Sandsynlighedsregning og statistisk

Størrelse: px
Starte visningen fra side:

Download "Sandsynlighedsregning og statistisk"

Transkript

1 Figur : J. C. F. Guss Sdsylighedsregig og sttistisk Peter Hremoës Niels Brock 6. pril

2 Idledig Dette hæfte er lvet som supplemet til. udgve f boge Mt B. Der er lgt vægt på t give e bedre forståelse for de metoder der beyttes i deskriptiv sttistik på Mt C iveu. Edvidere er der lgt vægt på t teorie for kotiuerte fordeliger k ses som e vedelse f B- og A-iveuets differetil- og itegrlregig. Itegrler over ubegræsede itervller I det itegrlregig vi stiftede bekedtskb med i Mt A-boge blev lle bestemte itegrler tget over begræsedede itervller. M k imidlertid ofte også tge itegrler over ubegræsede itervller. Eksempel Ld t > være et reelt tl. D et t x dx = = - x - t ]t = t. Vi ser t t er e voksede fuktio og t t derfor dx =. x - for t. Vi skriver Defiitio Ld f være e kotiuert fuktio. Hvis b f x dx hr e græseværdi for b gåede mod uedelig, så beteges dee græseværdi f x dx. Tilsvrede defieres b - f x dx som de evetuelle græseværdi f b f x dx for gåede mod -. Hvis b f x dx er defieret og hr e græsevær for - b gåede mod uedelig, så beteges dee græseværdi med f x dx. - 3 Kotiuerte fordeliger Defiitio 3 Ld X være e stokstisk vribel. D er fordeligsfuktioe F for X defieret ved F x = P X x. Fordeligsfuktioe svrer til de sumkurver vi hr teget i deskriptiv sttistik. Tilfældige tl k geereres ved t tste MATH] 7:Probbility 4:rd Returerer et tilfældigt helt tl hvis e størsteværdi gives eller et ligefordelt decimltl fr hvis itet rgumet itstes. Sytx: rd rdstørste tl 6:rdNorm Returerer et tl tilfældige ormlfordelte tl. Sytx: rdnormtl tilfældige tl, middelværdi, spredig 6.3 TI-spire I beregigsdele trykkes på meukppe. Her k bldt det vælges: 5: Sdsylighed 5: Fordeliger : Norml Pdf Et vidue kommer frem, hvor m idtster x-værdi, middelværdi og σ spredig. Et yt vidue kommer frem med givelse f værdie f tæthedsfuktioe. 5: Sdsylighed \blcktrigleright 5: Fordeliger \blcktrigleright : Norml Cdf Et vidue kommer frem, hvor m idtster Nedre græse og Øvre græse itervledepukter, smt middelværdi og σ spredig. Uedelig k idtstes ved t hete teget fr liste f specilteg. Et yt vidue kommer frem med givelse f sdsylighede for t e ormlfordelt vribel med de give prmetre ligger i itervllet. 5: Sdsylighed \blcktrigleright 5: Fordeliger \blcktrigleright 3: Ivers orml Et vidue kommer frem, hvor m idtster Arel sdsylighed, middelværdi og σ spredig. Et yt vidue kommer frem med givelse f de tilsvrede frktil. 5: Sdsylighed \blcktrigleright 4: Tilfældig \blcktrigleright : Tl Returerer kommdoe rd som fugerer som på TI-89. 5: Sdsylighed \blcktrigleright 4: Tilfældig \blcktrigleright : Heltl Returerer kommdoe rdit som fugerer som på TI-89. 5: Sdsylighed \blcktrigleright 4: Tilfældig \blcktrigleright 4: Norml Returerer kommdoe rdnorm som fugerer som på TI-89.

3 ormlcdfx, middelværdi, spredig ormlormlcdf edre græse, øvre græse, middelværdi, spredig 3: ivnorm Returerer frktile svrede til et et tl mellem og. Sytx: ivnormsdsylighed ivnormsdsylighed, middelværdi, spredig Der er følgede kommdoer til t geerere tilfældige tl. Tst MATH > PRB : rd Returere et ligefordelt tl mellem i ; ] Sytx: rd rdnorm Returerer et tilfældige ormlfordelte tl. Sytx: rdnormmiddelværdi, spredig, tl tilfældige tl rdit Returerer et tilfældigt helt tl. Sytks: rditmidste tl, største tl 6. TI-89/Voyge M k klde kommdoer svrede til kommdoere i TI-83+/TI-84+ ved hete dem fr ktloget eller skrive heholdsvis: tistt.ormpdf tistt.ormcdf tistt.ivnorm Altertivt k m strte pplictioe list/stt og vælge F5 Distr :Shde :Shde Norml Et vidue kommer frem, hvor m idtster Upper vlue og Lower vlue itervledepuktere, middelværdi og σ spredig. E grf bliver vist med e mrkerig f det rel uder kurve m hr givet. :Iverse \blcktrigleright :Iverse Norml... Et vidue kommer frem, hvor m idtster Are sdsylighed, middelværdi og σ spredig. Et yt vidue kommer frem med givelse f de tilsvrede frktil. 3:Norml Pdf... Et vidue kommer frem, hvor m idtster x, middelværdi og σ spredig. Et yt vidue kommer frem med givelse f værdie f tæthedsfuktioe. 4:Norml Cdf... Et vidue kommer frem, hvor m idtster Upper vlue og Lower vlue itervledepuktere, middelværdi og σ spredig. I stedet for og k m bruge - 99 og 99. Et yt vidue kommer frem med givelse f sdsylighede for t e ormlfordelt vribel med de give prmetre ligger i itervllet. 9 Eksempel 4 E stokstisk vribel X siges t være ekspoetilfordelt med middelværdi λ dersom des fordeligsfuktio er givet ved { for x, F x = e -x/λ for x >. E såd ekspoetilfordelig giver f.eks. e god beskrivelse for vetetide for et rdioktivt hefld f et tom. Vi lægger mærke til t fordeligsfuktioe er e voksede fuktio og t lim F x =, x lim F x =. x Hvis vi keder fordeligsfuktioe for e stokstisk vribel, k vi berege sdsylighede for t de stokstiske vribel ligger i et vilkårligt itervl idet der gælder t P < X b = F b F. Defiitio 5 Hvis fordeligsfuktioe F for e stokstisk vribel X er e kotiuert fuktio, så siges X t være e kotiuert vribel. Hvis F er differetibel, så kldes fuktioe f x = F x for de stokstiske vribels tæthedsfuktio. Tæthedsfuktioe svrer til de pide- og søjledigrmmer vi hr teget i deskriptiv sttistik. Eksempel 6 Tæthedsfuktioe for e ekspoetilfordelig er givet ved fx f x = F x { for x, = λ e x/λ for x >. Hvis f er tæthed for e stokstisk vribel med for delig F, så er F stmfuktio til f og der gælder t F t = t 4 f x dx. 6 8

