Matematisk formelsamling til A-niveau - i forsøget med netadgang til skriftlig eksamen 1

Størrelse: px
Starte visningen fra side:

Download "Matematisk formelsamling til A-niveau - i forsøget med netadgang til skriftlig eksamen 1"

Transkript

1 Mtemtisk fomelsmling til A-niveu - i fosøget med netdgng til skiftlig eksmen Food Mtemtisk fomelsmling til A-niveu e udejdet fo t give et smlet ovelik ove de fomle og det symolspog, de knytte sig til kenestoffet fo dette niveu i gymnsiet og på hf. Selv om lle hjælpemidle i dg e tilldt ved en del f den skiftlige eksmen, vil en fomelsmling væe pktisk t hve fo elevene, også i det dglige ejde. Fomelsmlingen h deimod ingen juidisk sttus, og kenestoffet til skiftlig eksmen e ikke defineet f den. Fo ovelikkets skyld e medtget fomle fo el og umfng f en ække elementægeometiske figue. Endvidee indeholde fomelsmlingen en liste ove mtemtiske stnddsymole. Hensigten hemed e dels t give elevene et hutigt ovelik, dels t idge til, t undevisee og fofttee f undevisningsmteile kn nvende enstet nottion, symolspog og teminologi. Listen ove mtemtiske stnddsymole gå defo ud ove kenestoffet, men holde sig dog inden fo det mtemtiske unives i gymnsiet og på hf. En ække f fomlene i fomelsmlingen e kun nvendelige unde visse foudsætninge (f.eks. t nævneen i en øk e foskellig f ). Sådnne foudsætninge e f hensyn til oveskueligheden ikke eksplicit nævnt. Figuene e medtget som illusttion til fomlene, og den enkelte figu nskueliggø ofte ét lndt flee mulige tilfælde. Betydningen f de støelse, de indgå i fomlene, e ikke ltid foklet, men vil dog væe det i tilfælde, hvo denne etydning ikke følge umiddelt f skik og ug i den mtemtiske littetu. Fomelsmlingen udgives f Mtemtiklæefoeningen og e udejdet f et udvlg nedst f foeningen: Fomnd fo Mtemtiklæefoeningen Minne Kesselhhn, folgsdiektø Jøgen Dejgd, fgkonsulent Bjøn Gøn, fomnd fo opgvekommissionen fo hf Get Schomcke, fomnd fo opgvekommissionen fo gymnsiet Ellen Stengd Munkholm, medlem f opgvekommissionen fo hf Flemming Møk, medlem f opgvekommissionen fo gymnsiet Sven Toft Jensen. Redktionen e fsluttet ugust 7. Minne Kesselhhn Mtmtiklæefoeningen Bjøn Gøn Fgkonsulent Bemæk: Denne fomelsmling e edigeet til ug i fosøg med netdgng ved skiftlig eksmen i mtemtik og må ikke nvendes i nden smmenhæng. Fomelsmlingen må kun nvendes f hold, de deltge i fosøget.

2 Til føste delpøve delpøven med fomelsmling foventes eleven t kunne: Foståelsesindhold: Opstille enkle fomle, ligninge og diffeentilligninge Redegøe fo konstntenes etydning i det gfiske folø fo føste- og ndengdspolynomie smt eksponentielle funktione Fotolkning f konstnte i vækstmodellene: Lineæ, eksponentiel, foskudt eksponentiel og logistisk Aflæse og fotolke fodolings- og hlveingskonstnt fo eksponentiel vækst Anvende viden om smmenhængen mellem fledet funktion og monotonifohold Fotolke vædien f fledet funktion Aflæse væksthstighed gfisk Anvende viden om smmenhængen mellem stmfunktion, estemt integl og el Fotolke egenske ved løsninge til diffeentilligninge (uden t løse diffeentilligningen) Aflæse og fotolke de sttistiske deskiptoe ud f et givet oksplot, histogmme og sumkuve Fomelindhold: Anvende nuleglen og løse føste og ndengdsligninge Anvende kvdtsætningene og educee udtyk Sætte tl ind i fomle Anvende Pythgos læesætning Foetge eegninge i ensvinklede teknte Isolee ukendte støelse, heunde nvende logitme og potense Bestemme egnefoskifte fo lineæe og eksponentielle funktione Diffeentiee polynomie, e k, ln( ) og, heunde Anvende de egneegle fo diffeentition, som e eskevet i kenestoffet Bestemme en tngentligning Bestemme integle f polynomie,, e k smt funktionen Anvende de egneegle fo integtion, som e eskevet i kenestoffet Redegøe fo om en given funktion e en løsning til en diffeentilligning Anvende eglene fo vektoegning Anvende vektoielle væktøje til t sve på spøgsmål om otogonlitet, pllelitet og el Opstille pmetefemstillinge og ligninge fo linje i plnen Omskive cikelligninge med henlik på t estemme centum og dius

3 Bemæk: Fomle og symole omtlt på sidene 7-3 kn også indgå i egge delpøve. Fo t gøe det oveskueligt h vi mkeet elevnte fomle til ug i føste delpøve med gønt. Indholdsfotegnelse Pocentegning... 4 Popotionlitet... 4 Kvdtsætninge... 4 Potensegneegle... 4 Ensvinklede teknte... 5 Retvinklet teknt... 5 Vilkålig teknt... 5 Vektoe i plnen... 6 Linje i plnen... 8 Cikel... 9 Pel... 9 Vektoe i ummet... 9 Plne i ummet... Linje i ummet... Kugle... Polynomie... 3 Logitmefunktione... 4 Eksponentielt voksende... 5 funktione... 5 Eksponentielt ftgende... 6 funktione... 6 Potensfunktione... 7 Tigonometiske funktione... 8 Diffeentilegning... 9 Afledet funktion... Stmfunktion... Regneegle fo integtion... Ael og umfng... Diffeentil ligninge... 3 Guppeede osevtione... 4 Uguppeede osevtione... 5 Ael og omkeds, umfng og oveflde f geometiske figue... 6 Mtemtiske stnddsymole

4 PROCENTREGNING Begyndelsesvædi B Slutvædi S () S = B ( + ) Vækstte () = S B Pocentvis ænding p (3) p% = % Sttkpitl K Rente p % p. temin Kpitl K efte n temine (4) K = K ( + ) n, hvo p = PROPORTIONALITET og y e popotionle Popotionlitetsfkto k (5) y = k y k = og y e omvendt popotionle (6) y= k y = k KVADRATSÆTNINGER Kvdtet på en sum (7) Kvdtet på en diffeens (8) ( + ) = + + ( ) = + To tls sum gnge smme to tls diffeens POTENSREGNEREGLER (9) () ( + )( ) = s s = + () s = s () ( ) s = s (3) ( ) = (4) = (5) = (6) (7) (8) s = = = s 4

5 ENSVINKLEDE TREKANTER (9) c = = = k c () c = k = k = k c RETVINKLET TREKANT Pythgos sætning () c = + Cosinus () cos A = c Sinus (3) sin A = c Tngens (4) tn A = VILKÅRLIG TREKANT Cosinuseltion (5) (6) Sinuseltion (7) (8) Tekntens el T (9) c = + cosc + c cosc = = = c sin A sin B sin C sin A sin B sin C = = c T = sinc 5

