1 Vektorrum. MATEMATIK 3 LINEÆR ALGEBRA 6. oktober 2016 Miniprojekt: Lineær algebra på polynomier

Størrelse: px
Starte visningen fra side:

Download "1 Vektorrum. MATEMATIK 3 LINEÆR ALGEBRA 6. oktober 2016 Miniprojekt: Lineær algebra på polynomier"

Transkript

1 MATEMATIK 3 LINEÆR ALGEBRA 6. oktober 2016 Miniprojekt: Lineær algebra på polynomier Grupperne forventes at regne en mængde af opgaver, som tilsammen dækker 100 point. De små opgaver giver hver 5 point, mens temaopgaverne giver 25 point. Der er det krav, at alle skal regne mindst en opgave (à 5 point) fra hvert af afsnittene 1 5, og mindst 1 temaopgave (à 25 point). Hver gruppe udarbejder i ugens løb en besvarelse dækkende 100 point. Besvarelsen sendes i en PDF-fil til vores hjælpelærer Hans på hanskk@math.aau.dk fredag den 14. oktober. Senere får alle gruppemedlemmer en kopi af besvarelsen med rettelser. 1 Vektorrum (1) Giv et argument for at C[z] er (organiseret som) et vektorrum over C, idet z C betegner en komplex variabel. Gælder det samme om R[z]? Hvad så med R[x], hvor x betegner en reel variabel? (2) Godtgør at F m [z] er et underrum af F[z]. (I det følgende underforstås, at variablen z F.) Angiv nulvektoren præcist (tænk på at det er en funktion). (3) Angiv F 0 [z], F 1 [z] og F 2 [z] med mængdesymboler, og bestem et frembringersæt for F m [z]. Begrund at F m [z] har endelig dimension. (4) Entydighedssætningen for polynomier: Hvis p, q F[z] er ens som funktioner F F, så har p, q de samme koefficienter. Bevis denne! (Vink: Brug et passende valgt entydighedsresultat fra lineær algebra.) (5) Den stærke Entydighedssætning for polynomier: Hvis p, q F[z] stemmer overens i en omegn af 0 i F, så har p, q de samme koefficienter. (Vink: Hvis du indsætter x = 0, så får du brug for et kontinuitetsargument! Det er nemmere at se på F (M, F) for en passende mængde M.) (6) Den hyperstærke Entydighedssætning for polynomier: Hvis p, q R m [x] opfylder p(0) = q(0) og p (k) (0) = q (k) (0) for k {1,..., m}, så har p, q de samme koefficienter. (7) ***Den ultrastærke Entydighedssætning for polynomier: Hvis p, q F[z] stemmer overens i m + 1 forskellige punkter z 0, z 1,..., z m i F, hvor m = max(deg p, deg q), så har p = q de samme koefficienter (og er derfor ens som funktioner F F). 1

2 I beviset får man nok brug for at vise at Vandermonde matricen V m+1 har determinant det(v m+1 ) 0, idet 1 z 0 z z0 m 1 z 1 z z m 1 V m+1 = (1.1) z m zm 2... zm m det(v m+1 ) = (z k z j ). (1.2) 0 j<k m (Kunne du overhovedet se andre strategier end at bruge lineær algebra!?) 2 Basis og dimension (1) Bevis at F[z] ikke har endelig dimension. (Vink: Indse at argumentet side 49 nederst i [LNS] ikke er fyldestgørende det skal kombineres med en entydighedssætning for polynomier.) (2) Godtgør at (1, z, z 2,..., z m ) er et lineært uafhængigt sæt i F[z] for hvert heltal m 0. Generaliser til at (1, z a, (z a) 2,..., (z a) m ) er lineært uafhængigt for et vilkåligt givet tal a F. Forklar også, hvorfor argumentet i Example i [LNS] er ufuldstændigt! (3) Bestem en basis for F m [z], og angiv dim(f m [z]) husk at give begrundelser! Har F[z] en basis? (4) Idet U = span(z, (z + 1) 2 ) i V = F 2 [z], angiv da et underrum W således at V = U W. (Vink: Gør som i beviset for Theorem ) (5) Suppler (z, (z + 1) 2 ) til en basis for C 3 [z]. (6) Er sættet (z 2 2, (z + 1) 2, (z + 2) 2, (z + 3) 2 ) lineært uafhængigt i C 2 [z]? Hvis ikke, så skal sættet udtyndes til en basis! (7) Bevis at (z m, (z + 1) m,..., (z + m) m ) er en basis for F m [z]. (Vink: Hvilken nødvendig betingelse for at være en basis er åbentlyst opfyldt for dette sæt?) 3 Lineære afbildninger (1) Efterprøv at differentiation D = d er en lineær afbildning F[z] F[z], dz dvs. at D er en endomorfi på F[z]. Vink: For F = C kan man opfatte D symbolsk, således at hvert led af formen az m blot erstattes med maz m 1 (uden at involvere differenskvotienter). 2

