. ensidet variansanalyse. 2. forsøgsplanlægning: blocking. 1/12 Ensidet variansanalyse: analyse af grupperede data Nedbrydningsrate for tre typer af opløsningsmidler (opgave 13.8 side 523) Sorption

Læs mere

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA) Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:

Læs mere

k normalfordelte observationsrækker (ensidet variansanalyse)

k normalfordelte observationsrækker (ensidet variansanalyse) k normalfordelte observationsrækker (ensidet variansanalyse) Lad x ij, i = 1,...,k, j = 1,..., n i, være udfald af stokastiske variable X ij og betragt modellen M 1 : X ij N(µ i, σ 2 ). Estimaterne er

Læs mere

Basal statistik. 2. oktober Variansanalyse Sammenligning af flere grupper Ensidet variansanalyse Tosidet variansanalyse Interaktion Modelkontrol

Basal statistik. 2. oktober Variansanalyse Sammenligning af flere grupper Ensidet variansanalyse Tosidet variansanalyse Interaktion Modelkontrol Basal statistik 2. oktober 2007 Variansanalyse Sammenligning af flere grupper Ensidet variansanalyse Tosidet variansanalyse Interaktion Modelkontrol Lene Theil Skovgaard, Biostatistisk Afdeling Institut

Læs mere

Phd-kursus i Basal Statistik, Opgaver til 2. uge

Phd-kursus i Basal Statistik, Opgaver til 2. uge Phd-kursus i Basal Statistik, Opgaver til 2. uge Opgave 1: Sædkvalitet Filen oeko.txt på hjemmesiden indeholder datamateriale til belysning af forskellen i sædkvalitet mellem SAS-ansatte og mænd, der lever

Læs mere

Basal statistik. 30. september 2008

Basal statistik. 30. september 2008 Basal statistik 30. september 2008 Variansanalyse Sammenligning af flere grupper Ensidet variansanalyse Tosidet variansanalyse Interaktion Modelkontrol Peter Dalgaard, Biostatistisk Afdeling Institut for

Læs mere

Basal statistik. 16. september 2008

Basal statistik. 16. september 2008 Basal statistik 16. september 2008 En- og to-stikprøve problemer sammenligning af to situationer: parret t-test Wilcoxon signed rank test logaritmetransformation sammenligning af to grupper uparret t-test

Læs mere

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA) Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:

Læs mere

Program. Sammenligning af to stikprøver Ikke-parametriske metoder Opsummering. Test for ens spredninger

Program. Sammenligning af to stikprøver Ikke-parametriske metoder Opsummering. Test for ens spredninger Program Sammenligning af to stikprøver Ikke-parametriske metoder Opsummering Helle Sørensen E-mail: helle@math.ku.dk I formiddag: Analyse af ikke-parrede stikprøver: repetition of rettelse af fejl! Lidt

Læs mere

MPH specialmodul Epidemiologi og Biostatistik

MPH specialmodul Epidemiologi og Biostatistik MPH specialmodul Epidemiologi og Biostatistik Kvantitative udfaldsvariable 23. maj 2011 www.biostat.ku.dk/~sr/mphspec11 Susanne Rosthøj (Per Kragh Andersen) 1 Kapitelhenvisninger Andersen & Skovgaard:

Læs mere

Kommentarer til opg. 1 og 3 ved øvelser i basalkursus, 3. uge

Kommentarer til opg. 1 og 3 ved øvelser i basalkursus, 3. uge Kommentarer til opg. 1 og 3 ved øvelser i basalkursus, 3. uge Opgave 1. Data indlæses i 3 kolonner, som f.eks. kaldessalt,pre ogpost. Der er således i alt tale om 26 observationer, idet de to grupper lægges

Læs mere

Klasseøvelser dag 2 Opgave 1

Klasseøvelser dag 2 Opgave 1 Klasseøvelser dag 2 Opgave 1 1.1. Vi sætter først working directory og data indlæses: library( foreign ) d

