Sandsynlighedsteori

Størrelse: px
Starte visningen fra side:

Download "Sandsynlighedsteori"

Transkript

1 Fordelingskatalog til Sandsynlighedsteori Svend Erik Graversen August

2 Dette katalog indeholder de vigtigste egenskaber ved de 6 mest almindelige diskrete fordelinger samt de 11 mest almindelige absolut kontinuerte fordelinger. Endvidere omtales Multinomialfordelingen samt den to-dimensionale normalfordeling. Til slut indføres ganske kort begrebet uniformt fordelt over en given mængde. De en-dimensionale fordelingers egenskaber er listet i henhold til flg.skabelon (A) Parametrenes variationsområde. Sandsynlighedsfunktionen p hhv. tæthedsfunktionen f. Funktionerne angives kun, hvor de er strengt større end 0. Endvidere specificeres eventuelle relationer til andre kendte fordelingstyper. (C) Monotoniforhold for sandsynlighedsfunktionen/tæthedsfunktionen. (D) FordelingsfunktionenF. Angives kun i punkter x hvor 0 < F(x) < 1, og kun i de tilfælde hvor den kan opskrives på en lukket form, der er simplere end den rene definitionsligning. (E) Momentforhold. I denne forbindelse skrives x (k) = x (x 1) (x k + 1) omtalt som x i k nedstigende for x R og k N. (F) Frembringende funktion q på intervallet [0, 1]. Kun for diskrete fordelinger. Karakteristisk funktion ϕ. (H) Laplace transforml med angivelse af definitionsområde D(L). Additionsforhold(foldning).(Dvs.sum af uafhænige variable, se nedenfor.) (J) Konvergenssætninger. (K) Diverse fordelingsresultater og andre relevante oplysninger. Lad mig vedrørende og (H) minde om, at hvis X er en stokastisk variabel, så er den karakteristiske funktion og Laplace transformen for X defineret som ϕ X (t) = E[e itx ] t R og L X (z) = E[e zx ] z D(L X ) := {z C E[e RzX ] < } Laplace transformen er ikke pensum, men er medtaget for fuldstændighedens skyld. I forbindelse med skrives kort F 1 F 2 = F 3 betydende, at hvis X og Y er uafhængige variable, så at X F 1 og Y F 2, så er X + Y F 3. Tilsvarende skrives i (J) F n F, hvis X n X, hvor X n F n og X F. Behandlingen af de to eksempler på flerdimensionale fordelinger foregår efter samme skabelon, men er mindre grundig. Punkt er dog udvidet med angivelse af de marginale fordelinger. 2

3 Binomialfordelingen bi(n, p) (A) n N, 0 p 1. p(k) = bi(k, n, p) = ( n k ) p k (1 p) n k k = 0, 1,..., n. (C) Hvis k := [ (n + 1)p ] er j bi(j, n, p) voksende for 0 j k, aftagende for k j n og antager sit maksimum i k. (E) Momenter af enhver orden, som bestemmer fordelingen. Hvis X bi(n, p) er E[X] = np, V ar(x) = np (1 p), E[X (k) ] = n (k) p k k 2. (F) (H) (J.1) (J.2) q(t) = (1 + p (t 1)) n. ϕ(t) = (1 + p (e it 1)) n. L(z) = (1 + p (e z 1)) n z C. bi(n 1, p) bi(n 2, p) = bi(n 1 + n 2, p). bi(n, p n ) po(λ) for n, hvis np n λ. bi(n, p) n np (1 p) N(0, 1) for n. (K) Hvis A 1,...,A n er uafhængige hændelser med samme sandsynlighed p, er n X bi(n, p), hvor X := 1 Ak. k=1 Eller: et forsøg med udfaldene A og B med sandsynligheder hhv.p og 1 p, udføres n gange. Lad X betegne antallet af gange A kommer ud, da er X bi(n, p). 3

4 Den hypergeometriske fordeling h(n, r, N) (A) N, n N og 1 n N, r N 0 og 0 r N. p(k) = h(k, n, r, N) = ( r k ) ( N r n k ) ( N n ) 1 k = 0, 1,..., min(r, n). (C) Hvis k := [ (rn N + r + n 1)/(N + 2) ] er j h(j, n, r, N) voksende for 0 j k, aftagende for k j min(r, n) og antager sit maksimum i k. (E) Momenter af enhver orden, som bestemmer fordelingen. Hvis X h(n, r, N) er E[X] = nr N nr (N r) (N n), V ar(x) =, E[X (k) ] = n(k) r (k) k 2. N 2 (N 1) N (k) (J) h(n 1, r, N) h(n 2, r, N) = h(n 1 + n 2, r, N). h(n, r N, N) bi(n, p) for N, hvis r N /N λ. (K) Af en kasse med r røde og N r sorte kugler trækkes n kugler tilfældigt uden tilbagelægning. Hvis X er antallet af udtrukne røde kugler, er X h(n, r, N). 4

5 Poissonfordelingen po(λ) (A) 0 < λ <. p(k) = po(k, λ) = λk k! e λ k = 0, 1, 2,.... (C) Hvis k := [ λ ] er j po(j, λ) voksende for 0 j k, aftagende for k j < og antager sit maksimum i k. (E) Momenter af enhver orden, som bestemmer fordelingen. Hvis X po(λ) er E[X] = λ, V ar(x) = λ, E[X (k) ] = λ k k 2. (F) (H) (J.1) q(t) = exp( λ (t 1) ). ϕ(t) = exp( λ (e it 1) ). L(z) = exp( λ(e z 1) ) z C. po(λ 1 ) po(λ 2 ) = po(λ 1 + λ 2 ). po(λ) λ λ N(0, 1) for λ. (J.2) Hvis (X n ) n 1 er stokastiske variable, så at X n = X 1n + + X nn, hvor X 1n,..., X nn iid heltallige og da vil lim n n P(X 1n = 1) = λ > 0 samt lim n n P(X 1n 2) = 0, X n po(λ) for λ. (K) Hvis (T n ) n 1 er en iid-følge af E(λ)-fordelte stokastiske variable, så er for alle t > 0 N t po(tλ) hvor N t := #{n 1 T T n t}. 5

6 Den negative Binomialfordeling b (κ, p) (A) 0 < κ <, 0 p 1. ( k + κ 1 p(k) = b (k, κ, p) = k ) p k (1 p) κ = ( κ k ) ( p) k (1 p) κ k = 0, 1, 2,.... (C) Hvis k := [ (κp 1)/(1 p) ] + 1 er j b (j, κ, p) voksende for 0 j k, aftagende for k j < og antager sit maksimum i k. (E) Momenter af enhver orden, som bestemmer fordelingen. Hvis X b (κ, p) er E[X] = κp 1 p, V ar(x) = κp (1 p) 2, E[X(k) ] = (k+κ 1) (k) p k (1 p) k k 2. (F) (H) (J.1) q(t) = (1 p) κ (1 tp) κ. ϕ(t) = (1 p) κ (1 e it p) 1κ. L(z) = (1 p) κ (1 e z p) κ Rz < log p. b (κ 1, p) b (κ 2, p) = b (κ 1 + κ 2, p). bi (κ n, p n ) po(λ) for n, hvis p n 0 og p n κ n /(1 p n ) λ > 0. (J.2) (1 p) b (κ, p) κp κp N(0, 1) for κ. 6

7 Den geometriske fordeling ge(p) (A) 0 p 1. ge(p) = b (1, p) og derfor p(k) = ge(k, p) = p k (1 p) k = 0, 1, 2,.... (C) k ge(k, p) er aftagende og antager sit maksimum i 0. (D) F(x) = G(x, p) = 1 p [x]+1 x 0. (E) Momenter af enhver orden, som bestemmer fordelingen. Hvis X ge(p) er (F) (H) (J) E[X] = p 1 p, V ar(x) = p (1 p), p k 2 E[X(k) ] = k! k 2. (1 p) k q(t) = (1 p) (1 tp) 1. ϕ(t) = (1 p) (1 e it p) 1. L(z) = (1 p) (1 e z p) 1 Rz < log p. ge(p) ge(p)) = b (2, p). ge(p n )/n E(λ) for n, hvis n(1 p n ) λ > 0. (K.1) Den geometriske fordeling har ingen hukommelse, dvs. X ge(p) P(X n + k X n) = P(X k) k, n 0. Denne egenskab karakteriserer den geometriske fordeling blandt de diskrete fordelinger med støtte N 0. I denne sammenhæng gælder endvidere X E(λ) [X] ge(e λ ). (K.2) Et forsøg med udfaldene A og B, med sandsynligheder hhv.p og 1 p, udføres uendelig mange gange. Lad X betegne antallet af gange B kommer ud, før end A kommer ud første gang, da er X ge(p). X + 1 svarer derfor til ventetiden på, at A kommer ud første gang, dvs.variablen inf{k 1 1 Ak = 1 }. 7