4 Edvidere gælder der t P < X b = F b F = b f x dx. Sdsylighede for t < X b svrer derfor til relet uder grfe for f mellem og b. For t e fuktio f k være e tæthedsfuktio skl der gælde, t f x og t f x dx =. De fleste kotiuerte fordeliger er defieret ud fr deres tæthedsfuktio. Eksempel 7 Ved e ligefordelig i itervllet ; b] forstå e fordelig med tæthed { for x / ; b], f x = b for x ; b]. Vi checker t der ret fktisk er tle om e sdsylighedsfordelig ved t udrege b b dx = x b ]b =. Når vi teger søjledigrmmet for grupperede dt, tger vi fktisk t dt er ligefordelt i hvert delitervl. Ligesom for diskrete vrible k m berege middelværdi og vris for kotiuert fordeliger. Dette sker ved t ersttte summer med itegrler. Defiitio 8 Ld X være e stokstisk vribel med tæthedsfuktio f. D defieres middelværdie f X ved E X] = x f x dx. Hvis de stokstiske vribel X hr middelværdi, så er vrise f X defieret ved Spredige er givet ved V r X = x f x dx. σ X = V r X /. Eksempel 9 Ekspoetilfouktioe med tæthed e x/ for x hr middelværdi x f x dx = = + x dx + x e x/ x e x/ dx. dx Bevis Vi vil tge t ormlfordelige hr middelværdi og vris σ. D gælder X i X ] X E X ] X + X X X ] ] E X ] + E X E X X ]. Vi beytter u t E ] X = σ og E X = σ / smt t X = X i til t få ] ] X] E Xi] σ + σ ] E X X = E i = = E = ] E X ] + E X E X X ] = σ + σ E X Xi = σ + σ E XXi] = σ + σ E X ] + E i= = σ + σ σ = = σ. 6 Normlfordeliger og tilfældige tl på lommeregere 6. TI-83+/84+ Meue for ormlfordeliger k fides uder DISTR d VARS. Bemærk t middelværdi og spredig hr defultværdier og svrede til e stdrdormlfordelig. : ormlpdf Returerer sdsylighedstæthede i et givet pukt. Sytx: ormlpdfx ormlpdf x, middelværdi, spredig : ormlcdf Returerer værdie f fordeligsfuktioe i et givet pukt. M k vælge både t give e edre og e øvre græse. I stedet for - og k m bruge 99 og 99 Sytx: ormlcdfx 3 8

5 og E ] X] = E X i = E X i ] = =. Her lves substitutio t = x/, hvilket ved brug f prtiel itegrtio giver x e x/ dx = = = t e t dt t t ] + = t] =. e t dt t dt Vi k udrege vrise f geemsittet. Atg t de stokstiske vribel hr middelværdi. Så gælder t V r X i = V r X i = V r X i = σ = σ. Derfor er geemsittets spredig σ/ /. Det k vises t stikprøves geemsit er det estimt som hr de midste vris. Derfor vil geemsittet være vores foretruke estimt for middelværdie. Som estimt f e ormlfordeligs vris kue m tge stikprøves vris Xi X, me det viser sig t dette er et skævt estimt, som er systemtisk for lille. Hvis stikprøvestørrelse f.eks. er =, så vil X = X og så bliver Xi X = X X =. Sætig 6 Et cetrlt estimt f vrise f e ormlfordelig er givet ved for. Xi X For t berege vrise lves ige substitutioe t = x/, hvilket giver x e x/ dx = t e t dt = t e t dt. Det sidste itegrl bereges ved t lve prtiel itegrtio gge: t e t dt = t t] = + = = t e t dt t t ] + e t dt = + t] = + = 4. Derfor er vrise 4 og spredige er. t t dt t dt Øvelse Bereg middelværdi, vris og spredig f e ligefordelig. Eksempel E stoktisk vribel med sdsylighedstæthed xe x for x siges t hve e Gmmfordelt. fx

6 Vis t dette er e sdsylighedstæthed. b Bestem middelværdie f dee Gmmfordelig. c Bestem vrise og spredige f dee Gmmfordelig. Det k vises t e x dx = π /. Derfor er φ x = e x π / e tæthedsfuktio. De tilsvrede fordelig kldes e stdrd-ormlfordelig. Det k vises t de hr middelværdi og vris. Fordeligsfuktioe for stdrd ormlfordelige beteges Φ. D det ikke er muligt t opskrive et beregigsudtryk for Φ, k værdier f Φ ku bereges ved umerisk itegrtio. Hvis tæthedsfuktioe i stedet er e x σ π / σ så er der tle om e ormlfordelig med middelværdi og spredig σ. D X er ufhægig f X er X ufhægig f X og der gælder t Derfor er E X X = E X E X V r X + X = E 5 Estimtio = E X E E X E = =. X + E = V r X + V r X. X Atg f vi om ogle dt e stikprøve ved t de er ormlfordelte med spredig me vi ikke keder ormlfordeliges middelværdi. Opgve er ud fr dt t give et bud på værdie f ormlfordeliges middelværdi. y y.3 Defiitio 3 Et estimt er e fuktio, der til e vilkårlig stikprøve kytter et reelt tl. Et estimt er med dre ord e stokstisk vribel defieret ud fr e stikprøve. 4 Middelværdi og vris Ude bevis æver vi t hvis X og X er to stokstiske vrible så gælder der t E X + X = E X + E X. Hvis edvidere X og X er ufhægige så gælder E X X = E X E X. Sætig Ld X og X være ufhægige stokstiske vrible. D gælder t V r X + X = V r X + V r X. Bevis Ld og betege middelværdiere f X og X. D er middelværdie f X + X lig +. Derfor gælder V r X + X = E X + X +.5 x 5 Om et estimt er godt eller skidt er e de sg. Hvis vi f.eks. skl estimere middelværdie f e ormlfordelig, k vi bruge stikprøves medi. Hvis stikprøve ellers er stor, vil medie ligge tæt på middelværdie, så medie er e udemærket estimtor for middelværdie. I stedet for medie kue m tge de største værdi i stikprøve. Dee vil oplgt give et dårligt estimt f middelværdie, og jo større stikprøve er jo dårligere vil estimtet være. Defiitio 4 Et estimt siges t være cetrlt dersom middelværdie f estimtet er de sde værdi. Hvis et estimt ikke er cetrlt, siges det t være skævt. Medie er et cetrlt estimt f middelværdie, mes mksimum er et skævt estmt, idet mksimum i middel giver e for høj værdi. Sætig 5 Stikprøves geemsit giver et cetrlt estimt f ormlfordeliges middelværdi. Bevis Ld X, X,..., X betege e stikprøve. D er X = Xi = E = E = E X + X X + X + X X X + E X + E X X. 5 6

Sandsynlighedsregning og statistisk. J. C. F. Gauss ( ) Peter Haremoës Niels Brock. 9. april 2013

Sandsynlighedsregning og statistisk. J. C. F. Gauss ( ) Peter Haremoës Niels Brock. 9. april 2013 Sdsylighedsregig og sttistisk J. C. F. Guss 777 855 Peter Hremoës Niels Brock 9. pril 3 Idledig Dette hæfte er lvet som supplemet til. udgve f boge Mt B. Der er lgt vægt på t give e bedre forståelse for

Læs mere

Statistik Lektion 4. Kovarians og korrelation Mere om normalfordelingen Den centrale grænseværdi sætning Stikprøvefordelingen

Statistik Lektion 4. Kovarians og korrelation Mere om normalfordelingen Den centrale grænseværdi sætning Stikprøvefordelingen Sttistik Lektio 4 Kovris og korreltio Mere om ormlfordelige De cetrle græseværdi sætig Stikprøvefordelige Repetitio: Kotiuerte stokstiske vrible f (x) er e sdsylighedstæthedsfuktio, hvis f ( x) 0 for lle