Læs mere

To-sidet varians analyse

To-sidet varians analyse To-sidet varians analyse Repetition En-sidet ANOVA Parvise sammenligninger, Tukey s test Model begrebet To-sidet ANOVA Tre-sidet ANOVA Blok design SPSS ANOVA - definition ANOVA (ANalysis Of VAriance),

Læs mere

Vejledende besvarelse af hjemmeopgave i Basal Statistik, forår 2014

Vejledende besvarelse af hjemmeopgave i Basal Statistik, forår 2014 Vejledende besvarelse af hjemmeopgave i Basal Statistik, forår 2014 Garvey et al. interesserer sig for sammenhængen mellem anæstesi og allergiske reaktioner (se f.eks. nedenstående reference, der dog ikke

Læs mere

CLASS temp medie; MODEL rate=temp medie/solution; RUN;

CLASS temp medie; MODEL rate=temp medie/solution; RUN; Ugeopgave 2.1 Bakterieprøver fra patienter transporteres ofte til laboratoriet ved stuetemperatur samt mere eller mindre udsat for luftens ilt. Dette er især uheldigt for prøver som indeholder anaerobe

Læs mere

men nu er Z N((µ 1 µ 0 ) n/σ, 1)!! Forkaster hvis X 191 eller X 209 eller

men nu er Z N((µ 1 µ 0 ) n/σ, 1)!! Forkaster hvis X 191 eller X 209 eller Type I og type II fejl Type I fejl: forkast når hypotese sand. α = signifikansniveau= P(type I fejl) Program (8.15-10): Hvis vi forkaster når Z < 2.58 eller Z > 2.58 er α = P(Z < 2.58) + P(Z > 2.58) =

Læs mere

Basal statistik 3. oktober Typiske problemstillinger: Hvordan afhænger behandlingens effekt af sygdomsstadium?

Basal statistik 3. oktober Typiske problemstillinger: Hvordan afhænger behandlingens effekt af sygdomsstadium? variansanalyse, oktober 2006 1 Basal statistik 3. oktober 2006 Variansanalyse Sammenligning af flere grupper Ensidet variansanalyse Tosidet variansanalyse Interaktion Modelkontrol Lene Theil Skovgaard

Læs mere

Vejledende besvarelse af hjemmeopgave, forår 2015

Vejledende besvarelse af hjemmeopgave, forår 2015 Vejledende besvarelse af hjemmeopgave, forår 2015 En stikprøve bestående af 65 mænd og 65 kvinder er blevet undersøgt med henblik på at se på en evt. sammenhæng mellem kropstemperatur og puls. På hjemmesiden

Læs mere

Vejledende besvarelse af hjemmeopgave, efterår 2016

Vejledende besvarelse af hjemmeopgave, efterår 2016 Vejledende besvarelse af hjemmeopgave, efterår 2016 Udleveret 4. oktober, afleveres senest ved øvelserne i uge 44 (1.-4. november) Normal aktivitet af enzymet plasma kolinesterase er en forudsætning for

Læs mere

Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved

Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved Matematisk Modellering 1 (reeksamen) Side 1 Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved { 1 hvis x {1, 2, 3}, p X (x) = 3 0 ellers,

Læs mere

Eksamen i Statistik for biokemikere. Blok

Eksamen i Statistik for biokemikere. Blok Eksamen i Statistik for biokemikere. Blok 2 2007. Vejledende besvarelse 22-01-2007, Niels Richard Hansen Bemærkning: Flere steder er der givet en argumentation (f.eks. baseret på konfidensintervaller)

Læs mere

Resumé: En statistisk analyse resulterer ofte i : Et estimat θˆmed en tilhørende se

Resumé: En statistisk analyse resulterer ofte i : Et estimat θˆmed en tilhørende se Epidemiologi og biostatistik. Uge, torsdag 5. februar 00 Morten Frydenberg, Institut for Biostatistik. Type og type fejl Statistisk styrke Nogle speciale metoder: Normalfordelte data : t-test eksakte sikkerhedsintervaller