8 Pascalfordelingen pas(n, p) (A) n N, 0 p 1. pas(n, p) = b (n, p) og derfor ( k + n 1 p(k) = pas(k, n, p) = k ) p k (1 p) n k = 0, 1, 2,.... (C) Hvis k := [ (np 1)/(1 p) ] + 1 er j pas(j, n, p) voksende for 0 j k, aftagende for k j < og antager sit maksimum i k. (E) Momenter af enhver orden, som bestemmer fordelingen. Hvis X pas(n, p) er E[X] = np np, V ar(x) = 1 p (1 p), 2 E[X(k) ] = (k+n 1) (k) p k k 2. (1 p) k (F) (H) (J.1) q(t) = (1 p) n (1 tp) n. ϕ(t) = (1 p) n (1 e it p) n. L(z) = (1 p) κ (1 e z p) n Rz < log p. pas(n 1, p) pas(n 2, p) = pas(n 1 + n 2, p). pas(n, p n ) po(λ) for n, hvis p n 0 og np n /(1 p n ) λ > 0. (J.2) (1 p) pas(n, p) np np N(0, 1) for n. (K) Et forsøg med udfaldene A og B, med sandsynligheder hhv.p og 1 p, udføres uendelig mange gange. Lad X betegne antallet af gange B kommer ud, før end A kommer ud n te gang, da er X pas(n, p). X + n svarer derfor til ventetiden på, at A kommer ud n te gang, dvs.variablen k inf{k 1 1 Aj n }. j=1 8

9 Den uniforme (rektangulære) fordeling over (a, b) U(a, b) (A) < a < b <. f(x) = r(x, a, b) = 1/(b a) x (a, b). (C) x r(x, a, b) er konstant på intervallerne (, a ], (a, b) og [ b, ). (D) F(x) = R(x, a, b) = x a b a x (a, b). (E) Momenter af enhver orden, som bestemmer fordelingen. Hvis X U(a, b) er E[X] = a + b 2, V ar(x) = (b a)2 12, E[X k ] = bk+1 a k+1 (b a) (k + 1) k 2. (H) ϕ(t) = e it(a+b)/2 U(a, b) U(a, b) har tæthed sin td td L(z) = ezb e za z(b a) hvor d = (b a)/2. z C. x (b a) 1 x a b (b a) 2 x (2a, 2b). (K) X U(a, b) X U( b, a) og cx + d U(ca + d, cb + d) c > 0. 9

10 Gammafordelingen Γ(α, β) (A) 0 < α <, 0 < β <. f(x) = g(x, α, β) = xα 1 β α e βx x > 0. Γ(α) (C) Hvis 0 < α 1 er x g(x, α, β) aftagende på (0, ). Hvis α > 1 og k = (α 1)/β er x g(x, α, β) voksende i (0, k ] og aftagende i intervallet [ k, ) og antager sit maksimum i k. (D) For m N F(x) = G(x, m, 1) = 1 m 1 j=0 x j j! e x x > 0 (E) Momenter af enhver orden, som bestemmer fordelingen. Hvis X Γ(α, β) er E[X] = α/β, V ar(x) = α/β 2, E[X k ] = (α + k 1) (k) /β k k 2. (H) (J) (K) ϕ(t) = (1 it/β) α. L(z) = (1 z/β) α Rz < β. Γ(α 1, β) Γ(α 2, β) = Γ(α 1 + α 2, β). Γ(α, β) α/β α/β 2 N(0, 1) for α. X Γ(α, β) ax Γ(α, β/a) a > 0. Bemærkning. Det er værd at bemærke, at der i litteraturen ikke er enighed om, hvorvidt man skal parametrisere med β eller 1/β. Dvs.man skal være på vagt overfor, hvilken parametrisering der er valgt. α kaldes ofte formparameteren og 1/β hhv. β skalaparameteren. Navnet skalaparameter skyldes egenskaben (K). 10

11 χ 2 -fordelingen χ 2 (n) (A) n N. χ 2 (n) = Γ(n/2, 1/2) og derfor f(x) = χ 2 (x, n) = 1 Γ(n/2) 2 ( x 2 ) n/2 1 e x/2 x > 0. (C) Hvis n = 1, 2 er x χ 2 (x, n) aftagende på (0, ). Hvis n 3 og k = n 2 er x χ 2 (x, n) voksende i (0, k ] og aftagende i intervallet [ k, ) og antager sit maksimum i k. (E) Momenter af enhver orden, som bestemmer fordelingen. Hvis X χ 2 (n) er E[X] = n, V ar(x) = 2n, E[X k ] = 2 k (n/2 + k 1) (k) k 2. (H) (J) (K.1) (K.2) ϕ(t) = (1 2it) n/2. L(z) = (1 2z) n/2 Rz < 1/2. χ 2 (n 1 ) χ 2 (n 2 ) = χ(n 1 + n 2 ). χ 2 (n) n 2n N(0, 1) for n. X N(0, 1) X 2 χ 2 (1). X U(0, 1) 2 log X χ 2 (2) = E(1/2). 11

12 Eksponentialfordelingen E(λ) (A) 0 < λ <. E(λ) = Γ(1, λ) og derfor (C) x e(x, λ) aftagende på (0, ). (D) F(x) = E(x, λ) = 1 e λx x > 0. f(x) = e(x, λ) = λ e λx x > 0. (E) Momenter af enhver orden, som bestemmer fordelingen. Hvis X E(λ) er (H) (K.1) E[X] = 1/λ, V ar(x) = 1/λ 2, E[X k ] = k!/λ k k 2. L(z) = ϕ(t) = λ λ z λ λ it. Rz < λ. E(λ) E(λ) = Γ(2, λ). X E(λ) ax E(λ/a) a > 0. (K.2) Eksponentialfordelingen er karakteriseret ved, at den er hukommelsesløs, dvs. X E(λ) for et λ > 0 P(X > s + t X > s) = P(X > t) for alle s, t > 0, specielt er [X] og X [X] uafhængige, hvis X er eksponentialfordelt. Endvidere gælder X E(λ) [X] ge(e λ ) og X [X] P X ( X 1). (K.3) Hvis T 1 og T 2 er uafhængige og T i E(λ i ) for i = 1, 2, er og hvis 0 < λ 1 < λ 2 gælder T 1 T 2 E(λ 1 + λ 2 ), dvs. P T1 = λ 2 λ 1 λ 2 P T1 +T 2 + λ 1 λ 2 P T2, P(T 1 B) = λ 2 λ 1 λ 2 P(T 1 + T 2 B) + λ 1 λ 2 P(T 2 B) for B B(R). 12

13 Normalfordelingen N(µ, σ 2 ) (A) < µ <, 0 < σ <. f(x) = n(x, µ, σ 2 ) = 1 µ)2 exp( (x ) x (, ). 2π σ 2 2σ 2 (C) x n(x, µ, σ 2 ) er voksende i (, µ ], aftagende i [ µ, ) og antager sit maksimum i µ. (D) Hvis X N(µ, σ 2 ) er (X µ)/σ N(0, 1), dvs. F(x) = N(x, µ, σ 2 ) = N( x µ σ, 0, 1) = Φ( x µ σ ) x (, ). (E) Momenter af enhver orden, som bestemmer fordelingen. Hvis X N(µ, σ 2 ) er E[X] = µ, V ar(x) = σ 2, E[(X µ) k ] = 0 k 1 ulige og (H) E[(X µ) k ] = (2l 3) (2l 1) σ 2l ϕ(t) = exp( iµt σ 2 t 2 /2 ). L(z) = exp( zµ + σ 2 z 2 /2 ) z C. k = 2l lige. N(µ 1, σ 2 1) N(µ 2, σ 2 2) = N(µ 1 + µ 2, σ 2 ) hvor σ 2 = σ σ 2 2. (J) Hvis (X n ) n 1 er en iid-følge af stokastiske varable med endelig middelværdi µ og varians σ 2 konvergerer 1 n (X k µ) N(0, σ 2 ) for n. n k=1 (K) X N(0, 1) X 2 Γ(1/2, 1/2) = χ 2 (1). 13

14 Betafordelingen B(s, t) (A) 0 < s <, 0 < t <. B(1, 1) = U(0, 1) og generelt f(x) = β(x, s, t) = xs 1 (1 x) 1 t B(s, t) x (0, 1) hvor B(s, t) = Γ(s) Γ(s) Γ(s + t). (D) For m N F(x) = B(x, m, t) = 1 m 1 j=0 ( m + t 1 j ) x j (1 x) m+t+j 1 x (0, 1). (E) Momenter af enhver orden, som bestemmer fordelingen. Hvis X B(s, t) er og E[X] = s s + t, V ar(x) = st (s + t) 2 (s + t + 1) E[X k ] = Γ(s + t) Γ(s + k) Γ(s + t + k) Γ(s) k 2. (K) X og Y er uafhængige og X Γ(s, β) og Y Γ(t, β), så er X X + Y B(s, t). 14

