Eksponentielle Sammenhænge

Størrelse: px
Starte visningen fra side:

Download "Eksponentielle Sammenhænge"

Transkript

1 Kort om Eksponentielle Smmenhænge 011 Krsten Juul

2 Dette hæfte indeholder pensum i eksponentielle smmenhænge for gymnsiet og hf. Indhold 1. Procenter på en ny måde Hvd er en eksponentiel smmenhæng?.... Der står hvordn ntllet ændres. Vi skl skrive en ligning.... Der står en ligning. Vi skl skrive hvordn ntllet ændres Hvor mnge procent ændres y? Eksponentiel ligning Voksende og ftgende. Grf Udregn og b i y b ud fr to punkter på grfen Hvd er fordoblingskonstnt og hlveringskonstnt? Fordoblings/hlveringskonstnt for smmenhængen y b Enkeltlogritmisk koordintsystem Eksponentiel regression Sådn vokser eksponentielle smmenhænge Kort om eksponentielle smmenhænge 011 Krsten Juul Dette hæfte kn downlodes fr Hæftet må benyttes i undervisningen hvis læreren med det smme sender en e-mil til som dels oplyser t dette hæfte benyttes, dels oplyser om hold, lærer og skole.

3 1. Procenter på en ny måde. T er % f 600 T % f , d % , Du plejer nok t udregne % ved t dividere med 100 og gnge med. I nogle opgvetyper dur denne metode ikke. Du er nødt til t vænne dig til t gnge med 0, for t udregne %. S er % større end 600 S 1 % f 600 d 100 % + % 1 % , d 1 % 1, Når du udregner det der er % større end et tl, så plejer du nok t udregne % f tllet og lægge til tllet I nogle opgvetyper dur denne metode ikke. Du er nødt til t vænne dig til t gnge med 1, for t udregne det der er % større. R er % mindre end 600 R 66 % f 600 d 100 % % 66 % ,66 d 66 % ,66 Når du udregner det der er % mindre end et tl, så plejer du nok t udregne % f tllet og trække fr tllet I nogle opgvetyper dur denne metode ikke. Du er nødt til t vænne dig til t gnge med 0,66 for t udregne det der er % mindre. Kort om eksponentielle smmenhænge Krsten Juul

4 . Hvd er en eksponentiel smmenhæng? Oplæg Antl nstte skl stige 10 % hvert år. 100 % + 10 % 110 % , 10 I år er ntl nstte 1000 Om 1 år er ntl nstte , Om år er ntl nstte ,10 1, Om 16 år er ntl nstte , Om år er ntl nstte ,10 Definition En smmenhæng er eksponentiel hvis ligningen er f typen y 1,10 1,10 1,10 I oplægget er b 1000 og 1,10 b hvor og b er positive tl.. Der står hvordn ntllet ændres. Vi skl skrive en ligning. Vi får t vide t (*) Kl. 9 er der 75 celler. Hver time bliver ntl celler 0 % større. Vi skriver ntl timer efter kl. 9 y ntl celler Vi skriver (*) ved hjælp f og y: Når 0 er y 75. Når bliver 1 større, bliver y gnget med 1,0. Herf slutter vi t ligningen (modellen) er y 75 1, 0. Der står en ligning. Vi skl skrive hvordn ntllet ændres. Antllet f dyr ændres sådn t (*) y 70 0, 90 ntl dge efter 1. juni y ntl dyr Af (*) ser vi: Når 0 er y 70. Når bliver 1 større, bliver y gnget med 0,90. Dvs. Den 1. juni er ntllet f dyr 70 Hver dg bliver ntllet f dyr 10 % mindre Kort om eksponentielle smmenhænge 011 Krsten Juul

5 5. Hvor mnge procent ændres y? En dg gælder t y 970 0, 885 hvor y er trykket målt i hektopscl, og er højden over jordoverflden målt i kilometer. Vi vil regne ud hvor mnge procent trykket ændres når højden bliver kilometer større. Metode 1 Vi strter i en tilfældig højde, f.eks. km: Når, er y 970 0, , 78 Derefter finder vi trykket når højden er km større Når 5, er y 970 0,885 56, 609 Ændringen i trykket er 56, ,119 I procent er dette, Vi hr nu udregnet t dvs. 0,0685 0,685% trykket ændres 0,7 % når højden bliver kilometer større trykket bliver 0,7% mindre når højden bliver kilometer større. ændring ny værdi gmmel værdi Vi skl dividere ændringen med den gmle værdi. Metode Højden bliver kilometer større. Så bliver trykket gnget med 0,885 0, 6915 Dvs. trykket ændres med 69,% 100% 0,7 % Fordi y bliver gnget med 0,885 hver gng bliver 1 enhed større. Fordi trykket ændres fr 100 % f gmmel værdi til 69, % f gmmel værdi. Bemærkning Hvis y 6, 1, 1, ser regningerne i metode 1 sådn ud: Når, er y 6, 1,1 8, Når 5, er y 6, 1,1 11, 79 11,79 8,0816,508 8,0816 0,09,508 0,9% dvs. y bliver 0 % større når bliver enheder større. Kort om eksponentielle smmenhænge 011 Krsten Juul

6 6. Eksponentiel ligning. En ligning f typen (6.1) b c kldes eksponentiel fordi er i eksponenten. Formel til udregning f ligningens løsning: c log( ) (6.) b log ( ) Med et elektronisk hjælpemiddel kn vi udregne noget der hedder logritmen. logritmen til 100 er Dette skriver mn sådn: log(100) Når mn læser symbolet log(100) siger mn "log hundrede". Vi vil løse ligningen,5 1, Metode 1: Vi bruger elektronisk ligningsløser,5 1, Vi tster denne ligning. Vi får den løst mht.. Vi får 5, Løsningen er 5, Metode : Vi bruger formel (6.),5 1, log ( ),5 log(1,) 5,16776 Løsningen er 5, Metode : Vi omskriver ligningen,5 1, 1,,5 log ( 1, ) log( ),5 log ( 1,) log( ),5 log ( ),5 log(1,) Der gælder følgende regel om logritme til potens: log( ) log( ) 5,16776 Løsningen er 5, Kort om eksponentielle smmenhænge 011 Krsten Juul

7 7. Voksende og ftgende. Grf. 7.1 Eksempel I koordintsystemet hr vi tegnet grfen for den eksponentielle smmenhæng med ligningen y 0,5 1, 6 Fremskrivningsfktoren er 1,6 Smmenhængen er voksende d 1,6 > 1 (for y bliver gnget med 1,6 når bliver 1 større) Grfen ligger over -ksen, men kommer tæt på -ksen. 7. Eksempel I koordintsystemet hr vi tegnet grfen for den eksponentielle smmenhæng med ligningen y 1,5 0, 7 Fremskrivningsfktoren er 0,7 Smmenhængen er ftgende d 0,7 < 1 (for y bliver gnget med 0,7 når bliver 1 større) Grfen ligger over -ksen, men kommer tæt på -ksen. 7. Sætning Smmenhængen y b er voksende når b > 0 og > 1 og ftgende når b > 0 og 0 < < 1 Her står t b er større end 0, og t er større end 1. Her står t b er større end 0, og t ligger mellem 0 og 1. Kort om eksponentielle smmenhænge Krsten Juul

