Kogebog: 5. Beregn F d

Størrelse: px
Starte visningen fra side:

Download "Kogebog: 5. Beregn F d"

Transkript

1 tattk 8. gag KONFIDENINERVALLER Kofdetervaller: kaptel Valg og tet af fordelgfukto tattk 8. gag. KONFIDEN INERVALLER Et kofde terval udtrykker tervallet hvor de rgtge værd af parametere K, med γ % adylghed befder g. Ek:.96 µ er et kofde terval for µ Geerelt udtrykke et kofde terval om: K F D K K F D (dobbeltdet) et d et + d K et Etmatværd af tattk K F d Fordelgfaktor D Mål for predg af K tattk 8. gag 3 K Ket Fd D (edre ekeltdet) tattk 8. gag 4 Kofdetervaller tattk ba ~ hypotee tet (dte gag) Kogebog:. Vælg - eller -det kofde terval. Idetfcer fordelg for K tattk K K F D (øvre ekeltdet) et + d 3. Vælg kofdeveau, γ = α (α : gfkaveau) 4. Idaml data og bereg K et og D 5. Bereg F d 6. Betem kofde terval

2 tattk 8. gag 5.3. Kofdeterval for mddelværd K et = D = F d = z α predg kedt: zα / µ + zα / -det zα µ edre -det µ + zα øvre -det predg ukedt: tα /, µ + tα /, -det tα, µ edre -det µ + tα, øvre -det tattk 8. gag 6 Ekempel - : vad kvaltet (baeret på ekempel 9-3) = =.8 =.4 (predg ukedt) 95% kofdeterval γ =.95 α =.5 Nedre kofdeterval: t α, = tα, = = µ Alteratvt: = : t α, =.7.4 t =.8.73 =.65 α, µ Dv.: tørre mdre terval og dermed tørre kofde tl at µ lgger tæt ved tattk 8. gag 7 Kofde tervaller afhæger af Atal data : tørre mdre terval Kofdeveau γ : tørre γ tørre terval Fordelgtype (kedt / ukedt predg) o Ukedt predg tørre terval tattk 8. gag Kofdeterval for vara ( ) α /,, ( ) α ( ) α /, α, -det edre -det ( ) øvre -det Ekempel -3 : vad dybder = 5 =.63 95% kofdeterval γ =.95 α =.5 Øvre kofdeterval: α, = ( ) 4.63 = =.6879 Kofdeterval: α,

3 tattk 8. gag 9.4. Betemmele af tørrele af data ample Gvet: tørrele af kofdeterval = H (-det kofdeterval) Kedt predg H = + zα / z α / = zα / = zα / H typk vælge H =. Ukedt predg = tα /, H (-det) terato ødvedg = tα, H (-det) terato ødvedg tattk 8. gag Ekempel -5 (ek. 9-3: vadkvaltet) 95% kofdeterval γ =.95 α =.5 ukedt predg H =.5 -det terval = : t.5, 9 =.83 = 4: t.5, 3 =.77 = 3 =.83 = =.77 =.6.5 tattk 8. gag 9.5 Valg og tet af fordelgfukto Forudætg for hdtl omtalte tattke metoder for hypoteer og kofdetervaller er at data følger ormalfordelge tet af atagele ødvedg! tattk 8. gag 9.5. tet et af om e valgt fordelg er OK: hypoteetet. Hypotee tet Kolmogorov mrov tet Ek: H : H : Ek: H : H : NB: er eformg fordelt mellem og 4: U(,4) U(,4) er ormalfordelt med µ = og =5 : N(,5) N(,5) forkatele ka kylde - fordelgtype er forkert - parametre er forkerte

4 tattk 8. gag 3. Vælg model adylgheder med model ammelge med data htogram et tattk: k ( O E ) = = E O oberveret frekve for terval (celle ) E etmeret frekve for terval (celle ) k atal tervaller (celler) tattk 8. gag 4 : fordelt med k-j frhedgrader j: atal parametre etmeret fra data = hv ku frekveer etmere ( beytte) = 3 hv ogå og etmere mdt 5 data alt hvert terval (celle) bør deholde mdt 4-5 data k tørre ed 3 3. Vælg gfkaveau α 4. Bereg tet tattk 5. Defer forkateleområdet > α, k j 6. Kokluo tattk 8. gag 5 Ekempel 9-7: -tet for ormalfordelg: brudlater af bjælke Data: Htogram: tattk 8. gag 6 ad ) model ormerede data: z x x = z : N(,) P = Φ ( Z z ) = 84 =. = 78 ad ) hypotee H : er ormalfordelt med µ =. og =78 : N(., 78) H : N(., 78)

5 tattk 8. gag 7 ad 3) gfkaveau α =.5 ad 4) beregg af tettattk =.9 ad 5) forkateleområde k=6 j= ad 6) kokluo Da.5,6 3 = =.9 > 7.87 forkate hypotee tattk 8. gag Kolmogorov-mrov -ample tet Ka beytte ved et llle atal data. Hypotee H : data er ample fra gve fordelg F (x) med gve parametre H : data er kke ample fra gve fordelg med gve parametre. Model tet tattk for orterede data: x x... ample fordelgfukto: for x x F ) = for x x x+ for x x ) = F x Gve fordelg: F (x) tattk 8. gag 9 tattk 8. gag 3. Vælg gfkaveau α 4. Bereg tet tattk K 5. Defer forkateleområdet K > 6. Kokluo K α (tabel A-7) K = max{ F F L F L F ) F ) F ) F ) F ), ), F ), F ), F ) F F ) F ) F ) F ), ), ), ) }

6 tattk 8. gag Ekempel 9-: Kolmogorov-mrov tet for vadkvaltet tattk 8. gag ad 4) beregg af tettattk Data: ppm = 3 =54.6 = 6. ad ) hypotee H : er ormalfordelt med µ =54.6 og =6. : N(54.6, 6.) H : N(54.6, 6.) ad ) model ad 3) gfkaveau α =.5 K=.787 tattk 8. gag 3 tattk 8. gag 4 ad 5) forkateleområde K α =.36 ad 6) kokluo Da K< K acceptere hypotee α

7 tattk 8. gag 5 Valg af fordelgfukto adylghedpapr tattk 8. gag 6 Plot af data: Data ragorde: x x... x... x lhørede adylghed: P = + Webull plotte formel. 5 P = Haze plotte formel Pukter lgger på e ret le hv de følger e Normal fordelg Ekempel: tattk 8. gag 7 Returperode Ku relevat hv data bekrver max (eller m) værder geem e gve tdperode Returperode : geemtlg td mellem overkrdele af e gve græe x med e adylghed på p Data: x : max værd over førte tdperode τ (ofte τ = år) x : max værd over ade tdperode τ x : max værd over te tdperode τ tattk 8. gag 8 Ekempel: Vadmægde flod: Data: 58 årlge max værder af vadmægde: Mddelværd: = 86 predg: = 48 F (x): fordelgfukto for tokatk varabel der bekrver max værd over tdperode τ adylghed (overkrdele af græe x ) = p = P( x ) = F ) τ Returperode = p Kede og τ ka x berege Kede τ og x ka berege

8 tattk 8. gag 9 Plot på Normal-papr med Webull plotte formel: Dårlgt ft!! -år vadførg: τ = år = år p = =. beregg: z. =. 3 x = +. 3 = 8. aflæg: x > 3. Atagele om at data er LogNormal fordelt gver meget bedre ft!!