3 (2) Bestem null(d) som et underrum af F[z]. (Husk den ikke-trivielle del af argumentet!) (3) Undersøg om D er en endomorfi på F m [z]. Opskriv udsagnet i dimensionssætningen for D : F m [z] F m [z] og kommenter resultatet. (4) Verificer at T : F[z] F[z] givet ved T (p) = z 2 p(z) er injektiv (som hævdet i Example 6.2.7). Undersøg om T er surjektiv. (5) Find matricen M(D) mht. standardbasen (1, z,..., z m ) for F m [z]. Hvilken type matrix er dette? (6) Find matricen M(D) mht. basen (1, z i,..., (z i) m ) for C m [z]. Er der en modstrid med svaret i (5)? (7) Er vektorummene F m [z] og F k isomorfe for nogen værdier af m, k? Nedskriv i så fald en konkret isomorfi. 4 Egeninformation (1) Angiv en egenværdi for D, og bestem det tilhørende egenrum V λ. (Vink: Analyser egenværdiligningen for D.) Hvad er dim V λ? (2) Find samtlige egenværdier for D 2 og angiv de tilhørende egenrum. (Vink: Inddrag matrixmultiplikation.) (3) Undersøg om D har {p F[z] p(z) = az m, a F} som et invariant underrum. Har D overhovedet et invariant underrum? (4) Find TO invariante underrum U 1, U 2 for D 2, som begge har uendelig dimension uden at være F[z]. (5) Skriv udsagnene i Proposition ud i detaljer for D L(F m [z]) ifm. standardbasen sammenlign sandhedsværdierne! (6) Samme øvelse med Proposition Ortonormale baser og koordinatskifte (1) Vis i detaljer at p, q = 1 p(z) q(z) dz definerer et indre produkt på F[z] 0 (Example 9.1.5) skal du bruge entydighedssætningen for polynomier? (2) Udregn det indre produkt af p(z) = z + z 3 og q(z) = z 2. Find den inducerede norm af p(z) og af q(z). Check om Cauchy Schwarz s ulighed er korrekt i dette tilfælde. Undersøg også om trekantsuligheden gælder for p + q. 3

4 (3) Udfør Gram Schmidts ortonormalisering på (1, z, z 2 ) for at bestemme en ortonormal basis for F 2 [z]. Find koordinaterne i denne basis for p(z) = 7 + 9z. (4) Bestem ortogonal projektionen af z 3 på underrummet U = span(1, z, z 2 ). 4

5 6 Tema: Global approximation I R m [x] er der et indre produkt givet ved p, q = π p(x)q(x) dx. Det ses let at π også V = C([ π, π]) har integralet over [ π, π] som indre produkt man kan bruge uden bevis dels dette, dels at formel (9.6) i [LNS] for P U også gælder, selvom V ikke har endelig dimension (Mat6). (1) Udfør Gram-Schmidts procedure på vektorerne (1, x, x 2, x 3 ) for at finde en ortonormal basis (e 1, e 2, e 3, e 4 ) for R 3 [x] mht. dette indre produkt. (Knofedt!) Uden garanti: e 1 = 1 3 2π, e 2 = 2 π 3/2 x, e 3 = π 5/2 x π 1/2, e 4 = π 7/2 x π 3/2 x. (2) Bestem de indre produkter sin, x j for j {0, 1, 2, 3}. (3) *Find ortogonal projektionen af sin x på U = R 3 [x]. Uden garanti: P U sin = π2 x π2 x 3. 2π 4 2π 6 (4) Nedskriv det integral som minimeres af polynomiet P U sin (jvf. sætning i [LNS]). (5) Sammenlign resultatet med Taylor polynomiet af grad 3, dvs. x x 3 /6. For at få en ide om, hvorledes man (ingeniører) repræsenterer f.eks. sinus i en lommeregner, så kan man læse om ortogonal projektionen af sinus på span(1, x,..., x 5 ) i Example 6.58 (side ) i Linear algebra done right af Sheldon Axler: Der er nydelige figurer! (Jvf. semester introduktionen.) 5