8 8. Udregn og b i y b ud fr to punkter på grfen. Opgve: Punkterne (, y) (, ) og (, y) (7, ) ligger på grfen for smmenhængen y b. Udregn tllene og b. Metode 1. Vi sætter ind i formler for og b Af, y ) (, ) og, y ) (7, ) får vi ( 1 1 ( b y1 1 1 y y Metode. Vi løser ligningssystem med elektronisk hjælpemiddel Punkterne (, y) (, ) og (, y) (7, ) ligger på grfen for y b, så 7 b og b Vi tster dette ligningssystem og får det løst mht. og b. Vi får og b 16 Metode. Vi løser ligningssystem uden hjælpemidler Punkterne (, y) (, ) og (, y) (7, ) ligger på grfen for y b, så b og b Vi dividerer højre ligning med venstre: 7 b b Når vi forkorter de to brøker, får vi 8 så 8 dvs Vi indsætter denne værdi f i ligningen b og får b Ved t dividere begge sider med får vi b så b 16 Metode. Vi bruger eksponentiel regression Vi tster punkterne (, y) (, ) og (, y) (7, ) og får udført eksponentiel regression på dem. Vi får og b 0, 1875 d 7 Kort om eksponentielle smmenhænge Krsten Juul

9 9. Hvd er fordoblingskonstnt og hlveringskonstnt? 9.1 Eksempel Tbellen viser hvordn højden f en plnte er vokset eksponentielt. I tbellen ser vi: 1 uge efter købet er højden 15 cm. uger senere er højden 0 cm, som er det dobbelte f 15 cm. uger efter købet er højden 19 cm. uger senere er højden 8 cm, som er det dobbelte f 19 cm. Unset hvornår vi strter, så vil der gå uger før højden er fordoblet. Mn siger t højdens fordoblingskonstnt er uger. 9. Definition En eksponentielt voksende smmenhæng hr en fordoblingskonstnt. Fordoblingskonstnten er et tl der skrives T. Når -værdien bliver T enheder større, så bliver y-værdien fordoblet. En eksponentielt ftgende smmenhæng hr en hlveringskonstnt. Hlveringskonstnten er et tl der skrives T1. 9. Eksempel Når -værdien bliver Der er en eksponentiel smmenhæng enheder større, så bliver y-værdien hlveret. y b mellem de vrible længden (i cm) y omkredsen (i cm) Vi hr fået t vide t fordoblingskonstnten er 7. Dette fortæller: Når -værdien bliver 7 enheder større, så bliver y-værdien fordoblet. Dvs: Når længden bliver Antl uger efter køb: Højde i cm: T1 7 cm større, så bliver omkredsen fordoblet. Vi hr fået t vide t når længden er 5 cm, er omkredsen 0 cm. Når længden bliver 7 cm større, så bliver omkredsen fordoblet, så når længden er 1 cm, er omkredsen 0 cm når længden er 19 cm, er omkredsen 80 cm osv. Hvis det er hlveringskonstnten der er 7, så skl vi i ovenstående hlvere i stedet for t fordoble. Kort om eksponentielle smmenhænge Krsten Juul

10 10. Fordoblings/hlveringskonstnt for smmenhængen y b Sætning Vi ser på en eksponentiel smmenhæng y b. Hvis smmenhængen er voksende (dvs. > 1) gælder t fordoblingskonstnten er log() log( ). Hvis smmenhængen er ftgende (dvs. 0 < < 1) gælder t 10. Eksempel log(0,5) hlveringskonstnten er. log( ) Vi vil udregne hlveringskonstnten for smmenhængen Vi indsætter 0, 9 i formlen og får hlveringskonstnt log(0,5) log(0,9) 11,0 log(0,5) log( ) dvs. hlveringskonstnten er 11,. y 0 0, Enkeltlogritmisk koordintsystem. y-ksen er inddelt på en speciel måde. Mn siger t y-ksen er en logritmisk skl. Hvis y-ksen blev fortst nedd, så ville vi se t lle tllene er positive. Der er hverken 0 eller negtive tl. Advrsel: Antllet f delestreger mellem to hele tl er ikke det smme lle steder på ksen. Koordintsystemet er enkeltlogritmisk fordi y-ksen er logritmisk og -ksen er sædvnlig. Den skrå linje er grf for y 1, 1,. I et sædvnligt koordintsystem er denne grf en krum kurve. Grfen for en eksponentiel smmenhæng er en ret linje når vi tegner den i et enkeltlogritmisk koordintsystem. For ingen ndre smmenhænge er grfen en ret linje i et enkeltlogritmisk koordintsystem. Kort om eksponentielle smmenhænge Krsten Juul

11 1. Eksponentiel regression. Opgve Tbellen viser ntllet f indbyggere i et område i perioden År Antl (i tusinder) 8,5 8,8 9,1 9, 9,8 10, Udviklingen kn med god tilnærmelse beskrives med ligningen y b hvor y er ntllet f indbyggere (målt i tusinder), og er ntl år efter 000. Hvd skl og b være for t ligningen y b psser bedst med tbellen? Besvrelse Ud fr den givne tbel lver vi den nye tbel nedenfor hvor årstllet er erstttet f værdien f y 8,5 8,8 9,1 9, 9,8 10, Denne tbel tster vi. Vi får udført eksponentiel regression på hele tbellen og får y 8,7906 1, 0686 Dvs. ligningen y b psser bedst når 1,07 og b 8, 8 Bemærk Hvis vi ikke bruger hele tbellen, så duer besvrelsen ikke. Grfen for y 8,7906 1, 0686 går ikke gennem tbel-punkterne, men det er den eksponentielle grf der fviger mindst fr punkterne. Hvordn tster vi på Nspire? Vi tster tbellen som vist til højre. I menuen vælger vi Sttistik/Stt-beregning.../Eksponentiel regression... Så fremkommer et vindue vi udfylder som vist nederst til højre. Når vi i et mtemtikfelt i et notevindue får vi tster f () og trykker på Kort om eksponentielle smmenhænge Krsten Juul

12 1. Sådn vokser eksponentielle smmenhænge. Sætning Bevis Når en smmenhæng er eksponentiel: y b, og h er et tl, så gælder: Hver gng vi lægger h til, så bliver y gnget med h. Vi strter med en tilfældig -værdi: 1 Vi lægger h til 1 og får en en ny -værdi: 1 + h y-værdierne som hører til 1 og klder vi y 1 og y y b d y er y-værdien hørende til -værdien for + h b 1 d + h h 1 b 1 ifølge potensreglen h y1 for y 1 1 b d y 1 er y-værdien hørende til 1 Der gælder ltså t vi får y når vi gnger y 1 med Det vr dette vi skulle bevise. Eksempel y 1 1, 15 Hver gng vi til værdien f lægger, vil y blive gnget med 1,15 1,7901 1, 79 Dvs. hver gng bliver enheder større, så vil y blive 7,9 % større. r+ s h. r s y b Hver gng vi til lægger 1, vil y blive gnget med 1,15 1 1, 15 Dvs. hver gng bliver 1 enhed større, så vil y blive 15 % større. Sluttl 1,15 Strttl Sluttl 115 % f Strttl Strttl 100 % f Strttl 115 % 100 % 15 % Eksempel y 6 0, 86 Hver gng vi til værdien f lægger, vil y blive gnget med 0,86 0, , 66 Dvs. hver gng bliver enheder større, vil y blive 6, % mindre. Hver gng vi til lægger 1, vil y blive gnget med 0,86 1 0, 86 Dvs. hver gng bliver 1 enhed større, så vil y blive 1 % mindre. Sluttl 0,86 Strttl Sluttl 86 % f Strttl Strttl 100 % f Strttl 86 % 100 % 1 % Kort om eksponentielle smmenhænge Krsten Juul

Potens- sammenhænge. inkl. proportionale og omvendt proportionale variable. 2010 Karsten Juul

Potens- sammenhænge. inkl. proportionale og omvendt proportionale variable. 2010 Karsten Juul Potens- smmenhænge inkl. proportionle og omvendt proportionle vrible 010 Krsten Juul Dette hæfte er en fortsættelse f hæftet "Eksponentielle smmenhænge, udgve ". Indhold 1. Hvd er en potenssmmenhæng?...1.