6 VEKTORER I PLANEN Koodintsættet fo vekto (3) = Længden f vekto (3) = + Multipliktion f vekto tllet k med (3) k k = k Summen f to vektoe (33) Diffeensen mellem to vektoe (34) + + = + = (35) AB = y y Sklpoduktet (pikpoduktet) f og (36) = + (37) = cosv, hvo v e vinklen mellem og (38) cosv = 6

7 Otogonle vektoe (39) = Pojektionen f på (4) = Længden f pojektionen (4) = Tvævektoen til (4) = = Deteminnten fo vektopet (, (43) ) det(, ) = = = (44) det(, ) = sinv, hvo v e vinklen f til Pllelle vektoe (45) det(, ) = Aelet f det pllelogm, de udspændes f og (46) A = det(, ) 7

8 LINJER I PLANEN Hældningskoefficienten fo linjen gennem A og B y y (47) = Ligning fo linjen gennem punktet (, ) med hældningskoefficient (48) y = + Ligning fo linjen gennem punktet A(, y ) med hældningskoefficient (49) y = ( ) + y Ligning fo linjen l gennem P med nomlvekto n = (5) ( ) + y ( y) = Pmetefemstilling fo linjen l gennem P med etningsvekto = (5) = + t y y (5) Afstnden f P til linjen l med ligningen + y + c = e dist( Pl, ) = + y + c + 8

9 CIRKEL Ligning fo ciklen med centum C (, y ) og dius PARABEL (53) ( ) + ( y y ) = Ligning fo pel (54) y = + + c d Toppunktet T (55) T =, 4, hvo d = 4c VEKTORER I RUMMET Koodintsættet fo vekto (56) = 3 Længden f vekto (57) =

10 Multipliktion f vekto med tllet k (58) k k = k 3 k 3 Summen f to vektoe (59) + + = Diffeensen mellem to vektoe (6) = Koodintsættet fo vekto AB (6) AB = y y z z Sklpoduktet (pikpoduktet) f og (6) = (63) = cosv, hvo v e vinklen mellem og (64) cosv = Otogonle vektoe (65) =

11 Pojektionen f på (66) = Længden f pojektionen (67) = Vektopoduktet (kydspoduktet) f og (68) Længden f (69) = = sinv, hvo v e vinklen mellem og Aelet A f det pllelogm, de e udspændt f og (7) A =

12 PLANER I RUMMET Ligning fo plnen α gennem punktet P(, y, z ) med nomlvekto n = c (7) ( ) + y ( y) + cz ( z) = Afstnd f punktet P til plnen α med ligningen (7) + y + cz + d = + y+ cz+ d dist( P, α) = + + c LINJER I RUMMET Pmetefemstilling fo linjen l gennem P med etningsvekto (73) y = y + t z z 3 KUGLE (75) Ligning fo kuglen med centum C (, y, z ) og dius ( ) + ( y y ) + ( z z ) =

13 POLYNOMIER Føstegdspolynomium, lineæ funktion f (76) f ( ) = + Hældningskoefficienten (77) = y y Nå en lineæ model f ( ) = + skl estemmes ud f et tlmteile, nvendes lineæ egession på hele tlmteilet. Andengdspolynomium p med nulpunkte (ødde) og (78) p( ) = + + c = ( )( ) Nulpunkte (ødde) i p (79) d + d =, =, hvo d = 4c 3

14 LOGARITMEFUNKTIONER Gfen fo den ntulige logitmefunktion (8) ln fo (8) ln fo (8) y = ln = e y (83) ln e = (84) ln( ) = ln( ) + ln( ) (85) ln = ln( ) ln( ) (86) ln( ) = ln( ) Gfen fo logitmefunktionen med gundtl (87) log fo (88) log fo (89) y = log = y (9) log = (9) log( ) = log( ) + log( ) (9) log = log( ) log( ) (93) log( ) = log( ) 4

15 EKSPONENTIELT VOKSENDE FUNKTIONER Gfen fo en eksponentielt voksende funktion f > vækstten > (94) f( ) = = ( + ) k = e, hvo k = ln (95) f( ) fo (96) f( ) fo Femskivningsfktoen ud f punkte på gfen (, y ) og (, y ) (97) y y = = y y Gfen fo f ( ) = i et enkeltlogitmisk koodintsystem Fodolingskonstnten T (98) T = log ln ln (99) T = log = ln = k Nå en eksponentiel model f ( ) = skl estemmes ud f et tlmteile, nvendes eksponentiel egession på hele tlmteilet. 5

16 EKSPONENTIELT AFTAGENDE FUNKTIONER Gfen fo en eksponentielt ftgende funktion f < < vækstten < () f( ) = = ( + ) k = e, hvo k = ln () f( ) fo () f( ) fo Femskivningsfktoen ud f punkte på gfen (, y ) og (, y ) (3) y y = = y y Gfen fo f ( ) = i et enkeltlogitmisk koodintsystem Hlveingskonstnten T (4) T = (5) T ( ) ( ) ( ) log ln ln ln log( ) ln( ) k k = = = = Nå en eksponentiel model f ( ) = skl estemmes ud f et tlmteile, nvendes eksponentiel egession på hele tlmteilet. 6

17 POTENSFUNKTIONER Potensfunktion (6) f ( ) = Gfe fo f ( ) = Gfen fo f ( ) = i et doeltlogitmisk koodintsystem Bestemmelse f tllet ud f to punkte på gfen (, y ) og (, y ) (7) y y log ln y y = = log ln Nå gnges med tllet +, så gnges f ( ) med tllet + y (8) + = ( + ) y Nå en potensmodel f ( ) = skl estemmes ud f et tlmteile, nvendes potensegession på hele tlmteilet. 7

18 TRIGONOMETRISKE FUNKTIONER Gdtl v omst til dintl (9) v = π din 36 Rdintl omst til gdtl v () v = 36 gde π Definition f cos og sin () (cos ) + (sin ) = () cos( + π)=cos( ) (3) cos( ) = cos( ) (4) cos(π ) = cos( ) Gfen fo cosinus (5) sin( + π)=sin( ) (6) sin( ) = sin( ) (7) sin(π ) = sin( ) Gfen fo sinus 8

19 DIFFERENTIALREGNING Diffeentilkvotienten f ( ) fo funktionen f i tllet (8) f( ) f( ) f ( ) = lim f ( + h) f( ) = lim h h Ligning fo tngenten t til gfen fo f i P(, f ( )) (9) y= f ( )( ) + f( ) = ( ) + y, hvo = f ( ) og y = f( ) () ( k f ( )) = k f ( ) () ( f ( ) + g( )) = f ( ) + g ( ) Regneegle fo diffeentition () ( f ( ) g( )) = f ( ) g ( ) (3) ( f( ) g( )) = f ( ) g( ) + f( ) g ( ) (4) ( f ( g ( ))) = f ( g ( )) g ( ) 9

20 AFLEDET FUNKTION Funktion Logitmefunktion (5) ln Afledet funktion dy y = f( ) y = f ( ) = d Eksponentilfunktione (6) e e = (7) e k k e k (8) Potensfunktione (9) (3) = ln = (3) = = Tigonometiske funktione (3) cos sin (33) sin cos STAMFUNKTION Funktion Stmfunktion f ( ) f ( ) d Eksponentilfunktione (34) e e (35) e k e k k (36) ln Potensfunktione (37) + + (38) = ln (39) = 3 = 3 3 Tigonometiske funktione (4) cos sin (4) sin cos