Læs mere

Tovejs-ANOVA (Faktoriel) Regler og problemer kan generaliseres til mere end to hovedfaktorer med tilhørende interaktioner

Tovejs-ANOVA (Faktoriel) Regler og problemer kan generaliseres til mere end to hovedfaktorer med tilhørende interaktioner Tovejs-ANOVA (Faktoriel) Regler og problemer kan generaliseres til mere end to hovedfaktorer med tilhørende interaktioner I modsætning til envejs-anova kan flervejs-anova udføres selv om der er kun én

Læs mere

Kapitel 12 Variansanalyse

Kapitel 12 Variansanalyse Kapitel 12 Variansanalyse Peter Tibert Stoltze stat@peterstoltzedk Elementær statistik F2011 Version 7 april 2011 1 / 43 Indledning Sammenligning af middelværdien i to grupper indenfor en stikprøve kan

Læs mere

Kapitel 12 Variansanalyse

Kapitel 12 Variansanalyse Kapitel 12 Variansanalyse Peter Tibert Stoltze stat@peterstoltzedk Elementær statistik F2011 Version 7 april 2011 1 Indledning 2 Ensidet variansanalyse 3 Blokforsøg 4 Vekselvirkning 1 Indledning 2 Ensidet

Læs mere

Basal statistik Esben Budtz-Jørgensen 4. november Forsøgsplanlægning Stikprøvestørrelse

Basal statistik Esben Budtz-Jørgensen 4. november Forsøgsplanlægning Stikprøvestørrelse Basal statistik Esben Budtz-Jørgensen 4. november 2008 Forsøgsplanlægning Stikprøvestørrelse 1 46 Planlægning af et studie Videnskabelig hypotese Endpoints Instrumentelle/eksponerings variable Variationskilder

Læs mere

Modul 11: Simpel lineær regression

Modul 11: Simpel lineær regression Forskningsenheden for Statistik ST01: Elementær Statistik Bent Jørgensen Modul 11: Simpel lineær regression 11.1 Regression uden gentagelser............................. 1 11.1.1 Oversigt....................................

Læs mere

(studienummer) (underskrift) (bord nr)

(studienummer) (underskrift) (bord nr) Danmarks Tekniske Universitet Side 1 af 18 sider. Skriftlig prøve: 14. december 2009 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (studienummer)

Læs mere

Basal statistik 19. september Eksempel: To metoder, som forventes at skulle give samme resultat:

Basal statistik 19. september Eksempel: To metoder, som forventes at skulle give samme resultat: En- og to-stikprøve problemer, september 2006 1 Basal statistik 19. september 2006 En- og to-stikprøve problemer sammenligning af to situationer: parret t-test Wilcoxon signed rank test logaritmetransformation

Læs mere

Faculty of Health Sciences. Basal statistik. Logaritmer. Kovariansanalyse. Lene Theil Skovgaard. 29. september 2015

Faculty of Health Sciences. Basal statistik. Logaritmer. Kovariansanalyse. Lene Theil Skovgaard. 29. september 2015 Faculty of Health Sciences Basal statistik Logaritmer. Kovariansanalyse Lene Theil Skovgaard 29. september 2015 1 / 84 Logaritmer og kovariansanalyse Parret sammenligning, målemetoder med logaritmer Tosidet

Læs mere

Basal statistik. Logaritmer og kovariansanalyse. Nyt eksempel vedr. sammenligning af målemetoder. Scatter plot af de to metoder

Basal statistik. Logaritmer og kovariansanalyse. Nyt eksempel vedr. sammenligning af målemetoder. Scatter plot af de to metoder Faculty of Health Sciences Logaritmer og kovariansanalyse Basal statistik Logaritmer. Kovariansanalyse Lene Theil Skovgaard 29. september 2015 Parret sammenligning, målemetoder med logaritmer Tosidet variansanalyse

Læs mere

Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19

Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19 Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19 For test med signifikansniveau α: p < α forkast H 0 2/19 p-værdi Betragt tilfældet med test for H 0 : µ = µ 0 (σ kendt). Idé: jo større