Læs mere

Kort om Potenssammenhænge

Kort om Potenssammenhænge Øvelser til hæftet Kort om Potenssmmenhænge 2011 Krsten Juul Dette hæfte indeholder bl.. mnge småspørgsmål der gør det nemmere for elever t rbejde effektivt på t få kendskb til emnet. Indhold 1. Ligning

Læs mere

GrundlÄggende funktioner

GrundlÄggende funktioner GrundlÄggende funktioner for B-niveu i hf Udgve 014 Krsten Juul GrundlÄggende funktioner for B-niveu i hf Procent 1. Procenter på en ny måde... 1. VÄkstrte.... Gennemsnitlig procent... LineÄr väkst 4.

Læs mere

... ... ... ... ... ... ... b > 0 og x > 0, vil vi kalde en potensfunktion. 492 10. Potensfunktioner

... ... ... ... ... ... ... b > 0 og x > 0, vil vi kalde en potensfunktion. 492 10. Potensfunktioner POTENSFUNKTIONER 0 49 0. Potensfunktioner POTENSFUNKTIONER DEFINITION En funktion med forskriften f( )= b hvor b > 0 og > 0 vil vi klde en potensfunktion. I MAT C kpitel så vi t hvis skl være et vilkårligt

Læs mere

Kort om. Potenssammenhænge. 2011 Karsten Juul

Kort om. Potenssammenhænge. 2011 Karsten Juul Kot om Potenssmmenhænge 011 Ksten Juul Dette hæfte indeholde pensum i potenssmmenhænge, heunde popotionle og omvendt popotionle vible, fo gymnsiet og hf. Indhold 1. Ligning og gf fo potenssmmenhænge...

Læs mere

PotenssammenhÄnge. 2009 Karsten Juul

PotenssammenhÄnge. 2009 Karsten Juul PotenssmmenhÄnge y b y k k 009 Krsten Juul Dette häfte er en fortsättelse f häftet "Eksponentielle smmenhänge, 009". Indhold 4. Hvd er en potens-smmenhäng?... 83 5. Hvordn ser grfen ud for en potens-smmenhäng...

Læs mere

GrundlÄggende funktioner

GrundlÄggende funktioner GrundlÄggende funktioner for B-niveu i hf 013 Krsten Juul GrundlÄggende funktioner for B-niveu i hf Procent 1. Procenter på en ny måde.... 1 LineÄr väkst. LineÄr funktion... 3. LineÄr väkst... 4. Skriv

Læs mere

ØVEHÆFTE FOR MATEMATIK C POTENS-SAMMENHÆNG

ØVEHÆFTE FOR MATEMATIK C POTENS-SAMMENHÆNG ØVEHÆFTE FOR MATEMATIK C POTENS-SAMMENHÆNG INDHOLDSFORTEGNELSE 1 Formelsmling... side 2 Uddbning f visse formler... side 3 2 Grundlæggende færdigheder... side 5 2 Finde konstnterne og b i en formel...

Læs mere

Lektion 7s Funktioner - supplerende eksempler

Lektion 7s Funktioner - supplerende eksempler Lektion 7s Funktioner - supplerende eksempler Oversigt over forskellige tper f funktioner Omvendt proportionlitet og hperler.grdsfunktioner og prler Eksponentilfunktioner Potensfunktioner Lektion 7s Side

Læs mere

Bogstavregning. for gymnasiet og hf Karsten Juul. a a

Bogstavregning. for gymnasiet og hf Karsten Juul. a a Bogstvregning for gymnsiet og hf 010 Krsten Juul Til eleven Brug lynt og viskelæder når du skriver og tegner i hæftet, så du får et hæfte der er egenet til jævnligt t slå op i under dit videre rejde med

Læs mere

Erik Vestergaard www.matematikfysik.dk. Erik Vestergaard, 2009.

Erik Vestergaard www.matematikfysik.dk. Erik Vestergaard, 2009. Erik Vestergrd www.mtemtikfysik.dk Erik Vestergrd, 009. Billeder: Forside: Collge f billeder: istock.com/titoslck istock.com/yuri Desuden egne fotos og illustrtioner Erik Vestergrd www.mtemtikfysik.dk

Læs mere

Formelsamling Matematik C Indhold

Formelsamling Matematik C Indhold Formelsmling Mtemtik C Indhold Eksempler på besvrelser, lin, eksp, pot, geo... Tl, regneopertioner og ligninger... 6 Ligninger... 7 Geometri... 0 Funktioner og modeller... 3 Lineær funktion... 3 Procentregning...

Læs mere

Integralregning. 2. del. 2006 Karsten Juul

Integralregning. 2. del. 2006 Karsten Juul Integrlregning del ( ( 6 Krsten Juul Indhold 6 Uestemt integrl8 6 Sætning om eksistens stmunktioner 8 6 Oplæg til "regneregler or integrl"8 6 Regneregler or uestemt integrl 9 68 Foreredelse til "integrtion

Læs mere

GrundlÄggende funktioner

GrundlÄggende funktioner GrundlÄggende funktioner for B-niveu i st Udgve 016 Krsten Juul GrundlÄggende funktioner for B-niveu i st Procent 1. Procenter på en ny måde... 1. VÄkstrte.... Gennemsnitlig procent... LineÄr väkst. LineÄr

Læs mere

gudmandsen.net y = b x a Illustration 1: potensfunktioner i 5 forskellige grupper

gudmandsen.net y = b x a Illustration 1: potensfunktioner i 5 forskellige grupper gudmndsen.net Dette dokument er publiceret på http://www.gudmndsen.net/res/mt_vejl/. Ophvsret: Indholdet stilles til rådighed under Open Content License[http://opencontent.org/openpub/]. Kopiering, distribution

Læs mere

Eksamensspørgsmål: Potens-funktioner

Eksamensspørgsmål: Potens-funktioner Eksmensspørgsmål: Potens-funktioner Definition:... 1, mønt flder ned:... 1 Log y er en liner funktion f log x... 2 Regneforskrift... 2... 2 Smmenhæng mellem x og y ved potens-vækst... 3 Tegning f grf for

Læs mere

Trigonometri. Trigonometri. Sinus og cosinus... 2 Tangens... 6 Opgaver... 9. Side 1

Trigonometri. Trigonometri. Sinus og cosinus... 2 Tangens... 6 Opgaver... 9. Side 1 Trigonometri Sinus og osinus... 2 Tngens... 6 Opgver... 9 Side Sinus og osinus Til lle vinkler hører der to tl, som kldes osinus og sinus. Mn finder sinus og osinus til en vinkel ved t tegne vinklen midt

Læs mere

Potens regression med TI-Nspire

Potens regression med TI-Nspire Potensvækst og modellering - Mt-B/A 2.b 2007-08 Potens regression med TI-Nspire Vi tger her udgngspunkt i et eksempel med tovværk, hvor mn får oplyst en tbel over smmenhængen mellem dimeteren (xdt) i millimeter

Læs mere

Eksponentielle sammenhænge

Eksponentielle sammenhænge Eksponentielle sammenhænge Udgave 009 Karsten Juul Dette hæfte er en fortsættelse af hæftet "Lineære sammenhænge, udgave 009" Indhold 1 Eksponentielle sammenhænge, ligning og graf 1 Procent 7 3 Hvad fortæller

Læs mere

Matematikkens sprog INTRO

Matematikkens sprog INTRO Mtemtikkens sprog Mtemtik hr sit eget sprog, der består f tl og symboler fx regnetegn, brøkstreger bogstver og prenteser På mnge måder er det ret prktisk - det giver fx korte måder t skrive formler på.