21 REGNEREGLER FOR INTEGRATION (4) f ( ) d = F ( ) + c, hvo F( ) e en stmfunktion til f ( ) Uestemt integl (43) k f ( ) d= k f ( ) d (44) ( f ( ) + g( )) d= f ( ) d+ g( ) d (45) ( f ( ) g( )) d= f( ) d g( ) d Integtion ved sustitution, hvo t = g( ) (46) f( g( )) g ( ) d= f ( t) dt (47) [ ] f ( ) d= F ( ) = F ( ) F ( ), hvo F( ) e en stmfunktion til f ( ) c (48) f ( ) d= f( ) d+ f( ) d c Bestemt integl (49) k f( ) d= k f( ) d (5) ( f ( ) + g( )) d= f( ) d+ g( ) d (5) ( f ( ) g( )) d= f( ) d g( ) d Integtion ved sustitution (5) [ ] g( ) g( ) f( g( )) g ( ) d= f() t dt = F() t g( ) = F( g( )) F( g( )), hvo F( ) e en stmfunktion til f( ) g( )

22 AREAL OG RUMFANG Aelet A f det mkeede omåde (53) A= f( ) d Aelet A f det mkeede omåde (54) A= ( f( ) g( )) d Rumfnget V f omdejningslegemet (55) V = π ( f( )) d

23 DIFFERENTIAL LIGNINGER Ligning Løsning (56) y = h ( ) y = h ( ) d (57) y = k y y = ce k (58) y = y y= + ce (59) y = y( y) y = + c e (6) y = y( M y) M y = + c e M (6) y + ( ) y = ( ) y= d+ c ( ) ( ) ( ) e A A A ( )e e, hvo A() e stmfunktion til () 3

24 GRUPPEREDE OBSERVATIONER Histogm (6) Aelet f en lok sve til intevllets fekvens Histogm med ens intevllængde (63) Højden f en lok sve til intevllets fekvens Sumkuve (64) Q : nede kvtil, 5%-fktilen m : medin, 5%-fktilen Q : øve kvtil, 75%-fktilen 3 4

25 UGRUPPEREDE OBSERVATIONER Pikdigm (65) Osevtionene fst på en tllinje (66) Min : mindste osevtion (67) M : støste osevtion (68) m : medin (midteste osevtion, nå ntllet f osevtione e ulige, elles tllet midt mellem de to midteste osevtione) (69) Q : nede kvtil (medinen fo den nedeste hlvdel f osevtionene) (7) Q 3 : øve kvtil (medinen fo den øveste hlvdel f osevtionene) (7) Boksplot, kssedigm (oksens højde e uden etydning) Middeltl fo osevtionssættet,,..., n (7) = n... n 5

26 AREAL OG OMKREDS, RUMFANG OG OVERFLADE AF GEOMETRISKE FIGURER Teknt h g A Højde Gundlinje el A = hg Pllelogm h Højde g Gundlinje A el A = hg Tpez h Højde, pllelle side A el A = h+ ( ) Cikel A Rdius el A= π O omkeds O= π Kugle O Rdius oveflde O = 4π V umfng V = 4 3 π 3 Cylinde Kegle h O V h s O V Højde Gundfldedius kum O = π h fl d umfng V = π h Højde Sidelinje Gundfldedius kum O= π s fl d umfng V = 3 π h 6

27 MATEMATISKE STANDARDSYMBOLER Symol Betydning Eksemple, emækninge m.v. {.,.,.,.} mængde på listefom { 5,,3,} {,4,6,... } N, mængden f ntulige tl N = {,,3,... } Z, mængden f hele tl Z = {...,,,,,,... } Q, mængden f tionle tl R, mængden f eelle tl tl, de kn skives q p, p Z q N tilhøe / e element i N G p( ) mængden f de elemente i G, fo N < =,,3 { } { } { } hvilke p() e snd p fkotet, G e undefostået { < 9} = ] 3;3[ { ( )} {(, y) p(, y )} omåde i plnen {( y, ) < < y 5} [ ; ] lukket intevl [ ;3] = { R 3} ] ; ] hlvåent intevl ] ;3] = { R < 3} [ ; [ hlvåent intevl [ ;3 [ = { R < 3} ] ; [ åent intevl ] ;3 [ = { R < < 3} e en ægte delmængde f {,,3} N fællesmængde A B foeningsmængde A B \ mængdediffeens A \ B A komplementæmængde U \ A Ø den tomme mængde disjunkte mængde mængdepodukt A B= Ø [ ;] [ ;] enyttes til t ngive et gfvindue og i etydningen åde og (konjunktion) < y = 5 7

28 Symol Betydning Eksemple, emækninge m.v. elle i etydningen og/elle (disjunktion) medføe, hvis så (impliktion) ensetydende, hvis og kun hvis (iimpliktion) < > 5 = = 4 = 4 = = n i n i= n i... n i= 4 i= i = n! n fkultet, n udåstegn n! =... n= i, fo n i=! = n f ( ) funktionsvædi f ved funktionen f f ( ) kn også stå fo funktionen f Dm( f ) definitionsmængden fo f Vm( f ) vædimængden fo f f ( ) = +, så e f (4) = 3. I visse smmenhænge uges udtyksmåden funktionen y = + elle funktionen + f g smmenst funktion ( f g)( ) = f( g( )) f omvendt (inves) funktion s = f t t = f s () ( ) log, log( ) ln, ln( ) e sin, sin( ) cos, cos( ) tn, tn( ) cot, cot( ) logitmefunktionen med gundtl den ntulige logitmefunktion den ntulige eksponentilfunktion eksponentilfunktionen med gundtl, > potensfunktion numeisk (solut) vædi f sinus cosinus tngens cotngens y = log = y y = ln = e e y etegnes også ep() eksponentilfunktion elle en eksponentiel udvikling kldes undetiden fo en potensfunktion elle en potens-udvikling kldes undetiden fo en 3 = 3, 7 = 7 etegnes også s() sin tn = cos cos cot = sin 8

29 Symol Betydning Eksemple, emækninge m.v. sin ( y) omvendt funktion til sinus sin ( y) = sin = y π sin (,5) =, sin (,5) = 3 6 sin etegnes også Acsin cos ( y) omvendt funktion til cosinus cos ( ) y = cos = y cos (,5), cos (,5) 6 cos π = 3 = etegnes også Accos tn ( y) omvendt funktion til tngens tn ( y) = tn = y π tn () =, tn () = 45 4 tn etegnes også Ac tn lim f ( ) gænsevædien f f ( ) fo gående mod 8 lim + = 3 lim f ( ) f ( ) fo gænsevædien f f ( ) fo gående mod f ( ) gå mod fo gående mod lim = + 3 fo 8 f ( ) fo f ( ) gå mod fo gående mod e fo Δ -tilvækst Δ = Δy, Δ f funktionstilvækst fo y f( ) Δ y=δ f = f( ) f ( ) = Δy Δf, Δ Δ diffeenskvotient fo y = f( ) Δy Δf f( ) f( ) = = Δ Δ f ( ) diffeentilkvotienten fo y = f( ) i f( ) f( ) f ( ) = lim Δf = lim = Δ Δ Δ Δy lim Δ f fledet funktion f y = f( ) d Betegnes f ( ), y, f( ), d d df dy ( f( )),,,( 3 + ) d d d 9

