Landmålingens fejlteori - Sandsynlighedsregning - Lektion 1

Størrelse: px
Starte visningen fra side:

Download "Landmålingens fejlteori - Sandsynlighedsregning - Lektion 1"

Transkript

1 Landmålingens fejlteori Sandsynlighedsregning Lektion 1 - kkb@math.aau.dk kkb/undervisning/lf10 Institut for Matematiske Fag Aalborg Universitet 23. april /28

2 Landmålingens fejlteori - lidt om kurset Kursusholder Institut for Matematiske Fag kkb@math.aau.dk Litteratur (interne L4-websider) Mats Rudemo, Statistik og sandynlighedslære med biologiske anvendelser, del 1. Grundbegreber. Poul Winding & Jens Møller Pedersen, Noter i Fejlteori. Spisesedler & Slides kkb/undervisnig/lf10 Kursusform 30 min.:repetition, 90 min.:opgaveregning, 90 min.:forelæsning. 2/28

3 Formål At give de studerende det nødvendige statistiske grundlag for: at kunne foretage kvalificerede valg af metode og instrumenter i relation til givne nøjagtighedskrav en vurdering af de udførte målingers kvalitet. Konkrete problemer som behandles i L4-projektrapporterne: Kontrol af totalstationens og andre instrumenters præcision. Udjævning af måleusikkerhed på vinkelsum. Slutfejl på højdemålinger i forbindelse med nivellement.... 3/28

4 Formål Arealet af ovenstående trekant kan bestemmes vha: A = s b s c sin α. Til at vurdere nøjagtigheden af A indgår nøjagtigheden af s b, s c og α. Fejlforplantningsloven giver et approximativt udtryk for As nøjagtighed. 4/28

5 Terminologi Gentag et forsøg n gange. U : udfaldsrum, mængden af mulige udfald. u U : et udfald. A : en hændelse, delmængde af U, A U. Hændelsen A indtræffer, hvis u A. Bemærk og U er hændelser. n A : antal gange A indtræffer. n An : relativ hyppighed for A. P(A) : sandsynlighed for A. Når n er stor, gælder der P(A) n A n. (1) De relative hyppigheder går mod P(A), når n vokser. Bemærk, de relative hyppigheder er beregnet fra data, dvs. de er observeret værdier. 5/28

6 Eksempel: Kast med symmetrisk terning. Kast n = 20 gange, og observer # øjne. Udfaldsrummet er U = {1, 2, 3, 4, 5, 6}. Observer flg. udfald 1, 3, 3, 6, 5 5, 4, 1, 2, 3 4, 5, 4, 3, 4 6, 6, 2, 4, 5. Lad hændelserne A og B være A : # øjne er lige, A = {2, 4, 6}. B : # øjne er mindre end eller lig med 4, B = {1, 2, 3, 4}. De relative frekvenser er for forskellige n: n n An n Bn /28

7 Eksempel - fortsat Dvs. P(A) = 0.5 og P(B) = Relative frekvenser n Fra symmetri argumenter ses, at sandsynlighederne er P(A) = 0.5 og P(B) = Dvs. P(A) er stabiliseret, og P(B) er næsten stabiliseret. 7/28

8 Hændelser Lad A og B være to hændelser, da betegner A B : hændelsen både A og B indtræffer, A B : hændelsen enten A, eller B (incl. både og) indtræffer, A \ B : hændelsen A, men ikke B, indtræffer, A=U \A: hændelsen A indtræffer ikke, A komplementær. Hvis A B =, så siges A og B at være uforenlige. Hvis A B, dvs. A B = A, siges A at medføre B. A A B B A A B B A A B= B A A A A\ B B A B A medfører B 8/28

9 Hændelser - eksempel fortsat Vi har U = {1, 2, 3, 4, 5, 6}, A = {2, 4, 6} og B = {1, 2, 3, 4}. Der gælder, at A B = {2,4}, A B = {1,2,3,4,6}, A \ B = {6}, A = {1, 3, 5}. Lad C være hændelsen, at # øjne er større end 4, dvs. C = {5, 6} og C og B er uforenlige. Lad D være hændelsen, at # øjne er mindre end 3, dvs. D = {1, 2} og D medfører B. 9/28

10 Definition 1 Lad U være udfaldsrummet for et forsøg. En funktion P, som til hver hændelse A U tilordner et reelt tal P(A), således at 1. 0 P(A) 1, 2. P(U) = 1, 3. P(A B) = P(A) + P(B), hvis A B =, kaldes en sandsynlighedsfordeling. P(A) kaldes sandsynligheden for hændelsen A. 10/28

11 Sætning 1 Lad A og B være to hændelser. Da gælder: 4. P(B \ A) = P(B) P(A B) 5. P(A) P(B), hvis A B 6. P( A) = 1 P(A) 7. P( ) = 0 8. P(A B) = P(A) + P(B) P(A B) U A B A B A A 11/28

12 Bevis for Sætning 1 B A Vi beviser 4. således: Idet B = (A B) (B \ A) og (A B) (B \ A) = Dermed har vi fra 3. at: P(B) = P(A B) + P(B \ A) P(B \ A) = P(B) P(A B) Tilsvarende kan 8. vises ved: Da A B = A (B \ A) og A (B \ A) =. Igen anvendes 3. til at: P(A B) = P(A) + P(B \ A). Anvendes nu 4. får vi: P(A B) = P(A) + P(B) P(A B) 12/28

13 Sætning 2 Sætning 2 generalisering af Definition 1 pkt. 3 Hvis A 1,A 2,...,A k er parvis uforenlige, så er P( k i=1a i ) = P(A 1) + + P(A k ) = kx P(A i ). i=1 Specielt hvis A i = {u i }, og A = {u 1,u 2,...,u k }, så er P(A) = P(u 1) + + P(u k ) = kx P(u i ). i=1 13/28

14 Ligefordelingen - Definition Lad U = {u 1,u 2,...,u n } bestå af n lige sandsynlige udfald P(u i ) = 1 n for i = 1, 2,..., n. Sandsynlighedsfordelingen P kaldes så en ligefordeling. Lad A U være en hændelse, og lad n(a) betegne antallet af elementer i A. Da er n(a) X P(A) = P(u i ) = i=1 n(a) X i=1 1 n = n(a) = n(a) n n(u). Kende antal elementer i en mængde. Kombinatorik (baseret på multiplikationsprincippet). 14/28

15 Ligefordelingen - eksempel Yatzy - kast med 5 symmetriske terninger. Antal mulige udfald n(u) = = 6 5. Alle udfald er lige sandsynlige, dvs. ligefordelingen P = Hændelsen A: Yatzy (fem ens). Der gælder Sandsynligheden for Yatzy er n(a)= = 6. P( Yatzy ) = n(a) n(u) = = = = Bemærk, antal elementer i U og A er fundet vha. multiplikationsprincippet. 15/28