Læs mere

Diverse. Ib Michelsen

Diverse. Ib Michelsen Diverse Ib Michelsen Ikst 2008 Forsidebilledet http://www.smtid.dk/visen/billede.php?billedenr69 Version: 0.02 (2-1-2009) Diverse (Denne side er A-2 f 32 sider) Indholdsfortegnelse Regning med procent

Læs mere

Kompendium. Matematik HF C niveau. Frederiksberg HF Kursus. Lars Bronée 2014

Kompendium. Matematik HF C niveau. Frederiksberg HF Kursus. Lars Bronée 2014 Kompendium Mtemtik HF C niveu π Frederiksberg HF Kursus Lrs Bronée 04 Mil: post@lrsbronee.dk Web: www.lrsbronee.dk Indholdsfortegnelse: Forord Det grundlæggende Ligningsløsning 8 Procentregning Rentesregning

Læs mere

Eksamensopgave august 2009

Eksamensopgave august 2009 Ib Michelsen, Viborg C / Skive C Side 1 09-04-011 1 Eksmensopgve ugust 009 Opgve 1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 17 18 19 0 1 Givet ovenstående ensvinklede treknter. D treknterne er ensvinklede, er

Læs mere

Formelsamling Matematik C Indhold

Formelsamling Matematik C Indhold Formelsmling Mtemtik C Indhold Eksempler på esvrelser, lin, eksp, pot, geo... Tl, regneopertioner og ligninger... 6 Ligninger... 7 Geometri... 9 Funktioner og modeller... Lineær funktion... Procentregning...

Læs mere

Lektion 6 Bogstavregning

Lektion 6 Bogstavregning Lektion Bogstvregning Formler... Reduktion... Ligninger... Lektion Side 1 Formler En formel er en slgs regne-opskrift, hvor mn med bogstver viser, hvorledes noget skl regnes ud. F.eks. formler til beregning

Læs mere

Regneregler for brøker og potenser

Regneregler for brøker og potenser Regneregler for røker og potenser Roert Josen 4. ugust 009 Indhold Brøker. Eksempler......................................... Potenser 7. Eksempler......................................... 8 I de to fsnit

Læs mere

1,0. sin(60º) 1,0 cos(60º) I stedet for cosinus til 60º og sinus til 60º skriver man cos(60º) og sin(60º).

1,0. sin(60º) 1,0 cos(60º) I stedet for cosinus til 60º og sinus til 60º skriver man cos(60º) og sin(60º). Mtemtik på VU Eksempler til niveu F, E og D Til lle vinkler hører der to tl, som kldes osinus og sinus. Mn finder sinus og osinus ved først t tegne vinklen i et koordint-system som vist til venstre. Derefter

Læs mere

Lektion 6 Bogstavregning

Lektion 6 Bogstavregning Mtemtik på Åbent VUC Lektion 6 Bogstvregning Formler... Udtryk... Ligninger... Ligninger som løsningsmetode i regneopgver... Simultion... Opsmlingsopgver... Lvet f Niels Jørgen Andresen, VUC Århus. Redigeret

Læs mere

Mat. B (Sådan huskes fomlerne) Formler, som skal kunnes til prøven uden hjælpemidler

Mat. B (Sådan huskes fomlerne) Formler, som skal kunnes til prøven uden hjælpemidler Mt. B (Sån huskes fomlerne) Formler, som skl kunnes til prøven uen hjælpemiler Inhol Her er tilføjet emærkninger til nogle f formlerne BRØKER... PARENTESER... EKSPONENTER... LOGARITMER... GEOMETRI... Arel

Læs mere

Retningslinjer for bedømmelsen Georg Mohr-Konkurrencen runde

Retningslinjer for bedømmelsen Georg Mohr-Konkurrencen runde Retningslinjer for bedømmelsen Georg Mohr-Konkurrencen 016. runde Besvrelser som flder uden for de løsninger som ligger til grund for pointskemerne, bedømmes ved nlogi så skridt med tilsvrende vægt i den

Læs mere

TAL OG BOGSTAVREGNING

TAL OG BOGSTAVREGNING TAL OG BOGSTAVREGNING De elementære regnerter I mtemtik kn vi regne med tl, men vi kn også regne med bogstver, som gør det hele en smugle mere bstrkt. Først skl vi se lidt på de fire elementære regnerter,

Læs mere

Dæmonen. Efterbehandlingsark C. Spørgsmål til grafen over højden.

Dæmonen. Efterbehandlingsark C. Spørgsmål til grafen over højden. Efterbehndlingsrk C Dæmonen Nedenfor er vist to grfer for bevægelsen i Dæmonen. Den første grf viser hvor mnge gnge du vejer mere eller mindre end din normle vægt. Den nden grf viser højden. Spørgsmål

Læs mere

Bogstavregning. for gymnasiet og hf (2012) Karsten Juul

Bogstavregning. for gymnasiet og hf (2012) Karsten Juul Bogstvregning for gymnsiet og hf 010 (01) Krsten Juul Til eleven Brug lynt og viskeläder når du skriver og tegner i häftet, så du får et häfte der er egenet til jävnligt t slå op i under dit videre rejde

Læs mere

GrundlÄggende variabelsammenhänge

GrundlÄggende variabelsammenhänge GrundlÄggende variabelsammenhänge for C-niveau i hf 2014 Karsten Juul LineÄr sammenhäng 1. OplÄg om lineäre sammenhänge... 1 2. Ligning for lineär sammenhäng... 1 3. Graf for lineär sammenhäng... 2 4.

Læs mere

Ny Sigma 9, s Andengradsfunktioner med regneforskrift af typen y = ax + bx + c, hvor a 0.

Ny Sigma 9, s Andengradsfunktioner med regneforskrift af typen y = ax + bx + c, hvor a 0. Ny Sigm 9, s 110 Andengrdsfunktioner med regneforskrift f typen y = x + x + c, hvor 0 Lineære funktioner (førstegrdsfunktioner) med regneforskrift f typen y = αx + β Grfen for funktioner f disse typer

Læs mere

Bogstavregning. En indledning for stx og hf 2. del. 2008 Karsten Juul

Bogstavregning. En indledning for stx og hf 2. del. 2008 Karsten Juul Bogstvregning En indledning for st og f. del 008 Krsten Juul ) )( ( ) ( ) ( Indold 0. Gnge to prenteser....,, osv... 7. Kvdrtsætninger... 0. Brøer. del... Bogstvregning. En indledning for st og f.. del.