Læs mere

Program. Sammenligning af grupper Ensidet ANOVA. Case 3, del II: Fiskesmag i lammekød. Case 3, del I: A-vitamin i leveren

Program. Sammenligning af grupper Ensidet ANOVA. Case 3, del II: Fiskesmag i lammekød. Case 3, del I: A-vitamin i leveren Faculty of Life Sciences Program Sammenligning af grupper Ensidet ANOVA Claus Ekstrøm E-mail: ekstrom@life.ku.dk Sammenligning af to grupper: tre eksempler Sammenligning af mere end to grupper: ensidet

Læs mere

n r x rs x r = 1 n r s=1 (x rs x r ) 2, s=1

n r x rs x r = 1 n r s=1 (x rs x r ) 2, s=1 (a) Denne opgave bygger på resultaterne fra 2 forsøg med epo-behandling af for tidligt fødte børn, idet gruppe 1 og 3 stammer fra første forsøg, mens gruppe 2 og 4 stammer fra det andet. Det må antages,

Læs mere

Konfidensintervaller og Hypotesetest

Konfidensintervaller og Hypotesetest Konfidensintervaller og Hypotesetest Konfidensinterval for andele χ -fordelingen og konfidensinterval for variansen Hypoteseteori Hypotesetest af middelværdi, varians og andele Repetition fra sidst: Konfidensintervaller

Læs mere

Ensidet eller tosidet alternativ. Hypoteser. tosidet alternativ. nul hypotese testes mod en alternativ hypotese

Ensidet eller tosidet alternativ. Hypoteser. tosidet alternativ. nul hypotese testes mod en alternativ hypotese Kursus 02402 Introduktion til Statistik Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6 Per Bruun Brockhoff DTU Compute, Statistik Bygning 305/324 Danmarks Tekniske Universitet

Læs mere

Kursus i varians- og regressionsanalyse Data med detektionsgrænse. Birthe Lykke Thomsen H. Lundbeck A/S

Kursus i varians- og regressionsanalyse Data med detektionsgrænse. Birthe Lykke Thomsen H. Lundbeck A/S Kursus i varians- og regressionsanalyse Data med detektionsgrænse Birthe Lykke Thomsen H. Lundbeck A/S 1 Data med detektionsgrænse Venstrecensurering: Baggrundsstøj eller begrænsning i måleudstyrets følsomhed

Læs mere

Basal statistik. 21. oktober 2008

Basal statistik. 21. oktober 2008 Basal statistik 21. oktober 2008 Den generelle lineære model Repetition af variansanalyse og multipel regression Interaktion Parametriseringer Kovariansanalyse Esben Budtz-Jørgensen, Biostatistisk Afdeling

Læs mere

Opgavebesvarelse, Basalkursus, uge 3

Opgavebesvarelse, Basalkursus, uge 3 Opgavebesvarelse, Basalkursus, uge 3 Opgave 1: Udskrivning af astma patienter (DGA s. 273) I en randomiseret undersøgelse foretaget af Storr et. al. (Lancet, i, 1987) sammenlignes effekten af en enkelt

Læs mere

Epidemiologi og Biostatistik

Epidemiologi og Biostatistik Kapitel 1, Kliniske målinger Epidemiologi og Biostatistik Introduktion til skilder (varianskomponenter) måleusikkerhed sammenligning af målemetoder Mogens Erlandsen, Institut for Biostatistik Uge, torsdag

Læs mere

β = SDD xt SSD t σ 2 s 2 02 = SSD 02 f 02 i=1

β = SDD xt SSD t σ 2 s 2 02 = SSD 02 f 02 i=1 Lineær regression Lad x 1,..., x n være udfald af stokastiske variable X 1,..., X n og betragt modellen M 2 : X i N(α + βt i, σ 2 ) hvor t i, i = 1,..., n, er kendte tal. Konkret analyseres (en del af)

Læs mere

Naturvidenskabelig Bacheloruddannelse Forår 2006 Matematisk Modellering 1 Side 1

Naturvidenskabelig Bacheloruddannelse Forår 2006 Matematisk Modellering 1 Side 1 Matematisk Modellering 1 Side 1 I nærværende opgavesæt er der 16 spørgsmål fordelt på 4 opgaver. Ved bedømmelsen af besvarelsen vægtes alle spørgsmål lige. Endvidere lægges der vægt på, at det af besvarelsen

Læs mere

Tema. Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse.