16 Multiplikationsprincippet Sætning 3 Udfør k uafhængige operationer i en bestemt rækkefølge, hvor operation i kan udføres på n i måder, i = 1,2,...,k. Total antal måder de k operationer kan udføres på er n 1 n 2 n k. Tælletræ: Kast 3 gange med en mønt og observer plat P eller krone K. K P K P K P K P K P K P K P ialt = 8 måder. 16/28

17 Sætning 5 Antal mulige måder/kombinationer at udtage k elementer fra en mængde med n elementer: uden tilbagelægning ordnet (n) k = ) n! uordnet = n! ( n k (n k)! med tilbagelægning n k k!(n k)! - 17/28

18 Kombinatorik Lad U = {a,b,c,d} være udfaldsrummet. Da kan 2 elementer udvælges på følgende måde under forskellige udvælgelseskriterier: Uden tilbagelægning Med tilbagelægning Med hensyn til (ab) (ac) (ad) (aa) (ab) (ac) (ad) rækkefølge (ba) (bc) (bd) (ba) (bb) (bc) (bd) (ca) (cb) (cd) (ca) (cb) (cc) (cd) (da) (db) (dc) (ad) (db) (dc) (dd) Uden hensyn til (ab) (ac) (ad) rækkefølge (bc) (bc) (cd) 18/28

19 Kombinatorik Lad U = {a,b,c,d} være udfaldsrummet. Da kan 2 elementer udvælges på følgende måde under forskellige udvælgelseskriterier: Uden tilbagelægning Med tilbagelægning Med hensyn til (ab) (n) (ac) k = (4) (ad) (aa) 2 n k (ab) = 4 2 (ac) (ad) rækkefølge (ba) (bc) = 4! (bd) (ba) (bb) 2! = 16 (bc) (bd) (ca) (cb) = 12 (cd) (ca) (cb) (cc) (cd) (da) (db) (dc) (ad) (db) (dc) (dd) Uden hensyn til (ab) ( n (ac) ) ( k = 4 (ad) rækkefølge (bc) (bc) 2) = 4! (cd) 2!(4 2)! = 6 19/28

20 Eksempel Kvalitetskontrol: Betragt et vareparti med 20 enheder, hvoraf 8 defekte. Udtag 6 enheder uordnet og uden tilbagelægning. Hændelsen Antal mulige stikprøver: A : ingen defekte enheder i stikprøven.! n(u) = Antal mulige stikprøver uden defekte enheder:! n(a) = Sandsynligheden for A `12 6 P(A)= `20 = 6 12! 6! 14! 6! 6! 20! = = /28

21 Eksempel - fortsat Hændelsen B : netop 2 defekte enheder i stikprøven. Antal mulige stikprøver med netop 2 defekte enheder:!! n(b) = Sandsynligheden for B `12 ` ! 8! 6! 14! P(B) = `20 = 4! 8! 2! 6! 20! /28

22 Definition 2 Lad A og B være to hændelser, hvor P(B) > 0. Den betingede sandsynlighed for A givet B er P(A B) = P(A B). P(B) Bemærk Betinget sandsynlighed er en sandsynlighed defineret på et nyt og mindre udfaldsrum. Dvs. almindelige regneregler gælder: P(A B) + P( A B) = 1 P(A B C) = P(A C) + P(B C) P(A B C). 22/28

23 Bayes formel Beskriver forholdet mellem P(A B) og P(B A) Omskrives P(A B) = P(A B)P(B) = P(B A)P(A) P(A B) = P(B A)P(A) P(B) P(A B) = = P(B A)P(A) P(B A) + P(B A) P(B A)P(A) P(B A)P(A) + P(B A)P( A) A B 23/28

24 Eksempel Køns-fordeling i gymnasium Betingede sandsynligheder kvinder mænd mat sproglig P(mat mand) = P(mat&mand) P(mand) P(mat kvinde) = P(mat&kvinde) P(kvinde) 55/195 = ( )/195 = 73.33% 45/195 = ( )/195 = 37.5% 24/28

25 Eksempel Lungesygdomme og rygere: Iflg. The American Lung Association lider 7% af befolkningen af en lungesygdom, og 90% af disse er rygere. For folk uden lungesydomme er 25.3% rygere. Lad hændelserne A og B være givet ved Vi har A : personen har en lungesygdom. B : personen er ryger. P(A) = 0.07, P(B A) = 0.9, P(B A) = /28

26 Eksempel - fortsat Interessant at finde P(A B) = P(personen har en lungesygdom personen er ryger). Vi bruger Bayes formel Bemærk P(A B) = P(B A)P(A) P(B A)P(A) + P(B A)P( A) = ( ) = P( A B) = 1 P(A B) = Dvs. P(personen IKKE har en lungesygdom personen er ryger) = 78.9%. 26/28

27 Uafhængige hændelser Definition 3 To hændelser A og B siges at være uafhængige, hvis P(A B) = P(A)P(B). Sætning 6 Lad A og B være to hændelser, hvor P(A) > 0 og P(B) > 0. Flg. udsagn ækvivalente. A og B er uafhængige, P(A B) = P(A), P(B A) = P(B). 27/28

28 Eksempel - fortsat Lungesygdomme og rygere: Vi fandt P(A) = 0.07, P(A B) = Dvs. rygning og lungesygdomme er afhængige. 28/28

Sandsynlighedsregning og statistik

Sandsynlighedsregning og statistik og statistik Jakob G. Rasmussen, Institut for Matematiske Fag jgr@math.aau.dk Litteratur: Walpole, Myers, Myers & Ye: Probability and Statistics for Engineers and Scientists, Prentice Hall, 8th ed. Slides

Læs mere

Definition. Definitioner

Definition. Definitioner Definition Landmålingens fejlteori Lektion Diskrete stokastiske variable En reel funktion defineret på et udfaldsrum (med sandsynlighedsfordeling) kaldes en stokastisk variabel. - kkb@math.aau.dk http://people.math.aau.dk/

Læs mere

1/41. 2/41 Landmålingens fejlteori - Lektion 1 - Kontinuerte stokastiske variable

1/41. 2/41 Landmålingens fejlteori - Lektion 1 - Kontinuerte stokastiske variable Landmålingens fejlteori - lidt om kurset Landmålingens fejlteori Lektion 1 Det matematiske fundament Kontinuerte stokastiske variable - rw@math.aau.dk Institut for Matematiske Fag Aalborg Universitet Kursusholder

Læs mere

Kursusindhold: X i : tilfældig værdi af ite eksperiment. Antag X i kun antager værdierne 1, 2,..., M.