Læs mere

Formelsamling Mat. C & B

Formelsamling Mat. C & B Formelsmling Mt. C & B Indhold BRØER... PARENTESER...3 PROCENT...4 RENTE...5 INDES...6 GEOMETRI... Arel f treknt... Vinkelsum i en treknt... Ens- vinklede treknter... Vilkårlig treknt... Ret- vinklet treknt...8

Læs mere

ALGEBRA. symbolbehandling). Der arbejdes med hjælpemiddelkompetencen,

ALGEBRA. symbolbehandling). Der arbejdes med hjælpemiddelkompetencen, INTRO Alger er lngt mere end ogstvregning. Alger kn være t omskrive ogstvtrk, men lger er f også t generlisere mønstre og smmenhænge, t eskrive smmenhænge mellem tlstørrelse f i forindelse med funktioner

Læs mere

TAL OG REGNEREGLER. Vi ser nu på opbygningen af et legeme og noterer os samtidig, at de reelle tal velkendte regneoperationer + og er et legeme.

TAL OG REGNEREGLER. Vi ser nu på opbygningen af et legeme og noterer os samtidig, at de reelle tal velkendte regneoperationer + og er et legeme. TAL OG REGNEREGLER Inden for lgeren hr mn indført egreet legeme. Et legeme er en slgs konstruktion, hvor mn fstsætter to regneregler og nogle sætninger (ksiomer), der gælder for disse. Pointen med en sådn

Læs mere

Fælles for disse typer af funktioner er, at de som grundfunktion indeholder varianter af udtrykket x a.

Fælles for disse typer af funktioner er, at de som grundfunktion indeholder varianter af udtrykket x a. 5. FORSKRIFT FOR EN POTENSFUNKTION Vi hr i vores gennemgng f de forskellige funktionstper llerede være inde på udtrk, som indeholder forskellige potenser f I dette kpitel skl vi se på forskellige tper

Læs mere

3. Vilkårlige trekanter

3. Vilkårlige trekanter 3. Vilkårlige treknter 3. Vilkårlige treknter I dette fsnit vil vi beskæftige os med treknter, der ikke nødvendigvis er retvinklede. De formler, der er omtlt i fsnittet om retvinklede treknter, kn ikke

Læs mere

STUDENTEREKSAMEN NOVEMBER-DECEMBER 2007 MATEMATISK LINJE 2-ÅRIGT FORLØB TIL B-NIVEAU MATEMATIK DELPRØVEN UDEN HJÆLPEMIDLER

STUDENTEREKSAMEN NOVEMBER-DECEMBER 2007 MATEMATISK LINJE 2-ÅRIGT FORLØB TIL B-NIVEAU MATEMATIK DELPRØVEN UDEN HJÆLPEMIDLER STUDENTEREKSAMEN NOVEMBER-DECEMBER 007 007-8-V MATEMATISK LINJE -ÅRIGT FORLØB TIL B-NIVEAU MATEMATIK DELPRØVEN UDEN HJÆLPEMIDLER Tirsdg den 18 december 007 kl 900-1000 BESVARELSEN AFLEVERES KL 1000 Der

Læs mere

Matematik B-A. Trigonometri og Geometri. Niels Junge

Matematik B-A. Trigonometri og Geometri. Niels Junge Mtemtik B-A Trigonometri og Geometri Niels Junge Indholdsfortegnelse Indledning...3 Trigonometri...3 Sinusreltionen:...6 Cosinusreltionen...7 Dobbeltydighed...7 Smmendrg...8 Retvinklede treknter...8 Ikke

Læs mere

Lineære sammenhænge. Udgave 2. 2009 Karsten Juul

Lineære sammenhænge. Udgave 2. 2009 Karsten Juul Lineære sammenhænge Udgave 2 y = 0,5x 2,5 2009 Karsten Juul Dette hæfte er en fortsættelse af hæftet "Variabelsammenhænge, 2. udgave 2009". Indhold 1. Lineære sammenhænge, ligning og graf... 1 2. Lineær

Læs mere

Trigonometri. Matematik A niveau

Trigonometri. Matematik A niveau Trigonometri Mtemtik A niveu Arhus Teh EUX Niels Junge Trigonometri Sinus Cosinus Tngens Her er definitionen for Cosinus Sinus og Tngens Mn kn sige t osinus er den projierede på x-ksen og sinus er den

Læs mere

MATEMATIK-KOMPENDIUM TIL KOMMENDE ELEVER PÅ DE GYMNASIALE UNGDOMSUDDANNELSER I SILKEBORG (HF, HHX, HTX & STX)

MATEMATIK-KOMPENDIUM TIL KOMMENDE ELEVER PÅ DE GYMNASIALE UNGDOMSUDDANNELSER I SILKEBORG (HF, HHX, HTX & STX) Silkeborg 09-0-0 MATEMATIK-KOMPENDIUM TIL KOMMENDE ELEVER PÅ DE GYMNASIALE UNGDOMSUDDANNELSER I SILKEBORG (HF, HHX, HTX & STX) Udrbejdet f mtemtiklærere fr HF, HHX, HTX & STX. PS: Hvis du opdger fejl i

Læs mere

Regneregler. 1. Simple regler for regning med tal.

Regneregler. 1. Simple regler for regning med tal. Regneregler. Simple regler for regning med tl. Vi rejder l.. med følgende fire regningsrter: plus (), minus ( ), gnge () og dividere (: eller røkstreg, se senere), eller med fremmedord : ddition, sutrktion,

Læs mere

Vektorer. koordinatgeometri

Vektorer. koordinatgeometri Vektorer og koordintgeometri for gymnsiet, dge 5 Krsten Jl VEKTORER Koordinter til pnkt i plnen Koordinter til pnkt i rmmet Vektor: Definition, sprogrg, mm 4 Vektor: Koordinter 5 Koordinter til ektors

Læs mere

SoundSations! Sow[' 9arcft LtbrarY- 'M6k:::'t;q:v:,& l. l(rb af datamaskine. 2. llusikplogram. Pia overvejer at ksbe en datamaskine.

SoundSations! Sow[' 9arcft LtbrarY- 'M6k:::'t;q:v:,& l. l(rb af datamaskine. 2. llusikplogram. Pia overvejer at ksbe en datamaskine. l. l(rb f dtmskine Pi overvejer t ksbe en dtmskine. Hvor meget ville Pi komme til t betle for dtmskinen PC 386, nar der betles 295 kr. pr. maned i36 maneder? Hvor meget ville hun spre ved t kobe kontnt?