Tema. Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. Tema Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. (Fx. x. µ) Hypotese og test. Teststørrelse. (Fx. H 0 : µ = µ 0 ) konfidensintervaller

Læs mere

Løsning til eksamen d.27 Maj 2010

Løsning til eksamen d.27 Maj 2010 DTU informatic 02402 Introduktion til Statistik Løsning til eksamen d.27 Maj 2010 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition, 7th edition]. Opgave I.1

Læs mere

Besvarelse af opgave om Vital Capacity

Besvarelse af opgave om Vital Capacity Besvarelse af opgave om Vital Capacity hentet fra P. Armitage & G. Berry: Statistical methods in medical research. 2nd ed. Blackwell, 1987. Spørgsmål 1: Indlæs data og konstruer en faktor (klassevariabel)

Læs mere

Løsning til eksaminen d. 14. december 2009

Løsning til eksaminen d. 14. december 2009 DTU Informatik 02402 Introduktion til Statistik 200-2-0 LFF/lff Løsning til eksaminen d. 4. december 2009 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition,

Læs mere

Løsning eksamen d. 15. december 2008

Løsning eksamen d. 15. december 2008 Informatik - DTU 02402 Introduktion til Statistik 2010-2-01 LFF/lff Løsning eksamen d. 15. december 2008 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition, 7th

Læs mere

Ikke-parametriske tests

Ikke-parametriske tests Ikke-parametriske tests 2 Dagens menu t testen Hvordan var det nu lige det var? Wilcoxson Mann Whitney U Kruskall Wallis Friedman Kendalls og Spearmans correlation 3 t-testen Patient Drug Placebo difference

Læs mere

Opgavebesvarelse, brain weight

Opgavebesvarelse, brain weight Opgavebesvarelse, brain weight (Matthews & Farewell: Using and Understanding Medical Statistics, 2nd. ed.) Spørgsmål 1 Data er indlagt på T:/Basalstatistik/brain.txt og kan indlæses direkte i Analyst med

Læs mere

Basal Statistik - SPSS

Basal Statistik - SPSS Faculty of Health Sciences Basal Statistik - SPSS Begreber. Parrede sammenligninger. Lene Theil Skovgaard 5. september 2017 1 / 16 APPENDIX med instruktioner til SPSS-analyse svarende til nogle af slides

Læs mere

Faculty of Health Sciences. Basal Statistik. Begreber. Parrede sammenligninger. Lene Theil Skovgaard. 6. september 2016

Faculty of Health Sciences. Basal Statistik. Begreber. Parrede sammenligninger. Lene Theil Skovgaard. 6. september 2016 Faculty of Health Sciences Basal Statistik Begreber. Parrede sammenligninger. Lene Theil Skovgaard 6. september 2016 1 / 88 APPENDIX Programbidder svarende til diverse slides: Indlæsning af vitamin D datasæt,

Læs mere

Model. (m separate analyser). I vores eksempel er m = 2, n 1 = 13 (13 journalister) og

Model. (m separate analyser). I vores eksempel er m = 2, n 1 = 13 (13 journalister) og Model M 0 : X hi N(α h + β h t hi,σ 2 h ), h = 1,...,m, i = 1,...,n h. m separate regressionslinjer. Behandles som i afsnit 3.3. (m separate analyser). I vores eksempel er m = 2, n 1 = 13 (13 journalister)

Læs mere

Ikke-parametriske metoder. Repetition Wilcoxon Signed-Rank Test Kruskal-Wallis Test Friedman Test Chi-i-anden Test