Kursusindhold: X i : tilfældig værdi af ite eksperiment. Antag X i kun antager værdierne 1, 2,..., M. Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 9, 2015 Sandsynlighedsregning og lagerstyring Normalfordelingen

Læs mere

Hvad skal vi lave i dag?

Hvad skal vi lave i dag? p. 1/15 Hvad skal vi lave i dag? Definition af sandsynlighedsrum. Egenskaber ved Sandsynlighedsmål. (Kap. 3). Fødselsdagsproblemet (supplerende eksempel 3.1). Betingede sandsynligheder og uafhængighed

Læs mere

Produkt og marked - matematiske og statistiske metoder

Produkt og marked - matematiske og statistiske metoder Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 11, 2016 1/22 Kursusindhold: Sandsynlighedsregning og lagerstyring

Læs mere

Dagens program. Afsnit 1.1-1.3 Eksperimenter med usikkerhed Sandsynlighedsmodel - Udfaldsrum - Hændelser - Sandsynligheder Eksempler

Dagens program. Afsnit 1.1-1.3 Eksperimenter med usikkerhed Sandsynlighedsmodel - Udfaldsrum - Hændelser - Sandsynligheder Eksempler Dagens program Afsnit 1.1-1.3 Eksperimenter med usikkerhed Sandsynlighedsmodel - Udfaldsrum - Hændelser - Sandsynligheder Eksempler 1 Sandsynlighedsmodel Kvantitative Metoder 1 - Efterår 2006 Eksperiment

Læs mere

Statistik. Hjemmeside: kkb. Statistik - lektion 1 p.1/22

Statistik. Hjemmeside:  kkb. Statistik - lektion 1 p.1/22 Statistik Kursets omfang: 2 ECTS Inklusiv mini-projekt! Bog: Complete Business Statistics, AD Aczel & J. Sounderpandian Software: SPSS eller Excel?? Forelæser: Kasper K. Berthelsen E-mail: kkb@math.aau.dk

Læs mere

Kursusindhold: X i : tilfældig værdi af ite eksperiment. Antag X i kun antager værdierne 1, 2,..., M.

Kursusindhold: X i : tilfældig værdi af ite eksperiment. Antag X i kun antager værdierne 1, 2,..., M. Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet March 1, 2013 Sandsynlighedsregning og lagerstyring Normalfordelingen

Læs mere

Landmålingens fejlteori - Lektion4 - Vægte og Fordeling af slutfejl

Landmålingens fejlteori - Lektion4 - Vægte og Fordeling af slutfejl Landmålingens fejlteori Lektion 4 Vægtet gennemsnit Fordeling af slutfejl - kkb@math.aau.dk http://people.math.aau.dk/ kkb/undervisning/lf13 Institut for Matematiske Fag Aalborg Universitet 1/1 Vægtet

Læs mere

Dagens program. Afsnit Diskrete stokastiske variable Sandsynlighedsfunktioner Simultane fordelinger Betingede sandsynligheder

Dagens program. Afsnit Diskrete stokastiske variable Sandsynlighedsfunktioner Simultane fordelinger Betingede sandsynligheder Dagens program Afsnit 2.1-2.3 Diskrete stokastiske variable Sandsynlighedsfunktioner Simultane fordelinger Betingede sandsynligheder 1 Stokastiske variable (diskrete) Et eksperiment med usikkerhed beskrives

Læs mere

Landmålingens fejlteori - Repetition - Fordeling af slutfejl - Lektion 8

Landmålingens fejlteori - Repetition - Fordeling af slutfejl - Lektion 8 Landmålingens fejlteori Repetition - Fordeling af slutfejl Lektion 8 - tvede@math.aau.dk http://www.math.aau.dk/ tvede/teaching/l4 Institut for Matematiske Fag Aalborg Universitet 15. maj 2008 1/13 Fordeling

Læs mere

TØ-opgaver til uge 46

TØ-opgaver til uge 46 TØ-opgaver til uge 46 Først laver vi en liste over de ligninger med mere i [ITP], der skal bruges: [1]: Ligning (2.5) på side 4. [2]: Sætning 3.1, ligning (3.3) på side 7. [3]: Sætning 3.1, ligning (3.4)

Læs mere

Modul 3: Sandsynlighedsregning

Modul 3: Sandsynlighedsregning Forskningsenheden for Statistik ST01: Elementær Statistik Bent Jørgensen Modul 3: Sandsynlighedsregning 3.1 Sandsynligheder................................... 1 3.2 Tilfældig udtrækning fra en mængde........................

Læs mere

Sandsynligheder. Udfaldsrum Ω = {ω 1,..., ω N } hvor alle udfald er lige sandsynlige, dvs. P (ω i )=1/N for alle i =1,..., N.

Sandsynligheder. Udfaldsrum Ω = {ω 1,..., ω N } hvor alle udfald er lige sandsynlige, dvs. P (ω i )=1/N for alle i =1,..., N. Dagens program Afsnit 1.4-1.6 Kombinatorik - Permutationer - Kombinationer Udtagelse af stikprøver - Population - Med og uden tilbagelægning Eksempler 1 Sandsynligheder Udfaldsrum Ω = {ω 1,..., ω N } hvor

Læs mere

Vægte motiverende eksempel. Landmålingens fejlteori - Lektion4 - Vægte og Fordeling af slutfejl. Vægtet model. Vægtrelationen

Vægte motiverende eksempel. Landmålingens fejlteori - Lektion4 - Vægte og Fordeling af slutfejl. Vægtet model. Vægtrelationen Vægte motiverende eksempel Landmålingens fejlteori Lektion 4 Vægtet gennemsnit Fordeling af slutfejl - kkb@mathaaudk Institut for Matematiske Fag Aalborg Universitet Højdeforskellen mellem punkterne P

Læs mere

Sandsynligheder. Mængder Hændelser Sandsynligheder Regler for sandsynligheder

Sandsynligheder. Mængder Hændelser Sandsynligheder Regler for sandsynligheder Sandsynligheder Mængder Hændelser Sandsynligheder Regler for sandsynligheder Sandsynligheder En sandsynlighed er et kvantitativt mål for usikkerhed et mål der udtrykker styrken af vores tro på forekomsten

Læs mere

Anvendt Statistik Lektion 2. Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger

Anvendt Statistik Lektion 2. Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger Anvendt Statistik Lektion 2 Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger Sandsynlighed: Opvarmning Udfald Resultatet af et eksperiment kaldes et udfald. Eksempler:

Læs mere

Landmålingens fejlteori - Lektion4 - Vægte og Fordeling af slutfejl

Landmålingens fejlteori - Lektion4 - Vægte og Fordeling af slutfejl Landmålingens fejlteori Lektion 4 Vægtet gennemsnit Fordeling af slutfejl - rw@math.aau.dk Institut for Matematiske Fag Aalborg Universitet 1/36 Estimation af varians/spredning Antag X 1,...,X n stokastiske

Læs mere

Landmålingens fejlteori Lektion 1 Det matematiske fundament Kontinuerte stokastiske variable

Landmålingens fejlteori Lektion 1 Det matematiske fundament Kontinuerte stokastiske variable Landmålingens fejlteori Lektion 1 Det matematiske fundament Kontinuerte stokastiske variable - rw@math.aau.dk Institut for Matematiske Fag Aalborg Universitet 1/41 Landmålingens fejlteori - lidt om kurset

Læs mere

Nanostatistik: sandsynligheder Kursushjemmeside: http://www.imf.au.dk/ kurser/nanostatistik/

Nanostatistik: sandsynligheder Kursushjemmeside: http://www.imf.au.dk/ kurser/nanostatistik/ Nanostatistik: sandsynligheder Kursushjemmeside: http://www.imf.au.dk/ kurser/nanostatistik/ JLJ Nanostatistik: sandsynlighederkursushjemmeside:http://www.imf.au.dk/kurser/nanostatistik/ p. 1/16 Højder

Læs mere

Sandsynlighedsregning: endeligt udfaldsrum (repetition)

Sandsynlighedsregning: endeligt udfaldsrum (repetition) Program: 1. Repetition: sandsynlighedsregning 2. Sandsynlighedsregning fortsat: stokastisk variabel, sandsynlighedsfunktion/tæthed, fordelingsfunktion. 1/16 Sandsynlighedsregning: endeligt udfaldsrum (repetition)

Læs mere

Elementær sandsynlighedsregning

Elementær sandsynlighedsregning Elementær sandsynlighedsregning Sandsynlighedsbegrebet Et udfaldsrum S er mængden af alle de mulige udfald af et eksperiment. En hændelse A er en delmængde af udfaldsrummet S. Et sandsynlighedsmål er en

Læs mere

Lad os som eksempel se på samtidigt kast med en terning og en mønt:

Lad os som eksempel se på samtidigt kast med en terning og en mønt: SANDSYNLIGHEDSREGNING Stokastisk eksperiment Et stokastisk eksperiment er et eksperiment, hvor vi fornuftigvis ikke på forhånd kan have en formodning om resultatet af eksperimentet Til gengæld kan vi prøve

Læs mere

Susanne Ditlevsen Institut for Matematiske Fag susanne

Susanne Ditlevsen Institut for Matematiske Fag     susanne Statistik og Sandsynlighedsregning 1 Repetition MS kapitel 1 3 Susanne Ditlevsen Institut for Matematiske Fag Email: susanne@math.ku.dk http://math.ku.dk/ susanne Hvad er sandsynlighed? - beskriver systemer

Læs mere

Produkt og marked - betinget sandsynlighed

Produkt og marked - betinget sandsynlighed Produkt og marked - betinget sandsynlighed Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 12, 2019 1 / 11 Tænkeboks opgave i Ingeniøren Se webside https://ing.dk/artikel/taenkeboks-sandsynligheden-fejlved-positiv-test-221355

Læs mere

Anvendt Statistik Lektion 2. Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger

Anvendt Statistik Lektion 2. Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger Anvendt Statistik Lektion 2 Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger Sandsynlighed: Opvarmning Udfald Resultatet af et eksperiment kaldes et udfald. Eksempler:

Læs mere

Sandsynlighedsregning

Sandsynlighedsregning Mogens Bladt www2.imm.dtu.dk/courses/02405 14. September, 2007 Betinget sandsynlighed ud fra proportioner Vi husker på definitionen IP(A B) = IP(A B). IP(B) Betragt en befolkning bestående af N personer.

Læs mere

Sandsynlighedsregning

Sandsynlighedsregning Mogens Bladt www2.imm.dtu.dk/courses/02405 7. September, 2007 Hvad er sandsynlighedsregning? Formel matematisk måde til at håndtere tilfældigheder. Dybest set en formalisering af udregninger med proportioner.

Læs mere

Elementær sandsynlighedsregning

Elementær sandsynlighedsregning Elementær sandsynlighedsregning Sandsynlighedsbegrebet Et udfaldsrum S er mængden af alle de mulige udfald af et eksperiment. En hændelse A er en delmængde af udfaldsrummet S. Den hændelse, der ikke indeholder

Læs mere

Statistik Lektion 2. Betinget sandsynlighed Bayes regel Diskrete stokastiske variable Middelværdi og varians for diskret SV Binomialfordelingen

Statistik Lektion 2. Betinget sandsynlighed Bayes regel Diskrete stokastiske variable Middelværdi og varians for diskret SV Binomialfordelingen Statistik Lektion etinget sandsynlighed ayes regel Diskrete stokastiske variable Middelværdi og varians for diskret SV inomialfordelingen Repetition Udfaldsrum S Hændelse S Simpel hændelse O i 1, 3 4,

Læs mere

Forslag til løsning af Opgaver til sandsynlighedsregning (side 434)

Forslag til løsning af Opgaver til sandsynlighedsregning (side 434) Forslag til løsning af Opgaver til sandsynlighedsregning (side 434) Opgave Vi kan selv vælge, om vi vil arbejde med ordnet eller uordnet udtagelse, hvis vi blot sikrer, at vi er konsekvente i vores valg,

Læs mere

Diskrete fordelinger. Fire vigtige diskrete fordelinger: 1. Uniform fordeling (diskret) 2. Binomial fordeling. 3. Hyper-geometrisk fordeling

Diskrete fordelinger. Fire vigtige diskrete fordelinger: 1. Uniform fordeling (diskret) 2. Binomial fordeling. 3. Hyper-geometrisk fordeling Disrete fordelinger Fire vigtige disrete fordelinger: 1. Uniform fordeling (disret) 2. Binomial fordeling 3. Hyper-geometris fordeling 4. Poisson fordeling 1 Uniform fordeling Definition Esperiment med

Læs mere

Sandsynlighedsregning

Sandsynlighedsregning Sandsynlighedsregning Udfaldsrum og hændelser Udfald e:resultatetafetforsøg. Udfaldsrum S: Mængden af de mulige udfald af forsøget. Hændelse A: En delmængde af udfaldsrummet. Tilfældigt fænomen S e (eks.)