30 Symol Betydning Eksemple, emækninge m.v. ( n) f den n te fledede funktion f y = f( ) f () ( ) skives ofte f ( ), y elle d y d f ( ) d f ( ) d AB AB AB AB en stmfunktion (uestemt integl) til f ( ) det estemte integl f til f f ( ) linjestykket AB længden f linjestykket AB cikeluen AB længden f cikeluen AB, AB vekto, AB længden f vektoen tvævekto etegnelsen kn også nvendes sklpodukt, pikpodukt etegnelsen enyttes også vektopodukt, kydspodukt deteminnten fo vekto- pet (, ) etegnelsen det(, ) også enyttes e pllel med e vinkelet på l m læses også l og m e otogonle A vinkel A A = elle A = ABD vinkel B i teknt ABD (, ) vinklen v mellem og, hvo v 8 3

31 vinklen f til etvinklet teknt midtnomlen n fo linjestykket AB h højden f B på siden elle dens folængelse m medinen f B på siden v B vinkelhlveingslinjen fo vinkel B teknt ABC s omskevne cikel teknt ABC s indskevne cikel 3

32 3

MATEMATISK FORMELSAMLING

MATEMATISK FORMELSAMLING MATEMATISK FORMELSAMLING GUX Grønlnd Mtemtisk formelsmling til B-niveu, GUX Grønlnd Deprtementet for uddnnelse 05 Redktion: Rsmus Andersen, Jens Thostrup MtemtiskformelsmlingtilB-niveu GUX Grønlnd FORORD

Læs mere

Trigonometri. teori mundtlig fremlæggelse C 2. C v. B v. A v

Trigonometri. teori mundtlig fremlæggelse C 2. C v. B v. A v Tigonometi teoi mundtlig femlæggelse 2 v v B v B Indhold 1. Sætning om ensvinklede teknte og målestoksfohold (uden bevis)... 2 2. Vinkelsummen i en teknt... 2 3. Pythgos sætning om ETVINKLEDE TEKNTE...

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningseskrivelse Stmoplysninger til rug ved prøver til gymnsile uddnnelser Termin Juni 2016 Institution Uddnnelse Fg og niveu Lærere Hold Fvrskov Gymnsium Stx Mtemtik A Peter Lundøer (Lu) 3k Mtemtik

Læs mere

( ) ( ) ( ) Størrelsesorden for funktionerne a x, x a og ln(x) (opgaveforløb v/ Bjørn Grøn og John Schächter) > ( )

( ) ( ) ( ) Størrelsesorden for funktionerne a x, x a og ln(x) (opgaveforløb v/ Bjørn Grøn og John Schächter) > ( ) Støelsesoden fo funktionene, og ln() Side f 5 Støelsesoden fo funktionene, og ln() (opgvefoløb v/ Bjøn Gøn og John Schächte) Intoduktion I dette foløb vil vi dels få et edskb til t smmenligne, hvo hutigt

Læs mere

Matematik. Kompendium i faget. Tømrerafdelingen. 1. Hovedforløb. a 2 = b 2 + c 2 2 b c cos A. cos A = b 2 + c 2 - a 2 2 b c

Matematik. Kompendium i faget. Tømrerafdelingen. 1. Hovedforløb. a 2 = b 2 + c 2 2 b c cos A. cos A = b 2 + c 2 - a 2 2 b c Kompendium i fget Mtemtik Tømrerfdelingen 1. Hovedforlø. Trigonometri nvendes til eregning f snd længde og snd vinkel i profiler. Sinus Cosinus Tngens 2 2 + 2 2 os A os A 2 + 2-2 2 Svendorg Erhvervsskole

Læs mere

Formelsamling Mat. C & B

Formelsamling Mat. C & B Formelsmling Mt. C & B Indhold BRØER... PARENTESER...3 PROCENT...4 RENTE...5 INDES...6 GEOMETRI... Arel f treknt... Vinkelsum i en treknt... Ens- vinklede treknter... Vilkårlig treknt... Ret- vinklet treknt...8

Læs mere

Teknisk Matematik. Teknisk Matematik Formler. Preben Madsen. 8. udgave

Teknisk Matematik. Teknisk Matematik Formler. Preben Madsen. 8. udgave Teknisk Mtemtik Formler Teknisk Mtemtik Formler Preen Mdsen 8. udge Teknisk mtemtik Formler er et prktisk opslgsærk, der gier et hurtigt oerlik oer lle formler fr læreogens enkelte kpitler. Ud oer formlerne

Læs mere

Integralregning. 2. del. 2006 Karsten Juul

Integralregning. 2. del. 2006 Karsten Juul Integrlregning del ( ( 6 Krsten Juul Indhold 6 Uestemt integrl8 6 Sætning om eksistens stmunktioner 8 6 Oplæg til "regneregler or integrl"8 6 Regneregler or uestemt integrl 9 68 Foreredelse til "integrtion

Læs mere

Lektion 1. Tal. Ligninger og uligheder. Funktioner. Trigonometriske funktioner. Grænseværdi for en funktion. Kontinuerte funktioner.

Lektion 1. Tal. Ligninger og uligheder. Funktioner. Trigonometriske funktioner. Grænseværdi for en funktion. Kontinuerte funktioner. Lektion Tal Ligninger og uligheder Funktioner Trigonometriske funktioner Grænseværdi for en funktion Kontinuerte funktioner Opgaver Tal Man tænker ofte på de reelle tal, R, som en tallinje (uden huller).

Læs mere

Elementær Matematik. Vektorer i planen

Elementær Matematik. Vektorer i planen Elementær Mtemtik Vektorer i plnen Køge Gymnsium 0 Ole Witt-Hnsen Indhold. Prllelforskydninger i plnen. Vektorer.... Sum og differens f to vektorer... 3. Multipliktion f vektor med et tl...3 4. Opløsning

Læs mere

Kort om. Potenssammenhænge. 2011 Karsten Juul

Kort om. Potenssammenhænge. 2011 Karsten Juul Kot om Potenssmmenhænge 011 Ksten Juul Dette hæfte indeholde pensum i potenssmmenhænge, heunde popotionle og omvendt popotionle vible, fo gymnsiet og hf. Indhold 1. Ligning og gf fo potenssmmenhænge...

Læs mere

gudmandsen.net y = b x a Illustration 1: potensfunktioner i 5 forskellige grupper

gudmandsen.net y = b x a Illustration 1: potensfunktioner i 5 forskellige grupper gudmndsen.net Dette dokument er publiceret på http://www.gudmndsen.net/res/mt_vejl/. Ophvsret: Indholdet stilles til rådighed under Open Content License[http://opencontent.org/openpub/]. Kopiering, distribution

Læs mere

Formelsamling Matematik C Indhold

Formelsamling Matematik C Indhold Formelsmling Mtemtik C Indhold Eksempler på esvrelser, lin, eksp, pot, geo... Tl, regneopertioner og ligninger... 6 Ligninger... 7 Geometri... 9 Funktioner og modeller... Lineær funktion... Procentregning...

Læs mere

MATEMATISK FORMELSAMLING

MATEMATISK FORMELSAMLING MATEMATISK FORMELSAMLING GUX Grønlnd Mtemtisk formelsmling til A-niveu, GUX Grønlnd Deprtementet for uddnnelse 05 Redktion: Rsmus Andersen, Jens Thostrup Mtemtisk formelsmling til A-niveu GUX Grønlnd FORORD

Læs mere

Hvis man ønsker mere udfordring, kan man springe den første opgave af hvert emne over.