15 Arcussinusfordelingen Arc(α) (A) 0 < α < 1. Arc(α) = B(α, 1 α) og derfor f(x) = arc(x, α) = sin(πα) π x α 1 (1 x) α x (0, 1). (C) x arc(x, α) er aftagende i (0, 1 α ], voksende i [ 1 α, 1) og antager sit minimum i 1 α. (D) F(x) = Arc(x, 1/2) = 1 π arcsin x x (0, 1). (E) Momenter af enhver orden, som bestemmer fordelingen. Hvis X Arc(α) er E[X] = α, V ar(x) = α(1 α) (2, E[X k ] = ( α + k 1 k ) k 2. J) Lad (X n ) n 1 betegne en iid-følge af stokastiske varable og sæt for n 1 S n = n X k. k=1 Da gælder hvor P(S n > 0) n α (0, 1) N n /n Arc(α) N n := #{1 k n S k > 0} n 1. 15

16 F-fordelingen (v 2 -fordelingen) F(s, t) (A) 0 < s <, 0 < t <. f(x) = v 2 (x, s, t) = s s/2 t t/2 x s/2 1 B(s/2, t/2) (t + sx) (s+t)/2 x (0, ). (C) Hvis s > 2 og k = (s 2) t /(s (t + s)) er x v 2 (x, s, t) voksende i (0, k ], aftagende i [ k, ) og antager sit maksimum i k. Hvis s 2 er x f(x, s, t) aftagende på (0, ). (E) Hvis X F(s, t) er E[X α ] = hvis 2α t. Endvidere er og (K.1) E[X] = t/(t 2) hvis t > 2, V ar(x) = 2t2 (s + t 2) s (t 2) 2 (t 4) hvis t > 4 E[X k ] = ( t s ) k Γ(s/2 + k) Γ(t/2 k) Γ(s/2) Γ(t/2) hvis t > 2k, k 2. X F(s, t) t t + sx B(t/2, s/2) og sx t + sx B(s/2.t/2). (K.2) X B(s/2, t/2) t s X 1 X F(s, t) (K.3) Hvis X og Y er uafhængige og X χ 2 (n 1 ) og Y χ 2 (n 2 ) er X/n 1 Y/n 2 ) F(n 1, n 2 ). 16

17 t-fordelingen (Student fordelingen) t(λ) (A) 0 < λ <. f(x) = t(x, λ) = 1 λ B(1/2, λ/2) (1 + x 2 /λ) (λ+2)/2 x (, ). (C) x t(x, λ) er voksende i (, 0 ], aftagende i [ 0, ) og antager sit maksimum i 0. (E) Hvis X t(λ) er E[X α ] = hvis α λ. Endvidere er E[X] = 0 hvis λ > 1, V ar(x) = λ λ 1 hvis t > 4 og E[X k ] = 0 hvis k er ulige og λ > k, og hvis k er lige og λ > 2k er E[X 2k ] = Γ(k + 1/2) Γ(λ k) (2λ)k. Γ(1/2) Γ(λ) (J) t(λ) N(0, 1) λ. (K.1) Hvis X og Y er uafhængige og X N(0, 1) og Y χ 2 (n) er X Y/n t(n). (K.2) X t(λ) (1 + X2 λ ) 1 B(λ/2, 1/2). 17

18 Log-normalfordelingen log N(µ, σ 2 ) (A) < µ <, 0 < σ 2 <. f(x) = log n(x, µ, σ 2 ) = 1 x x µ)2 exp( (log ) x (0, ). 2πσ2 2σ 2 (C) Hvis k = exp(µ σ 2 ) er x log n(x, µ, σ 2 ) voksende i (0, k ], aftagende i [ k, ) og antager sit maksimum i k. (E) Momenter af enhver orden, men de bestemmer ikke fordelingen entydigt. Hvis X log N(µ, σ 2 ) er E[X] = exp( µ + σ 2 /2 ), V ar(x) = exp( 2µ + σ 2 ) (exp( σ 2 ) 1), og (K) E[X k ] = exp( k (µ + kσ 2 /2) ) k 2. X log N(µ, σ 2 ) log X N(µ, σ 2 ) 18

19 Cauchyfordelingen C(a, b) (A) < a <, 0 < b <. f(x) = c(x, a, b) = b π (b 2 + (x a) 2 ) x (, ). (C) x c(x, a, b) er voksende i (, a ], aftagende i [ a, ) og antager sit maksimum i a. (D) F(x) = C(x, a, b) = 1/2 + 1 π arctan( x a b ) x (, ). (E) Hvis X C(a, b) og α 1 er E[X α ] =, dvs.x har ikke endelig middelværdi. (K.1) ϕ(t) = exp( iat b t ). C(a 1, b 1 ) C(a 2, b 2 ) = C(a 1 + a 2, b 1 + b 2 ). X C(a, b) cx + d C(d + ca, c b). (K.2) Hvis X og Y er uafhængige og X N(0, σ 2 ) og Y N(0, 1), så er (K.3) X/Y C(0, σ). X C(0, 1) 1 2 ( X 1 X ) C(0, 1) og 1 + X 1 X C(0, 1). (K.4) Hvis X 1,...,X n er uafhængige og X k C(a, b) for 1 k n, er 1 n n X k C(a, b). k=1 19

20 Multinomialfordelingen mn(n, p 1,...,p m ) (A) n N, 0 p i 1 i = 1,..., m og p p m = 1. ( ) n m p(k) = mn(k, n, p 1,..., p m ) = k 1,...,k m i+1 for k = (k 1,...,k m ) : 0 k i n i = 1,...,n og k k m = n. X = (X 1,...,X m ) mn(n, p 1,...,p m ) X i bi(n, p i ) i = 1,...,m. (E) Hvis X = (X 1,...,X m ) mn(n, p 1,...,p m ) er E[X i ] = np i, V ar(x i ) = np i (1 p i ), Cov(X i, X j ) = np i p j i j. mn(n 1, p 1,...,p m ) mn(n 2, p 1,..., p m ) = mn(n 1 + n 2, p 1,...,p m ). (J) Hvis X n = (X 1n,...,X mn ) mn(n, p 1,...,p m ) for alle n 1 konvergerer p k i i m i=1 (X in np i ) 2 np i χ 2 (m 1) for n. (K) Et forsøg med m mulige udfald A 1,...A m med sandsynligheder p 1,...,p m udføres n-gange. Hvis X i for i = 1,..., m betegner antallet af gange A i kommer ud, så er (X 1n,...,X mn ) mn(n, p 1,...,p m ). 20

21 Den to-dimensionale normalfordeling N 2 (µ, σ) (A) ( σ µ = (µ 1, µ 2 ) R 2 2, σ = 1 c c σ2 2 ) hvor σ 1, σ 2 > 0 og c < σ 1 σ 2. f(x) = n 2 (x, µ, σ) = 1 2π σ 1 σ 2 1 ρ 2 exp( Q(x 1 µ 1, x 2 µ 2 ) ) x R 2, hvor ρ = c/σ 1 σ 2, og Q er den kvadratiske form Q(x) = 1 2(1 ρ 2 ) ( ) x 2 1 /σ2 1 + x2 2 /σ2 2 2ρ x 1 x 2 σ 1 σ 2 1 ρ 2 x R 2. X = (X 1, X 2 ) N 2 (µ, σ) X i N(µ i, σi 2 ) i = 1, 2. (E) Hvis X = (X 1, X 2 ) N 2 (µ, σ) er E[X i ] = µ i og V ar(x i ) = σ 2 i og Cov(X 1, X 2 ) = c. ϕ(t) = exp( i µ t 1 2 t σ tt ). (K) Hvis X = (X 1, X 2 ) N 2 (µ, σ) og T er en lineær bijektion i R 2, er T(X) N 2 ( T(µ), T σ T t ), hvor T er matricen hørende til T udregnet mht.den kanoniske basis i R 2 og T t den transponerede. Formlen er angivet under forudsætningen, at vektorerne i R 2 opfattes som søjlevektorer. Skiftes til rækkevektor-notation er formlen for Kovariansmatricen i stedet T t σ T. For alle a, b R gælder derfor hvor σ 2 = a 2 σ b2 σ abc. ax 1 + bx 2 N(aµ 1 + bµ 2, σ 2 ) 21

22 Generelle uniforme fordelinger Lad A B(R n ) have positivt endeligt Lebesgue mål, dvs.0 < λ n (A) <. Definition En n-dimensional stokastisk vektor X siges da at være uniformt fordelt over A hvis P(X B) = λ 2 (B A)/λ 2 (A) B B(R n ). Flg.punkter er åbenbart opfyldte, hvis X er uniformt fordelt over A. 1) P X λ n med tæthed x 1 A (x)/λ n (A). 2) X + x er uniformt fordelt over A + x for alle x R n. 3) T(X) er uniformt fordelt over T(A) for enhver lineær bijektion i R n. 22