Læs mere

Matematik A. Højere handelseksamen. Formelsamling

Matematik A. Højere handelseksamen. Formelsamling Mtemtik A Højere hdelseksme Formelsmlig Mtemtik A Højere hdelseksme Formelsmlig Forfttere: Jytte Meli og Ole Dlsgrd April 09 ISBN: 978-87-603-339-5 (web udgve) Dee udgve f Mtemtisk formelsmlig htx A-iveu

Læs mere

Opgave 1. a) f : [a, b] R er en begrænset funktion for hvilken. A ε = {x [a + ε, b] f(x) 0}

Opgave 1. a) f : [a, b] R er en begrænset funktion for hvilken. A ε = {x [a + ε, b] f(x) 0} Opgve ) f : [, b] R er e begræset fuktio for hvilke er edelig for ethvert < ε < b. Vi skl vise t f er itegrbel og t A ε = { [ + ε, b] } d =. Vi bemærker først t f er itegrbel på [, b] hvis og ku hvis de

Læs mere

a b cos. n=1 er positiv på N. Vi kan nu benytte sammenligningskriteriet (sætning ) og sammenligne 2a sin ( )

a b cos. n=1 er positiv på N. Vi kan nu benytte sammenligningskriteriet (sætning ) og sammenligne 2a sin ( ) Opgve Vi skl bestemme de tlpr (, for hvilke række b cos = er koverget. Først beytter vi divergeskriteriet (sætig 2..4) til t kræve t leddee må gå mod ul for gåede mod uedelig. Dette giver os t = b cos()

Læs mere

Analyse 1, Prøve maj Lemma 2. Enhver konstant funktion f : R R, hvor f(x) = a, a R, er kontinuert.

Analyse 1, Prøve maj Lemma 2. Enhver konstant funktion f : R R, hvor f(x) = a, a R, er kontinuert. Alyse, Prøve. mj 9 Alle hevisiger til TL er hevisiger til Klkulus 6, Tom Lidstrøm. Direkte opgvehevisiger til Klkulus er givet med TLO, ellers er lle hevisiger til steder i de overordede fsit. Hevises

Læs mere

Matematikkens mysterier - på et højt niveau. 1. Integralregning

Matematikkens mysterier - på et højt niveau. 1. Integralregning Mtemtikkes mysterier - på et højt iveu f Keeth Hse. Itegrlregig Hvd er relet f de skrverede puktmægde? . Itegrlregig Idhold. Stmfuktioer og det uestemte itegrl. Regeregler for det uestemte itegrl 7 Prtiel

Læs mere

Kap. 1: Integralregning byggende på stamfunktioner.

Kap. 1: Integralregning byggende på stamfunktioner. - - Kp. : Itegrlregig yggede på stmfuktioer... Specielle egesker ved fuktioer. Defiitio... E fuktio f siges t være egræset i et itervl I, hvis f er defieret i itervllet, og hvis der fides to tl k og K,

Læs mere

Projekt 3.7. En algebraisk tilgang til udvidelsen af potensbegrebet

Projekt 3.7. En algebraisk tilgang til udvidelsen af potensbegrebet Hvd er tetik? ISBN 978877879 Projekter: Kitel. Projekt.7.E lgebrisk tilgg til udvidelse f otesbegrebet Projekt.7. E lgebrisk tilgg til udvidelse f otesbegrebet Ld i det følgede tllet være et ositivt tl.

Læs mere

Projekt 3.7. En algebraisk tilgang til udvidelsen af potensbegrebet

Projekt 3.7. En algebraisk tilgang til udvidelsen af potensbegrebet Hvd er tetik? C ISBN 97 887 7 79 Projekter: Kitel. Projekt.7.E lgebrisk tilgg til udvidelse f otesbegrebet Projekt.7. E lgebrisk tilgg til udvidelse f otesbegrebet Ld i det følgede tllet være et ositivt

Læs mere

Kap 1. Procent og Rentesregning

Kap 1. Procent og Rentesregning Idhold Kp. Procet og Retesregig.... Regig med proceter.... Reteformle.... Geemsitlig retefod (vækstrte)... Kp Opsprigs- og gældsuiteter...5. Auiteter...5. Sumformel for e kvotietrække...5. Opsprigsuitet...6.

Læs mere

MATEMATISK FORMELSAMLING

MATEMATISK FORMELSAMLING MATEMATISK FORMELSAMLING GUX Grøld Mtemtisk formelsmlig til C-iveu, GUX Grøld Deprtemetet for uddelse 05 Redktio: Rsmus Aderse, Jes Thostrup MtemtiskformelsmligtilC-iveu GUX Grøld FORORD Dee formelsmlig

Læs mere

Komplekse tal Matematik og naturfag i verdensklasse, 2004. Komplekse tal

Komplekse tal Matematik og naturfag i verdensklasse, 2004. Komplekse tal Komplekse tl Mtemtik og turfg i verdesklsse, 004 Komplekse tl Dette mterile er ereget til udervisig i mtemtik i gymsiet. Der forudsættes kedsk til løsig f degrdsligiger, trigoometri og e lille smule vektorregig.

Læs mere

Finitisme og Konstruktivisme. 22. November 2010

Finitisme og Konstruktivisme. 22. November 2010 Fiitisme og Kostruktivisme 22. November 2010 Frktler Hilbert Mdelbrot Feigebum Lorez Lorez-Ligigere σ = 10 β = 8/3 ρ =28 Logistisk vækst x -> rx(1-x) Mdelbrots frktl z -> P c (z) = z 2 +c 0-> P c (0) ->P

Læs mere

Differentiation af potensfunktioner

Differentiation af potensfunktioner Hvd er mtemti? B, i-bog ISBN 978 87 766 494 3 Hjemmesideevisig: Differetitio f potesfutioer, Kpitel 4, side 76 Differetitio f potesfutioer. Pscls tret og biomilformle Vi strter med t mide om t poteser

Læs mere

Den flerdimensionale normalfordeling

Den flerdimensionale normalfordeling De flerdimesioale ormalfordelig Stokastiske vektorer Ved e stokastisk vektor skal vi forstå e vektor, hvor de ekelte kompoeter er sædvalige stokastiske variable. For de stokastiske vektor Y = Y,..., Y

Læs mere

Projekt 3.1 Potensbegrebet og geometriske rækker

Projekt 3.1 Potensbegrebet og geometriske rækker Hvd er mtemtik? ISBN 97887766879 Projekter: pitel. Projekt. Potesbegrebet og geometriske rækker Projekt. Potesbegrebet og geometriske rækker (Vi tger i det følgede udggspukt i kpitlfremskrivigsformle:

Læs mere

Matematisk formelsamling. stx A-niveau

Matematisk formelsamling. stx A-niveau Mtemtisk formelsmlig st A-iveu mj 08 Dee udgve f Mtemtisk formelsmlig st A-iveu er udgivet f Udervisigsmiisteriet og gjort tilgægelig på uvm.dk. Formelsmlige er udrejdet i et smrejde mellem Mtemtiklærerforeige

Læs mere

Sandsynlighedsregning og statistisk

Sandsynlighedsregning og statistisk Sadsylighedsregig og statistisk J. C. F. Gauss 777 855) Peter Haremoës Niels Brock 2. april 23 Idledig Dette hæfte er lavet som supplemet til 2. udgave af boge Mat B. Der er lagt vægt på at give e bedre

Læs mere

Definition: Normalfordelingen. siges at være normalfordelt med middelværdi µ og varians σ 2, hvor µ og σ er reelle tal og σ > 0.