Hvis man ønsker mere udfordring, kan man springe den første opgave af hvert emne over. Opsmling Hvis mn ønsker mere udfordring, kn mn springe den første opgve f hvert emne over Brøkregning, prentesregneregler, kvdrtsætningerne, potensregneregler og reduktion Udregn nedenstående tl i hånden:

Læs mere

Forklar hvad betyder begrebet procent og hvordan man beregner det. Forklar, hvordan man lægger procenter til og trækker procenter fra.

Forklar hvad betyder begrebet procent og hvordan man beregner det. Forklar, hvordan man lægger procenter til og trækker procenter fra. 1. Procent og rente Forklar hvad betyder begrebet procent og hvordan man beregner det. Forklar, hvordan man lægger procenter til og trækker procenter fra. Gør rede for begrebet fremskrivningsfaktor. Vis,

Læs mere

MATEMATIK på Søværnets officerskole

MATEMATIK på Søværnets officerskole MOGENS ODDERSHEDE LARSEN MATEMATIK på Søvænets officeskole (opeativ linie). udgave 9 FORORD Bogen gennemgå det pensum, som e beskevet i fagplanen af 9. Det e en foudsætning, at de studeende ha et solidt

Læs mere

Formelsamling i Matematik på C og B og A niveau Dette er en formelsamling der er under konstant udvikling Så hvis du har ønsker til denne så sig til

Formelsamling i Matematik på C og B og A niveau Dette er en formelsamling der er under konstant udvikling Så hvis du har ønsker til denne så sig til Niels Junges formelsmling Formelsmling i Mtemtik på C og B og A niveu Dette er en formelsmling der er under konstnt udvikling Så hvis du hr ønsker til denne så sig til Indhold Tble of Contents Specielle

Læs mere

MOGENS ODDERSHEDE LARSEN MATEMATIK

MOGENS ODDERSHEDE LARSEN MATEMATIK MOGENS ODDERSHEDE LARSEN MATEMATIK fa C- til A- niveau. udgave FORORD Denne bog e beegnet fo studeende, som ha behov fo at epetee elle opgadee dees matematiske viden fa C elle B- niveau til A-niveau Bogen

Læs mere

Trigonometri. Matematik A niveau

Trigonometri. Matematik A niveau Trigonometri Mtemtik A niveu Arhus Teh EUX Niels Junge Trigonometri Sinus Cosinus Tngens Her er definitionen for Cosinus Sinus og Tngens Mn kn sige t osinus er den projierede på x-ksen og sinus er den

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni 2014, skoleår 13/14 Institution Frederiksberg HF Uddannelse Fag og niveau Lærer(e) Hold HF Matematik

Læs mere

Formelsamling Matematik C Indhold

Formelsamling Matematik C Indhold Formelsmling Mtemtik C Indhold Eksempler på besvrelser, lin, eksp, pot, geo... Tl, regneopertioner og ligninger... 6 Ligninger... 7 Geometri... 0 Funktioner og modeller... 3 Lineær funktion... 3 Procentregning...

Læs mere

Geometrinoter 2. Brahmaguptas formel Arealet af en indskrivelig firkant ABCD kan tilsvarende beregnes ud fra firkantens sidelængder:

Geometrinoter 2. Brahmaguptas formel Arealet af en indskrivelig firkant ABCD kan tilsvarende beregnes ud fra firkantens sidelængder: Geometrinoter 2, jnur 2009, Kirsten Rosenkilde 1 Geometrinoter 2 Disse noter omhndler sætninger om treknter, trekntens ydre røringscirkler, to cirklers rdiklkse smt Simson- og Eulerlinjen i en treknt.

Læs mere

Projekt 5.2. Anvendelse af Cavalieris princip i areal- og rumfangsberegninger

Projekt 5.2. Anvendelse af Cavalieris princip i areal- og rumfangsberegninger Hvad e matematik? B, i-bog Pojekte: Kapitel 5. Pojekt 5.. Anvendelse af Cavalieis pincip i aeal- og umfangsbeegninge Pojekt 5.. Anvendelse af Cavalieis pincip i aeal- og umfangsbeegninge Den gundlæggende

Læs mere

Matematik på Åbent VUC

Matematik på Åbent VUC Matematik på Åent VUC Lektion 8 Geometi Indoldsfotegnelse Indoldsfotegnelse... Længdemål og omegning mellem længdemål... Omkeds og aeal af ektangle og kvadate... Omkeds og aeal af ande figue... Omegning

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Skoleår 2016/2017, eksamen maj-juni 2017 Institution Kolding HF & VUC Uddannelse Fag og niveau Lærer(e) Hold

Læs mere

Projekt 1.8 Design en optimal flaske

Projekt 1.8 Design en optimal flaske ISBN 978-87-7066-9- Pojekte: Kapitel Vaiabelsammenænge. Pojekt.8 Design en optimal flaske Pojekt.8 Design en optimal flaske Fimaet PatyKids ønske at elancee dees enegidik Enegize. Den skal ave et nyt navn

Læs mere

gudmandsen.net Geometri C & B

gudmandsen.net Geometri C & B gudmndsen.net Geometri C & B Indholdsfortegnelse 1 Geometri & trigonometri...2 1.1 Område...2 2 Ensvinklede treknter...3 2.1.1 Skleringsfktoren...4 3 Retvinklede treknter...5 3.1 Pythgors lærersætning...5

Læs mere

Regneregler for brøker og potenser

Regneregler for brøker og potenser Regneregler for røker og potenser Roert Josen 4. ugust 009 Indhold Brøker. Eksempler......................................... Potenser 7. Eksempler......................................... 8 I de to fsnit

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution 414 Københavns VUC Uddannelse Fag og niveau Lærer(e) Hold Hfe Matematik B Louise Jakobsen,

Læs mere

Matematik B-A. Trigonometri og Geometri. Niels Junge

Matematik B-A. Trigonometri og Geometri. Niels Junge Mtemtik B-A Trigonometri og Geometri Niels Junge Indholdsfortegnelse Indledning...3 Trigonometri...3 Sinusreltionen:...6 Cosinusreltionen...7 Dobbeltydighed...7 Smmendrg...8 Retvinklede treknter...8 Ikke

Læs mere

Projekt 0.5 Euklids algoritme, primtal og primiske tal

Projekt 0.5 Euklids algoritme, primtal og primiske tal Pojekt 0.5 Euklids algoitme, pimtal og pimiske tal Betegnelse. Mængden af hele tal (positive, negative og nul) betegnes. At et tal a e et helt tal angives med: aî, de læses a tilhøe. Nå vi ha to vilkålige

Læs mere

Gymnasie-Matematik. Søren Toftegaard Olsen

Gymnasie-Matematik. Søren Toftegaard Olsen Gmnsie-Mtemtik Søren Toftegrd Olsen Søren Toftegrd Olsen Skovvænget 6-B 7080 Børkop Gmnsie-Mtemtik. udgve, revision 0 ISBN 978-87-99996-0-0 VIGTIGT: Denne og må ikke sælges eller ændres; men kn frit kopieres.