Elementær sandsynlighedsregning

Elementær sandsynlighedsregning Elementær sandsynlighedsregning Sandsynlighedsbegrebet Et udfaldsrum S er mængden af alle de mulige udfald af et eksperiment. En hændelse A er en delmængde af udfaldsrummet S. Den hændelse, der ikke indeholder

Læs mere

Elementær sandsynlighedsregning

Elementær sandsynlighedsregning Elementær sandsynlighedsregning Sandsynlighedsbegrebet Et udfaldsrum S er mængden af alle de mulige udfald af et eksperiment. En hændelse A er en delmængde af udfaldsrummet S. Et sandsynlighedsmål er en

Læs mere

Sandsynlighedsregning Oversigt over begreber og fordelinger

Sandsynlighedsregning Oversigt over begreber og fordelinger Tue Tjur Marts 2007 Sandsynlighedsregning Oversigt over begreber og fordelinger Stat. MØK 2. år Kapitel : Sandsynlighedsfordelinger og stokastiske variable En sandsynlighedsfunktion på en mængde E (udfaldsrummet)

Læs mere

INSTITUT FOR MATEMATISKE FAG c

INSTITUT FOR MATEMATISKE FAG c INSTITUT FOR MATEMATISKE FAG c AALBORG UNIVERSITET FREDRIK BAJERS VEJ 7 G 9220 AALBORG ØST Tlf.: 96 35 89 27 URL: www.math.aau.dk Fax: 98 15 81 29 E-mail: bjh@math.aau.dk Dataanalyse Sandsynlighed og stokastiske

Læs mere

Sandsynlighedsregning 7. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 7. forelæsning Bo Friis Nielsen Sandsynlighedsregning 7. forelæsning Bo Friis Nielsen Matematik og Computer Science Danmarks Tekniske Universitet 28 Kgs. Lyngby Danmark Email: bfn@dtu.dk Dagens emner afsnit 4.5 og 4.6 (Kumulerede) fordelingsfunktion

Læs mere

Binomialfordelingen. X ~ bin(n,p): X = antal "succeser" i n uafhængige forsøg, der alle har samme sandsynlighed p for at ende med succes.

Binomialfordelingen. X ~ bin(n,p): X = antal succeser i n uafhængige forsøg, der alle har samme sandsynlighed p for at ende med succes. Uge 9 Teoretisk Statistik 23. februar 24 1. Binomialfordelingen 2. Den hypergeometriske fordeling 3. Poissonfordelingen 4. Den negative binomialfordeling 5. Gammafordelingen Binomialfordelingen X ~ bin(n,p):

Læs mere

Sandsynlighedsregning 7. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 7. forelæsning Bo Friis Nielsen Sandsynlighedsregning 7. forelæsning Bo Friis Nielsen Matematik og Computer Science Danmarks Tekniske Universitet 2800 Kgs. Lyngby Danmark Email: bfni@dtu.dk Dagens emner afsnit 4.5 og 4.6 (Kumulerede)

Læs mere

Sandsynlighedsregning 7. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 7. forelæsning Bo Friis Nielsen Sandsynlighedsregning 7. forelæsning Bo Friis Nielsen Matematik og Computer Science Danmarks Tekniske Universitet 2800 Kgs. Lyngby Danmark Email: bfni@dtu.dk Dagens emner afsnit 4.5 og 4.6 (Kumulerede)

Læs mere

Karakteristiske funktioner og Den Centrale Grænseværdisætning

Karakteristiske funktioner og Den Centrale Grænseværdisætning E6 efterår 1999 Notat 10 Jørgen Larsen 20. oktober 1999 Karakteristiske funktioner og Den Centrale Grænseværdisætning Karakteristiske funktioner som er nære slægtninge til Fourier-transformationen) er

Læs mere

hvor a og b er konstanter. Ved middelværdidannelse fås videre

hvor a og b er konstanter. Ved middelværdidannelse fås videre Uge 3 Teoretisk Statistik. marts 004. Korrelation og uafhængighed, repetition. Eksempel fra sidste gang (uge ) 3. Middelværdivektor, kovarians- og korrelationsmatrix 4. Summer af stokastiske variable 5.Den

Læs mere

Sandsynlighedsregning

Sandsynlighedsregning Mogens Bladt www2.imm.dtu.dk/courses/02405 21. September, 2007 Lidt om binomialkoefficienter n størrelsen af en mængde/population. Vi ønsker at udtage en sub population af størrelse r. To sub populationer

Læs mere

Teoretisk Statistik, 9 marts nb. Det forventes ikke, at alt materialet dækkes d. 9. marts.

Teoretisk Statistik, 9 marts nb. Det forventes ikke, at alt materialet dækkes d. 9. marts. Teoretisk Statistik, 9 marts 2005 Empiriske analoger (Kap. 3.7) Normalfordelingen (Kap. 3.12) Opsamling på Kap. 3 nb. Det forventes ikke, at alt materialet dækkes d. 9. marts. 1 Empiriske analoger Betragt

Læs mere

Agenda Sandsynlighedsregning. Regneregler (kap. 3-4) Fordelinger og genkendelse af fordelinger (kap. 3-5) Simultane, marginale og betingede

Agenda Sandsynlighedsregning. Regneregler (kap. 3-4) Fordelinger og genkendelse af fordelinger (kap. 3-5) Simultane, marginale og betingede Agenda Sandsynlighedsregning. Regneregler (kap. 3-4) Fordelinger og genkendelse af fordelinger (kap. 3-5) Simultane, marginale og betingede fordelinger (kap. 4) Middelværdi og varians (kap. 3-4) Fordelingsresultater

Læs mere

02402 Vejledende løsninger til hjemmeopgaver og øvelser, Uge 4

02402 Vejledende løsninger til hjemmeopgaver og øvelser, Uge 4 02402 Vejledende løsninger til hjemmeopgaver og øvelser, Uge 4 Vejledende løsning 5.46 P (0.010 < error < 0.015) = (0.015 0.010)/0.050 = 0.1 > punif(0.015,-0.025,0.025)-punif(0.01,-0.025,0.025) [1] 0.1

Læs mere

Kvantitative Metoder 1 - Forår Dagens program

Kvantitative Metoder 1 - Forår Dagens program Dagens program Afsnit 6.1 Den standardiserede normalfordeling Normalfordelingen Beskrivelse af normalfordelinger: - Tæthed og fordelingsfunktion - Middelværdi, varians og fraktiler Lineære transformationer

Læs mere

Statistik og Sandsynlighedsregning 2

Statistik og Sandsynlighedsregning 2 Statistik og Sandsynlighedsregning 2 Normalfordelingens venner og bekendte Helle Sørensen Uge 9, onsdag SaSt2 (Uge 9, onsdag) Normalfordelingens venner 1 / 20 Program Resultaterne fra denne uge skal bruges

Læs mere

Landmålingens fejlteori - Repetition - Kontinuerte stokastiske variable - Lektion 3

Landmålingens fejlteori - Repetition - Kontinuerte stokastiske variable - Lektion 3 Landmålingens fejlteori Repetition - Kontinuerte stokastiske variable Lektion 4 - kkb@math.aau.dk http://people.math.aau.dk/ kkb/undervisning/lf10 Institut for Matematiske Fag Aalborg Universitet 29. april

Læs mere

Uge 10 Teoretisk Statistik 1. marts 2004

Uge 10 Teoretisk Statistik 1. marts 2004 1 Uge 10 Teoretisk Statistik 1. marts 004 1. u-fordelingen. Normalfordelingen 3. Middelværdi og varians 4. Mere normalfordelingsteori 5. Grafisk kontrol af normalfordelingsantagelse 6. Eksempler 7. Oversigt

Læs mere

Program. Statistik og Sandsynlighedsregning 2 Middelværdi og varians. Eksempler fra sidst. Sandsynlighedstæthed og sandsynlighedsmål

Program. Statistik og Sandsynlighedsregning 2 Middelværdi og varians. Eksempler fra sidst. Sandsynlighedstæthed og sandsynlighedsmål Program Statistik og Sandsynlighedsregning 2 Middelværdi og varians Helle Sørensen Uge 6, onsdag I formiddag: Tætheder og fordelingsfunktioner kort resume fra i mandags og et par eksempler mere om sammenhængen

Læs mere

Program. Statistik og Sandsynlighedsregning. Eksempler. Sandsynlighedstæthed og sandsynlighedsmål

Program. Statistik og Sandsynlighedsregning. Eksempler. Sandsynlighedstæthed og sandsynlighedsmål Program Statistik og Sandsynlighedsregning Sandsynlighedstætheder og kontinuerte fordelinger på R Varians og middelværdi Normalfordelingen Susanne Ditlevsen Uge 48, tirsdag Tætheder og fordelingsfunktioner

Læs mere

Kvantitative Metoder 1 - Efterår Dagens program

Kvantitative Metoder 1 - Efterår Dagens program Dagens program Afsnit 6.1. Ligefordelinger, fra sidst Den standardiserede normalfordeling Normalfordelingen Beskrivelse af normalfordelinger: - Tæthed og fordelingsfunktion - Middelværdi, varians og fraktiler

Læs mere

Introduktion til Statistik. Forelæsning 3: Kontinuerte fordelinger. Peder Bacher

Introduktion til Statistik. Forelæsning 3: Kontinuerte fordelinger. Peder Bacher Introduktion til Statistik Forelæsning 3: Kontinuerte fordelinger Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail: pbac@dtu.dk

Læs mere

Overheads til forelæsninger, mandag 5. uge På E har vi en mængde af mulige sandsynlighedsfordelinger for X, (P θ ) θ Θ.