Definition: Normalfordelingen. siges at være normalfordelt med middelværdi µ og varians σ 2, hvor µ og σ er reelle tal og σ > 0. Repetitio: Normalfordelige Ladmåliges fejlteori Lektio Trasformatio af stokastiske variable - kkb@math.aau.dk http://people.math.aau.dk/ kkb/udervisig/lf13 Istitut for Matematiske Fag Aalborg Uiversitet

Læs mere

Bogstavregning - supplerende eksempler. Reduktion... 54 b Ligninger... 54 d

Bogstavregning - supplerende eksempler. Reduktion... 54 b Ligninger... 54 d Mtetik på AVU Eksepler til iveu F, E og D Bogstvregig - supplerede eksepler Reduktio... Ligiger... d Bogstvregig Side Mtetik på AVU Eksepler til iveu F, E og D Reduktio M gger to preteser ed hide ved -

Læs mere

Projekt 4.1 Potensbegrebet og geometriske rækker

Projekt 4.1 Potensbegrebet og geometriske rækker Hvd er mtemtik? C, i-bog ISBN 978 87 766 499 8 Projekter: pitel 4 Projekt 4. Potesbegrebet og geometriske rækker Vi hr defieret e ekspoetiel vækst, som e vækstmodel, hvor de fhægige vribel, - værdie, fremskrives

Læs mere

Lidt Om Fibonacci tal

Lidt Om Fibonacci tal Lidt om Fioi tl Lidt Om Fioi tl Idhold. Defiitio f Fioi tllee.... Kivl... 3. Telefokæder....3 4. E formel for Fioi tllee...4 Ole Witt-Hse 008 Lidt om Fioi tl. Defiitio f Fioi tllee Fioi tllee er opkldt

Læs mere

Analyse 1, Prøve maj 2009

Analyse 1, Prøve maj 2009 Aalyse, Prøve 5. maj 009 Alle hevisiger til TL er hevisiger til Kalkulus (006, Tom Lidstrøm). Direkte opgavehevisiger til Kalkulus er agivet med TLO, ellers er alle hevisiger til steder i de overordede

Læs mere

Projekt 9.10 Differentiation af potensfunktioner ved hjælp af binomialformlen

Projekt 9.10 Differentiation af potensfunktioner ved hjælp af binomialformlen Projet 9.1 Differetitio f potesfutioer ved jælp f iomilformle 1. Pscls tret og iomilformle Vi strter med t mide om t poteser f toleddede størrelser, de såldte iomer, udreges ved jælp f Pscls tret, idet

Læs mere

Uge 37 opgaver. Opgave 1. Svar : Starter med at definere sup (M) og inf (M) :

Uge 37 opgaver. Opgave 1. Svar : Starter med at definere sup (M) og inf (M) : Uge 37 opgaver Opgave Svar : a) Starter med at defiere sup (M) og if (M) : Kigge u på side 3 i kompedie og aveder aksiom (.3) Kotiuitetsaksiomet A = x i x 2 < 2 Note til mig selv : Har søgt på ordet (iequalities)

Læs mere

Grundlæggende matematiske begreber del 1 Mængdelære Talmængder Tal og regneregler Potensregneregler Numerisk værdi Gennemsnit

Grundlæggende matematiske begreber del 1 Mængdelære Talmængder Tal og regneregler Potensregneregler Numerisk værdi Gennemsnit Grudlæggede mtemtiske begreber del 1 Mægdelære Tlmægder Tl og regeregler Potesregeregler Numerisk værdi Geemsit x-klssere Gmmel Hellerup Gymsium 1 Idholdsfortegelse MÆNGDELÆRE... 3 TAL... 9 De turlige

Læs mere

Kommentarer til VARIABLE

Kommentarer til VARIABLE Kommetrer til Fglige mål Kpitlet lægger op til, t elevere lærer vribelbegrebet t kede som et effektivt værktøj til t skbe sig overblik over komplekse problemstilliger. k udpege kostter og vrible med tilhørede

Læs mere

antal gange krone sker i første n kast = n

antal gange krone sker i første n kast = n 1 Uge 15 Teoretisk Statistik, 5. april 004 1. Store tals lov Eksempel: møtkast Koverges i sadsylighed Tchebychevs ulighed Sætig: Store tals lov. De cetrale græseværdisætig 3. Approksimatio af sadsyligheder

Læs mere

FUNKTIONER del 2 Rentesregning Eksponentielle udviklinger Trigonometriske funktioner Potensfunktioner Polynomier

FUNKTIONER del 2 Rentesregning Eksponentielle udviklinger Trigonometriske funktioner Potensfunktioner Polynomier FUNKTIONER del Retesregig Ekspoetielle udvikliger Trigoometriske fuktioer Potesfuktioer Polyomier -klssere Gmmel Hellerup Gymsium Idhold RENTESREGNING... 3 Kotiuert rete... EKSPONENTIELLE UDVIKLINGER...

Læs mere

Sammensætning af regnearterne - supplerende eksempler

Sammensætning af regnearterne - supplerende eksempler Mtetik på AVU Ekseplet til iveu F, E og D Sesætig f regertere - supplerede eksepler Poteser... Rødder... d 0-tls-poteser... e Sesætig f regertere Side Mtetik på AVU Ekseplet til iveu F, E og D Sesætig

Læs mere

Velkommen. Program. Statistik og Sandsynlighedsregning 2 Sandsynlighedstætheder og kontinuerte fordelinger på R. Praktiske ting og sager

Velkommen. Program. Statistik og Sandsynlighedsregning 2 Sandsynlighedstætheder og kontinuerte fordelinger på R. Praktiske ting og sager Program Statistik og Sadsylighedsregig 2 Sadsylighedstætheder og kotiuerte fordeliger på R Helle Sørese Uge 6, madag Velkomme I dag: Praktiske bemærkiger Hvad skal vi lave på SaSt2? Sadsylighedstætheder

Læs mere

Grundlæggende matematiske begreber del 1 Mængdelære Talmængder Tal og regneregler Potensregneregler Numerisk værdi

Grundlæggende matematiske begreber del 1 Mængdelære Talmængder Tal og regneregler Potensregneregler Numerisk værdi Grudlæggede mtemtiske begreber del Mægdelære Tlmægder Tl og regeregler Potesregeregler Numerisk værdi x-klssere Gmmel Hellerup Gymsium Idholdsfortegelse MÆNGDELÆRE... 3 TAL... 9 De turlige tl... 9 De hele

Læs mere

Grundlæggende matematiske begreber del 1

Grundlæggende matematiske begreber del 1 Grudlæggede mtemtiske begreber del 1 Mægdelære Tlmægder Tl og regeregler Potesregeregler Numerisk værdi Geemsit x-klssere Gmmel Hellerup Gymsium December 2018 ; Michel Szymski ; mz@ghg.dk 1 Idholdsfortegelse

Læs mere

24. januar Epidemiologi og biostatistik. Forelæsning 1 Uge 1, tirsdag. Niels Trolle Andersen, Afdelingen for Biostatistik.