Ikke-parametriske metoder. Repetition Wilcoxon Signed-Rank Test Kruskal-Wallis Test Friedman Test Chi-i-anden Test Ikkeparametriske metoder Repetition Wilcoxon SignedRank Test KruskalWallis Test Friedman Test Chiianden Test Run Test Er sekvensen opstået tilfældigt? PPPKKKPPPKKKPPKKKPPP Et run er en sekvens af ens elementer,

Læs mere

Modelkontrol i Faktor Modeller

Modelkontrol i Faktor Modeller Modelkontrol i Faktor Modeller Julie Lyng Forman Københavns Universitet Afdeling for Anvendt Matematik og Statistik Statistik for Biokemikere 2003 For at konklusionerne på en ensidet, flersidet eller hierarkisk

Læs mere

Analysestrategi. Lektion 7 slides kompileret 27. oktober 200315:24 p.1/17

Analysestrategi. Lektion 7 slides kompileret 27. oktober 200315:24 p.1/17 nalysestrategi Vælg statistisk model. Estimere parametre i model. fx. lineær regression Udføre modelkontrol beskriver modellen data tilstrækkelig godt og er modellens antagelser opfyldte fx. vha. residualanalyse

Læs mere

Vejledende besvarelser til opgaver i kapitel 14

Vejledende besvarelser til opgaver i kapitel 14 Vejledende besvarelser til opgaver i kapitel 14 Opgave 1 a) Det første trin i opstillingen af en hypotesetest er at formulere to hypoteser, hvoraf den ene støtter den teori vi vil teste, mens den anden

Læs mere

Normalfordelingen. Statistik og Sandsynlighedsregning 2

Normalfordelingen. Statistik og Sandsynlighedsregning 2 Normalfordelingen Statistik og Sandsynlighedsregning 2 Repetition og eksamen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange variable, blandt andet tilfældige fejl på

Læs mere

PhD-kursus i Basal Biostatistik, efterår 2006 Dag 2, onsdag den 13. september 2006

PhD-kursus i Basal Biostatistik, efterår 2006 Dag 2, onsdag den 13. september 2006 PhD-kursus i Basal Biostatistik, efterår 2006 Dag 2, onsdag den 13. september 2006 I dag: To stikprøver fra en normalfordeling, ikke-parametriske metoder og beregning af stikprøvestørrelse Eksempel: Fiskeolie

Læs mere

Model. k = 3 grupper: hvor ǫ ij uafhængige og normalfordelte med middelværdi nul og varians σi 2, i = 1,2,3.

Model. k = 3 grupper: hvor ǫ ij uafhængige og normalfordelte med middelværdi nul og varians σi 2, i = 1,2,3. Model Program (8.15-10): 1. ensidet variansanalyse. 2. forsøgsplanlægning: blocking. Bruger nu to indices: i = 1,...,k for gruppenr. og j = 1,...,n i for observation indenfor gruppe. k = 3 grupper: µ 1

Læs mere

Statistik og Sandsynlighedsregning 2. Repetition og eksamen. Overheads til forelæsninger, mandag 7. uge

Statistik og Sandsynlighedsregning 2. Repetition og eksamen. Overheads til forelæsninger, mandag 7. uge Statistik og Sandsynlighedsregning 2 Repetition og eksamen Overheads til forelæsninger, mandag 7. uge 1 Normalfordelingen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange

Læs mere

Multipel Lineær Regression

Multipel Lineær Regression Multipel Lineær Regression Trin i opbygningen af en statistisk model Repetition af MLR fra sidst Modelkontrol Prædiktion Kategoriske forklarende variable og MLR Opbygning af statistisk model Specificer

Læs mere

Statistik Lektion 20 Ikke-parametriske metoder. Repetition Kruskal-Wallis Test Friedman Test Chi-i-anden Test