Statistik 8. gang 1 KONFIDENSINTERVALLER. Konfidensintervaller: kapitel 11. Valg og test af fordelingsfunktion

Statistik 8. gang 1 KONFIDENSINTERVALLER. Konfidensintervaller: kapitel 11. Valg og test af fordelingsfunktion Statistik 8. gag 1 KONIDENSINTERVALLER Kofidesitervaller: kapitel 11 Valg og test af fordeligsfuktio Statistik 8. gag 11. KONIDENS INTERVALLER Et kofides iterval udtrykker itervallet hvori de rigtige værdi

Læs mere

Den stokastiske variabel X angiver levetiden i timer for en elektrisk komponent. Tæthedsfunktionen for den stokastiske variabel er givet ved

Den stokastiske variabel X angiver levetiden i timer for en elektrisk komponent. Tæthedsfunktionen for den stokastiske variabel er givet ved STATISTIK Skrtlg evaluerg, 3. emeter, madag de 3. jauar 5 kl. 9.-3.. Alle hjælpemdler er tlladt. Opgaveløge orye med av og CPR-r. OPGAVE De tokatke varabel agver levetde tmer or e elektrk kompoet. Tætheduktoe

Læs mere

Afsnit , Hypotesetest for en varians... 19

Afsnit , Hypotesetest for en varians... 19 Aft.-.7... 5 vad er tattk?... 5 Nøgletal... 5 Meda... 5 Vara... 5 Fraktler... 6 Fgurer... 6 Pareto dagram... 6 Dot dagram... 6 Frequecy dtrbuto... 6 togram... 6 Boplot... 6 Aft 4.-4.4 og 4.6 og 4.7...

Læs mere

Analyse af bivariate data: korrelation og regression. korrelation. Korrelation og regression: Co-varians:

Analyse af bivariate data: korrelation og regression. korrelation. Korrelation og regression: Co-varians: ,,,,,,,,,, Stattk for bologer -, modul og : Korrelato og regreo: Aale af bvarate data: korrelato og regreo Korrelato: llutrerer v.h.a. e koeffcet hvlke grad to varable er dbrde afhægge: - (perfekt egatv

Læs mere

bestemmes. kendes ( ) A i Subjektiv information + objektiv information Bayesiansk statistik (gang 10) Bayes sætning

bestemmes. kendes ( ) A i Subjektiv information + objektiv information Bayesiansk statistik (gang 10) Bayes sætning Statstk. gag BAYESIANSKE METOER Objektv formato f.eks. forsøgs resultater klasssk statstk gag -9 Subjektv formato objektv formato Bayesask statstk gag Bayes sætg E E A A E A A... E A A A E A E E E A A

Læs mere

Hypotesetest. Hypotesetest og kritiske værdier Type 1 og Type 2 fejl Styrken af en test Sammenligning af to populationer

Hypotesetest. Hypotesetest og kritiske værdier Type 1 og Type 2 fejl Styrken af en test Sammenligning af to populationer Hypoteetet Hypoteetet og kritike værdier Type og Type fejl Styrke af e tet Sammeligig af to populatioer Kofideiterval for σ tore tikprøver. Hvi X følger e χ -fordelig med frihedgrader, dv. X~χ (), gælder

Læs mere

L komponent produceret i linie 1

L komponent produceret i linie 1 Statstk. gag BAYESIANSKE METOER Obektv ormato (.eks. orsøgs resultater klasssk statstk (gag -9 Subektv ormato + obektv ormato Bayesask statstk (gag Bayes sætg ( E ( E A ( A + ( E A ( A +... ( E A ( + (

Læs mere

Men tilbage til regression og Chi-i-anden. test. Begge begreber refererer til normalfordelingen med middelværdi μ og spredning σ.

Men tilbage til regression og Chi-i-anden. test. Begge begreber refererer til normalfordelingen med middelværdi μ og spredning σ. χ test matematkudervsge χ - test gymasets matematkudervsg I jauar ummeret 8 af LMFK bladet havde jeg e artkel, hvor jeg harcelerede ldt over, at regresso og sær χ fordelg havde fudet dpas matematkudervsge

Læs mere

Eksempel: PEFR. Epidemiologi og biostatistik. Uge 1, tirsdag. Erik Parner, Institut for Biostatistik.

Eksempel: PEFR. Epidemiologi og biostatistik. Uge 1, tirsdag. Erik Parner, Institut for Biostatistik. Epdemolog og bostatstk. Uge, trsdag. Erk Parer, Isttut for Bostatstk. Geerelt om statstk Dataaalyse - Deskrptv statstk - Statstsk feres Sammelgg af to grupper med kotuerte data - Geemst og spredg - Parametre

Læs mere

Statistik 9. gang 1 REGRESSIONSANALYSE. Korrelation (kontrol af model) Regression (tilpasning af model)

Statistik 9. gang 1 REGRESSIONSANALYSE. Korrelation (kontrol af model) Regression (tilpasning af model) Statstk 9. gag REGRESSIONSANALYSE Korrelato kotrol af model Regresso tlpasg af model Statstk 9. gag KORRELATIONS ANALYSE. Grad af fælles varato mellem X og Y. Område og fordelg af sample data 3. Optræde

Læs mere

Spørgsmål 1 (5 %) Bestem sandsynligheden for at batteriet kan anvendes i mere end 5 timer.

Spørgsmål 1 (5 %) Bestem sandsynligheden for at batteriet kan anvendes i mere end 5 timer. TATITIK krftlg evaluerg, 3. semester, fredag de 4. jauar 3 kl. 9.-3.. Alle hjælpemdler er tlladt. Opgaveløsge forsyes med av og CR-r. OGAVE Et batter har e levetd tmer med de tlkyttede tæthedsfukto f (

Læs mere

Estimation og test i normalfordelingen

Estimation og test i normalfordelingen af Birger Stjerholm Made Samfudlitteratur 07 Etimatio og tet i ormalfordelige Dee tekt ideholder et overblik over ogle grudlæggede pricipper for etimatio og tet i ormalfordelige i hyppigt forekommede ituatioer:

Læs mere

Vi ønsker også at teste hypoteser om parametrene. F.eks: Kan µ tænkes at være 0 (eller anden fast, kendt værdi)? Eksempel: dollarkurser

Vi ønsker også at teste hypoteser om parametrene. F.eks: Kan µ tænkes at være 0 (eller anden fast, kendt værdi)? Eksempel: dollarkurser Uge 37 I Teoretsk Statstk, 9.sept. 003. Fordelger kyttet tl N-ford. Gvet: uafhægge observatoer af samme N(µ,σ )-fordelte stokastske varabel. Formelt: X,X,,X uafhægge, alle N(µ,σ )-fordelt. Mddelværd µ

Læs mere

Repetition. Forårets højdepunkter

Repetition. Forårets højdepunkter Repetto Forårets højdepukter Forårets højdepukter Smpel Leær Regresso Smpel leær regresso: Mdste kvadraters metode Kovaras og Korrelato Scatterplot Scatterplot kf Advertsg Epedtures (X ad Sales (Y Et scatterplot

Læs mere

Hvorfor n-1 i stikprøvevariansen?