Læs mere

TØ-opgaver til uge 45

TØ-opgaver til uge 45 TØ-opgaver til uge 45 Først laver vi en liste over de ligninger med mere i [IPT], der skal bruges: [1]: Ligning (2.5) på side 4. [2]: Ligning (2.6) på side 5. [3]: Sætning 3.1, ligning (3.3) på side 7.

Læs mere

Fejlforplantning. Landmålingens fejlteori - Lektion 5 - Fejlforplantning. Repetition: Varians af linear kombination. Eksempel: Vinkelberegning

Fejlforplantning. Landmålingens fejlteori - Lektion 5 - Fejlforplantning. Repetition: Varians af linear kombination. Eksempel: Vinkelberegning Fejlforplantning Landmålingens fejlteori Lektion 5 Fejlforplantning - kkb@math.aau.dk http://people.math.aau.dk/ kkb/undervisning/lf13 Landmåling involverer ofte bestemmelse af størrelser som ikke kan

Læs mere

Landmålingens fejlteori - Lektion 2. Sandsynlighedsintervaller Estimation af µ Konfidensinterval for µ. Definition: Normalfordelingen

Landmålingens fejlteori - Lektion 2. Sandsynlighedsintervaller Estimation af µ Konfidensinterval for µ. Definition: Normalfordelingen Landmålingens fejlteori Lektion Sandsynlighedsintervaller Estimation af µ Konfidensinterval for µ - rw@math.aau.dk Institut for Matematiske Fag Aalborg Universitet En stokastisk variabel er en variabel,

Læs mere

Institut for Matematiske Fag Aalborg Universitet Specielt: Var(aX) = a 2 VarX 1/40. Lad X α, X β og X γ være stokastiske variable (vinkelmålinger) med

Institut for Matematiske Fag Aalborg Universitet Specielt: Var(aX) = a 2 VarX 1/40. Lad X α, X β og X γ være stokastiske variable (vinkelmålinger) med Repetition: Varians af linear kombination Landmålingens fejlteori Lektion 5 Fejlforplantning - rw@math.aau.dk Antag X 1, X,..., X n er uafhængige stokastiske variable, og Y er en linearkombination af X

Læs mere

2011.09.20 lth@campus.dk

2011.09.20 lth@campus.dk 2011.09.20 lth@campus.dk Intro Læseplan Beskrivende Statistik Sandsynligheder Ordet kommer fra Latin.: statisticum (statsrådgiver) Italiensk.: statistica (statsmand / politiker) Hvorfor statistik? Træk

Læs mere

Statistik Lektion 2. Uafhængighed Stokastiske Variable Sandsynlighedsfordeling Middelværdi og Varians for Stok. Var.

Statistik Lektion 2. Uafhængighed Stokastiske Variable Sandsynlighedsfordeling Middelværdi og Varians for Stok. Var. Statistik Lektion Uafhængighed Stokastiske Variable Sandsynlighedsfordeling Middelværdi og Varians for Stok. Var. Repetition Stikprøve Stikprøvestørrelse n Stikprøvemiddelværdi Stikprøvevarians s Population

Læs mere

Binomialfordelingen. Binomialfordelingen. Binomialfordelingen

Binomialfordelingen. Binomialfordelingen. Binomialfordelingen Statistik og Sandsynlighedsregning 1 MS kapitel 3 Susanne Ditlevsen Institut for Matematiske Fag Email: susanne@math.ku.dk http://math.ku.dk/ susanne Definition 3.2.1 Lad X 1, X 2,..., X n være uafhængige

Læs mere

2. Ved et roulettespil kan man vinde 0,10,100, 500 og 1000 kr. Sandsynligheden for gevinsterne ses af følgende skema:

2. Ved et roulettespil kan man vinde 0,10,100, 500 og 1000 kr. Sandsynligheden for gevinsterne ses af følgende skema: Der er hjælp til opgaver med # og facit på side 6 1. Et eksperiment kan beskrives med følgende skema: u 1 2 3 4 5 P(u) 0,3 0,2 0,1 0,2 x Bestem x og sandsynligheden for at udfaldet er et lige tal.. 2.

Læs mere

Sandsynlighedregning

Sandsynlighedregning MOGENS ODDERSHEDE LARSEN Sandsynlighedregning + = - P(A B) P(A) P(B) P(A B). 1. udgave 2016 FORORD Dette notat giver en kort gennemgang af de grundlæggende begreber i sandsynlighedsregning. Det forudsættes,

Læs mere

Agenda Sandsynlighedsregning. Regneregler (kap. 3-4) Fordelinger og genkendelse af fordelinger (kap. 3-5) Simultane, marginale og betingede

Agenda Sandsynlighedsregning. Regneregler (kap. 3-4) Fordelinger og genkendelse af fordelinger (kap. 3-5) Simultane, marginale og betingede Agenda Sandsynlighedsregning. Regneregler (kap. 3-4) Fordelinger og genkendelse af fordelinger (kap. 3-5) Simultane, marginale og betingede fordelinger (kap. 4) Middelværdi og varians (kap. 3-4) Fordelingsresultater

Læs mere

Sandsynlighedsregning 10. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 10. forelæsning Bo Friis Nielsen Sandsynlighedsregning 10. forelæsning Bo Friis Nielsen Matematik og Computer Science Danmarks Tekniske Universitet 2800 Kgs. Lyngby Danmark Email: bfni@dtu.dk Dagens emner afsnit 6.1 og 6.2 Betingede diskrete

Læs mere

Sandsynlighedsregning 2. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 2. forelæsning Bo Friis Nielsen Sandsynlighedsregning 2. forelæsning Bo Friis Nielsen Anvendt Matematik og Computer Science Danmarks Tekniske Universitet 2800 Kgs. Lyngby Danmark Email: bfni@dtu.dk Vigtigste nye emner i 2.1, 2.2 og 2.5

Læs mere

Facade 4. 02 Soveværelse 02 Soveværelse. 4 Værelse 10 m². 04 Værelse 3397 3325. 16 Trapperum 19 m². 14 Bad. 1700 11 Entré. 11 Entré 6 m². Stue.