6 7 Tema: Lagrange polynomier Et klassisk problem er følgende: Givet m + 1 punkter i xy-planen (x 0, y 0 ), (x 1, y 1 ),..., (x m, y m ) med forskellige første koordinater, find da et polynomium P (x) af grad højst m, således at P s graf går gennem de m + 1 givne punkter. (7.1) Opgaven har en overraskende elegant og enkel løsning i den såkaldte Lagrange interpolation. Polynomiet P er nemlig entydigt bestemt ved formlen P (x) = y 0 l 0 (x) + y 1 l 1 (x) + + y m l m (x), hvorved x j -værdierne indgår i problemets såkaldte Lagrange polynomier, der med guddommelig inspiration kan nedskrives en gang for alle, l j (x) = x x 0 x j x 0... x x j 1 x j x j 1 x x j+1 x j x j+1... x x m x j x m = Dette vil vi nu regne efter ved at bruge lineær algebra! m k=0,k j x x k x j x k. (1) Forklar hvorfor l j (x) er et veldefineret polynomium af grad lig med m (kan nævneren blive nul?), og konkluder at l j R m [x]. Prøv så efter at l j (x) løser opgaven i det specialtilfælde, at y j = 1 mens alle andre y k = 0. I detaljer betyder dette at { 1 for j = k, l j (x k ) = δ j,k := 0 for j k. (2) Godtgør at P (x) rent faktisk er et polynomium i R m [x], hvis graf går gennem de givne m + 1 punkter. (3) Udled først at sættet (l 0, l 1,..., l m ) er lineært uafhængigt (brug (1)). Godtgør så teoretisk, at (l 0, l 1,..., l m ) også er et frembringersæt for R m [x]. (4) Og så konkret: Givet et polynomium Q(x) af grad m, hvilken linearkombination fremstiller så Q; hvordan skal koordinaterne nødvendigvis vælges? (Vink: Lav en analyse.) (5) Konkluder endelig, vha. (4), at hvis Q R m [x] er en løsning af problemet, så er Q(x) = P (x) for alle x R, dvs. Q P. Bemærk, at konklusionen i (5) faktisk beviser Den ultrastærke Entydighedssætning for polynomier! Moralen er, at vi undgik Vandermonde determinanten fordi vi med (l 0, l 1,..., l m ) havde valgt en snedig basis! 6