Læs mere

Matematik B1. Mike Auerbach. c h A H

Matematik B1. Mike Auerbach. c h A H Matematik B1 Mike Auerbach B c h a A b x H x C Matematik B1 2. udgave, 2015 Disse noter er skrevet til matematikundervisning på stx og kan frit anvendes til ikke-kommercielle formål. Noterne er skrevet

Læs mere

Mat. B (Sådan huskes fomlerne) Formler, som skal kunnes til prøven uden hjælpemidler

Mat. B (Sådan huskes fomlerne) Formler, som skal kunnes til prøven uden hjælpemidler Mt. B (Sån huskes fomlerne) Formler, som skl kunnes til prøven uen hjælpemiler Inhol Her er tilføjet emærkninger til nogle f formlerne BRØKER... PARENTESER... EKSPONENTER... LOGARITMER... GEOMETRI... Arel

Læs mere

Uddrag af studieordningen for Adgangskursus til Ingeniøruddannelserne

Uddrag af studieordningen for Adgangskursus til Ingeniøruddannelserne Uddrag af studieordningen for Adgangskursus til Ingeniøruddannelserne 21 Matematik B Kurset svarer til det gymnasiale niveau B 21.2.2 Kernestof Kernestoffet er: regningsarternes hierarki, det udvidede

Læs mere

... ... ... ... ... ... ... b > 0 og x > 0, vil vi kalde en potensfunktion. 492 10. Potensfunktioner

... ... ... ... ... ... ... b > 0 og x > 0, vil vi kalde en potensfunktion. 492 10. Potensfunktioner POTENSFUNKTIONER 0 49 0. Potensfunktioner POTENSFUNKTIONER DEFINITION En funktion med forskriften f( )= b hvor b > 0 og > 0 vil vi klde en potensfunktion. I MAT C kpitel så vi t hvis skl være et vilkårligt

Læs mere

Lektion 7s Funktioner - supplerende eksempler

Lektion 7s Funktioner - supplerende eksempler Lektion 7s Funktioner - supplerende eksempler Oversigt over forskellige tper f funktioner Omvendt proportionlitet og hperler.grdsfunktioner og prler Eksponentilfunktioner Potensfunktioner Lektion 7s Side

Læs mere

Trigonometri. Trigonometri. Sinus og cosinus... 2 Tangens... 6 Opgaver... 9. Side 1

Trigonometri. Trigonometri. Sinus og cosinus... 2 Tangens... 6 Opgaver... 9. Side 1 Trigonometri Sinus og osinus... 2 Tngens... 6 Opgver... 9 Side Sinus og osinus Til lle vinkler hører der to tl, som kldes osinus og sinus. Mn finder sinus og osinus til en vinkel ved t tegne vinklen midt

Læs mere

Eksaminationsgrundlag for selvstuderende

Eksaminationsgrundlag for selvstuderende Eksaminationsgrundlag for selvstuderende Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Hold Vinter 2016/17 Thy-Mors HF & VUC Hfe Matematik,

Læs mere

Eksamensspørgsmål. Spørgsmål 1: Funktioner

Eksamensspørgsmål. Spørgsmål 1: Funktioner . Spørgsmål 1: Funktioner Gør rede for udvalgte sætninger vedrørende andengradsfunktioner. Du skal herunder redegøre for differentiation af en andengradsfunktion, samt formlen til at beregne nulpunkterne

Læs mere

1,0. sin(60º) 1,0 cos(60º) I stedet for cosinus til 60º og sinus til 60º skriver man cos(60º) og sin(60º).

1,0. sin(60º) 1,0 cos(60º) I stedet for cosinus til 60º og sinus til 60º skriver man cos(60º) og sin(60º). Mtemtik på VU Eksempler til niveu F, E og D Til lle vinkler hører der to tl, som kldes osinus og sinus. Mn finder sinus og osinus ved først t tegne vinklen i et koordint-system som vist til venstre. Derefter

Læs mere

Indhold Carstensen, Frandsen, Studsgaard, MAT B HF, Systime 2006, s , 92.

Indhold Carstensen, Frandsen, Studsgaard, MAT B HF, Systime 2006, s , 92. Undervisningsbeskrivelse Termin Sommer 2015 Institution 414 Københavns VUC Uddannelse Fag og niveau Lærer(e) Hold Hfe Matematik B Vivi Carstensen VICA@kvuc.dk Christine Gråkilde CHGR@kvuc.dk (eksaminator)

Læs mere

Privatøkonomi og kvotientrækker KLADDE. Thomas Heide-Jørgensen, Rosborg Gymnasium & HF, 2017

Privatøkonomi og kvotientrækker KLADDE. Thomas Heide-Jørgensen, Rosborg Gymnasium & HF, 2017 Pivatøkonomi og kvotientække KLADDE Thomas Heide-Jøgensen, Rosbog Gymnasium & HF, 2017 Indhold 1 Endelige kvotientække 3 1.1 Hvad e en ække?............................ 3 1.2 Kvotientække..............................

Læs mere

Formelsamling i Matematik på C og B og A niveau Dette er en formelsamling der er under konstant udvikling Så hvis du har ønsker til denne så sig til

Formelsamling i Matematik på C og B og A niveau Dette er en formelsamling der er under konstant udvikling Så hvis du har ønsker til denne så sig til Niels Junges formelsmling Formelsmling i Mtemtik på C og B og A niveu Dette er en formelsmling der er under konstnt udvikling Så hvis du hr ønsker til denne så sig til Indhold Tble of Contents Specielle

Læs mere

1hf Spørgsmål til mundtlig matematik eksamen sommer 2014

1hf Spørgsmål til mundtlig matematik eksamen sommer 2014 1. Procent og rente Vis, hvordan man beregner gennemsnitlig procentændring 2. Procent og rente Vis hvordan man beregner indekstal. 3. Procent og rente Vis, hvordan man kan beregne forskellige størrelser

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/juni 2015 Institution Vestegnen HF & Vuc Uddannelse Fag og niveau Lærer Hf-enkeltfag Matematik B Gert

Læs mere

Eksamensspørgsmål. Spørgsmål 1: Funktioner

Eksamensspørgsmål. Spørgsmål 1: Funktioner . Spørgsmål 1: Funktioner Gør rede for sætninger vedrørende andengradsfunktioner. Du skal herunder redegøre for differentiation af en andengradsfunktion, samt formlen til at beregne nulpunkterne for en

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Termin hvori undervisningen afsluttes: maj-juni 2011 Uddannelsescenter

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: Maj Juni 2011 Roskilde

Læs mere

Formelsamling for matematik niveau B og A på højere handelseksamen. Appendiks

Formelsamling for matematik niveau B og A på højere handelseksamen. Appendiks Formelsmling for mtemtik niveu B og A på højere hndelseksmen Appendiks April Mtemtik B Procentregning Procentvis vækst Værdien f en given vriel x liver ændret fr x til x 1. Den %-vise vækst eregnes ved:

Læs mere

Undervisningsbeskrivelse Mat A 2007-2010

Undervisningsbeskrivelse Mat A 2007-2010 Undervisningsbeskrivelse Mat A 2007-2010 Termin Maj 2010 Institution HTX-Sukkertoppen Uddannelse HTX Fag og Niveau Matematik A Lærer Reza Farzin Hold HTX 3.L / science Titel 1 Titel 2 Titel 4 Titel 5 Titel

Læs mere

Annuiteter og indekstal

Annuiteter og indekstal Annuitete og indekstal 1 Opspaing og lån Mike Auebach Odense 2010 Hvis man betale til en opspaingskonto i en bank, kan man ikke buge entefomlen til at beegne, hvo mange penge, de vil stå på kontoen. På

Læs mere

TAL OG REGNEREGLER. Vi ser nu på opbygningen af et legeme og noterer os samtidig, at de reelle tal velkendte regneoperationer + og er et legeme.