Facade 4. 02 Soveværelse 02 Soveværelse. 4 Værelse 10 m². 04 Værelse 3397 3325. 16 Trapperum 19 m². 14 Bad. 1700 11 Entré. 11 Entré 6 m². Stue. A(A)-1- Type 3-3,2 m² Type 4-98,2 m² Type 1-76, Type 6-3, A1 A2 A3 A4 A5 A6 A7 A8 12588 7452 9768 8280 3050 4 4 3397 3325 3050 4520 4 44 4259 m² AA AB Facade 3 Forsyningsskabe Gang 3682 8152 21 m² 2080

Læs mere

Sandsynlighedsregning 10. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 10. forelæsning Bo Friis Nielsen Sandsynlighedsregning 10. forelæsning Bo Friis Nielsen Matematik og Computer Science Danmarks Tekniske Universitet 2800 Kgs. Lyngby Danmark Email: bfni@dtu.dk Dagens emner afsnit 6.1 og 6.2 Betingede diskrete

Læs mere

Sandsynlighedsregning 10. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 10. forelæsning Bo Friis Nielsen Sandsynlighedsregning 0. forelæsning Bo Friis Nielsen Matematik og Computer Science Danmarks Tekniske Universitet 800 Kgs. Lyngby Danmark Email: bfni@dtu.dk Dagens emner afsnit 6. og 6. Betingede diskrete

Læs mere

4 Oversigt over kapitel 4

4 Oversigt over kapitel 4 IMM, 2002-09-14 Poul Thyregod 4 Oversigt over kapitel 4 Introduktion Hidtil har vi beskæftiget os med data. Når data repræsenterer gentagne observationer (i bred forstand) af et fænomen, kan det være bekvemt

Læs mere

{ } { } {( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )}

{ } { } {( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )} Stokastisk eksperiment Et stokastisk eksperiment er et eksperiment, hvor vi fornuftigvis ikke på forhånd kan have en formodning om resultatet af eksperimentet. Til gengæld kan vi prøve at sige noget om,

Læs mere

Statistik II 1. Lektion. Sandsynlighedsregning Analyse af kontingenstabeller

Statistik II 1. Lektion. Sandsynlighedsregning Analyse af kontingenstabeller Statistik II 1. Lektion Sandsynlighedsregning Analyse af kontingenstabeller Kursusbeskrivelse Omfang 5 kursusgange (forelæsning + opgaveregning) 5 kursusgange (mini-projekt) Emner Analyse af kontingenstabeller

Læs mere

Definition: Normalfordelingen. siges at være normalfordelt med middelværdi µ og varians σ 2, hvor µ og σ er reelle tal og σ > 0.

Definition: Normalfordelingen. siges at være normalfordelt med middelværdi µ og varians σ 2, hvor µ og σ er reelle tal og σ > 0. Landmålingens fejlteori Lektion 2 Transformation af stokastiske variable - kkb@math.aau.dk http://people.math.aau.dk/ kkb/undervisning/lf12 Institut for Matematiske Fag Aalborg Universitet Repetition:

Læs mere

Sandsynlighedsregning 1. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 1. forelæsning Bo Friis Nielsen Sandsynlighedsregning 1. forelæsning Bo Friis Nielsen Anvendt Matematik og Computer Science Danmarks Tekniske Universitet 2800 Kgs. Lyngby Danmark Email: bfni@dtu.dk Hvad er sandsynlighedsregning? Formel/matematisk

Læs mere

Personlig stemmeafgivning

Personlig stemmeafgivning Ib Michelsen X 2 -test 1 Personlig stemmeafgivning Efter valget i 2005 1 har man udspurgt en mindre del af de deltagende, om de har stemt personligt. Man har svar fra 1131 mænd (hvoraf 54 % har stemt personligt

Læs mere

Kombinatorik. Eksempel 2: En mand har 7 par bukser og 10 skjorter. Skal han både vælge en skjorte og et par bukser, så har han 10. 7=70 mulige valg.

Kombinatorik. Eksempel 2: En mand har 7 par bukser og 10 skjorter. Skal han både vælge en skjorte og et par bukser, så har han 10. 7=70 mulige valg. Noter til Biomat, 005. Kombinatorik. - eller kunsten at tælle. Alle tal i kombinatorik-afsnittet er hele og ikke-negative. Additionsprincippet enten - eller : Antag vi enten skal lave et valg med m muligheder

Læs mere

Landmålingens fejlteori - Repetition - Kontinuerte stokastiske variable - Lektion 3

Landmålingens fejlteori - Repetition - Kontinuerte stokastiske variable - Lektion 3 Landmålingens fejlteori Repetition - Kontinuerte stokastiske variable Lektion 4 - kkb@math.aau.dk http://people.math.aau.dk/ kkb/undervisning/lf10 Institut for Matematiske Fag Aalborg Universitet 29. april

Læs mere

Landmålingens fejlteori - Lektion 2 - Transformation af stokastiske variable

Landmålingens fejlteori - Lektion 2 - Transformation af stokastiske variable Landmålingens fejlteori Lektion 2 Transformation af stokastiske variable - kkb@math.aau.dk http://people.math.aau.dk/ kkb/undervisning/lf12 Institut for Matematiske Fag Aalborg Universitet 1/31 Repetition:

Læs mere

Betingede sandsynligheder Aase D. Madsen

Betingede sandsynligheder Aase D. Madsen 1 Uge 12 Teoretisk Statistik 15. marts 2004 1. Betingede sandsynligheder Definition Loven om den totale sandsynlighed Bayes formel 2. Betinget middelværdi og varians 3. Kovarians og korrelationskoefficient

Læs mere

Sandsynlighed. for matc i stx og hf Karsten Juul

Sandsynlighed. for matc i stx og hf Karsten Juul Sandsynlighed for matc i stx og hf 209 Karsten Juul . Udfald Vi drejer den gule skive om dens centrum og ser hvilket af de fem felter der standser ud for den røde pil. Da skiven sidst blev drejet, var

Læs mere

INSTITUT FOR MATEMATISKE FAG c

INSTITUT FOR MATEMATISKE FAG c INSTITUT FOR MATEMATISKE FAG c AALBORG UNIVERSITET FREDRIK BAJERS VEJ 7 G 9220 AALBORG ØST Tlf.: 96 35 89 27 URL: www.math.aau.dk Fax: 98 15 81 29 E-mail: bjh@math.aau.dk Dataanalyse Sandsynlighed og stokastiske

Læs mere

Aarhus Universitet 5. februar Meddelelse 2

Aarhus Universitet 5. februar Meddelelse 2 fdeling for Teoretisk Statistik IOSTTISTIK Institut for Matematiske Fag Preben læsild arhus Universitet 5. februar 2003 Meddelelse 2 Forelæsningerne i uge 6 (3-7.2) Ved forelæsningen den 4.2 gav Frank

Læs mere

Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo

Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet Sandsynlighedsregning og lagerstyring Normalfordelingen og Monte

Læs mere

Sandsynlighedsregning 2. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 2. forelæsning Bo Friis Nielsen Vigtigste nye emner i.,. og.5 Sandsynlighedsregning. forelæsning Bo Friis Nielsen Anvendt Matematik og Computer Siene Danmarks Tekniske Universitet 800 Kgs. Lyngby Danmark Email: bfni@dtu.dk Binomialfordelingen