Læs mere

MATEMATIK-KOMPENDIUM TIL KOMMENDE ELEVER PÅ DE GYMNASIALE UNGDOMSUDDANNELSER I SILKEBORG (HF, HHX, HTX & STX)

MATEMATIK-KOMPENDIUM TIL KOMMENDE ELEVER PÅ DE GYMNASIALE UNGDOMSUDDANNELSER I SILKEBORG (HF, HHX, HTX & STX) Silkeorg -0- MATEMATIK-KOMPENDIUM TIL KOMMENDE ELEVER PÅ DE GYMNASIALE UNGDOMSUDDANNELSER I SILKEBORG (HF, HHX, HTX & STX) FACITLISTE Udrejdet f mtemtiklærere fr HF, HHX, HTX & STX. PS: Hvis du opdger

Læs mere

Mattip om. Vinkler 2. Tilhørende kopier: Vinkler 2-3. Du skal lære om: Polygoner. Ligesidede trekanter. Gradtal og vinkelsum

Mattip om. Vinkler 2. Tilhørende kopier: Vinkler 2-3. Du skal lære om: Polygoner. Ligesidede trekanter. Gradtal og vinkelsum Mttip om Vinkler 2 Du skl lære om: Polygoner Kn ikke Kn næsten Kn Ligesidede treknter Grdtl og vinkelsum Ligeenede og retvinklede treknter At forlænge en linje i en treknt Tilhørende kopier: Vinkler 2-3

Læs mere

Matematikkens mysterier - på et højt niveau. 3. Differentialligninger

Matematikkens mysterier - på et højt niveau. 3. Differentialligninger Mtemtikkens msterier - på et højt niveu f Kenneth Hnsen 3. Differentilligninger N N N 3 A A k k Indholdsfortegnelse 3. Introduktion 3. Dnmiske sstemer 3 3.3 Seprtion f de vrible 8 3.4 Vækstmodeller 8 3.5

Læs mere

1 1 t 10 1. ( ) x 2 4. + k ================= sin( x) + 4 og har graf gennem (0,2), dvs F(0) = 2. + 4x + k

1 1 t 10 1. ( ) x 2 4. + k ================= sin( x) + 4 og har graf gennem (0,2), dvs F(0) = 2. + 4x + k 0x-MA (0.0.08) _ opg (3:07) Integrtion ved substitution ( x + 7) 9 t x + 7 > t 9 t 0 + k 0 0 ( x + 7)0 + k b) x x + 4 t x + 4 > 3 x t t t x 3 t x x + k 3 t t + k ( ) x 4 3 x + 4 + + k c) cos( x)

Læs mere

Eksempel 9.1. Areal = (a 1 + b 1 )(a 2 + b 2 ) a 1 a 2 b 1 b 2 2a 2 b 1 = a 1 b 2 a 2 b 1 a 1 a 2 = b 1 b 2. Eksempel = ( 1) = 10

Eksempel 9.1. Areal = (a 1 + b 1 )(a 2 + b 2 ) a 1 a 2 b 1 b 2 2a 2 b 1 = a 1 b 2 a 2 b 1 a 1 a 2 = b 1 b 2. Eksempel = ( 1) = 10 Oversigt [LA] 9 Nem vej til rel Nøgleord og begreber Helt simple determinnter Determinnt defineret Effektive regneregler Genkend determinnt nul determinnt nul Produktreglen Inversreglen inversregel og

Læs mere

Hvis man ønsker mere udfordring, kan man springe den første opgave af hvert emne over.

Hvis man ønsker mere udfordring, kan man springe den første opgave af hvert emne over. Opsmling Hvis mn ønsker mere udfordring, kn mn springe den første opgve f hvert emne over Brøkregning, prentesregneregler, kvdrtsætningerne, potensregneregler og reduktion Udregn nedenstående tl i hånden:

Læs mere

Krumningsradius & superellipsen

Krumningsradius & superellipsen Krumningsrdius & suerellisen Side /5 Steen Toft Jørgensen Krumningsrdius & suerellisen Formålet med dette mini-rojekt er t erhverve mtemtisk viden om krumningsrdius f en kurve og nvende denne viden å det

Læs mere

Opstakning og afstakning, fremadregning og tilbageregning

Opstakning og afstakning, fremadregning og tilbageregning 1 Opstkning og fstkning, fremdregning og tilgeregning 1.1 Fremdregning og tilgeregning...2 1.2 Æskeregning...2 1.3 Høseringe-regning, indkodning og fkodning...3 1.4 Vndret tilgeregning, t dnse en ligning...3

Læs mere

Start-mat. for stx og hf Karsten Juul

Start-mat. for stx og hf Karsten Juul Start-mat for stx og hf 0,6 5, 9 2017 Karsten Juul Start-mat for stx og hf 2017 Karsten Juul 1/8-2017 (7/8-2017) Nyeste version af dette hæfte kan downloades fra http://mat1.dk/noter.htm. Hæftet må benyttes

Læs mere

1. Honningpriser. Skemaet viser vregt og priser pi dansk og udenlandsk honning. Dansk honning

1. Honningpriser. Skemaet viser vregt og priser pi dansk og udenlandsk honning. Dansk honning , i 1. Honningpriser Skemet viser vregt og priser pi dnsk og udenlndsk honning. o Hvor stor er prisen i lt for 2 brgre lynghonning og 3 bregre okologisk honning. o Hvor stor er forskellen i pris pi den

Læs mere

Taldiktat. Talhus. Tal. Format 5. Nr. 1. Enere 1. Tiere 10. Hundreder 100. Tusinder 1.000. Titusinder 10.000. Hundredetusinder 100.000 1.000.

Taldiktat. Talhus. Tal. Format 5. Nr. 1. Enere 1. Tiere 10. Hundreder 100. Tusinder 1.000. Titusinder 10.000. Hundredetusinder 100.000 1.000. Tldiktt Nr. Timillioner 0.000.000 Millioner.000.000 Hundredetusinder.000 Tlhus Titusinder 0.000 Tusinder.000 Hundreder Tiere 0 Enere Prktivitet. Træk - kort i skjul fr et lmindeligt kortspil. Læg dem på

Læs mere

MM501 forelæsningsslides

MM501 forelæsningsslides MM501 forelæsningsslides uge 39, 009 Produceret f Hns J. Munkholm 1 Linerisering s. 66-67 Lineriseringen f f omkring x =, er den lineære funktion, der hr tngenten som grf. Klder mn den L er forskriften

Læs mere

Matematik. Kompendium i faget. Tømrerafdelingen. 1. Hovedforløb. a 2 = b 2 + c 2 2 b c cos A. cos A = b 2 + c 2 - a 2 2 b c

Matematik. Kompendium i faget. Tømrerafdelingen. 1. Hovedforløb. a 2 = b 2 + c 2 2 b c cos A. cos A = b 2 + c 2 - a 2 2 b c Kompendium i fget Mtemtik Tømrerfdelingen 1. Hovedforlø. Trigonometri nvendes til eregning f snd længde og snd vinkel i profiler. Sinus Cosinus Tngens 2 2 + 2 2 os A os A 2 + 2-2 2 Svendorg Erhvervsskole

Læs mere

Hvad ved du om mobning?

Hvad ved du om mobning? TEST: Hvd ved du om moning? I testen her kn du fprøve, hvor meget du ved om moning på rejdspldsen. Testen estår f tre dele: Selve testen, hvor du skl sætte ét kryds for hvert f de ti spørgsmål. Et hurtigt

Læs mere

Differentialregning. integralregning

Differentialregning. integralregning Differentilregning og integrlregning Ib Micelsen Ikst 013 Indoldsfortegnelse Tegneøvelser...3 Introduktion... Definition f differentilkvotient og tngent...6 Tngentældninger...7 Den fledte funktion...7

Læs mere

Institut for Matematik, DTU: Gymnasieopgave. Integrationsprincippet og Keplers tønderegel

Institut for Matematik, DTU: Gymnasieopgave. Integrationsprincippet og Keplers tønderegel Integrtionsprincippet og Keplers tønderegel. side Institut for Mtemtik, DTU: Gymnsieopgve Integrtionsprincippet og Keplers tønderegel Littertur: H. Elrønd Jensen, Mtemtisk nlyse, Institut for Mtemtik,

Læs mere

Formelsamling Mat. C LINEÆR VÆKST... 11 EKSPONENTIEL VÆKST... 11 POTENS-VÆKST... 11

Formelsamling Mat. C LINEÆR VÆKST... 11 EKSPONENTIEL VÆKST... 11 POTENS-VÆKST... 11 Formelsmling Mt. C BRØER... LIGNINGER... PARENTESER... RENTE... 5 INDES... 6 GEOMETRI... Arel f treknt... Vinkelsum i en treknt... Ens- vinklede treknter... VILÅRLIG TREANT... Sinusreltionerne:... Cosinusreltionerne:...