TAL OG REGNEREGLER. Vi ser nu på opbygningen af et legeme og noterer os samtidig, at de reelle tal velkendte regneoperationer + og er et legeme. TAL OG REGNEREGLER Inden for lgeren hr mn indført egreet legeme. Et legeme er en slgs konstruktion, hvor mn fstsætter to regneregler og nogle sætninger (ksiomer), der gælder for disse. Pointen med en sådn

Læs mere

Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2016 Institution

Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2016 Institution Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2016 Institution Marie Kruses Skole Uddannelse Fag og niveau Lærer(e) Hold Stx Matematik A Angela

Læs mere

UNDERVISNINGSBESKRIVELSE

UNDERVISNINGSBESKRIVELSE UNDERVISNINGSBESKRIVELSE Termin Maj-juni 2014-2015 Institution Horsens HF & VUC Uddannelse Fag og niveau Lærer(e) Hold HF2 Matematik B Ineta Sokolowski mab2 Oversigt over gennemførte undervisningsforløb

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin December/januar 14/15 Institution VUC Vestegnen Uddannelse Fag og niveau Lærer(e) Hold stx Mat A Karin Hansen

Læs mere

ADGANGSKURSUS AALBORG UNIVERSITET. Formelsamling. Brush-up Flex

ADGANGSKURSUS AALBORG UNIVERSITET. Formelsamling. Brush-up Flex ADGANGSKURSUS AALBORG UNIVERSITET Formelsamling Brush-up Flex 2016 Indholdsfortegnelse 1. Brøkregning... 2 2. Parenteser... 3 3. Kvadratsætningerne:... 3 4. Potensregneregler... 4 5. Andengradsligninger...

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Skoleåret 2014/15, eksamen maj-juni 2015 Institution Kolding HF & VUC Uddannelse Fag og niveau Lærer(e) Hold

Læs mere

Elementær Matematik. Algebra Analytisk geometri Trigonometri Funktioner

Elementær Matematik. Algebra Analytisk geometri Trigonometri Funktioner Elementær Mtemtik Alger Anlytisk geometri Trigonometri Funktioner Ole Witt-Hnsen Køge Gymnsium 0 Indhold Indhold... Kp. Tl og regning med tl.... De nturlige tl.... Regneregler for nturlige tl.... Kvdrtsætningerne.....

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Juni 2017 Institution HANSENBERG Gymnasium Uddannelse Fag og niveau Lærer(e) Hold htx Matematik A Irina Kristensen

Læs mere

Eksponentielle Sammenhænge

Eksponentielle Sammenhænge Kort om Eksponentielle Smmenhænge 011 Krsten Juul Dette hæfte indeholder pensum i eksponentielle smmenhænge for gymnsiet og hf. Indhold 1. Procenter på en ny måde... 1. Hvd er en eksponentiel smmenhæng?....

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Termin hvori undervisningen afsluttes: maj-juni 2011 Uddannelsescenter

Læs mere

Ugesedler til sommerkursus

Ugesedler til sommerkursus Aalborg Universitet - Adgangskursus Ugesedler til sommerkursus Matematik B til A Jens Friis 12 Adgangskursus Strandvejen 12 14 9000 Aalborg tlf. 99 40 97 70 ak.aau.dk sommer Matematik A 1. Lektion : Mandag

Læs mere

UNDERVISNINGSBESKRIVELSE

UNDERVISNINGSBESKRIVELSE UNDERVISNINGSBESKRIVELSE Termin Maj-juni 2015-2016 Institution Horsens HF & VUC Uddannelse Fag og niveau Lærer(e) Hold HF2 Matematik B Ineta Sokolowski mab1 Oversigt over gennemførte undervisningsforløb

Læs mere

Regneregler. 1. Simple regler for regning med tal.

Regneregler. 1. Simple regler for regning med tal. Regneregler. Simple regler for regning med tl. Vi rejder l.. med følgende fire regningsrter: plus (), minus ( ), gnge () og dividere (: eller røkstreg, se senere), eller med fremmedord : ddition, sutrktion,

Læs mere

MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 2012

MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 2012 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 2012 2016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 2012 Dette

Læs mere

Kalkulus 1 - Opgaver. Anne Ryelund, Anders Friis og Mads Friis. 20. januar 2015

Kalkulus 1 - Opgaver. Anne Ryelund, Anders Friis og Mads Friis. 20. januar 2015 Kalkulus 1 - Opgaver Anne Ryelund, Anders Friis og Mads Friis 20. januar 2015 Mængder Opgave 1 Opskriv følgende mængder med korrekt mængdenotation. a) En mængde A indeholder alle hele tal fra og med 1

Læs mere

Matematik A1. Mike Auerbach. c h A H

Matematik A1. Mike Auerbach. c h A H Matematik A1 Mike Auerbach B c h a A b x H x C Matematik A1 2. udgave, 2015 Disse noter er skrevet til matematikundervisning på stx og kan frit anvendes til ikke-kommercielle formål. Noterne er skrevet

Læs mere

Side 1 af 10. Undervisningsbeskrivelse. Stamoplysninger til brug ved prøver til gymnasiale uddannelser. Termin Maj-juni 2009/10

Side 1 af 10. Undervisningsbeskrivelse. Stamoplysninger til brug ved prøver til gymnasiale uddannelser. Termin Maj-juni 2009/10 Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2009/10 Institution Uddannelse Fag og niveau Lærer(e) Hold Handelsskolen Sjælland Syd, Vordingborg

Læs mere

Krydsprodukt. En introduktion Karsten Juul

Krydsprodukt. En introduktion Karsten Juul Kydspodut En ntoduton 5 Ksten Juul Bugsnvsnng Du sl se de fuldt optune mme fo t fnde defntone og sætnnge De e st punteet mme om esemple og evse Indhold Rmme Sde Defnton f ydspodut Esempel på ug f defntonen

Læs mere

Eksamensopgave august 2009

Eksamensopgave august 2009 Ib Michelsen, Viborg C / Skive C Side 1 09-04-011 1 Eksmensopgve ugust 009 Opgve 1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 17 18 19 0 1 Givet ovenstående ensvinklede treknter. D treknterne er ensvinklede, er

Læs mere

MATEMATISK FORMELSAMLING

MATEMATISK FORMELSAMLING MATEMATISK FORMELSAMLING GUX Grøld Mtemtisk formelsmlig til C-iveu, GUX Grøld Deprtemetet for uddelse 05 Redktio: Rsmus Aderse, Jes Thostrup MtemtiskformelsmligtilC-iveu GUX Grøld FORORD Dee formelsmlig

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Vinter 2015-2016 Institution Vestegnen HF & VUC Uddannelse Fag og niveau Lærer Hold HF: E-learning Matematik

Læs mere

Formelsamling Mat. C & B

Formelsamling Mat. C & B Formelsmling Mt. C & B Indhold FORMELSAMLING MAT. C & B... 1 BRØER... PARENTESER... 3 PROCENT... 4 RENTE... 5 INDES... 6 GEOMETRI... Arel f treknt... Vinkelsum i en treknt... Ens- vinklede treknter...