Hvorfor n-1 i stikprøvevariansen? Erk Vestergaard www.matematkfysk.dk Hvorfor - stkprøvevarase? Lad os sge, at e fabrk producerer e bestemt type halogepærer. Det vser sg, at levetde for e såda elpære varerer efter e ormalfordelg. Nogle

Læs mere

Simpel Lineær Regression - repetition

Simpel Lineær Regression - repetition Smpel Leær Regresso - repetto Spørgsmål: Afhæger leært af?. Model: β + β + ε ε d N(0, σ 0 ) Sstematsk kompoet + Stokastsk kompoet Estmato - repetto Vha. Mdste Kvadraters Metode fder v regressosle hvor

Læs mere

Scorer FCK "for mange" mål i det sidste kvarter?

Scorer FCK for mange mål i det sidste kvarter? Uge 7 I Teoretsk Statstk, 9. aprl 2004. Hvor er v? Hvor var v: opstllg af statstske modeller Hvor skal v he: tro om estmato og test 2. Eksempel: FCK Estmato (tutvt) Test Maksmum lkelhood estmato Scorer

Læs mere

Statistik Lektion 8. Test for ens varians

Statistik Lektion 8. Test for ens varians Statitik Lektio 8 Tet for e varia ra tidligere Hvi populatioe er ormalfordelt med varia, å gælder ( ) S ~ χ hvor er tikprøve tørrele og S er tikprøvevariae. χ -fordelig med - frihedgrader χ Tet af Variae

Læs mere

Statistik Lektion 14 Simpel Lineær Regression. Simpel lineær regression Mindste kvadraters metode Kovarians og Korrelation

Statistik Lektion 14 Simpel Lineær Regression. Simpel lineær regression Mindste kvadraters metode Kovarians og Korrelation Statstk Lekto 4 Smpel Leær Regresso Smpel leær regresso Mdste kvadraters metode Kovaras og Korrelato Scatterplot Scatterplot kf Advertsg Epedtures ( ad Sales ( Et scatterplot vser par (, af observatoer.

Læs mere

Økonometri 1. Funktionel form. Funktionel form (fortsat) Dagens program. Den simple regressionsmodel 14. september 2005

Økonometri 1. Funktionel form. Funktionel form (fortsat) Dagens program. Den simple regressionsmodel 14. september 2005 Dages program Økoometr De smple regressosmodel 4. september 5 Dee forelæsg drejer sg stadg om de smple regressosmodel (Wooldrdge kap.4-.6) Fuktoel form Hvorår er OLS mddelret? Varase på OLS estmatore Regressosmodelle

Læs mere

Variansanalyse (ANOVA) Repetition, sammenligning af to grupper Variansanalyse: Sammenligning af flere end to middelværdier.

Variansanalyse (ANOVA) Repetition, sammenligning af to grupper Variansanalyse: Sammenligning af flere end to middelværdier. Vaaaalye (ANOVA) Reetto, ammelgg af to gue Vaaaalye Sammelgg af flee ed to mddelvæde. Sammelgg af to mddelvæde kedte vaae og toe tkøve elle oulatoe omalfodelte Hyotee H H µ µ ( µ µ ) µ µ ( µ µ ) Tettøele

Læs mere

Pearsons formel for χ 2 test. Den teoretiske forklaring

Pearsons formel for χ 2 test. Den teoretiske forklaring Pearsos formel for χ test De teoretse forlarg Ole Wtt-Hase 04 Idhold. Normalfordelge og χ.... Pearsos formel for χ test... 3. Forlarg på Pearsos formel....4 Pearsos formel for χ test. Normalfordelge og

Læs mere

Induktionsbevis og sum af række side 1/7

Induktionsbevis og sum af række side 1/7 Iduktosbevs og sum af række sde /7 Skrver ma,,,...,,..., =, 2, 3,... 2 3 taler ma om e talfølge, eller blot e følge. Adre eksempler på følger er, -,, -,, -,..., (-) +,..., =, 2, 3,..., 2, 3, 4,...,,...,

Læs mere

Anvendt Statistik Lektion 3. Punkt- og intervalestimater Konfidensintervaller Valg af stikprøvestørrelse

Anvendt Statistik Lektion 3. Punkt- og intervalestimater Konfidensintervaller Valg af stikprøvestørrelse Avedt Statistik Lektio 3 Pukt- og itervalestimater Kofidesitervaller Valg af stikprøvestørrelse Pukt- og itervalestimater: Motivatio Motiverede eksempel: I e udersøgelse er adele af rygere 0.27. Det aslås

Læs mere

1.0 FORSIKRINGSFORMER

1.0 FORSIKRINGSFORMER eam Lv forskrgsakteselskab Bereggsgrudlaget sgrp217 tl præmeberegg for gruppeforskrg e-am Lv forskrgsakteselskab 1. FORIKRINGFORMER 1.1 Oblgatorske ordger Alle gruppeforskrgsordger teget på dette grudlag

Læs mere

Test i to populationer. Hypotesetest for parrede observationer Test for ens varians Gensyn med flyskræk!

Test i to populationer. Hypotesetest for parrede observationer Test for ens varians Gensyn med flyskræk! Test i to populatioer Hypotesetest for parrede observatioer Test for es varias Gesy med flyskræk! Afhægige og uafhægige stikprøver Ved e uafhægig stikprøve udtages e stikprøve fra hver gruppe.. Mæd og

Læs mere

BEVISER TIL KAPITEL 7

BEVISER TIL KAPITEL 7 BEVISER TIL KAPITEL 7 A. Komplemetærhædelse Det er klart, at e hædelse A og de komplemetære hædelse A udgør hele udfaldsrummet U, dvs. A A = Da fås P(U = U P(A A = P (A + P(A = da de to hædelser er dsjukte

Læs mere

Notato: k grupper observeret tl tdspuktere (logartmerede) t1;t2;:::;t k. Tl tdspukt observeres et atal ( ) ph-vρrder, 1 ; 2 ;:::;. V opfatter dem som

Notato: k grupper observeret tl tdspuktere (logartmerede) t1;t2;:::;t k. Tl tdspukt observeres et atal ( ) ph-vρrder, 1 ; 2 ;:::;. V opfatter dem som Statstk 1, torsdag de 15. marts Leρr regressosaalyse, afst 5.2.1 ffl Problemstllg ffl Data Model Estmato og test Dages program: Hvad ka v? 1 V ka sammelge grupper af observatoer, hvor data hver gruppe

Læs mere

Kursus Introduktion til Statistik. Oversigt, Inferens for gennemsnit (One-sample setup)

Kursus Introduktion til Statistik. Oversigt, Inferens for gennemsnit (One-sample setup) Kuru 02402 Introduktion til Statitik Forelæning 5: Kapitel 7: Inferen for gennemnit (One-ample etup) Per Bruun Brockhoff DTU Compute, Statitik og Dataanalye Bygning 324, Rum 220 Danmark Teknike Univeritet

Læs mere

Fordelingen af gentagne observationer (målinger) kan beskrives ved hjælp af et histogram, der viser antallet af målinger i et givet interval.