Overheads til forelæsninger, mandag 5. uge På E har vi en mængde af mulige sandsynlighedsfordelinger for X, (P θ ) θ Θ. Statistiske modeller (Definitioner) Statistik og Sandsynlighedsregning 2 IH kapitel 0 og En observation er en vektor af tal x (x,..., x n ) E, der repræsenterer udfaldet af et (eller flere) eksperimenter.

Læs mere

Den todimensionale normalfordeling

Den todimensionale normalfordeling Den todimensionale normalfordeling Definition En todimensional stokastisk variabel X Y siges at være todimensional normalfordelt med parametrene µ µ og når den simultane tæthedsfunktion for X Y kan skrives

Læs mere

Statistik og Sandsynlighedsregning 2

Statistik og Sandsynlighedsregning 2 Statistik og Sandsynlighedsregning 2 Middelværdi og varians Helle Sørensen Uge 6, onsdag SaSt2 (Uge 6, onsdag) Middelværdi og varians 1 / 18 Program I formiddag: Tætheder og fordelingsfunktioner kort resume

Læs mere

Lineære normale modeller (1) udkast. 1 Flerdimensionale stokastiske variable

Lineære normale modeller (1) udkast. 1 Flerdimensionale stokastiske variable E6 efterår 999 Notat 8 Jørgen Larsen 22. november 999 Lineære normale modeller ) udkast Ved hjælp af lineær algebra kan man formulere og analysere de såkaldte lineære normale modeller meget overskueligt

Læs mere

Fortolkning. Foldning af sandsynlighedsmål. Foldning af tætheder. Foldning af Γ-fordelinger Eksempel: Hvis X og Y er uafhængige og. Sætning (EH 20.

Fortolkning. Foldning af sandsynlighedsmål. Foldning af tætheder. Foldning af Γ-fordelinger Eksempel: Hvis X og Y er uafhængige og. Sætning (EH 20. Foldning af sandsnlighedsmål Lad µ og ν være to sandsnlighedsmål på (R, B). Fortolkning Lad φ : R R være φ(, ) = + for (, ) R. Lad X og Y være to reelle stokastiske variable defineret på (Ω, F, P). Definition

Læs mere

enote 2: Kontinuerte fordelinger Introduktion til Statistik Forelæsning 3: Kontinuerte fordelinger Peder Bacher enote 2: Continuous Distributions

enote 2: Kontinuerte fordelinger Introduktion til Statistik Forelæsning 3: Kontinuerte fordelinger Peder Bacher enote 2: Continuous Distributions Introduktion til Statistik Forelæsning 3: Kontinuerte fordelinger Peder Bacher DTU Compute, Dynamiske Systemer Bygning 33B, Rum 9 Danmarks Tekniske Universitet 28 Lyngby Danmark e-mail: pbac@dtu.dk Efterår

Læs mere

Hvad skal vi lave i dag?

Hvad skal vi lave i dag? p. 1/1 Hvad skal vi lave i dag? Repeterer lidt om diskrete sv. Standardfordelinger (binomial, Poisson, geometrisk) Stokastiske vektorer Diskrete stokastiske vektorer p. 2/1 Repetition Heltallige sv er

Læs mere

Løsning til eksamen 16/

Løsning til eksamen 16/ 1 IMM - DTU 245 Probability 24-5-11 BFN/bfn Løsning til eksamen 16/12 23 Spørgsmål 1) 2 44% Man benytter formlen for skalering og positionsskift i forbindelse med varians og standardafvigelse, samt formlen

Læs mere

Sandsynlighedsregning 6. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 6. forelæsning Bo Friis Nielsen Sandsynlighedsregning 6. forelæsning Bo Friis Nielsen Matematik og Computer Science Danmarks Tekniske Universitet 2800 Kgs. Lyngby Danmark Email: bfni@dtu.dk Dagens emner: Afsnit 4.2, 4.3 og 4.4 Poissonprocessen/eksponentialfordelingen

Læs mere

Momenter som deskriptive størrelser. Hvad vi mangler fra onsdag. Momenter for sandsynlighedsmål

Momenter som deskriptive størrelser. Hvad vi mangler fra onsdag. Momenter for sandsynlighedsmål Hvad vi mangler fra onsdag Momenter som deskriptive størrelser Sandsynlighedsmål er komplicerede objekter de tildeler numeriske værdier til alle hændelser i en σ-algebra. Vi har behov for simplere, deskriptive

Læs mere

Hvad vi mangler fra onsdag. Vi starter med at gennemgå slides fra onsdag.

Hvad vi mangler fra onsdag. Vi starter med at gennemgå slides fra onsdag. Hvad vi mangler fra onsdag Vi starter med at gennemgå slides 34-38 fra onsdag. Slide 1/17 Niels Richard Hansen MI forelæsninger 6. December, 2013 Momenter som deskriptive størrelser Sandsynlighedsmål er

Læs mere

MM501 forelæsningsslides

MM501 forelæsningsslides MM501 forelæsningsslides uge 40, 2010 Produceret af Hans J. Munkholm bearbejdet af JC 1 Separabel 1. ordens differentialligning En generel 1. ordens differentialligning har formen s.445-8 dx Eksempler

Læs mere

Lidt om fordelinger, afledt af normalfordelingen

Lidt om fordelinger, afledt af normalfordelingen IMM, 2002-10-10 Poul Thyregod Lidt om fordelinger, afledt af normalfordelingen 1 Introduktion I forbindelse med inferens i normalfordelinger optræder forskellige fordelinger, der er afledt af normalfordelingen,

Læs mere

Repetition. Diskrete stokastiske variable. Kontinuerte stokastiske variable

Repetition. Diskrete stokastiske variable. Kontinuerte stokastiske variable Normal fordelingen Normal fordelingen Egenskaber ved normalfordelingen Standard normal fordelingen Find sandsynligheder ud fra tabel Transformation af normal fordelte variable Invers transformation Repetition

Læs mere

Definition: Normalfordelingen. siges at være normalfordelt med middelværdi µ og varians σ 2, hvor µ og σ er reelle tal og σ > 0.

Definition: Normalfordelingen. siges at være normalfordelt med middelværdi µ og varians σ 2, hvor µ og σ er reelle tal og σ > 0. Landmålingens fejlteori Lektion 2 Transformation af stokastiske variable - kkb@math.aau.dk http://people.math.aau.dk/ kkb/undervisning/lf12 Institut for Matematiske Fag Aalborg Universitet Repetition:

Læs mere

Eksamen 2014/2015 Mål- og integralteori

Eksamen 2014/2015 Mål- og integralteori Eksamen 4/5 Mål- og integralteori Københavns Universitet Institut for Matematiske Fag Formalia Eksamensopgaven består af 4 opgaver med ialt spørgsmål Ved bedømmelsen indgår de spørgsmål med samme vægt

Læs mere

Sandsynlighedsregning 9. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 9. forelæsning Bo Friis Nielsen Sandsynlighedsregning 9. forelæsning Bo Friis Nielsen Matematik og Computer Science Danmarks Tekniske Universitet 800 Kgs. Lyngby Danmark Email: bfni@dtu.dk Dagens emner afsnit 5.3 og 5.4 Simultane kontinuerte

Læs mere

Forelæsning 3: Kapitel 5: Kontinuerte fordelinger

Forelæsning 3: Kapitel 5: Kontinuerte fordelinger Kursus 02402 Introduktion til Statistik Forelæsning 3: Kapitel 5: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Reeksamen 2014/2015 Mål- og integralteori

Reeksamen 2014/2015 Mål- og integralteori Reeksamen 4/5 Mål- og integralteori Københavns Universitet Institut for Matematiske Fag Formalia Eksamensopgaven består af 4 opgaver med ialt spørgsmål. Ved bedømmelsen indgår de spørgsmål med samme vægt.