Læs mere

Et udvalg af funktionerne tegnet på grafregneren (eller her med Derive)

Et udvalg af funktionerne tegnet på grafregneren (eller her med Derive) GDS, opgve 85 En strt på opgven (undervisnings- og tvleprotokol): En milie unktioner hr orskrit 4 ( ) + R, Et udvlg unktionerne tegnet på grregneren (eller her med Derive) Værdier tllet, or hvilke hr henholdsvis

Læs mere

Matematisk modellering og numeriske metoder. Lektion 17

Matematisk modellering og numeriske metoder. Lektion 17 Mtemtisk modellering og numeriske metoder Lektion 1 Morten Grud Rsmussen 8. november, 1 1 Numerisk integrtion og differentition [Bogens fsnit 19. side 84] 1.1 Grundlæggende om numerisk integrtion Vi vil

Læs mere

1. Eksperimenterende geometri og måling

1. Eksperimenterende geometri og måling . Eksperimenterende geometri og måling Undersøgelse Undersøgelsen drejer sig om det såkldte Firfrveproblem. For mere end 00 år siden fndt mn ved sådnne undersøgelser frem til, t fire frver er nok til t

Læs mere

Eksamensspørgsmål: Eksponentiel vækst

Eksamensspørgsmål: Eksponentiel vækst Eksamensspørgsmål: Eksponentiel vækst Indhold Definition:... Eksempel :... Begndelsesværdien b... Fremskrivningsfaktoren a... Eksempel :... Formlerne for a og b... 3 Eksempel 3:... 3 Bevis for formlen

Læs mere

Tal 2, 3, 5, 7, 11, 13, 17 19, 23, 29, 31, 37, 41, 43, 47. Talsyste Brøk Decimalt Procent. Primtal eller sammensat tal

Tal 2, 3, 5, 7, 11, 13, 17 19, 23, 29, 31, 37, 41, 43, 47. Talsyste Brøk Decimalt Procent. Primtal eller sammensat tal Tl Prisen på g uld tog tors d stte ny re kord i Lon g et stort spring op d og don med rende til.,, kron er per ounce dollr sv.000 (, grm )..00.000 Guld.00.000 00 0 0 0 0 0 0 0 0 0 000 00 m Tlsyste Brøk

Læs mere

Matematik - introduktion. Martin Lauesen February 23, 2011

Matematik - introduktion. Martin Lauesen February 23, 2011 Mtemtik - introduktion Mrtin Luesen Februry 23, 2011 1 Contents 1 Aritmetik og elementær lgebr 3 1.1 Symboler............................... 3 1.1.1 ligheder............................ 4 1.1.2 uligheder...........................

Læs mere

Integralregning. for A-niveau i stx, udgave Karsten Juul

Integralregning. for A-niveau i stx, udgave Karsten Juul Integrlregning or A-niveu i st, udgve 5 Krsten Juul Stmunktion (uestemt integrl) Hvd er en stmunktion? UndersÄg om g( er stmunktion til ( GÄr rede or t g( er stmunktion til ( En unktion hr mnge stmunktioner

Læs mere

Ligninger. 1 a 3 b 2 c 8 d 9 e 42 f 6 g 70 h 9 i 2 eller 2 j 13 k 8 l 9 eller 9

Ligninger. 1 a 3 b 2 c 8 d 9 e 42 f 6 g 70 h 9 i 2 eller 2 j 13 k 8 l 9 eller 9 Ligninger 1 3 2 c 8 d 9 e 42 f 6 g 70 h 9 i 2 eller 2 j 13 k 8 l 9 eller 9 2 c d e f 6 æg + 5 høns. 1 æle + 13 pærer. 5 myg + 1 flue. 6x + 5y + 13 3x + 5y 3 4 Gælder i nogle tilfælde. Gælder ltid. c Gælder

Læs mere

For så kan de to additionsformler samles i én formel, der kan ses som et specialtilfælde af den komplekse eksponentialfunktions funktionalligning,

For så kan de to additionsformler samles i én formel, der kan ses som et specialtilfælde af den komplekse eksponentialfunktions funktionalligning, 15.1. Komplekse integrler 293 læse, og hvordn gør mn det i prksis? Men den virkelige motivtion bg begrebet bliver udst til fsnit 18.5, hvor vi viser t foldning f sndsynlighedsmål lder sig udtrykke meget

Læs mere

Hvad ved du om mobning?

Hvad ved du om mobning? TEST: Hvd ved du om moning? I testen her kn du fprøve, hvor meget du ved om moning på rejdspldsen. Testen estår f tre dele: Selve testen, hvor du skl sætte ét kryds for hvert f de ti spørgsmål. Et hurtigt

Læs mere

Eksponentielle sammenhænge

Eksponentielle sammenhænge Eksponentielle sammenhænge 0 1 2 3 4 5 6 7 8 9 10 11 12 13 Indholdsfortegnelse Variabel-sammenhænge... 1 1. Hvad er en eksponentiel sammenhæng?... 2 2. Forklaring med ord af eksponentiel vækst... 2, 6

Læs mere

Elementær Matematik. Vektorer i planen

Elementær Matematik. Vektorer i planen Elementær Mtemtik Vektorer i plnen Køge Gymnsium 0 Ole Witt-Hnsen Indhold. Prllelforskydninger i plnen. Vektorer.... Sum og differens f to vektorer... 3. Multipliktion f vektor med et tl...3 4. Opløsning

Læs mere

Differential- regning

Differential- regning Differential- regning del () f () m l () 6 Karsten Juul Indhold Tretrinsreglen 59 Formler for differentialkvotienter64 Regneregler for differentialkvotienter67 Differentialkvotient af sammensat funktion7

Læs mere

Stamfunktion & integral

Stamfunktion & integral PeterSørensen.dk Stmfunktion & integrl Indhold Stmfunktion... Integrl (Uestemt integrl)... 2 Det estemte integrl... 2 Arel og integrl... Regneregler for estemte integrler... Integrler / stmfunktioner kn

Læs mere

Elementær Matematik. Algebra Analytisk geometri Trigonometri Funktioner

Elementær Matematik. Algebra Analytisk geometri Trigonometri Funktioner Elementær Mtemtik Alger Anlytisk geometri Trigonometri Funktioner Ole Witt-Hnsen Køge Gymnsium 0 Indhold Indhold... Kp. Tl og regning med tl.... De nturlige tl.... Regneregler for nturlige tl.... Kvdrtsætningerne.....