24. januar Epidemiologi og biostatistik. Forelæsning 1 Uge 1, tirsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Epidemiologi og biostatistik. Forelæsig Uge, tirsdag. Niels Trolle Aderse, Afdelige for Biostatistik. Geerelt om kurset: - Formål - Forelæsiger - Øvelser - Forelæsigsoter - Bøger - EpiBasic: http://www.biostat.au.dk/teachig/software

Læs mere

cos(t), v(t) = , w(t) = e t, z(t) = e t.

cos(t), v(t) = , w(t) = e t, z(t) = e t. Aalyse Øvelser Rasmus Sylvester Bryder. og. oktober 3 Bevis for Cotiuity lemma Theorem. Geemgås af Michael Staal-Olse. Bevis for Lemma.8 Dee har vi faktisk allerede vist; se Opgave 9.5 fra Uge. Det er

Læs mere

Potens regression med TI-Nspire

Potens regression med TI-Nspire Potensvækst og modellering - Mt-B/A 2.b 2007-08 Potens regression med TI-Nspire Vi tger her udgngspunkt i et eksempel med tovværk, hvor mn får oplyst en tbel over smmenhængen mellem dimeteren (xdt) i millimeter

Læs mere

Notater til Analyse 1

Notater til Analyse 1 Alyse 1 Jørge Vesterstrøm Forår 2004 Notter til Alyse 1 Idhold Forord 1 1. Om dobbeltsummer 1 2. Eksistes f e ikke målelig mægde 2 3. Bevis for e del f Prop. 3.15 3 4. Riem-itegrlet og trppefuktioer 4

Læs mere

Program. Middelværdi af Y = t(x ) Transformationssætningen

Program. Middelværdi af Y = t(x ) Transformationssætningen Program Statistik og Sadsylighedsregig 2 Trasformatio af kotiuerte fordeliger på R, flerdimesioale kotiuerte fordeliger, mere om ormalfordelige Helle Sørese Uge 7, osdag I formiddag: Opfølgig på trasformatiossætige

Læs mere

hvor i er observationsnummeret, som løber fra 1 til stikprøvestørrelsen n, X i

hvor i er observationsnummeret, som løber fra 1 til stikprøvestørrelsen n, X i Normalfordeliger For at e stokastisk variabel X ka være ormalfordelt, skal X agive værdie af e eller ade målig, f.eks. tid, lægde, vægt, beløb osv. Notatioe er: Xi ~ N( μ, σ hvor i er observatiosummeret,

Læs mere

Sandsynlighedsregning 9. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 9. forelæsning Bo Friis Nielsen Dages eer afsit 5.3 og 5.4 Siultae kotiuerte fordeliger P(X dx,y dy = f(x,ydxdy Sadsylighedsregig 9. forelæsig Bo Friis Nielse Mateatik og Coputer Sciece Daarks Tekiske Uiversitet 8 Kgs. Lygby Daark Eail:

Læs mere

Spørgsmål 3 (5 %) Bestem sandsynligheden for at et tilfældigt valgt vindue har en fejl ved listerne, når man ved at der er fejl i glasset.

Spørgsmål 3 (5 %) Bestem sandsynligheden for at et tilfældigt valgt vindue har en fejl ved listerne, når man ved at der er fejl i glasset. STATISTIK Skriftlig evaluerig, 3. semester, madag de 30. auar 006 kl. 9.00-3.00. Alle hælpemidler er tilladt. Opgaveløsige forsyes med av og CPR-r. OPGAVE Ved e produktio af viduer er der mulighed for,

Læs mere

Supplerende noter II til MM04

Supplerende noter II til MM04 Supplerede oter II til MM4 N.J. Nielse 1 Uiform koverges af følger af fuktioer Vi starter med følgede defiitio: Defiitio 1.1 Lad S være e vilkårlig mægde og (X, d et metrisk rum. E følge (f af fuktioer

Læs mere

Udskiftning af et tag antages at vare 2-6 dage. Denne tidsperiode antages at være fastlagt ved følgende symmetriske tæthedsfunktion

Udskiftning af et tag antages at vare 2-6 dage. Denne tidsperiode antages at være fastlagt ved følgende symmetriske tæthedsfunktion STATISTIK Sriftlig evluerig, 3. semester, torsdg de. ur l. 9.-3.. Alle hælpemidler er tilldt. Opgveløsige forses med v og CPR-r. OPGAVE Udsiftig f et tg tges t vre -6 dge. Dee tidsperiode tges t være fstlgt

Læs mere

Grundlæggende matematiske begreber del 1 Mængdelære Talmængder Tal og regneregler Potensregneregler Numerisk værdi Gennemsnit

Grundlæggende matematiske begreber del 1 Mængdelære Talmængder Tal og regneregler Potensregneregler Numerisk værdi Gennemsnit Grudlæggede mtemtiske begreber del Mægdelære Tlmægder Tl og regeregler Potesregeregler Numerisk værdi Geemsit x-klssere Gmmel Hellerup Gymsium Idholdsfortegelse MÆNGDELÆRE... 3 TAL... 9 De turlige tl...

Læs mere

Hvordan Leibniz opfandt integralregningen

Hvordan Leibniz opfandt integralregningen Hvord Leiiz opdt itegrlregige 0 Krste Juul EglÄdere Isc Newto (6-) opdt i 66 itegrlregige. Tskere Gottried Wilhelm Leiiz (66-6) opdt i 6 itegrlregige. Ige dem oetliggjorde deres opidelse med det smme.

Læs mere

1 Punkt- og intervalestimation Punktestimatorer: Centralitet(bias) og efficiens... 2

1 Punkt- og intervalestimation Punktestimatorer: Centralitet(bias) og efficiens... 2 Idhold 1 Pukt- og itervalestimatio 2 1.1 Puktestimatorer: Cetralitet(bias) og efficies.................... 2 2 Kofidesiterval 3 2.1 Kofidesiterval for adel................................ 4 2.2 Kofidesiterval

Læs mere

Sandsynlighedsregning 9. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 9. forelæsning Bo Friis Nielsen Dages eer afsit 5.3 og 5.4 Siultae kotiuerte fordeliger P(X dx,y dy f(x,ydxdy Sadsylighedsregig 9. forelæsig Bo Friis Nielse Mateatik og Coputer Sciece Daarks Tekiske Uiversitet 8 Kgs. Lygby Daark Eail:

Læs mere

Statistiske test. Efteråret 2010 Jens Friis, AAU. Hjemmeside :

Statistiske test. Efteråret 2010 Jens Friis, AAU. Hjemmeside : Statistiske test Efteråret 00 Jes Friis, AAU Hjemmeside : http://akaaudk/jfj Kotiuerte fordeliger Defiitio: Tæthedsfuktio E sadsylighedstæthedsfuktio på R er e itegrabel fuktio f : R [0; [ hvor f d = Defiitio:

Læs mere

Diskrete og kontinuerte stokastiske variable

Diskrete og kontinuerte stokastiske variable Diskrete og kotiuerte stokastiske variable Beroulli Biomial fordelig Negativ biomial fordelig Hypergeometrisk fordelig Poisso fordelig Kotiuerte stokastiske variable Uiform fordelig Ekspoetial fordelig

Læs mere

Matematisk modellering og numeriske metoder. Lektion 17

Matematisk modellering og numeriske metoder. Lektion 17 Mtemtisk modellering og numeriske metoder Lektion 1 Morten Grud Rsmussen 8. november, 1 1 Numerisk integrtion og differentition [Bogens fsnit 19. side 84] 1.1 Grundlæggende om numerisk integrtion Vi vil