Fordelingen af gentagne observationer (målinger) kan beskrives ved hjælp af et histogram, der viser antallet af målinger i et givet interval. H:\excerc\geodstat.doc, sdste ædrg: ov. 5, 3.. 3. Geodætsk statstk og mdste kvadraters metode. 3.. Statstske grudbegreber. 3.. Fordelger. Fordelge af getage observatoer (målger ka beskrves ved hælp af

Læs mere

Spørgsmål 3 (5 %) Bestem sandsynligheden for at et tilfældigt valgt vindue har en fejl ved listerne, når man ved at der er fejl i glasset.

Spørgsmål 3 (5 %) Bestem sandsynligheden for at et tilfældigt valgt vindue har en fejl ved listerne, når man ved at der er fejl i glasset. STATISTIK Skriftlig evaluerig, 3. semester, madag de 30. auar 006 kl. 9.00-3.00. Alle hælpemidler er tilladt. Opgaveløsige forsyes med av og CPR-r. OPGAVE Ved e produktio af viduer er der mulighed for,

Læs mere

hvor i er observationsnummeret, som løber fra 1 til stikprøvestørrelsen n, X i

hvor i er observationsnummeret, som løber fra 1 til stikprøvestørrelsen n, X i Normalfordeliger For at e stokastisk variabel X ka være ormalfordelt, skal X agive værdie af e eller ade målig, f.eks. tid, lægde, vægt, beløb osv. Notatioe er: Xi ~ N( μ, σ hvor i er observatiosummeret,

Læs mere

Videregående Algoritmik. David Pisinger, DIKU. Reeksamen, April 2005

Videregående Algoritmik. David Pisinger, DIKU. Reeksamen, April 2005 Vderegåede Algortmk Davd Psger, DIKU Reeksame, Aprl 5 Bsecto problemet Gvet e uvægtet graf G = (V, E) samt et heltal k. E bsecto af grafe G er e opdelg af kudere V to lge store mægder S og T. MAX-BISECTION

Læs mere

Økonometri 1. For mange variable i modellen. For få variable. Dagens program. Den multiple regressionsmodel 21. september 2004

Økonometri 1. For mange variable i modellen. For få variable. Dagens program. Den multiple regressionsmodel 21. september 2004 Dages program Økoometr De multple regressosmodel. september 004 Emet for dee forelæsg er stadg de multple regressosmodel (Wooldrdge kap. 3.4-3.5) Praktske bemærkg Opsamlg fra sdst Irrelevate varable og

Læs mere

Kvalitet af indsendte måledata

Kvalitet af indsendte måledata Notat ELT2004-112 Aktørafregg Dato: 23. aprl 2004 Sagsr.: 5584 Dok.r.: 185972 v1 Referece: NIF/AFJ Kvaltet af dsedte måledata I Damark er det etvrksomhederes opgave at måle slutforbrug, produkto og udvekslg

Læs mere

FY01 Obligatorisk laboratorieøvelse. O p t i k. Jacob Christiansen Afleveringsdato: 3. april 2003 Morten Olesen Andreas Lyder

FY01 Obligatorisk laboratorieøvelse. O p t i k. Jacob Christiansen Afleveringsdato: 3. april 2003 Morten Olesen Andreas Lyder FY0 Oblgatorsk laboratoreøvelse O p t k Hold E: Hold: D Jacob Chrstase Alevergsdato: 3. aprl 003 Morte Olese Adreas Lyder Idholdsortegelse Idholdsortegelse Forål...3 Måleresultater...4. Salelser...4. Spredelse...5.3

Læs mere

Program. Konfidensinterval og hypotesetest en enkelt normalfordelt stikprøve. Eksempel: hjerneceller hos marsvin. Eksempel: hjerneceller hos marsvin

Program. Konfidensinterval og hypotesetest en enkelt normalfordelt stikprøve. Eksempel: hjerneceller hos marsvin. Eksempel: hjerneceller hos marsvin Program Konfideninterval og hypoteetet en enkelt normalfordelt tikprøve Helle Sørenen E-mail: helle@math.ku.dk I dag: Lidt repetition fra i mandag Konfideninterval for µ the baic Tet af nulhypotee om µ

Læs mere

Dagens program. Estimation: Kapitel Eksempler på middelrette og/eller konsistente estimator (de sidste fra sidste forelæsning)

Dagens program. Estimation: Kapitel Eksempler på middelrette og/eller konsistente estimator (de sidste fra sidste forelæsning) Dages program Estimatio: Kapitel 9.4-9.7 Eksempler på middelrette og/eller kosistete estimator (de sidste fra sidste forelæsig) Ko desiterval for store datasæt kap. 9.4 Ko desiterval for små datasæt kap.

Læs mere

Indeks over udviklingen i biltrafikken i Danmark

Indeks over udviklingen i biltrafikken i Danmark Ideks over udvklge bltrafkke Damark Afdelgsgeør Alla Crstese, Vejdrektoratet, og cvlgeør, p.d. Crsta Overgård ase, TetraPla A/S. Baggrud og formål. Baggrud Vejdrektoratet ar sde 978 regelmæssgt udgvet

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Program for dag: Kvattatve metoder Iferes de leære regressosmodel 9. marts 007 Opsamlg vedr. feres e leær regressosmodel uder Gauss-Markov atagelser (W.4-5) Eksempel med flere restrktoer (F-test) Lagrage

Læs mere

Økonometri 1. Definition og motivation. Definition og motivation. Dagens program. Den multiple regressionsmodel 21. september 2005

Økonometri 1. Definition og motivation. Definition og motivation. Dagens program. Den multiple regressionsmodel 21. september 2005 Dages program Økoometr De multple regressosmodel. september 005 Emet for dee forelæsg er de multple regressosmodel (Wooldrdge kap 3.-3.3+appedx E.-E.) Defto og motvato Fortolkg af parametree de multple

Læs mere

Supplement til sandsynlighedsregning og matematisk statistik

Supplement til sandsynlighedsregning og matematisk statistik Supplemet tl sadsylghedsregg og matematsk statstk 1. Bevs for lgg (4b) 22.4 ( 23.3) 8. (7.) udgave. Teorem 3 (4): Atallet af forskellge kombatoer med k elemeter, der ka daes ud af forskellge elemeter,