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Som 2014 Institution VUC Vestegnen Uddannelse Fag og niveau Lærer(e) Hold Hf/hfe Mat B Niels Johansson 7Bma1S14

Læs mere

Eksaminationsgrundlag for selvstuderende

Eksaminationsgrundlag for selvstuderende Eksaminationsgrundlag for selvstuderende Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Selvstuderende Lærer Maj-juni 2014 Skoleår 2013/2014

Læs mere

MATEMATIK C. Videooversigt

MATEMATIK C. Videooversigt MATEMATIK C Videooversigt Deskriptiv statistik... 2 Eksamensrelevant... 2 Eksponentiel sammenhæng... 2 Ligninger... 3 Lineær sammenhæng... 3 Potenssammenhæng... 3 Proportionalitet... 4 Rentesregning...

Læs mere

Kompendium. Matematik HF C niveau. Frederiksberg HF Kursus. Lars Bronée 2014

Kompendium. Matematik HF C niveau. Frederiksberg HF Kursus. Lars Bronée 2014 Kompendium Mtemtik HF C niveu π Frederiksberg HF Kursus Lrs Bronée 04 Mil: post@lrsbronee.dk Web: www.lrsbronee.dk Indholdsfortegnelse: Forord Det grundlæggende Ligningsløsning 8 Procentregning Rentesregning

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Vinter 2013/14 Institution VUC Vestegnen Uddannelse Fag og niveau Lærer(e) Hold stx Mat A Karin Hansen 7Ama1V13

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj 2011 Institution Campus Vejle Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik A Rita Ahrenfeldt hh12okoa11

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold December 2015 vinter VUC Vestegnen stx Mat A Gert Friis

Læs mere

Løsninger til eksamensopgaver på A-niveau 2014. 22. maj 2014. 22. maj 2014: Delprøven UDEN hjælpemidler

Løsninger til eksamensopgaver på A-niveau 2014. 22. maj 2014. 22. maj 2014: Delprøven UDEN hjælpemidler Opgave 1: Løsninger til eksamensopgaver på A-niveau 014 f x x 4x 6. maj 014. maj 014: Delprøven UDEN hjælpemidler Koordinatsættet til parablens toppunkt bestemmes ved først at udregne diskriminanten for

Læs mere

Matematikkens mysterier - på et obligatorisk niveau. 2. Trigonometri

Matematikkens mysterier - på et obligatorisk niveau. 2. Trigonometri Mtemtikkens mysterier - på et oligtorisk niveu f Kenneth Hnsen 2. Trigonometri T D Hvd er fstnden fr flodred til flodred? 2. Trigonometri og geometri Indhold.0 Indledning 2. Vinkler 3.2 Treknter og irkler

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni 13/14 Institution Grenaa HTX Uddannelse Fag og niveau Lærer(e) Hold HTX Matematik B Bo Paivinen Ullersted

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: Maj-juni 2014 Studenterkurset

Læs mere

Projekt 0.5 Euklids algoritme og primiske tal

Projekt 0.5 Euklids algoritme og primiske tal Pojekt 0.5 Euklids algoitme og pimiske tal BETEGNELSER. Mængden af hele tal (positive, negative og nul) betegnes. At et tal a e et helt tal angives med: aî, de læses a tilhøe. Nå vi ha to vilkålige hele

Læs mere

43-43 Geometri. Cirkelring. m = π ( r 2. R, r er radierne, t er tykkelsen og m er middelomkreds. Ellipse

43-43 Geometri. Cirkelring. m = π ( r 2. R, r er radierne, t er tykkelsen og m er middelomkreds. Ellipse 4-4 eometi Fiu ikelin Ellipse t Fomle O π ( t m π ( m π ( t, e diene, t e tykkelsen o m e middelomkeds. O π π e den le stokse o den le lillekse. Pelstykke Tpez ektnel O 6 4 ln 8 e øjden på pelstykket o

Læs mere

MATEMATIK A-NIVEAU. Kapitel 1

MATEMATIK A-NIVEAU. Kapitel 1 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 01 Kapitel 1 016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 01

Læs mere

Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer Hold

Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer Hold Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution 414 Københavns VUC Uddannelse Fag og niveau Lærer Hold Hf Matematik C-B Pia Hald ph@kvuc.dk

Læs mere

Matematisk Formelsamling

Matematisk Formelsamling Duborg-Skolen Duborg-Skolen Duborg-Skolen Duborg-Skolen Matematisk Formelsamling Indholdsfortegnelse Emne side Vektorer i planen... 1 og 2 Linje... 3 Cirkel, ellipse, hyperbel og parabel... 4 Trekant...

Læs mere

Alt hvad du nogensinde har ønsket at vide om... Del 2. Frank Nasser 2006-2007

Alt hvad du nogensinde har ønsket at vide om... Del 2. Frank Nasser 2006-2007 Alt hvad du nogensinde ha ønsket at vide om... VEKTORER Del 2 Fank Nasse 2006-2007 - 1 - Indledning Vi skal i denne lille note gennemgå det basale teoi om vektoe i planen og i ummet. Stoffet e pæcis det

Læs mere

Tredimensional grafik

Tredimensional grafik Teimensionl gfi 6 Ksten Juul Inhol I Homogene oointsæt og gngning f mtie sie Vi vil fose og eje figue i ummet og æne ees støelse Defo inføe vi homogene oointsæt og gngning f mtie II th sie Et olsninge

Læs mere

Teknisk. Matematik FACITLISTE. Preben Madsen. 4. udgave

Teknisk. Matematik FACITLISTE. Preben Madsen. 4. udgave Teknisk Preben Madsen Matematik 4. udgave FACITLISTE Indhold TAL OG ALGEBRA... LIGNINGER OG ULIGHEDER... GEOMETRI... 4 TRIGONOMETRI... 5 CIRKLEN... 5 6 OVERFLADER UDFOLDNINGER... 5 7 RUMFANG... 8 8 ANALYTISK

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2015 Institution VUC Fredericia Uddannelse Fag og niveau Lærer(e) Hold Hfe Matematik B Susanne Holmelund

Læs mere

ØVEHÆFTE FOR MATEMATIK C POTENS-SAMMENHÆNG

ØVEHÆFTE FOR MATEMATIK C POTENS-SAMMENHÆNG ØVEHÆFTE FOR MATEMATIK C POTENS-SAMMENHÆNG INDHOLDSFORTEGNELSE 1 Formelsmling... side 2 Uddbning f visse formler... side 3 2 Grundlæggende færdigheder... side 5 2 Finde konstnterne og b i en formel...

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni 200/2010 Institution Herning HF og VUC Uddannelse Fag og niveau Lærer(e) Hf Matematik C, HF Johnny

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj-juni 2015 Københavns

Læs mere

Geometri, (E-opgaver 9d)

Geometri, (E-opgaver 9d) Geometri, (E-opgaver 9d) GEOMETRI, (E-OPGAVER 9D)... 1 Vinkler... 1 Trekanter... 2 Ensvinklede trekanter... 2 Retvinklede trekanter... 3 Pythagoras sætning... 3 Sinus, Cosinus og Tangens... 4 Vilkårlige

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni 2015 Institution VUC Lyngby Uddannelse Fag og niveau Lærer(e) Hold Hf Matematik B Ashuak Jakob France

Læs mere