Læs mere

Pointen med Integration

Pointen med Integration Pointen med Integrtion Frnk Nsser 20. pril 2011 c 2008-2011. Dette dokument må kun nvendes til undervisning i klsser som bonnerer på MtBog.dk. Se yderligere betingelser for brug her. Bemærk: Dette er en

Læs mere

DATV: Introduktion til optimering og operationsanalyse, 2007. Følsomhed af Knapsack Problemet

DATV: Introduktion til optimering og operationsanalyse, 2007. Følsomhed af Knapsack Problemet DATV: Itroduktio til optimerig og operatiosaalyse, 2007 Følsomhed af Kapsack Problemet David Pisiger, Projektopgave 1 Dette er de første obligatoriske projektopgave på kurset DATV: Itroduktio til optimerig

Læs mere

Matematikkens mysterier - på et obligatorisk niveau. 7. Ligninger, polynomier og asymptoter

Matematikkens mysterier - på et obligatorisk niveau. 7. Ligninger, polynomier og asymptoter Matematikkes mysterier - på et obligatorisk iveau af Keeth Hase 7. Ligiger, polyomier og asymptoter Hvad er e asymotote? Og hvorda fides de? 7. Ligiger, polyomier og asymptoter Idhold 7.0 Idledig 7.1 Udsag

Læs mere

Statistik 8. gang 1 KONFIDENSINTERVALLER. Konfidensintervaller: kapitel 11. Valg og test af fordelingsfunktion

Statistik 8. gang 1 KONFIDENSINTERVALLER. Konfidensintervaller: kapitel 11. Valg og test af fordelingsfunktion Statistik 8. gag 1 KONIDENSINTERVALLER Kofidesitervaller: kapitel 11 Valg og test af fordeligsfuktio Statistik 8. gag 11. KONIDENS INTERVALLER Et kofides iterval udtrykker itervallet hvori de rigtige værdi

Læs mere

29. januar Epidemiologi og biostatistik Forelæsning 2 Uge 1, torsdag 2. februar 2006 Michael Væth, Afdeling for Biostatistik.

29. januar Epidemiologi og biostatistik Forelæsning 2 Uge 1, torsdag 2. februar 2006 Michael Væth, Afdeling for Biostatistik. Epidemiologi og biostatistik Forelæsig Uge 1, torsdag. februar 006 ichael Væth, Afdelig for Biostatistik. Sammeligig af to middelværdier sikkerhedsitervaller statistisk test Sammeligig af to proportioer

Læs mere

Praktisk info. Statistisk analyse af en enkelt stikprøve: kendt eller ukendt varians Sandsynlighedsregning og Statistik (SaSt) I tirsdags.

Praktisk info. Statistisk analyse af en enkelt stikprøve: kendt eller ukendt varians Sandsynlighedsregning og Statistik (SaSt) I tirsdags. Praktisk ifo Liste med rettelser og meigsforstyrrede trykfejl i DS på Absalo. Statistisk aalyse af e ekelt stikprøve: kedt eller ukedt varias Sadsylighedsregig og Statistik (SaSt) Helle Sørese Projekt

Læs mere

Sandsynlighedsteori 1.2 og 2 Uge 5.

Sandsynlighedsteori 1.2 og 2 Uge 5. Istitut for Matematiske Fag Aarhus Uiversitet De 27. jauar 25. Sadsylighedsteori.2 og 2 Uge 5. Forelæsiger: Geemgage af emere karakteristiske fuktioer og Mometproblemet afsluttes, og vi starter på afsittet

Læs mere

Integralregning. 2. del. 2006 Karsten Juul

Integralregning. 2. del. 2006 Karsten Juul Integrlregning del ( ( 6 Krsten Juul Indhold 6 Uestemt integrl8 6 Sætning om eksistens stmunktioner 8 6 Oplæg til "regneregler or integrl"8 6 Regneregler or uestemt integrl 9 68 Foreredelse til "integrtion

Læs mere

Løsningsforslag til skriftlig eksamen i Kombinatorik, sandsynlighed og randomiserede algoritmer (DM528)

Løsningsforslag til skriftlig eksamen i Kombinatorik, sandsynlighed og randomiserede algoritmer (DM528) Løsigsforslag til skriftlig eksame i Kombiatorik, sadsylighed og radomiserede algoritmer (DM58) Istitut for Matematik & Datalogi Syddask Uiversitet Madag de 3 Jauar 011, kl. 9 13 Alle sædvalige hjælpemidler

Læs mere

Pointen med Integration

Pointen med Integration Pointen med Integrtion Frnk Vill 3. oktober 2012 2008-2012. IT Teching Tools. ISBN-13: 978-87-92775-00-9. Dette dokument må kun nvendes til undervisning i klsser som bonnerer på MtBog.dk. Se yderligere

Læs mere

Baggrundsnote til sandsynlighedsregning

Baggrundsnote til sandsynlighedsregning Baggrudsote til sadsylighedsregig Kombiatorik. Multiplikatiospricippet E mægde beståede af forskellige elemeter kaldes her e -mægde. Elemetere i e m-mægde og elemetere i e -mægde ka parres på i alt m forskellige

Læs mere

Projekt 4.8 De reelle tal og 1. hovedsætning om kontinuerte funktioner

Projekt 4.8 De reelle tal og 1. hovedsætning om kontinuerte funktioner Projekter: Kapitel 4 Projekt 48 De reelle tal og hovedsætig om kotiuerte fuktioer Projekt 48 De reelle tal og hovedsætig om kotiuerte fuktioer Kotiuitet og kotiuerte fuktioer Ord som kotiuert og kotiuerlig

Læs mere

DATV: Introduktion til optimering og operationsanalyse, 2007. Bin Packing Problemet

DATV: Introduktion til optimering og operationsanalyse, 2007. Bin Packing Problemet DATV: Itroduktio til optimerig og operatiosaalyse, 2007 Bi Packig Problemet David Pisiger, Projektopgave 2 Dette er de ade obligatoriske projektopgave på kurset DATV: Itroduktio til optimerig og operatiosaalyse.

Læs mere

Vejledende opgavebesvarelser

Vejledende opgavebesvarelser Vejledede opgavebesvarelser 1. Atal hæder er lig med K(52,5), altså 2598960. Ved brug af multiplikatiospricippet ka atal hæder med 3 ruder og 2 spar udreges som K(13, 3) K(13, 2), hvilket giver 22308.

Læs mere

vejer (med fortegn). Det vil vi illustrere visuelt og geometrisk for (2 2)-matricer og (3 3)-matricer i enote 6.

vejer (med fortegn). Det vil vi illustrere visuelt og geometrisk for (2 2)-matricer og (3 3)-matricer i enote 6. enote 5 enote 5 Determiater I dee enote ser vi på kvadratiske matricer. Deres type er altså for 2, se enote 4. Det er e fordel, me ikke absolut ødvedigt, at kede determiatbegrebet for (2 2)-matricer på

Læs mere

Økonometri 1. Definition og motivation. Definition og motivation. Dagens program. Den multiple regressionsmodel 15. februar 2006

Økonometri 1. Definition og motivation. Definition og motivation. Dagens program. Den multiple regressionsmodel 15. februar 2006 Dages program Økoometri De multiple regressiosmodel 5. februar 006 Emet for dee forelæsig er de multiple regressiosmodel (Wooldridge kap 3.-3.3+appedix E.-E.) Defiitio og motivatio Fortolkig af parametree

Læs mere

Matematik A. Studentereksamen. Forberedelsesmateriale. Forsøg med digitale eksamensopgaver med adgang til internettet.