Læs mere

x-klasserne Gammel Hellerup Gymnasium

x-klasserne Gammel Hellerup Gymnasium SANDSYNLIGHEDSREGNING OG KOMBINATORIK x-klassere Gammel Hellerup Gymasum Idholdsfortegelse SANDSYNLIGHEDSREGNING... 3 Sadsylghedsfelt... 3 Edelge sadsylghedsfelter (sadsylghedsfordelger):... 3 Uedelge

Læs mere

Kontrol af udledninger ved produktion af ørred til havbrugsfisk

Kontrol af udledninger ved produktion af ørred til havbrugsfisk Kotrol af udledger ved produto af ørred tl havbrugsfs Notat fra DCE - Natoalt Ceter for Mljø og Eerg Dato: 19. december 013 Rettet: 4. jauar 014 og de 8. marts 014 Søre Er Larse 1 & Lars M. Svedse 1 Isttut

Læs mere

Løsninger til kapitel 7

Løsninger til kapitel 7 Løsiger til kapitel 7 Opgave 7.1 a) HpoStat giver resultatet: Pop. varias er ukedt, me 30, så Normalf. bruges approksimativt = 54,400 s 1.069,90 = 00,000 0,95 49,868 58,93 Dette betder, at med 95% sikkerhed

Læs mere

24. januar Epidemiologi og biostatistik. Forelæsning 1 Uge 1, tirsdag. Niels Trolle Andersen, Afdelingen for Biostatistik.

24. januar Epidemiologi og biostatistik. Forelæsning 1 Uge 1, tirsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Epidemiologi og biostatistik. Forelæsig Uge, tirsdag. Niels Trolle Aderse, Afdelige for Biostatistik. Geerelt om kurset: - Formål - Forelæsiger - Øvelser - Forelæsigsoter - Bøger - EpiBasic: http://www.biostat.au.dk/teachig/software

Læs mere

Statistik Lektion 7. Hypotesetest og kritiske værdier Type I og Type II fejl Styrken af en test Sammenligning af to populationer

Statistik Lektion 7. Hypotesetest og kritiske værdier Type I og Type II fejl Styrken af en test Sammenligning af to populationer Statistik Lektio 7 Hpotesetest og kritiske værdier Tpe I og Tpe II fejl Strke af e test Sammeligig af to populatioer 1 Tri I e Hpotesetest E hpotesetest består af 5 elemeter: I. Atagelser Primært hvilke

Læs mere

Matematisk Modellering 1 Hjælpeark

Matematisk Modellering 1 Hjælpeark Matematisk Modellerig Hjælpeark Kaare B. Mikkelse 2005090 3. september 2007 Idhold Formler 2 2 Aalyse af k ormalfordelte prøver 2 2. Modelcheck............................................ 2 2.2 Test af

Læs mere

Statistisk analyse. Vurdering af usikkerhed i forbindelse med statistiske opgørelser forudsætter:

Statistisk analyse. Vurdering af usikkerhed i forbindelse med statistiske opgørelser forudsætter: Statstsk aalyse Vurderg af uskkerhed forbdelse med statstske opgørelser forudsætter: Kvattatve mål for varato og spredg forbdelse med statstske opgørelser varas og stadardafvgelse Kvattatve mål for tlfældgheder

Læs mere

30. august Epidemiologi og biostatistik. Forelæsning 3 Uge 2, torsdag d. 8. september 2005 Michael Væth, Afdeling for Biostatistik.

30. august Epidemiologi og biostatistik. Forelæsning 3 Uge 2, torsdag d. 8. september 2005 Michael Væth, Afdeling for Biostatistik. 30. august 005 Epidemiologi og biostatistik. Forelæsig 3 Uge, torag d. 8. september 005 Michael Væth, Afdelig for Biostatistik. Mere om kategoriske data Test for uafhægighed I RxC tabeller Test for uafhægighed

Læs mere

FACITLISTE TIL KOMPLEKSE TAL

FACITLISTE TIL KOMPLEKSE TAL FACITLISTE TIL KOMPLEKSE TAL Kaptel Opgave Opgave Opgave Det emmeste check af lgge er at opløfte begge sder tl. potes. Bombells metode gver følgede lgger: a a b = 5 ( ) b a b = 09 = 7. Løs dem med et CAS

Læs mere

Statistik Lektion 8. Parrede test Test for forskel i andele Test for ens varians Gensyn med flyskræk!

Statistik Lektion 8. Parrede test Test for forskel i andele Test for ens varians Gensyn med flyskræk! Statistik Lektio 8 Parrede test Test for forskel i adele Test for es varias Gesy med flyskræk! Afhægige og uafhægige stikprøver Ved e uafhægig stikprøve udtages e stikprøve fra hver gruppe.. Mæd og kviders

Læs mere

Lys og gitterligningen

Lys og gitterligningen Fysik rapport: Lys og gitterligige Forfatter: Bastia Emil Jørgese.z Øvelse blev udført osdag de 25. jauar 202 samme med Lise Kjærgaard Paulse 2 - Bastia Emil Jørgese Fysik rapport (4 elevtimer), februar

Læs mere

1 Punkt- og intervalestimation Punktestimatorer: Centralitet(bias) og efficiens... 2

1 Punkt- og intervalestimation Punktestimatorer: Centralitet(bias) og efficiens... 2 Idhold 1 Pukt- og itervalestimatio 2 1.1 Puktestimatorer: Cetralitet(bias) og efficies.................... 2 2 Kofidesiterval 3 2.1 Kofidesiterval for adel................................ 4 2.2 Kofidesiterval

Læs mere

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab Statistik ved Bachelor-uddaelse i folkesudhedsvideskab Græseværdisætiger Det hadler om geemsit Statistikere elsker geemsit Det er oplagt e god ide at tage geemsit. Hvis jeg f.eks skal gætte på vægte af

Læs mere

Praktisk info. Statistisk analyse af en enkelt stikprøve: kendt eller ukendt varians Sandsynlighedsregning og Statistik (SaSt) I tirsdags.