Læs mere

Arctan x = x x3 3 + x5 (En syvende berømt række er binomialrækken, [S] 8.8.) Eksempel

Arctan x = x x3 3 + x5 (En syvende berømt række er binomialrækken, [S] 8.8.) Eksempel Oversigt [S] 8.5, 8.6, 8.7, 8.0 Nøgleord og begreber Seks berømte potensrækker Potensrække Konvergensrdius Differentition og integrtion f potensrækker Tylor og McLurin rækker August 00, opgve 4 Den geometriske

Læs mere

Formelsamling i Matematik på C og B og A niveau Dette er en formelsamling der er under konstant udvikling Så hvis du har ønsker til denne så sig til

Formelsamling i Matematik på C og B og A niveau Dette er en formelsamling der er under konstant udvikling Så hvis du har ønsker til denne så sig til Niels Junges formelsmling Formelsmling i Mtemtik på C og B og A niveu Dette er en formelsmling der er under konstnt udvikling Så hvis du hr ønsker til denne så sig til Indhold Tble of Contents Specielle

Læs mere

ANALYSE 1, 2014, Uge 3

ANALYSE 1, 2014, Uge 3 ANALYSE 1, 2014, Uge 3 Forelæsninger Tirsdg. Vi generliserer tlrækker til funktionsrækker ved t udskifte tllene med funktioner (TL Afsnit 12.5). Det svrer til forrige uges skridt fr tlfølger til funktionsfølger.

Læs mere

Sandsynligheder og diskrete stokastiske variable

Sandsynligheder og diskrete stokastiske variable Sndsynligheder og disrete stostise vrible Regler for sndsynligheder Byes sætning Stostis vribel disret Sndsynligheds fordeling Kumultiv fordeling Middelværdi, vrins, stndrd fvigelse Sidste gng Mængder

Læs mere

Formelsamling Mat. C & B

Formelsamling Mat. C & B Formelsmling Mt. C & B Indhold FORMELSAMLING MAT. C & B... 1 BRØER... PARENTESER... 3 PROCENT... 4 RENTE... 5 INDES... 6 GEOMETRI... Arel f treknt... Vinkelsum i en treknt... Ens- vinklede treknter...

Læs mere

- 81 - , x I. kmx. Sætningen bevises ikke her. Interesserede læsere henvises til bogen: Differentialligninger og matematiske

- 81 - , x I. kmx. Sætningen bevises ikke her. Interesserede læsere henvises til bogen: Differentialligninger og matematiske - 8 - Appendi : Logistisk vækst og integrlregning. I forbindelse med eksponentielle vækstfunktioner er der tle om en vækstform, hvor funktionens væksthstighed er proportionl med den ktuelle funktionsværdi,

Læs mere

Variabel- sammenhænge

Variabel- sammenhænge Variabel- sammenhænge 2008 Karsten Juul Dette hæfte kan bruges som start på undervisningen i variabelsammenhænge for st og hf. Indhold 1. Hvordan viser en tabel sammenhængen mellem to variable?... 1 2.

Læs mere

Algebra, ligninger og uligheder

Algebra, ligninger og uligheder Alger, ligninger og uligheder I dette kpitel skl du rejde med ligninger og uligheder. Et esøg på Bkken kn give nledning til mnge overvejelser over priser. Det kunne fx være den smlede pris for turen og

Læs mere

Integrationsteknikker

Integrationsteknikker Integrtionsteknikker Frnk Vill. jnur 14 Dette dokument er en del f MtBog.dk 8-1. IT Teching Tools. ISBN-13: 978-87-9775--9. Se yderligere betingelser for brug her. Indhold 1 Introduktion 1 Numerisk integrtion.1

Læs mere

Michel Mandix (2010) INDHOLDSFORTEGNELSE:... 2 EN TREKANTS VINKELSUM... 3 PYTHAGORAS LÆRESÆTNING... 4 SINUSRELATIONERNE... 4 COSINUSRELATIONERNE...

Michel Mandix (2010) INDHOLDSFORTEGNELSE:... 2 EN TREKANTS VINKELSUM... 3 PYTHAGORAS LÆRESÆTNING... 4 SINUSRELATIONERNE... 4 COSINUSRELATIONERNE... MATEMATIK NOTAT MATEMATISKE EVISER AF: CAND. POLYT. MICHEL MANDIX SIDSTE REVISION: FERUAR 04 Michel Mndi (00) Side f 35 Indholdsfortegnelse: INDHOLDSFORTEGNELSE:... EN TREKANTS VINKELSUM... 3 PYTHAGORAS

Læs mere

Fremkomsten af mængdelæren. Stig Andur Pedersen

Fremkomsten af mængdelæren. Stig Andur Pedersen Fremkomsten f mængdelæren Stig Andur Pedersen 1 Fourier række for f(x)=x x n 1 ( 1) 2 sin( nx) n n= 1 sin(2 x) sin(3 x) sin(4 x) = 2 sin( x) + + 2 3 4 De første 15 led er tget med på kurven. 2 Fourierrække

Læs mere

matx.dk Enkle modeller

matx.dk Enkle modeller matx.dk Enkle modeller Dennis Pipenbring 28. juni 2011 Indhold 1 Indledning 4 2 Funktionsbegrebet 4 3 Lineære funktioner 8 3.1 Bestemmelse af funktionsværdien................. 9 3.2 Grafen for en lineær

Læs mere

Asymptoter. for standardforsøgene i matematik i gymnasiet. 2003 Karsten Juul

Asymptoter. for standardforsøgene i matematik i gymnasiet. 2003 Karsten Juul Asymptoter for standardforsøgene i matematik i gymnasiet 2003 Karsten Juul Indledning om lodrette asymptoter Lad f være funktionen bestemt ved =, 2. 2 Vi udregner funktionsværdierne i nogle -værdier der

Læs mere

Formelsamling i Matematik på C og B og A niveau Dette er en formelsamling der er under konstant udvikling Så hvis du har ønsker til denne så sig til

Formelsamling i Matematik på C og B og A niveau Dette er en formelsamling der er under konstant udvikling Så hvis du har ønsker til denne så sig til Niels Junges formelsmling Formelsmling i Mtemtik på C og B og A niveu Dette er en formelsmling der er under konstnt udvikling Så hvis du hr ønsker til denne så sig til Indhold Tble of Contents Specielle

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningseskrivelse Stmoplysninger til rug ved prøver til gymnsile uddnnelser Termin Juni 2016 Institution Uddnnelse Fg og niveu Lærere Hold Fvrskov Gymnsium Stx Mtemtik A Peter Lundøer (Lu) 3k Mtemtik

Læs mere

Projekt 10.3 Terningens fordobling

Projekt 10.3 Terningens fordobling Hvd er mtemtik? C, i-og Projekt 0.3 Terningens fordoling Elementerne indeholder, hvd mn kn deduere sig til og konstruere ud fr de få givne ksiomer. Mn kn derfor i en vis forstnd sige, t l den viden, der

Læs mere

Opgave 1 ( Toppunktsformlen )

Opgave 1 ( Toppunktsformlen ) Opgve 1 ( Toppunktsformlen ) Et nengrspolynomium er givet ve f x x 2 b x c. For t fine toppunktet vil vi først ifferentiere f x Derefter løser vi ligningen f ' x x b f ' x 0 x b 0 x b D f ' x x b er en

Læs mere

Kort om Eksponentielle Sammenhænge

Kort om Eksponentielle Sammenhænge Øvelser til hæftet Kort om Eksponentielle Sammenhænge 2011 Karsten Juul Dette hæfte indeholder bl.a. mange småspørgsmål der gør det nemmere for elever at arbejde effektivt på at få kendskab til emnet.

Læs mere

Spil- og beslutningsteori

Spil- og beslutningsteori Spil- og eslutningsteori Peter Hrremoës Niels Brock 26. novemer 2 Beslutningsteori De økonomiske optimeringssitutioner, vi hr set på hidtil, hr været helt deterministiske. Det vil sige t vores gevinst

Læs mere