Læs mere

Sandsynlighedsregning 1. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 1. forelæsning Bo Friis Nielsen Sandsynlighedsregning 1. forelæsning Bo Friis Nielsen Anvendt Matematik og Computer Science Danmarks Tekniske Universitet 2800 Kgs. Lyngby Danmark Email: bfni@dtu.dk Hvad er sandsynlighedsregning? Formel/matematisk

Læs mere

Kombinatorik og Sandsynlighedsregning

Kombinatorik og Sandsynlighedsregning Kombinatorik Teori del 1 Kombinatorik er en metode til at tælle muligheder på. Man kan f.eks. inden for valg til en bestyrelse eller et fodboldhold, kodning af en lås, valg af pinkode eller telefonnummer,

Læs mere

SANDSYNLIGHED FACIT SIDE 154-155

SANDSYNLIGHED FACIT SIDE 154-155 SIDE 154-155 Opgave 1 A. Data (x) h(x) f(x) 2 1 0,042 3 3 0,125 4 6 0,25 5 3 0,125 6 4 0,16 7 1 0,042 8 2 0,0833 9 1 0,042 10 2 0,0833 11 1 0,042 B. C. Diagrammet (et søjlediagram) er lavet ud fra hyppigheden,

Læs mere

Sandsynlighedsregning 1. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 1. forelæsning Bo Friis Nielsen Sandsynlighedsregning 1. forelæsning Bo Friis Nielsen Anvendt Matematik og Computer Science Danmarks Tekniske Universitet 2800 Kgs. Lyngby Danmark Email: bfni@dtu.dk Hvad er sandsynlighedsregning? Formel/matematisk

Læs mere

Modul 2: Sandsynlighedsmodeller og diskrete stokastiske variable

Modul 2: Sandsynlighedsmodeller og diskrete stokastiske variable Forskningsenheden for Statistik ST501: Science Statistik Bent Jørgensen Modul 2: Sandsynlighedsmodeller og diskrete stokastiske variable 2.1 Sandsynlighedsbegrebet............................... 1 2.1.1

Læs mere

Sandsynlighedsregning

Sandsynlighedsregning Sandsynlighedsregning En note om sandsynlighedsregning. Den er tænkt som supplement til Vejen til Matematik B2. Henrik S. Hansen, Sct. Knud Version 2.0 Indhold Indledning... 1 Sandsynlighedsregning...

Læs mere

Monotoniforhold Der gælder følgende sætninger om en differentiabel funktions monotoniforhold:

Monotoniforhold Der gælder følgende sætninger om en differentiabel funktions monotoniforhold: Side 21 Oversigt over undervisningen i matematik - 2x 05/06 Der undervises efter: Claus Jessen, Peter Møller og Flemming Mørk : Tal, Geometri og funktioner. Gyldendal 1997 Claus Jessen, Peter Møller og

Læs mere

J E T T E V E S T E R G A A R D

J E T T E V E S T E R G A A R D BINOMIALT EST J E T T E V E S T E R G A A R D F I P B I O L O G I M A R S E L I S B O R G G Y M N A S I U M D. 1 3. M A R T S 2 0 1 9 K A L U N D B O R G G Y M N A S I U M D. 1 4. M A R T S 2 0 1 9 HVEM

Læs mere

Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo

Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet Sandsynlighedsregning og lagerstyring Normalfordelingen og Monte

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Beskrivelse af det enkelte undervisningsforløb (1 skema for hvert forløb) Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau

Læs mere

Eksempel 1.1: kvalitetskontrol

Eksempel 1.1: kvalitetskontrol Idag 1. Introduktion til statistik: Eksempel 1.1 og 1.2 fra WMMY samt andre eksempler. 2. Sandsynlighedsregning: udfaldsrum, hændelser, regning med sandsynligheder. 1/17 Eksempel 1.1: kvalitetskontrol

Læs mere

Sandsynlighedsregning 1. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 1. forelæsning Bo Friis Nielsen Sandsynlighedsregning 1. forelæsning Bo Friis Nielsen Anvendt Matematik og Computer Science Danmarks Tekniske Universitet 2800 Kgs. Lyngby Danmark Email: bfni@dtu.dk Hvad er sandsynlighedsregning? Formel/matematisk

Læs mere

Epidemiologi og Biostatistik. Mogens Erlandsen, Institut for Biostatistik Uge 1, tirsdag d. 5. februar 2002

Epidemiologi og Biostatistik. Mogens Erlandsen, Institut for Biostatistik Uge 1, tirsdag d. 5. februar 2002 Epidemiologi og Biostatistik Mogens Erlandsen, Institut for Biostatistik Uge 1, tirsdag d. 5. februar 2002 1 Statestik Det hedder det ikke! Statistik 2 Streptomycin til behandling af lunge-tuberkulose?

Læs mere

Statistik II 1. Lektion. Analyse af kontingenstabeller

Statistik II 1. Lektion. Analyse af kontingenstabeller Statistik II 1. Lektion Analyse af kontingenstabeller Kursusbeskrivelse Omfang 5 kursusgange (forelæsning + opgaveregning) 5 kursusgange (mini-projekt) Emner Analyse af kontingenstabeller Logistisk regression

Læs mere

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Mål for sammenhæng mellem to variable

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Mål for sammenhæng mellem to variable Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab Mål for sammenhæng mellem to variable Estimation Stikprøve Data Population Teori relativ hyppighed parameter estimat sandsynlighed parameter

Læs mere

Statistik. Introduktion Deskriptiv statistik Sandsynslighedregning

Statistik. Introduktion Deskriptiv statistik Sandsynslighedregning Statistik Introduktion Deskriptiv statistik Sandsynslighedregning Introduktion Kasper K. Berthelsen, Institut f. Mat. Fag 8 Kursusgange Individuel mundtlig eksamen (7-skala) Udgangspunkt i opgaver Software:

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2018-19 Institution Uddannelse Fag og niveau Lærer(e) Frederiksberg Hf-kursus 2hf Matematik C, hf

Læs mere

Susanne Ditlevsen Institut for Matematiske Fag Email: susanne@math.ku.dk http://math.ku.dk/ susanne

Susanne Ditlevsen Institut for Matematiske Fag Email: susanne@math.ku.dk http://math.ku.dk/ susanne Statistik og Sandsynlighedsregning 1 Indledning til statistik, kap 2 i STAT Susanne Ditlevsen Institut for Matematiske Fag Email: susanne@math.ku.dk http://math.ku.dk/ susanne 5. undervisningsuge, onsdag

Læs mere

Opgaver i sandsynlighedsregning

Opgaver i sandsynlighedsregning Afdeling for Teoretisk Statistik STATISTIK Institut for Matematiske Fag Preben Blæsild Aarhus Universitet 9. januar 005 Opgaver i sandsynlighedsregning Opgave Lad A og B være hændelser således at P(A)

Læs mere

Præcision og effektivitet (efficiency)?