Praktisk info. Statistisk analyse af en enkelt stikprøve: kendt eller ukendt varians Sandsynlighedsregning og Statistik (SaSt) I tirsdags. Praktisk ifo Liste med rettelser og meigsforstyrrede trykfejl i DS på Absalo. Statistisk aalyse af e ekelt stikprøve: kedt eller ukedt varias Sadsylighedsregig og Statistik (SaSt) Helle Sørese Projekt

Læs mere

Sandsynlighedsfordelinger for kontinuerte data på interval/ratioskala

Sandsynlighedsfordelinger for kontinuerte data på interval/ratioskala Statistik for biologer 005-6, modul 5: Sadsylighedsfordeliger for kotiuerte data på iterval/ratioskala M6, slide Gægse matematiske sadsylighedsfordeliger: Diskrete data: De positive biomialfordelig Poisso-fordelige

Læs mere

Ikke-parametriske tests af forskel i central tendens. Tests for forskel i central tendens for data på ordinal- og intervalskala

Ikke-parametriske tests af forskel i central tendens. Tests for forskel i central tendens for data på ordinal- og intervalskala Statstk for bologer 5-6, moul 7: Tests for forskel cetral tees for ata på oral- og tervalskala Ikke-parametrske tests af forskel cetral tees Vægter forskel mea ve hjælp af ragtal Data skal være på mst

Læs mere

Betænkning om kommunernes udgiftsbehov. Bilag (med metodediskussion af professor Anders Milhøj)

Betænkning om kommunernes udgiftsbehov. Bilag (med metodediskussion af professor Anders Milhøj) Betækg om kommueres udgftsbehov Blag (med metodedskusso af professor Aders Mlhøj) Betækg r. 36 Oktober 998 Kommueres Udgftsbehov Betækg om kommueres udgftsbehov - Redegørelse fra arbejdsgruppe uder Idergsmsterets

Læs mere

13. februar Resumé: En statistisk analyse resulterer ofte i : Et estimat ˆ θ med en tilhørende se( ˆ θ )

13. februar Resumé: En statistisk analyse resulterer ofte i : Et estimat ˆ θ med en tilhørende se( ˆ θ ) 3. februar 003 Epidemiologi og biostatistik. Uge, torag d. 3. februar 003 Morte Frydeberg, Istitut for Biostatistik. Type og type fejl Nogle specielle metoder: Test i RxC tabeller Test i x tabeller Fishers

Læs mere

Korrelation (kontrol af model) Regression (tilpasning af model) 1. Grad af fælles variation mellem X og Y. 2. Område og fordeling af sample data

Korrelation (kontrol af model) Regression (tilpasning af model) 1. Grad af fælles variation mellem X og Y. 2. Område og fordeling af sample data tatstk 9. gag GIONANAL Korrelato (kotrol af model egresso (tlpasg af model tatstk 9. gag KOLATION ANAL. Grad af fælles varato mellem X og. Område og fordelg af sample data 3. Optræde af ekstrem-værder

Læs mere

SUPPLEMENT til Anvendt statistik

SUPPLEMENT til Anvendt statistik SUPPLEMET tl Avedt statstk IDHOLD A BEVISER VEDRØREDE ORMALFORDELIGE 3A χ - FORDELIE 3 3B t - FORDELIGE 6 3C F - FORDELIGE 7 4A DEFIITIOER OG EKSEMPLER PÅ CETRALE OG EFFEKTIVE ESTIMATORER 9 4B BEVISER

Læs mere

Hvis α vælges meget lavt, bliver β meget stor. Typisk vælges α = 0.01 eller 0.05

Hvis α vælges meget lavt, bliver β meget stor. Typisk vælges α = 0.01 eller 0.05 Statistik 7. gang 9. HYPOTESE TEST Hypotesetest ved 6 trins raket! : Trin : Formuler hypotese Spørgsmål der ønskes testet vha. data H : Nul hypotese Formuleres som en ligheds hændelse H eller H A : Alternativ

Læs mere

Definition: Normalfordelingen. siges at være normalfordelt med middelværdi µ og varians σ 2, hvor µ og σ er reelle tal og σ > 0.

Definition: Normalfordelingen. siges at være normalfordelt med middelværdi µ og varians σ 2, hvor µ og σ er reelle tal og σ > 0. Repetitio: Normalfordelige Ladmåliges fejlteori Lektio Trasformatio af stokastiske variable - kkb@math.aau.dk http://people.math.aau.dk/ kkb/udervisig/lf13 Istitut for Matematiske Fag Aalborg Uiversitet

Læs mere

Program. Statistisk inferens En enkelt stikprøve og lineær regression Stat. modeller, estimation og konfidensintervaller. Fordeling af gennemsnit

Program. Statistisk inferens En enkelt stikprøve og lineær regression Stat. modeller, estimation og konfidensintervaller. Fordeling af gennemsnit Faculty of Life Sciece Program Statitik ifere E ekelt tikprøve og lieær regreio Stat. modeller, etimatio og kofideitervaller Clau Ektrøm E-mail: ektrom@life.ku.dk Fordelig af geemit Statitik ifere for

Læs mere

Stikprøvefordelinger og konfidensintervaller

Stikprøvefordelinger og konfidensintervaller Stikprøvefordeliger og kofidesitervaller Stikprøvefordelige for middelværdi De Cetrale Græseværdi Sætig Egeskaber Ved Estimatore Kofidesitervaller t-fordelige Estimator og estimat E stikprøve statistik

Læs mere

Trin 1: Formuler hypotese Spørgsmål der ønskes testet vha. data H 0 : Nul hypotese Formuleres som en ligheds hændelse

Trin 1: Formuler hypotese Spørgsmål der ønskes testet vha. data H 0 : Nul hypotese Formuleres som en ligheds hændelse Statistik 7. gang 9. HYPOTESE TEST Hypotesetest ved 6 trins raket! : Trin : Formuler hypotese Spørgsmål der ønskes testet vha. data H 0 : Nul hypotese Formuleres som en ligheds hændelse H eller H A : Alternativ

Læs mere

IKKE-KONTINUERTE (DISKRETE) STOKASTISKE VARIABLE MIDDELVÆRDI, VARIANS, SPREDNING FORDELINGER: HYPERGEOMETRISK, BINOMIAL, POISSON

IKKE-KONTINUERTE (DISKRETE) STOKASTISKE VARIABLE MIDDELVÆRDI, VARIANS, SPREDNING FORDELINGER: HYPERGEOMETRISK, BINOMIAL, POISSON IE-ONTINUERTE (DISRETE) STOASTISE VARIABLE MIDDELVÆRDI, VARIANS, SPREDNING FORDELINGER: HYPERGEOMETRIS, BINOMIAL, POISSON Edelgt sadsylghedsfelt V reeterer: Et sadsylghedsfelt ( P ) U, kaldes edelgt, hvs

Læs mere

antal gange krone sker i første n kast = n

antal gange krone sker i første n kast = n 1 Uge 15 Teoretisk Statistik, 5. april 004 1. Store tals lov Eksempel: møtkast Koverges i sadsylighed Tchebychevs ulighed Sætig: Store tals lov. De cetrale græseværdisætig 3. Approksimatio af sadsyligheder

Læs mere

Sætning: Middelværdi og varians for linearkombinationer. Lad X 1,X 2,...,X n være stokastiske variable. Da gælder. Var ( a 0 + a 1 X a n X n

Sætning: Middelværdi og varians for linearkombinationer. Lad X 1,X 2,...,X n være stokastiske variable. Da gælder. Var ( a 0 + a 1 X a n X n Ladmåliges fejlteori Lektio 3 Estimatio af σ Dobbeltmåliger Geometrisk ivellemet Lieariserig - rw@math.aau.dk Istitut for Matematiske Fag Aalborg Uiversitet Repetitio: Middelværdi og Varias Sætig: Middelværdi