Læs mere

Fordelinger. En oversigt over de vigtigste sandsynlighedsteoretiske fordelinger Anden udgave. Udvidet version. Ulrich Fahrenberg uli@math.auc.

Fordelinger. En oversigt over de vigtigste sandsynlighedsteoretiske fordelinger Anden udgave. Udvidet version. Ulrich Fahrenberg uli@math.auc. Fordelinger En oversigt over de vigtigste sandsynlighedsteoretiske fordelinger Anden udgave Udvidet version Ulrich Fahrenberg uli@math.auc.dk Da denne fordelingsoversigt's første udgave så verdens lys

Læs mere

Kvantitative Metoder 1 - Forår 2007

Kvantitative Metoder 1 - Forår 2007 Dagens program Kapitel 8.7, 8.8 og 8.10 Momenter af gennemsnit og andele kap. 8.7 Eksempel med simulationer Den centrale grænseværdisætning (Central Limit Theorem) kap. 8.8 Simulationer Normalfordelte

Læs mere

Sandsynlighedsregning 6. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 6. forelæsning Bo Friis Nielsen Sandsynlighedsregning 6. forelæsning Bo Friis Nielsen Matematik og Computer Science Danmarks Tekniske Universitet 2800 Kgs. Lyngby Danmark Email: bfn@dtu.dk Dagens emner: Afsnit 4.2, 4.3 og 4.4 Poissonprocessen/eksponentialfordelingen

Læs mere

Bernoulli og binomial fordelingerne Kontinuerte stokastiske variable Normalfordelingen

Bernoulli og binomial fordelingerne Kontinuerte stokastiske variable Normalfordelingen Bernoulli og binomial fordelingerne Kontinuerte stokastiske variable Normalfordelingen Repetition Lov om total sandsynlighed Bayes sætning P( B A) = P(A) = P(AI B) + P(AI P( A B) P( B) P( A B) P( B) +

Læs mere

Oversigt. Kursus Introduktion til Statistik. Forelæsning 3: Kapitel 5: Kontinuerte fordelinger. Per Bruun Brockhoff.

Oversigt. Kursus Introduktion til Statistik. Forelæsning 3: Kapitel 5: Kontinuerte fordelinger. Per Bruun Brockhoff. Kursus 242 Introduktion til Statistik Forelæsning 3: Kapitel 5: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik Bygning 35/324 Danmarks Tekniske Universitet 28 Lyngby Danmark e-mail:

Læs mere

CIVILINGENIØREKSAMEN Side 1 af 18 sider. Skriftlig prøve, den: PQ. juli 200Z Kursus nr : (navn) (underskrift) (bord nr)

CIVILINGENIØREKSAMEN Side 1 af 18 sider. Skriftlig prøve, den: PQ. juli 200Z Kursus nr : (navn) (underskrift) (bord nr) CIVILINGENIØREKSAMEN Side 1 af 18 sider Skriftlig prøve, den: PQ. juli 200Z Kursus nr : 02405 Kursus navn: Sandsynlighedsregning Tilladte hjælpemidler: Alle Dette sæt er besvaret af: (navn) (underskrift)

Læs mere

DANMARKS TEKNISKE UNIVERSITET Side 1 af 17 sider. Skriftlig prøve, den: 19. december 2018 Kursus nr : (navn) (underskrift) (bord nr)

DANMARKS TEKNISKE UNIVERSITET Side 1 af 17 sider. Skriftlig prøve, den: 19. december 2018 Kursus nr : (navn) (underskrift) (bord nr) DANMARKS TEKNISKE UNIVERSITET Side af 7 sider Skriftlig prøve, den: 9. december 08 Kursus nr : 0405 Kursus navn: Sandsynlighedsregning Varighed : 4 timer Tilladte hjælpemidler: Alle Dette sæt er besvaret

Læs mere

Sandsynlighedsregning 8. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 8. forelæsning Bo Friis Nielsen Sandsynlighedsregning 8. forelæsning Bo Friis Nielsen Matematik og Computer Science Danmarks Tekniske Universitet 28 Kgs. Lyngby Danmark Email: bfni@dtu.dk Dagens emner 5.1 og 5.2 Ligefordeling med to

Læs mere

DANMARKS TEKNISKE UNIVERSITET Side?? af?? sider. Skriftlig prøve, den: 18. december 2014 Kursus nr : (navn) (underskrift) (bord nr)

DANMARKS TEKNISKE UNIVERSITET Side?? af?? sider. Skriftlig prøve, den: 18. december 2014 Kursus nr : (navn) (underskrift) (bord nr) DANMARKS TEKNISKE UNIVERSITET Side?? af?? sider Skriftlig prøve, den: 8. december 04 Kursus nr : 040 Kursus navn: Sandsynlighedsregning Varighed : 4 timer Tilladte hjælpemidler: Alle Dette sæt er besvaret

Læs mere

DANMARKS TEKNISKE UNIVERSITET Side 1 af 17 sider. Skriftlig prøve, den: 18. august 2016 Kursus nr : (navn) (underskrift) (bord nr)

DANMARKS TEKNISKE UNIVERSITET Side 1 af 17 sider. Skriftlig prøve, den: 18. august 2016 Kursus nr : (navn) (underskrift) (bord nr) DANMARKS TEKNISKE UNIVERSITET Side af 7 sider Skriftlig prøve, den: 8. august 06 Kursus nr : 005 Kursus navn: Sandsynlighedsregning Varighed : timer Tilladte hjælpemidler: Alle Dette sæt er besvaret af:

Læs mere

Sandsynlighedsregning 8. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 8. forelæsning Bo Friis Nielsen Sandsynlighedsregning 8. forelæsning Bo Friis Nielsen Matematik og Computer Science Danmarks Tekniske Universitet 2800 Kgs. Lyngby Danmark Email: bfni@dtu.dk Dagens emner 5.1 og 5.2 Ligefordeling med to

Læs mere

Landmålingens fejlteori - Lektion 2 - Transformation af stokastiske variable

Landmålingens fejlteori - Lektion 2 - Transformation af stokastiske variable Landmålingens fejlteori Lektion 2 Transformation af stokastiske variable - kkb@math.aau.dk http://people.math.aau.dk/ kkb/undervisning/lf12 Institut for Matematiske Fag Aalborg Universitet 1/31 Repetition:

Læs mere

CIVILINGENIØREKSAMEN Side?? af?? sider. Skriftlig prøve, den: 16. december 2004 Kursus nr : (navn) (underskrift) (bord nr)

CIVILINGENIØREKSAMEN Side?? af?? sider. Skriftlig prøve, den: 16. december 2004 Kursus nr : (navn) (underskrift) (bord nr) CIVILINGENIØREKSAMEN Side?? af?? sider Skriftlig prøve, den: 6. december 2004 Kursus nr : 02405 Kursus navn: Sandsynlighedsregning Tilladte hjælpemidler: Alle Dette sæt er besvaret af: (navn) (underskrift)

Læs mere

Kvantitative Metoder 1 - Forår Dagens program

Kvantitative Metoder 1 - Forår Dagens program Dagens program Kontinuerte fordelinger Simultane fordelinger Kovarians og korrelation Uafhængighed Betingede fordelinger - Middelværdi og varians - Sammenhæng med uafhængighed 1 Figur 1: En tæthedsfunktion

Læs mere

Kvantitative Metoder 1 - Forår Dagens program

Kvantitative Metoder 1 - Forår Dagens program Dagens program Kontinuerte fordelinger Ventetider i en Poissonproces Beskrivelse af kontinuerte fordelinger: - Median og kvartiler - Middelværdi - Varians Simultane fordelinger 1 Ventetider i en Poissonproces

Læs mere

Statistik Lektion 3. Simultan fordelte stokastiske variable Kontinuerte stokastiske variable Normalfordelingen

Statistik Lektion 3. Simultan fordelte stokastiske variable Kontinuerte stokastiske variable Normalfordelingen Statistik Lektion 3 Simultan fordelte stokastiske variable Kontinuerte stokastiske variable Normalfordelingen Repetition En stokastisk variabel er en funktion defineret på S (udfaldsrummet, der antager

Læs mere

Kvantitative Metoder 1 - Forår 2007

Kvantitative Metoder 1 - Forår 2007 Dagens program Kapitel 4: Diskrete fordelinger Afsnit 4.1-4.2, 4.7: Bernoulli fordeling Binomial fordeling Store Tals Lov (Laws of Averages, Laws of Large Numbers) 1 Bernoulli fordeling Kvantitative Metoder

Læs mere

MM501/MM503 forelæsningsslides

MM501/MM503 forelæsningsslides MM501/MM503 forelæsningsslides uge 50, 2009 Produceret af Hans J. Munkholm 1 Separabel 1. ordens differentialligning En generel 1. ordens differentialligning har formen dx Eksempler = et udtryk, der indeholder