Statistik Lektion 20 Ikke-parametriske metoder. Repetition Kruskal-Wallis Test Friedman Test Chi-i-anden Test Statistik Lektion 0 Ikkeparametriske metoder Repetition KruskalWallis Test Friedman Test Chiianden Test Run Test Er sekvensen opstået tilfældigt? PPPKKKPPPKKKPPKKKPPP Et run er en sekvens af ens elementer,

Læs mere

Basal Statistik. Simpel lineær regression. Simpel lineær regression. Data. Faculty of Health Sciences

Basal Statistik. Simpel lineær regression. Simpel lineær regression. Data. Faculty of Health Sciences Faculty of Health Sciences Simpel lineær regression Basal Statistik Regressionsanalyse. Lene Theil Skovgaard 21. februar 2017 Regression og korrelation Simpel lineær regression Todimensionale normalfordelinger

Læs mere

Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression

Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression Logistisk Regression Repetition Fortolkning af odds Test i logistisk regression Logistisk Regression: Definitioner For en binær (0/) variabel Y antager vi P(Y)p P(Y0)-p Eksempel: Bil til arbejde vs alder

Læs mere

Ensidet variansanalyse

Ensidet variansanalyse Ensidet variansanalyse Sammenligning af grupper Helle Sørensen E-mail: helle@math.ku.dk StatBK (Uge 47, mandag) Ensidet ANOVA 1 / 18 Program I dag: Sammenligning af middelværdier Sammenligning af spredninger

Læs mere

Oversigt. 1 Intro: Regneeksempel og TV-data fra B&O. 2 Model og hypotese. 3 Beregning - variationsopspaltning og ANOVA tabellen

Oversigt. 1 Intro: Regneeksempel og TV-data fra B&O. 2 Model og hypotese. 3 Beregning - variationsopspaltning og ANOVA tabellen Kursus 02402/02323 Introducerende Statistik Forelæsning 10: Envejs variansanalyse, ANOVA Oversigt 1 Intro: Regneeksempel og TV-data fra B&O 2 Model og hypotese Per Bruun Brockhoff DTU Compute, Statistik

Læs mere

Side 1 af 19 sider. Danmarks Tekniske Universitet. Skriftlig prøve: 15. december 2007 Kursus navn og nr: Introduktion til Statistik, 02402

Side 1 af 19 sider. Danmarks Tekniske Universitet. Skriftlig prøve: 15. december 2007 Kursus navn og nr: Introduktion til Statistik, 02402 Danmarks Tekniske Universitet Side 1 af 19 sider. Skriftlig prøve: 15. december 2007 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (studienummer)

Læs mere

Program. Ensidet variansanalyse Sammenligning af grupper. Statistisk model og hypotese. Eksempel: Aldersfordeling i hjertestudie

Program. Ensidet variansanalyse Sammenligning af grupper. Statistisk model og hypotese. Eksempel: Aldersfordeling i hjertestudie Program Ensidet variansanalyse Sammenligning af grupper Helle Sørensen E-mail: helle@math.ku.dk I dag: Sammenligning af middelværdier Sammenligning af spredninger Parvise sammenligninger To eksempler:

Læs mere

Basal Statistik - SPSS

Basal Statistik - SPSS Faculty of Health Sciences Basal Statistik - SPSS Kovariansanalyse. Lene Theil Skovgaard 3. oktober 2017 1 / 12 APPENDIX med instruktioner til SPSS-analyse svarende til nogle af slides Bland-Altman plot,

Læs mere

k UAFHÆNGIGE grupper F-test Oversigt 1 Intro eksempel 2 Model og hypotese 3 Beregning - variationsopspaltning og ANOVA tabellen

k UAFHÆNGIGE grupper F-test Oversigt 1 Intro eksempel 2 Model og hypotese 3 Beregning - variationsopspaltning og ANOVA tabellen Introduktion til Statistik Forelæsning 10: Envejs variansanalyse, ANOVA Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 017 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail: pbac@dtu.dk