Læs mere

Løsningsforslag til skriftlig eksamen i Kombinatorik, sandsynlighed og randomiserede algoritmer (DM528)

Løsningsforslag til skriftlig eksamen i Kombinatorik, sandsynlighed og randomiserede algoritmer (DM528) Løsigsforslag til skriftlig eksame i Kombiatorik, sadsylighed og radomiserede algoritmer (DM58) Istitut for Matematik & Datalogi Syddask Uiversitet Madag de 3 Jauar 011, kl. 9 13 Alle sædvalige hjælpemidler

Læs mere

Økonometri lektion 7 Multipel Lineær Regression. Testbaseret Modelkontrol

Økonometri lektion 7 Multipel Lineær Regression. Testbaseret Modelkontrol Økonometr lekton 7 Multpel Lneær Regresson Testbaseret Modelkontrol MLR Model på Matrxform Den multple lneære regressons model kan skrves som X y = Xβ + Hvor og Mndste kvadraters metode gver følgende estmat

Læs mere

Variansanalyse. på normalfordelte observationer af Jens Friis

Variansanalyse. på normalfordelte observationer af Jens Friis Varasaalyse på ormalfordelte observatoer af Jes Frs Esdg varasaalyse Model eelt ormalfordelt observatosræe Lad X, X, X er dbyrdes uafhægge N(μ, σ ) - fordelt stoastse varable Det tlhørede observatossæt

Læs mere

FORDELINGER: HYPERGEOMETRISK FORDELING, BINOMIALFORDELING MIDDELVÆRDI DEFINITION. X er en stokastisk variabel på et endeligt sandsynlighedsfelt ( )

FORDELINGER: HYPERGEOMETRISK FORDELING, BINOMIALFORDELING MIDDELVÆRDI DEFINITION. X er en stokastisk variabel på et endeligt sandsynlighedsfelt ( ) FORDELINGER: HYERGEOMETRIS FORDELING, BINOMIALFORDELING MIDDELVÆRDI Mddelværd MIDDELVÆRDI (TYS: ERWARTUNGSWERT ) DEFINITION X er e stokastsk varabel på et edelgt sadsylghedsfelt U, ( ) Mddelværde af X

Læs mere

vejer (med fortegn). Det vil vi illustrere visuelt og geometrisk for (2 2)-matricer og (3 3)-matricer i enote 6.

vejer (med fortegn). Det vil vi illustrere visuelt og geometrisk for (2 2)-matricer og (3 3)-matricer i enote 6. enote 5 enote 5 Determiater I dee enote ser vi på kvadratiske matricer. Deres type er altså for 2, se enote 4. Det er e fordel, me ikke absolut ødvedigt, at kede determiatbegrebet for (2 2)-matricer på

Læs mere

Rettevejledning til Økonomisk Kandidateksamen 2006I, Økonometri 1

Rettevejledning til Økonomisk Kandidateksamen 2006I, Økonometri 1 Rettevejledg tl Økoomsk Kaddateksame 6I, Økoometr Vurdergsgrudlaget er selve opgavebesvarelse og blaget. Programmer og data, som er afleveret på dskette/cd, bedømmes som såda kke, me er avedt f.eks. tl

Læs mere

Økonometri 1. Instrumentvariabelestimation 26. november Plan for IV gennemgang. Exogenitetsantagelsen. Exogenitetsantagelsen for OLS

Økonometri 1. Instrumentvariabelestimation 26. november Plan for IV gennemgang. Exogenitetsantagelsen. Exogenitetsantagelsen for OLS y = cy ( c 0 ) Pla for IV geemgag Økoometr Istrumetvarabelestmato 6. ovember 004 F9: Hvad er IV estmato: Bvarat model, et strumet: Kap.5. + afst -4 ote. F0: IV estmato det multple tlfælde (eksakt detfceret):

Læs mere

Elementær Matematik. Sandsynlighedsregning

Elementær Matematik. Sandsynlighedsregning lemetær Matematk Sadsylghedsregg Ole Wtt-Hase Køge Gymasum 008 INDHOLD KAP. KOMBINATORIK.... MULTIPLIKATIONS- OG ADDTIONSPRINCIPPT.... PRMUTATIONR... 3. KOMBINATIONR...3 KAP. NDLIGT SANDSYNLIGHDSFLT...7.

Læs mere

Regressions modeller Hvad regresserer vi på og hvorfor? Anders Stockmarr Axelborg statistikgruppe 6/

Regressions modeller Hvad regresserer vi på og hvorfor? Anders Stockmarr Axelborg statistikgruppe 6/ Regressos modeller Hvad regresserer v på og hvorfor? Aders Sockmarr Aelborg saskgruppe 6/ 0 Geerel Regresso Y f( ) ε f er e UKENDT fuko der beskrver relaoe mellem de uafhægge varabel og de afhægge varabel

Læs mere

Længde [cm] Der er frit vandspejle i sandkassen. Herudover er sandkassen åben i højden cm i venstresiden og 0-20 cm i højresiden.

Længde [cm] Der er frit vandspejle i sandkassen. Herudover er sandkassen åben i højden cm i venstresiden og 0-20 cm i højresiden. Vadtrasportmodel Formål For beregig af vadtrasporte i sadkasse er der lavet e boksmodel. Formålet med boksmodelle er at beskrive vadtrasporte i sadkasse. Herover er formålet at bestemme de hydrauliske

Læs mere

HASTIGHEDSKORT FOR DANMARK VHA. GPS

HASTIGHEDSKORT FOR DANMARK VHA. GPS HASTIGHEDSKORT FOR DANMARK VHA. GPS Ove Aderse xcalibur@cs.aau.dk Istitut for Datalogi Aalborg Uiversitet Harry Lahrma lahrma@pla.aau.dk Trafikforskigsgruppe Aalborg Uiversitet Kristia Torp torp@cs.aau.dk

Læs mere

Vægtet model. Landmålingens fejlteori - Lektion4 - Vægte og Fordeling af slutfejl. Vægte. Vægte: Eksempel. Definition: Vægtrelationen

Vægtet model. Landmålingens fejlteori - Lektion4 - Vægte og Fordeling af slutfejl. Vægte. Vægte: Eksempel. Definition: Vægtrelationen Vægtet model Landmålngens fejlteor Lekton 4 Vægtet gennemsnt Fordelng af slutfejl - kkb@mathaaudk http://peoplemathaaudk/ kkb/undervsnng/lf3 Insttut for Matematske Fag Aalborg Unverstet Gvet n uafhængge

Læs mere

6.7 Capital Asset Pricing Modellen

6.7 Capital Asset Pricing Modellen 0 Lineær regreion 67 Capital Aet Pricing Modellen I dette afnit vil vi gennemgå et ekempel hvor den intereante hypotee er om regreionlinien kærer y-aken i nul Ekempel 62 Capital Aet Pricing Model) I finanielle