Præcision og effektivitet (efficiency)? Case-kontrol studier PhD kursus i Epidemiologi Københavns Universitet 18 Sep 2012 Søren Friis Center for Kræftforskning, Kræftens Bekæmpelse Valg af design Problemstilling? Validitet? Præcision og effektivitet

Læs mere

10.1 Et lykkehjul består af 24 lige store felter med numre fra 1 til 24.

10.1 Et lykkehjul består af 24 lige store felter med numre fra 1 til 24. 10. 10.1 Et lykkehjul består af 24 lige store felter med numre fra 1 til 24. Bestem udfaldsrummet for lykkehjulet. 10.2 En tegnestift Du putter en tegnestift i et raflebæger, ryster det godt og smider

Læs mere

Sandsynlighedsregning & Statistik

Sandsynlighedsregning & Statistik Sandsynlighedsregning & Statistik for matematikstuderende Jørgen Larsen 2006 Roskilde Universitet Teksten er sat med skriften Kp-Fonts ved hjælp af KOMA- Script og LATEX. Tegningerne er fremstillet med

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2018, skoleåret 17/18 Institution Herning HF og VUC Uddannelse Fag og niveau Lærer(e) Hold Hf Matematik

Læs mere

Svar på opgave 336 (Januar 2017)

Svar på opgave 336 (Januar 2017) Svar på opgave 6 (Januar 07) Opgave: De komplekse tal a, b og c opfylder ligningssystemet Vis, at a, b og c er reelle. (a + b)(a + c) = b (b + c)(b + a) = c (c + a)(c + b) = a. Besvarelse:. metode Lad

Læs mere

Produkt og marked - matematiske og statistiske metoder

Produkt og marked - matematiske og statistiske metoder Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 19, 2016 1/26 Kursusindhold: Sandsynlighedsregning og lagerstyring

Læs mere

Meddelelse 2. Forelæsningerne i uge 6 ( ) Gennemgangen af BPT fortsættes. Vi afslutter Kapitel 4 og når sikkert et godt stykke ind i Kapitel 5.

Meddelelse 2. Forelæsningerne i uge 6 ( ) Gennemgangen af BPT fortsættes. Vi afslutter Kapitel 4 og når sikkert et godt stykke ind i Kapitel 5. Institut for Matematiske Fag arhus Universitet STTISTIK(2003-ordning) Jens Ledet Jensen Jørgen Granfeldt 2. februar 2006 Meddelelse 2 Forelæsningerne i uge 5 (30.1 5.2) Ved forelæsningen mandag den 30.

Læs mere

Kursusgang 3 Matrixalgebra Repetition

Kursusgang 3 Matrixalgebra Repetition Kursusgang 3 Repetition - froberg@mathaaudk http://peoplemathaaudk/ froberg/oecon3 Institut for Matematiske Fag Aalborg Universitet 12 september 2008 1/12 Lineære ligningssystemer Et lineært ligningssystem

Læs mere

Sandsynlighedregning

Sandsynlighedregning MOGENS ODDERSHEDE LARSEN Sandsynlighedregning + = - P(A B) = P(A) + P(B) P(A B). 1. udgave 2007 FORORD Dette notat giver en kort gennemgang af de grundlæggende begreber i sandsynlighedsregning. Det forudsættes,

Læs mere

Kvantitative Metoder 1 - Efterår 2006. Dagens program

Kvantitative Metoder 1 - Efterår 2006. Dagens program Dagens program Afsnit 2.4-2.5 Bayes sætning Uafhængige stokastiske variable - Simultane fordelinger - Marginale fordelinger - Betingede fordelinger Uafhængige hændelser - Indikatorvariable Afledte stokastiske

Læs mere

TREKANTER. Indledning. Typer af trekanter. Side 1 af 7. (Der har været tre kursister om at skrive denne projektrapport)

TREKANTER. Indledning. Typer af trekanter. Side 1 af 7. (Der har været tre kursister om at skrive denne projektrapport) Side 1 af 7 (Der har været tre kursister om at skrive denne projektrapport) TREKANTER Indledning Vi har valgt at bruge denne projektrapport til at udarbejde en oversigt over det mest grundlæggende materiale

Læs mere

SANDSYNLIGHEDSREGNING Hvad er sandsynlighed for noget? Umiddelbart kan vi inddele sandsynlighed i tre former.

SANDSYNLIGHEDSREGNING Hvad er sandsynlighed for noget? Umiddelbart kan vi inddele sandsynlighed i tre former. SANDSYNLIGHEDSREGNING Hvad er sandsynlighed for noget? Umiddelbart kan vi inddele sandsynlighed i tre former. Statistisk sandsynlighed Her finder man sandsynligheden for en hændelse ved at kigge på en

Læs mere

1 Trekantens linjer. Definition af median En median er en linje i en trekant der forbinder en vinkelspids med midtpunktet af modstående side.

1 Trekantens linjer. Definition af median En median er en linje i en trekant der forbinder en vinkelspids med midtpunktet af modstående side. Geometrinoter 1, januar 2009, Kirsten Rosenkilde 1 Geometrinoter 1 Disse noter omhandler grundlæggende sætninger om trekantens linjer, sammenhængen mellem en vinkel og den cirkelbue den spænder over, samt

Læs mere

9 Statistik og sandsynlighed

9 Statistik og sandsynlighed 9 Statistik og sandsynlighed Faglige mål Kapitlet Statistik og sandsynlighed tager udgangspunkt i følgende faglige mål: Enkeltobservationer: kunne skabe overblik over statistisk materiale og anvende udvalgte

Læs mere

Kvantitative Metoder 1 - Efterår 2006. Dagens program

Kvantitative Metoder 1 - Efterår 2006. Dagens program Dagens program Afsnit 1.7-1.8 Fødselsdagseksemplet, fra sidst Eksperimenterikkealleerligesandsynlige Diskrete sandsynlighedsfordelinger -Definition af sandsynligheder - Regneregler Hvad er sandsynligheder?

Læs mere

Statistik Lektion 1. Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Sandsynlighedsregning

Statistik Lektion 1. Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Sandsynlighedsregning Statistik Lektion 1 Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Sandsynlighedsregning Introduktion Kasper K. Berthelsen, Inst f. Matematiske Fag Omfang: 8 Kursusgang I fremtiden

Læs mere