Matematik A. Studentereksamen. Forberedelsesmateriale. Forsøg med digitale eksamensopgaver med adgang til internettet. Matematik A Studetereksame Forsøg med digitale eksamesopgaver med adgag til iterettet Forberedelsesmateriale Vejledede opgave Forår 0 til stx-a-net MATEMATIK Der skal afsættes 6 timer af holdets sædvalige

Læs mere

Sandsynlighedsregning 5. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 5. forelæsning Bo Friis Nielsen Dgens emner fsnit 3.5 og 4. oissonfordelingen Sndsynlighedsregning 5. forelæsning Bo Friis Nielsen Mtemtik og Computer Science Dnmrks Tekniske Universitet 800 Kgs. Lyngby Dnmrk Emil: bfni@dtu.dk Kontinuerte

Læs mere

J 5aaa-Tfahhabhanfabna : aa-tfahhabhaø+ab+a. øt4bb4nøbfa. i 5 5abf7øTøh.4.7j9a. a a a

J 5aaa-Tfahhabhanfabna : aa-tfahhabhaø+ab+a. øt4bb4nøbfa. i 5 5abf7øTøh.4.7j9a. a a a M ic4btf+c S C J 5-Tfhhbhfb : -Tfhhbhø+b+ 5 S 5 S 5 j xbø4bt J x y 54 5F4b.1 5F4bf C : P ( C S S 35 øbf5p S 1 2 S D S S 5, C : P b+5 S øbf S S 5 g C : P S S 4 S 5, b+1 5b1 : 8 4 S 1 5 S 5hTF 5 øbh1 5 j

Læs mere

Vejledende besvarelser til opgaver i kapitel 15

Vejledende besvarelser til opgaver i kapitel 15 Vejledede besvarelser til opgaver i apitel 5 Opgave a) De teststatistier, ma aveder til at teste om to middelværdier er es, består af et estimat på forselle mellem middelværdiere,, divideret med et udtry

Læs mere

Estimation ved momentmetoden. Estimation af middelværdiparameter

Estimation ved momentmetoden. Estimation af middelværdiparameter Statistik og Sadsylighedsregig 1 STAT kapitel 4.2 4.3 Susae Ditlevse Istitut for Matematiske Fag Email: susae@math.ku.dk http://math.ku.dk/ susae Estimatio ved mometmetode Idimellem ka det være svært (eller

Læs mere

MOGENS ODDERSHEDE LARSEN. Fourieranalyse

MOGENS ODDERSHEDE LARSEN. Fourieranalyse MOGENS ODDERSHEDE LARSEN Fourieraalyse. udgave 7 FORORD Dette otat giver e kort idførig i teorie for fourierrækker og fouriertrasformatio. Det forudsættes i dette otat, at ma har rådighed over matematiklommeregere

Læs mere

30. august Epidemiologi og biostatistik. Forelæsning 3 Uge 2, torsdag d. 8. september 2005 Michael Væth, Afdeling for Biostatistik.

30. august Epidemiologi og biostatistik. Forelæsning 3 Uge 2, torsdag d. 8. september 2005 Michael Væth, Afdeling for Biostatistik. 30. august 005 Epidemiologi og biostatistik. Forelæsig 3 Uge, torag d. 8. september 005 Michael Væth, Afdelig for Biostatistik. Mere om kategoriske data Test for uafhægighed I RxC tabeller Test for uafhægighed

Læs mere

Rettevejledning til Økonomisk Kandidateksamen 2004II, Økonometri 1

Rettevejledning til Økonomisk Kandidateksamen 2004II, Økonometri 1 Rettevejledig til Økoomisk Kdidteksme 2004II, Økoometri Vurderigsgrudlget er selve opgvebesvrelse og bilget, iklusive det fleverede SAS progrm. Mterilet som er fleveret på diskette/cd bedømmes som såd

Læs mere

Introduktion til uligheder

Introduktion til uligheder Itroduktio til uligheder, marts 0, Kirste Rosekilde Itroduktio til uligheder Dette er e itroduktio til ogle basale uligheder om det aritmetiske geemsit, det geometriske geemsit, det harmoiske geemsit og

Læs mere

StudyGuide til Matematik B.

StudyGuide til Matematik B. StudyGuide til Matematik B. OVERSIGT. Dee study guide ideholder følgede afsit Geerel itroduktio. Emeliste. Eksame. Bilag 1: Udervisigsmiisteriets bekedtgørelse for matematik B. Bilag 2: Bilag 3: Uddrag

Læs mere

Dæmonen. Efterbehandlingsark C. Spørgsmål til grafen over højden.

Dæmonen. Efterbehandlingsark C. Spørgsmål til grafen over højden. Efterbehndlingsrk C Dæmonen Nedenfor er vist to grfer for bevægelsen i Dæmonen. Den første grf viser hvor mnge gnge du vejer mere eller mindre end din normle vægt. Den nden grf viser højden. Spørgsmål

Læs mere

Udtrykkelige mængder og Cantorrækker

Udtrykkelige mængder og Cantorrækker Udtrykkelige mægder og Catorrækker Expressible sets ad Cator series Matematisk speciale Simo Bruo Aderse 20303870 Vejleder: Simo Kristese Istitut for Matematik Aarhus Uiversitet 208 Abstract This thesis

Læs mere

Undersøgelse af numeriske modeller

Undersøgelse af numeriske modeller Udersøgelse af umeriske modeller Formål E del af målsætige med dette delprojekt er at give kedskab til de begræsiger, fejl og usikkerheder, som optræder ved modellerig. I de forbidelse er følgede udersøgelse

Læs mere

Sandsynlighedsfordelinger for kontinuerte data på interval/ratioskala

Sandsynlighedsfordelinger for kontinuerte data på interval/ratioskala Statistik for biologer 005-6, modul 5: Sadsylighedsfordeliger for kotiuerte data på iterval/ratioskala M6, slide Gægse matematiske sadsylighedsfordeliger: Diskrete data: De positive biomialfordelig Poisso-fordelige

Læs mere

Maja Tarp AARHUS UNIVERSITET

Maja Tarp AARHUS UNIVERSITET AARHUS UNIVERSITET Maja Tarp AARHUS UNIVERSITET HVEM ER JEG? Maja Tarp, 4 år Folkeskole i Ulsted i Nordjyllad Studet år 005 fra Droiglud Gymasium Efter gymasiet: Militæret Australie Startede på matematik

Læs mere

Dagens program. Estimation: Kapitel Eksempler på middelrette og/eller konsistente estimator (de sidste fra sidste forelæsning)

Dagens program. Estimation: Kapitel Eksempler på middelrette og/eller konsistente estimator (de sidste fra sidste forelæsning) Dages program Estimatio: Kapitel 9.4-9.7 Eksempler på middelrette og/eller kosistete estimator (de sidste fra sidste forelæsig) Ko desiterval for store datasæt kap. 9.4 Ko desiterval for små datasæt kap.