Læs mere

Lineær regression lidt mere tekniske betragtninger om R^2 og et godt alternativ

Lineær regression lidt mere tekniske betragtninger om R^2 og et godt alternativ Dowloaded from orbt.dtu.dk o: Dec 0, 08 Leær regresso ldt mere tekske betragtger om R^ og et godt alteratv Brockhoff, Per B.; Ekstrøm, Claus Thor; Hase, Erst Publshed : LMFK-Bladet Publcato date: 07 Documet

Læs mere

Tests for forskel i central tendens for data på ordinal- og intervalskala. Typer af statistiske test:

Tests for forskel i central tendens for data på ordinal- og intervalskala. Typer af statistiske test: Statistik for biologer 005-6, modul 7: Tests for forskel i cetral tedes for data på ordial- og itervalskala M7, slide M7, slide Typer af statistiske test: Parametrisk statistik: - Tester for forskel i

Læs mere

9. Binomialfordelingen

9. Binomialfordelingen 9. Biomialfordelige 9.. Gekedelse Hvert forsøg ka ku resultere i to mulige udfald; succes og fiasko. I modsætig til poissofordelige er atallet af forsøg edeligt. 9.. Model X : Stokastisk variabel, der

Læs mere

Opsamling. Simpel/Multipel Lineær Regression Logistisk Regression Ikke-parametriske Metoder Chi-i-anden Test

Opsamling. Simpel/Multipel Lineær Regression Logistisk Regression Ikke-parametriske Metoder Chi-i-anden Test Opsamlng Smpel/Multpel Lneær Regresson Logstsk Regresson Ikke-parametrske Metoder Ch--anden Test Opbygnng af statstsk model Specfcer model Lgnnger og antagelser Estmer parametre Modelkontrol Er modellen

Læs mere

Motivation. En tegning

Motivation. En tegning Motivatio Scatter-plot at det mådelige salg mod det måedlige reklamebudget. R: plot(salg ~ budget, data = salg) Økoometri Lektio Simpel Lieær Regressio salg 400 450 500 550 20 25 30 35 40 45 50 budget

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Program for dag: Kvanttatve metoder Den smple regressonsmodel 9. februar 007 Regressonsmodel med en forklarende varabel (W..3-5) Varansanalyse og goodness of ft Enheder og funktonel form af varabler modellen

Læs mere

3y MA, Steen Toft Jørgensen side 1/5 Helsingør Gymnasium. Definitioner, formler, sætninger og ideen i beviserne så det er muligt at huske beviserne.

3y MA, Steen Toft Jørgensen side 1/5 Helsingør Gymnasium. Definitioner, formler, sætninger og ideen i beviserne så det er muligt at huske beviserne. 3y MA, Stee Toft Jørgese side /5 Helsigør Gymasium Vektorregig i 3D Formålet er at skabe overblik over emet. Boge Mat3A af Jes Carstese, kapitel 3 og 4, side 83-5. Defiitioer, formler, sætiger og idee

Læs mere

Sandsynlighedsregning 12. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 12. forelæsning Bo Friis Nielsen Sandsynlghedsregnng. forelæsnng Bo Frs Nelsen Matematk og Computer Scence Danmarks Teknske Unverstet 800 Kgs. Lyngby Danmark Emal: bfn@mm.dtu.dk Dagens nye emner afsnt 6.5 Den bvarate normalfordelng Y

Læs mere

Økonometri 1. Inferens i den lineære regressionsmodel 29. september Økonometri 1: F7 1

Økonometri 1. Inferens i den lineære regressionsmodel 29. september Økonometri 1: F7 1 Økoometri 1 Iferes i de lieære regressiosmodel 9. september 006 Økoometri 1: F7 1 Dages program Opsamlig af hemmeopgave om Mote Carlo eksperimeter Mere om hypotesetest: Ekelt lieær restriktio på koefficieter

Læs mere

Brugen af R 2 i gymnasiet

Brugen af R 2 i gymnasiet Bruge af R gymaset Per Bruu Brockhoff, DTU Compute, Erst Hase, KU Matematk og Claus Thor Ekstrøm, KU Bostatstk Der lader tl at være e vs forvrrg bladt og ueghed mellem forskellge faggrupper omkrg R værde,

Læs mere

BESTEMMELSE AF KARAKTERISTISKE VÆRDIER FOR MATERIALEPARAMETRE

BESTEMMELSE AF KARAKTERISTISKE VÆRDIER FOR MATERIALEPARAMETRE Betemmele af arateritie værdier for materialearametre 003 BESTEMMELSE AF KARAKTERISTISKE VÆRDIER FOR MATERIALEPARAMETRE Joh Dalgaard Søree Itituttet for Bygigtei Aalborg Uiveritet Idhold:. Idledig....

Læs mere

Vejledende opgavebesvarelser

Vejledende opgavebesvarelser Vejledede opgavebesvarelser 1. Atal hæder er lig med K(52,5), altså 2598960. Ved brug af multiplikatiospricippet ka atal hæder med 3 ruder og 2 spar udreges som K(13, 3) K(13, 2), hvilket giver 22308.

Læs mere

bestemmelse af karakteristiske værdier for materialeparametre og modstandsevner

bestemmelse af karakteristiske værdier for materialeparametre og modstandsevner Statiti arateritie værdier BESTEMMELSE AF KARAKTERISTISKE VÆRDIER beteele af arateritie værdier for aterialearaetre og odtadever etode i ae A i DS 409 (DS 409: Sierhedbeteeler for Kotrtioer, 999) baeret

Læs mere

DLU med CES-nytte. Resumé:

DLU med CES-nytte. Resumé: Danmarks Statstk MODELGRUPPEN Arbejdspapr* Grane Høegh 17. august 2006 DLU med CES-nytte Resumé: Her papret undersøges det om en generalserng af den bagvedlggende nyttefunkton DLU fra Cobb-Douglas med

Læs mere

Projekt 1.3 Brydningsloven

Projekt 1.3 Brydningsloven Projekt 1.3 Brydigslove Når e bølge, fx e lysbølge, rammer e græseflade mellem to stoffer, vil bølge ormalt blive spaltet i to: Noget af bølge kastes tilbage (spejlig), hvor udfaldsvikle u er de samme

Læs mere

Overlappende stationsoplande: Bestemmelse af passagerpotentialer

Overlappende stationsoplande: Bestemmelse af passagerpotentialer Resumé Overlappede statosoplade: Bestemmelse af passagerpotetaler Valdemar Warburg, stud.polyt., valde@post.com Ibe Rue, stud.polyt., berue@hotmal.com Ceter for Trafk og Trasport (CTT), Damarks Tekske

Læs mere

SUPPLEMENT til Matematiske Grundbegreber

SUPPLEMENT til Matematiske Grundbegreber UPPLEMET tl Matematske Grudbegreber IDHOLD A BEVIER VEDRØREDE ORMALFORDELIGE 3A χ - FORDELIE 3 3B t - FORDELIGE 6 3C F - FORDELIGE 7 4A DEFIITIOER OG EKEMPLER PÅ CETRALE OG EFFEKTIVE ETIMATORER 9 4B BEVIER

Læs mere