Læs mere

Sandsynlighed og Statistik

Sandsynlighed og Statistik 36 Sandsynlighed og Statistik 6.1 Indledning Denne note beskriver de statistiske begreber og formler som man med rimelig sandsynlighed kan komme ud for i eksperimentelle øvelser. Alt er yderst korfattet,

Læs mere

Statistik og Sandsynlighedsregning 2

Statistik og Sandsynlighedsregning 2 Statistik og Sandsynlighedsregning 2 Lineære transformationer, middelværdi og varians Helle Sørensen Uge 8, onsdag SaSt2 (Uge 8, onsdag) Lineære transf. og middelværdi 1 / 15 Program I formiddag: Fordeling

Læs mere

Sandsynlighedsregning 4. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 4. forelæsning Bo Friis Nielsen Sandsynlighedsregning 4. forelæsning Bo Friis Nielsen Anvendt Matematik og Computer Science Danmarks Tekniske Universitet 2800 Kgs. Lyngby Danmark Email: bfni@dtu.dk Dagens emner: Afsnit 3.3 og 3.4 Varians/standardafvigelse

Læs mere

Sandsynlighedsregning 4. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 4. forelæsning Bo Friis Nielsen Sandsynlighedsregning 4. forelæsning Bo Friis Nielsen Anvendt Matematik og Computer Science Danmarks Tekniske Universitet 2800 Kgs. Lyngby Danmark Email: bfni@dtu.dk Dagens emner: Afsnit 3.3 og 3.4 Varians/standardafvigelse

Læs mere

Sandsynlighedsregning 4. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 4. forelæsning Bo Friis Nielsen Sandsynlighedsregning 4. forelæsning Bo Friis Nielsen Anvendt Matematik og Computer Science Danmarks Tekniske Universitet 2800 Kgs. Lyngby Danmark Email: bfni@dtu.dk Dagens emner: Afsnit 3.3 og 3.4 Varians/standardafvigelse

Læs mere

Områdeestimator. X x. P θ. ν θ. Θ C(x) En områdeestimator er en afbildning C : X P(Θ). . p.1/30

Områdeestimator. X x. P θ. ν θ. Θ C(x) En områdeestimator er en afbildning C : X P(Θ). . p.1/30 Områdeestimator X (Ω, F) (X, E) x 01 01 P θ ν θ θ Θ 0000 1111 000000 111111 0000 1111 0000 1111 C(x) En områdeestimator er en afbildning C : X P(Θ).. p.1/30 Konfidensområde En områdestimator C : X P(Θ)

Læs mere

Oversigt. Kursus Introduktion til Statistik. Forelæsning 4: Kapitel 5: Kontinuerte fordelinger

Oversigt. Kursus Introduktion til Statistik. Forelæsning 4: Kapitel 5: Kontinuerte fordelinger Kursus 02402 Introduktion til Statistik Forelæsning 4: Kapitel 5: Kontinuerte fordelinger Rune Haubo B Christensen (based on slides by Per Bruun Brockhoff) DTU Compute, Statistik og Dataanalyse Bygning

Læs mere

CIVILINGENIØREKSAMEN Side 1 af 16 sider. Skriftlig prøve, den: 16. december 2010 Kursus nr : (navn) (underskrift) (bord nr)

CIVILINGENIØREKSAMEN Side 1 af 16 sider. Skriftlig prøve, den: 16. december 2010 Kursus nr : (navn) (underskrift) (bord nr) CIVILINGENIØREKSAMEN Side 1 af 16 sider Skriftlig prøve, den: 16. december 2010 Kursus nr : 02405 Kursus navn: Sandsynlighedsregning Tilladte hjælpemidler: Alle Dette sæt er besvaret af: (navn) (underskrift)

Læs mere

Landmålingens fejlteori Lektion 1 Det matematiske fundament Kontinuerte stokastiske variable

Landmålingens fejlteori Lektion 1 Det matematiske fundament Kontinuerte stokastiske variable Landmålingens fejlteori Lektion 1 Det matematiske fundament Kontinuerte stokastiske variable - rw@math.aau.dk Institut for Matematiske Fag Aalborg Universitet 1/41 Landmålingens fejlteori - lidt om kurset

Læs mere

Definition. Definitioner

Definition. Definitioner Definition Landmålingens fejlteori Lektion Diskrete stokastiske variable En reel funktion defineret på et udfaldsrum (med sandsynlighedsfordeling) kaldes en stokastisk variabel. - kkb@math.aau.dk http://people.math.aau.dk/

Læs mere

Kvantitative Metoder 1 - Efterår Dagens program

Kvantitative Metoder 1 - Efterår Dagens program Dagens program Approksimation af binomialsandsynligheder, Afsnit 4.5 Multinomial fordeling, Afsnit 4.8 Negativ binomialfordeling, Afsnit 4.4 Poisson fordeling og Poisson process, Afsnit 4.6 Kontinuerte

Læs mere

Forelæsning 2: Kapitel 4, Diskrete fordelinger

Forelæsning 2: Kapitel 4, Diskrete fordelinger Kursus 02402 Introduktion til Statistik Forelæsning 2: Kapitel 4, Diskrete fordelinger Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Betingning med en uafhængig variabel

Betingning med en uafhængig variabel Betingning med en uafhængig variabel Sætning Hvis X er en reel stokastisk variabel med første moment og Y er en stokastisk variabel uafhængig af X, så er E(X Y ) = EX. Bevis: Observer at D σ(y ) har formen

Læs mere

Løsning til prøveeksamen 1

Løsning til prøveeksamen 1 IMM - DTU 020 Probability 2006-2-8 BFN/bfn Løsning til prøveeksamen Spørgsmål ) For en indikatorvariabel I A for hændelsen A gælder E(I A ) = P(A) (se for eksemepl side 68). Således er E(X) = P(N ) = =

Læs mere

DANMARKS TEKNISKE UNIVERSITET Side 1 af 16 sider. Skriftlig prøve, den: 28. maj 2014 Kursus nr : (navn) (underskrift) (bord nr)

DANMARKS TEKNISKE UNIVERSITET Side 1 af 16 sider. Skriftlig prøve, den: 28. maj 2014 Kursus nr : (navn) (underskrift) (bord nr) DANMARKS TEKNISKE UNIVERSITET Side af 6 sider Skriftlig prøve, den: 8. maj 04 Kursus nr : 0405 Kursus navn: Sandsynlighedsregning Varighed : 4 timer Tilladte hjælpemidler: Alle Dette sæt er besvaret af:

Læs mere

Opgaver til Matematisk Modellering 1

Opgaver til Matematisk Modellering 1 Afdeling for Teoretisk Statistik Matematisk Modellering 1 Institut for Matematiske Fag Preben Blæsild og Jan Pedersen Aarhus Universitet 30. september 2004 Opgaver til Matematisk Modellering 1 Opgave 1.

Læs mere

1/41. 2/41 Landmålingens fejlteori - Lektion 1 - Kontinuerte stokastiske variable

1/41. 2/41 Landmålingens fejlteori - Lektion 1 - Kontinuerte stokastiske variable Landmålingens fejlteori - lidt om kurset Landmålingens fejlteori Lektion 1 Det matematiske fundament Kontinuerte stokastiske variable - rw@math.aau.dk Institut for Matematiske Fag Aalborg Universitet Kursusholder

Læs mere

Opgaver i sandsynlighedsregning

Opgaver i sandsynlighedsregning Afdeling for Teoretisk Statistik STATISTIK Institut for Matematiske Fag Preben Blæsild Aarhus Universitet 9. januar 005 Opgaver i sandsynlighedsregning Opgave Lad A og B være hændelser således at P(A)

Læs mere

DANMARKS TEKNISKE UNIVERSITET Side 1 af 18 sider. Skriftlig prøve, den: 16. december 2003 Kursus nr : (navn) (underskrift) (bord nr)

DANMARKS TEKNISKE UNIVERSITET Side 1 af 18 sider. Skriftlig prøve, den: 16. december 2003 Kursus nr : (navn) (underskrift) (bord nr) DANMARKS TEKNISKE UNIVERSITET Side 1 af 18 sider Skriftlig prøve, den: 16. december 2003 Kursus nr : 02405 Kursus navn: Sandsynlighedsregning Varighed : 4 timer Tilladte hjælpemidler: Alle Dette sæt er

Læs mere

Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved

Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved Matematisk Modellering 1 (reeksamen) Side 1 Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved { 1 hvis x {1, 2, 3}, p X (x) = 3 0 ellers,

Læs mere

Program. Statistik og Sandsynlighedsregning 2 Normalfordelingens venner og bekendte. χ 2 -fordelingen

Program. Statistik og Sandsynlighedsregning 2 Normalfordelingens venner og bekendte. χ 2 -fordelingen Program Statitik og Sandynlighedregning 2 Normalfordelingen venner og bekendte Helle Sørenen Uge 9, ondag Reultaterne fra denne uge kal bruge om arbejdhete i projekt 1. I formiddag: χ 2 -fordelingen, t-fordelingen,