Læs mere

Formelsamling for matematik niveau B og A på højere handelseksamen

Formelsamling for matematik niveau B og A på højere handelseksamen Frmelsmlg fr mtemtk veu B g A på højere hdelseksme Udervsgsmsteret Erhvervssklefdelge 997 Frmelsmlg fr mtemtk veu B g A på højere hdelseksme Udgvet f Udervsgsmsteret, Erhvervssklefdelge 997. udgve,. plg.

Læs mere

Fejlforplantning. Landmålingens fejlteori - Lektion 9 - Repetition - Fejlforplantning. Kovariansmatrix. Kovariansmatrix

Fejlforplantning. Landmålingens fejlteori - Lektion 9 - Repetition - Fejlforplantning. Kovariansmatrix. Kovariansmatrix Fejlforplntning Lndmålingens fejlteori Lektion 9 Repetition - Fejlforplntning Ksper K Berthelsen - kk@mthudk http://peoplemthudk/ kk/undervisning/lf11 Institut for Mtemtiske Fg Alorg Universitet Lndmåling

Læs mere

STATISTISKE GRUNDBEGREBER

STATISTISKE GRUNDBEGREBER MOGENS ODDERSHEDE LARSEN STATISTISKE GRUNDBEGREBER 18 15 1 9 6 3 0 Histogram for ph 6,9 7,1 7,3 7,5 7,7 7,9 ph 13 udgave 013 FORORD Der er i dee bog søgt at give letlæst og askuelig fremstillig af de statistiske

Læs mere

Meningsmålinger KLADDE. Thomas Heide-Jørgensen, Rosborg Gymnasium & HF, 2017

Meningsmålinger KLADDE. Thomas Heide-Jørgensen, Rosborg Gymnasium & HF, 2017 Meigsmåliger KLADDE Thomas Heide-Jørgese, Rosborg Gymasium & HF, 2017 Idhold 1 Meigsmåliger 2 1.1 Idledig................................. 2 1.2 Hvorda skal usikkerhede forstås?................... 3 1.3

Læs mere

Hovedpointer fra SaSt

Hovedpointer fra SaSt Hovedpoiter fra SaSt Marti Nørgaard Peterse 13. februar 2018 Følgede geemgår udvalgte begreber fra E Itroduktio til Sadsylighedsregig af M. Sørese (9. udgave), Itroductio to Likelihood-based Estimatio

Læs mere

13. februar Resumé: En statistisk analyse resulterer ofte i : Et estimat ˆ θ med en tilhørende se( ˆ θ )

13. februar Resumé: En statistisk analyse resulterer ofte i : Et estimat ˆ θ med en tilhørende se( ˆ θ ) 3. februar 003 Epidemiologi og biostatistik. Uge, torag d. 3. februar 003 Morte Frydeberg, Istitut for Biostatistik. Type og type fejl Nogle specielle metoder: Test i RxC tabeller Test i x tabeller Fishers

Læs mere

x-klasserne Gammel Hellerup Gymnasium

x-klasserne Gammel Hellerup Gymnasium SANDSYNLIGHEDSREGNING OG KOMBINATORIK x-klassere Gammel Hellerup Gymasium Idholdsfortegelse SANDSYNLIGHEDSREGNING... 3 SANDSYNLIGHEDSFELT... 3 DE STORE TALS LOV... 4 Sadsyligheder og frekveser:... 4 STOKASTISK

Læs mere

Supplement til Kreyszig

Supplement til Kreyszig Supplemet til Kreyszig Forelæsigsoter til Matematik F Idholdsfortegelse side 1. Numerisk itegratio. Fejlvurderig af trapez og Simpso algoritmere 1. Dekompoerig af brøker (Laplace trasformatio) 3. Permutatioer

Læs mere

Anvendt Statistik Lektion 3. Punkt- og intervalestimater Konfidensintervaller Valg af stikprøvestørrelse

Anvendt Statistik Lektion 3. Punkt- og intervalestimater Konfidensintervaller Valg af stikprøvestørrelse Avedt Statistik Lektio 3 Pukt- og itervalestimater Kofidesitervaller Valg af stikprøvestørrelse Pukt- og itervalestimater: Motivatio Motiverede eksempel: I e udersøgelse er adele af rygere 0.27. Det aslås

Læs mere

Projekt 9.1 Regneregler for stokastiske variable middelværdi, varians og spredning

Projekt 9.1 Regneregler for stokastiske variable middelværdi, varians og spredning Hvad er matematik? Projekter: Kaitel 9 Projekt 9 Regeregler for stokastiske variable middelværdi, varias og sredig Projekt 9 Regeregler for stokastiske variable middelværdi, varias og sredig Sætig : Regeregler

Læs mere

Introduktion til uligheder

Introduktion til uligheder Itroduktio til uligheder Dette er e itroduktio til ogle basale uligheder om det aritmetiske geemsit, det geometriske geemsit, det harmoiske geemsit og det kvadratiske geemsit. Først skal vi ved fælles

Læs mere

Motivation. En tegning

Motivation. En tegning Motivatio Scatter-plot at det mådelige salg mod det måedlige reklamebudget. R: plot(salg ~ budget, data = salg) Økoometri Lektio Simpel Lieær Regressio salg 400 450 500 550 20 25 30 35 40 45 50 budget

Læs mere

Matematik B-A. Trigonometri og Geometri. Niels Junge

Matematik B-A. Trigonometri og Geometri. Niels Junge Mtemtik B-A Trigonometri og Geometri Niels Junge Indholdsfortegnelse Indledning...3 Trigonometri...3 Sinusreltionen:...6 Cosinusreltionen...7 Dobbeltydighed...7 Smmendrg...8 Retvinklede treknter...8 Ikke

Læs mere

Deskriptiv teori: momenter

Deskriptiv teori: momenter Kapitel 13 Deskriptiv teori: mometer Vi vil i dette og det følgede kapitel idføre e række begreber der bruges til at beskrive sadsylighedsmål på (R, B). Samtlige begreber udspriger i e eller ade forstad

Læs mere

MM501 forelæsningsslides

MM501 forelæsningsslides MM50 forelæsningsslides uge 39, 200 Produceret f Hns J. Munkholm berbejdet f Jessic Crter Integrtion ved substitution Afsnit5.6 Ubestemte integrler s. 37-39 Reglen om differentition f en smmenst funktion

Læs mere

Skitse til notat om hvor de forskellige sandsynlighedsfordelinger kan tænkes at komme fra

Skitse til notat om hvor de forskellige sandsynlighedsfordelinger kan tænkes at komme fra E6 efterår 1999 Notat 8 Jørge Larse 12. oktober 1999 Skitse til otat om hvor de forskellige sadsylighedsfordeliger ka tækes at komme fra I statistik opererer ma i vid udstrækig med et lille atal»stadardfordeliger«.

Læs mere

... ... ... ... ... ... ... b > 0 og x > 0, vil vi kalde en potensfunktion. 492 10. Potensfunktioner

... ... ... ... ... ... ... b > 0 og x > 0, vil vi kalde en potensfunktion. 492 10. Potensfunktioner POTENSFUNKTIONER 0 49 0. Potensfunktioner POTENSFUNKTIONER DEFINITION En funktion med forskriften f( )= b hvor b > 0 og > 0 vil vi klde en potensfunktion. I MAT C kpitel så vi t hvis skl være et vilkårligt

Læs mere