Læs mere

Hvad skal vi lave? Nulhypotese - alternativ. Teststatistik. Signifikansniveau

Hvad skal vi lave? Nulhypotese - alternativ. Teststatistik. Signifikansniveau Hvad skal vi lave? 1 Statistisk inferens: Hypotese og test Nulhypotese - alternativ. Teststatistik P-værdi Signifikansniveau 2 t-test for middelværdi Tosidet t-test for middelværdi Ensidet t-test for middelværdi

Læs mere

Eksamen i Statistik for biokemikere. Blok

Eksamen i Statistik for biokemikere. Blok Københavns Universitet Det Naturvidenskabelige Fakultet Eksamen i Statistik for biokemikere. Blok 2 2006. 3 timers skriftlig prøve. Alle hjælpemidler - også blyant - er tilladt. Opgavesættet er på 6 sider.

Læs mere

Anvendt Statistik Lektion 8. Multipel Lineær Regression

Anvendt Statistik Lektion 8. Multipel Lineær Regression Anvendt Statistik Lektion 8 Multipel Lineær Regression 1 Simpel Lineær Regression (SLR) y Sammenhængen mellem den afhængige variabel (y) og den forklarende variabel (x) beskrives vha. en SLR: ligger ikke

Læs mere

Module 3: Statistiske modeller

Module 3: Statistiske modeller Department of Statistics ST502: Statistisk modellering Pia Veldt Larsen Module 3: Statistiske modeller 31 ANOVA 1 32 Variabelselektion 4 321 Multipel determinationskoefficient 5 322 Variabelselektion med

Læs mere

Program: 1. Repetition: fordeling af observatorer X, S 2 og t. 2. Konfidens-intervaller, hypotese test, type I og type II fejl, styrke.

Program: 1. Repetition: fordeling af observatorer X, S 2 og t. 2. Konfidens-intervaller, hypotese test, type I og type II fejl, styrke. Program: 1. Repetition: fordeling af observatorer X, S 2 og t. 2. Konfidens-intervaller, hypotese test, type I og type II fejl, styrke. 1/23 Opsummering af fordelinger X 1. Kendt σ: Z = X µ σ/ n N(0,1)

Læs mere

Kursus Introduktion til Statistik. Forelæsning 12: Variansanalyse. Per Bruun Brockhoff

Kursus Introduktion til Statistik. Forelæsning 12: Variansanalyse. Per Bruun Brockhoff Kursus 02402 Introduktion til Statistik Forelæsning 12: Variansanalyse Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail:

Læs mere

Tema. Dagens tema: Indfør centrale statistiske begreber.

Tema. Dagens tema: Indfør centrale statistiske begreber. Tema Dagens tema: Indfør centrale statistiske begreber. Model og modelkontrol Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. konfidensintervaller Vi tager udgangspunkt i Ex. 3.1 i

Læs mere

Kommentarer til øvelser i basalkursus, 2. uge

Kommentarer til øvelser i basalkursus, 2. uge Kommentarer til øvelser i basalkursus, 2. uge Opgave 2. Vi betragter målinger af hjertevægt (i g) og total kropsvægt (målt i kg) for 10 normale mænd og 11 mænd med hjertesvigt. Målingerne er taget ved

Læs mere

Program. Modelkontrol og prædiktion. Multiple sammenligninger. Opgave 5.2: fosforkoncentration

Program. Modelkontrol og prædiktion. Multiple sammenligninger. Opgave 5.2: fosforkoncentration Faculty of Life Sciences Program Modelkontrol og prædiktion Claus Ekstrøm E-mail: ekstrom@life.ku.dk Test af hypotese i ensidet variansanalyse F -tests og F -fordelingen. Multiple sammenligninger. Bonferroni-korrektion

Læs mere

Module 4: Ensidig variansanalyse

Module 4: Ensidig variansanalyse Module 4: Ensidig variansanalyse 4.1 Analyse af én stikprøve................. 1 4.1.1 Estimation.................... 3 4.1.2 Modelkontrol................... 4 4.1.3 Hypotesetest................... 6 4.2

Læs mere