Læs mere

Landmålingens fejlteori - Lektion 2. Sandsynlighedsintervaller Estimation af µ Konfidensinterval for µ. Definition: Normalfordelingen

Landmålingens fejlteori - Lektion 2. Sandsynlighedsintervaller Estimation af µ Konfidensinterval for µ. Definition: Normalfordelingen Landmålingens fejlteori Lektion Sandsynlighedsintervaller Estimation af µ Konfidensinterval for µ - rw@math.aau.dk Institut for Matematiske Fag Aalborg Universitet En stokastisk variabel er en variabel,

Læs mere

Binomial fordeling. n f (x) = p x (1 p) n x. x = 0, 1, 2,...,n = x. x x!(n x)! Eksempler. Middelværdi np og varians np(1 p). 2/

Binomial fordeling. n f (x) = p x (1 p) n x. x = 0, 1, 2,...,n = x. x x!(n x)! Eksempler. Middelværdi np og varians np(1 p). 2/ Program: 1. Repetition af vigtige sandsynlighedsfordelinger: binomial, (Poisson,) normal (og χ 2 ). 2. Populationer og stikprøver 3. Opsummering af data vha. deskriptive størrelser og grafer. 1/29 Binomial

Læs mere

Praktiske ting og sager: Forelæsninger tirsdag og torsdag kl i Kirkesalen, Studiestræde 38 Øvelser

Praktiske ting og sager: Forelæsninger tirsdag og torsdag kl i Kirkesalen, Studiestræde 38 Øvelser Uge 36 Velkommen tilbage Praktiske ting og sager: Forelæsninger tirsdag og torsdag kl. -2 i Kirkesalen, Studiestræde 38 Øvelser Hold -4 og 6: mandag og onsdag kl. 8-; start 3. september Hold 5: tirsdag

Læs mere

DANMARKS TEKNISKE UNIVERSITET Side 1 af 17 sider. Skriftlig prøve, den: 30. maj 2016 Kursus nr : (navn) (underskrift) (bord nr)

DANMARKS TEKNISKE UNIVERSITET Side 1 af 17 sider. Skriftlig prøve, den: 30. maj 2016 Kursus nr : (navn) (underskrift) (bord nr) DANMARKS TEKNISKE UNIVERSITET Side af 7 sider Skriftlig prøve, den: 0. maj 206 Kursus nr : 02405 Kursus navn: Sandsynlighedsregning Varighed : 4 timer Tilladte hjælpemidler: Alle Dette sæt er besvaret

Læs mere

DANMARKS TEKNISKE UNIVERSITET Side 1 af 18 sider. Skriftlig prøve, den: 4. juni 2013 Kursus nr : (navn) (underskrift) (bord nr)

DANMARKS TEKNISKE UNIVERSITET Side 1 af 18 sider. Skriftlig prøve, den: 4. juni 2013 Kursus nr : (navn) (underskrift) (bord nr) DANMARKS TEKNISKE UNIVERSITET Side af 8 sider Skriftlig prøve, den: 4. juni 20 Kursus nr : 0240 Kursus navn: Sandsynlighedsregning Varighed : 4 timer Tilladte hjælpemidler: Alle Dette sæt er besvaret af:

Læs mere

Binomialfordelingen. Binomialfordelingen. Binomialfordelingen

Binomialfordelingen. Binomialfordelingen. Binomialfordelingen Statistik og Sandsynlighedsregning 1 MS kapitel 3 Susanne Ditlevsen Institut for Matematiske Fag Email: susanne@math.ku.dk http://math.ku.dk/ susanne Definition 3.2.1 Lad X 1, X 2,..., X n være uafhængige

Læs mere

Integration m.h.t. mål med tæthed

Integration m.h.t. mål med tæthed Integration m.h.t. mål med tæthed Sætning (EH 11.7) Lad ν = f µ på (X, E). For alle g M + (X, E) gælder at gdν = g f dµ. Bevis: Standardbeviset: 1) indikatorfunktioner 2) simple funktioner 3) M + -funktioner.

Læs mere

standard normalfordelingen på R 2.

standard normalfordelingen på R 2. Standard normalfordelingen på R 2 Lad f (x, y) = 1 x 2 +y 2 2π e 2. Vi har så f (x, y) = 1 2π e x2 2 1 2π e y2 2, og ved Tonelli f dm 2 = 1. Ved µ(a) = A f dm 2 defineres et sandsynlighedsmål på R 2 målet

Læs mere

Kvantitative Metoder 1 - Forår 2007

Kvantitative Metoder 1 - Forår 2007 Dagens program Kapitel 4: Diskrete fordelinger Hypergeometrisk fordeling, Afsnit 4.3 Multinomial fordeling, Afsnit 4.8 Geometrisk fordeling og Negativ binomialfordeling (Inverse Sampling), Afsnit 4.4 Approksimation

Læs mere

Integration m.h.t. mål med tæthed

Integration m.h.t. mål med tæthed Integration m.h.t. mål med tæthed Sætning (EH 11.7) Lad ν = f µ på (X, E). For alle g M + (X, E) gælder at gdν = g f dµ. Bevis: Standardbeviset: 1) indikatorfunktioner 2) simple funktioner 3) M + -funktioner.

Læs mere

Module 1: Lineære modeller og lineær algebra

Module 1: Lineære modeller og lineær algebra Module : Lineære modeller og lineær algebra. Lineære normale modeller og lineær algebra......2 Lineær algebra...................... 6.2. Vektorer i R n................... 6.2.2 Regneregler for vektorrum...........

Læs mere

En oversigt over udvalgte kontinuerte sandsynlighedsfordelinger

En oversigt over udvalgte kontinuerte sandsynlighedsfordelinger Institut for Økonomi Aarhus Universitet Statistik 1, Forår 2001 Allan Würtz 4. April, 2001 En oversigt over udvalgte kontinuerte sandsynlighedsfordelinger Uniform fordeling Benyttes som model for situationer,

Læs mere

Statistik og Sandsynlighedsregning 2

Statistik og Sandsynlighedsregning 2 Statistik og Sandsynlighedsregning 2 Uafhængighed og reelle transformationer Helle Sørensen Uge 8, mandag SaSt2 (Uge 8, mandag) Uafh. og relle transf. 1 / 16 Program I dag: Uafhængighed af kontinuerte

Læs mere

Hvad skal vi lave i dag?

Hvad skal vi lave i dag? p. 1/2 Hvad skal vi lave i dag? Eksempler på stokastiske variable. Ventetid på krone ved møntkast. Antal plat ved n kast. Antal radioaktive henfald. Ventetiden på en flyulykke. Udtrækning af tal i et interval.

Læs mere

Produkt og marked - matematiske og statistiske metoder

Produkt og marked - matematiske og statistiske metoder Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 19, 2016 1/26 Kursusindhold: Sandsynlighedsregning og lagerstyring

Læs mere

Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo

Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet Sandsynlighedsregning og lagerstyring Normalfordelingen og Monte

Læs mere

Antag X 1, X 2,..., X n er n uafhængige stokastiske variable, hvor Var(X 1 )=σ 2 1,..., Var(X n )=σ 2 n.

Antag X 1, X 2,..., X n er n uafhængige stokastiske variable, hvor Var(X 1 )=σ 2 1,..., Var(X n )=σ 2 n. Simple fejlforplantningslov Landmålingens fejlteori Lektion 6 Den generelle fejlforplantningslov Antag X, X,, X n er n uafhængige stokastiske variable, hvor Var(X )σ,, Var(X n )σ n Lad Y g(x, X,, X n ),

Læs mere

Oversigt. Kursus Introduktion til Statistik. Forelæsning 2: Kapitel 4, Diskrete fordelinger. Per Bruun Brockhoff. Stokastiske Variable

Oversigt. Kursus Introduktion til Statistik. Forelæsning 2: Kapitel 4, Diskrete fordelinger. Per Bruun Brockhoff. Stokastiske Variable Kursus 02402 Introduktion til Statistik Forelæsning 2: Kapitel 4, Diskrete fordelinger Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo

Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet Sandsynlighedsregning og lagerstyring Normalfordelingen og Monte

Læs mere

Institut for Matematiske Fag Aalborg Universitet Specielt: Var(aX) = a 2 VarX 1/40. Lad X α, X β og X γ være stokastiske variable (vinkelmålinger) med

Institut for Matematiske Fag Aalborg Universitet Specielt: Var(aX) = a 2 VarX 1/40. Lad X α, X β og X γ være stokastiske variable (vinkelmålinger) med Repetition: Varians af linear kombination Landmålingens fejlteori Lektion 5 Fejlforplantning - rw@math.aau.dk Antag X 1, X,..., X n er uafhængige stokastiske variable, og Y er en linearkombination af X

Læs mere