7 8 Tema: Stambrøker En velkendt teknik består i at omskrive en given brøk af polynomier P (z)/q(z) så den kommer på formen, hvor b m 0, P (z) Q(z) = a 0 + a 1 z + + a m 1 z m 1 = c c m. (8.1) b 0 + b 1 z + + b m z m z r 1 z r m Udtrykket til højre kaldes en fremstillning af P/Q ved stambrøker. Thi P/Q stammer fra brøkerne i den forstand, at P/Q kan gendannes ved at sætte disse brøker på fælles brøkstreg. Fremstillingen i (8.1) er eksempelvis nyttig, hvis man skal integrere funktionen P (x)/q(x). Desuden bruges den også som forberedelse til invers Laplacetransformering ved løsning af differentialligninger med begyndelsesbetingelser. Vi skal nu se at fremstillingen ved stambrøker i (8.1) altid eksisterer når det forudsættes at deg(p ) < m = deg(q). (8.2) (Dette er for simpelhedens skyld, da man for deg(p ) deg(q) kan reducere til ovenstående situation ved at foretage polynomiers division først.) Som et hjælpemiddel indføres polynomierne q j for j {1, 2,..., m}, q j (z) = m k=1,k j (z r k ). (8.3) Tallene r 1,..., r m bestemmes i praksis (nødvendigvis) som rødderne i nævneren, dvs. at Q(z) = b m (z r 1 )(z r 2 )... (z r m ). (1) Vis at fremstillingen i (8.1) kan opnås hvis og kun hvis c 1,..., c m C kan vælges sådan at P (z) = b m c 1 q 1 (z) + b m c 2 q 2 (z) + + b m c m q m (z). (2) Bevis at (q 1, q 2,..., q m ) er et frembringersæt for C m 1 [z] hvis og kun hvis rødderne r 1,..., r m er indbyrdes forskellige. Udled heraf, at når rødderne r 1,..., r m er indbyrdes forskellige, så har ligningen for P i (1) på grund af antagelsen (8.2) en (og kun en) løsning (c 1,..., c m ) C m. (3) Vis at når r 1,..., r m er indbyrdes forskellige, da er hvert c j givet ved ( lim (z r j ) P (z) ) = c j. (8.4) z r j Q(z) (4) Brug (8.4) til at bestemme stambrøkfremstillingen (8.1) for z+1 z 3 3z 2 +2z. (5) ***Vis at når Q(z) har de indbyrdes forskellige rødder t 1,..., t k af multipliciteter n 1 1,..., n k 1, hvor n 1 + n n k = m, det vil 7

8 sige at Q(x) = b m (x t 1 ) n 1... (x t k ) n k, så kan man opnå en stambrøksfremstilling af formen P (z) Q(z) = k j=1 ( cj,1 + c j,2 z t j (z t j ) + + c ) j,n j. (8.5) 2 (z t j ) n j Vink: Brug (z t j ) n j som fællesnævner i parentesen, og find dernæst fællesnævneren Q(x)/b m for alle leddene med j 1,..., k mens deres tællere indeholder hjælpepolynomierne q j,n (x) = Q(x)b 1 m (x t j hvor n {1, 2,..., n ) n j }. Udled så at P span{q j,n j = 1,..., k; n = 1,..., n j } når dette system er lineært uafhængigt, og påvis lineær uafhængighed ved at indsætte x = t 1 etc. i k nj j=1 n=1 α j,n q j,n (x) 0. (Når α 1,n1 = 0 kan ligningen divideres med x t 1 ; den nye ligning gælder også for x = t j pga. kontinuitet.) Vis også at der i dette tilfælde gælder at 1 lim z t j m! d m dz m ( (z t j ) n P (z) ) j Q(z) = c j,nj m. (8.6) (Dette kræver dog kompleks differentiation (Mat4), medmindre t j er reel.) Med venlig hilsen Jon Johnsen 8

1 Vektorrum. MATEMATIK 3 LINEÆR ALGEBRA M. ANV. 4. oktober Miniprojekt: Lineær algebra på polynomier

1 Vektorrum. MATEMATIK 3 LINEÆR ALGEBRA M. ANV. 4. oktober Miniprojekt: Lineær algebra på polynomier MATEMATIK 3 LINEÆR ALGEBRA M. ANV. 4. oktober 2017 Miniprojekt: Lineær algebra på polynomier Grupperne forventes at regne de små opgaver i afsnittene 1 5 i løbet af de første 4 halve dage. Dernæst tilføjes

Læs mere

Besvarelser til Lineær Algebra med Anvendelser Ordinær Eksamen 2016

Besvarelser til Lineær Algebra med Anvendelser Ordinær Eksamen 2016 Besvarelser til Lineær Algebra med Anvendelser Ordinær Eksamen 206 Mikkel Findinge http://findinge.com/ Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan.

Læs mere

Tidligere Eksamensopgaver MM505 Lineær Algebra

Tidligere Eksamensopgaver MM505 Lineær Algebra Institut for Matematik og Datalogi Syddansk Universitet Tidligere Eksamensopgaver MM55 Lineær Algebra Indhold Typisk forside.................. 2 Juni 27.................... 3 Oktober 27..................

Læs mere

Skriftlig eksamen Vejledende besvarelse MATEMATIK B (MM02)

Skriftlig eksamen Vejledende besvarelse MATEMATIK B (MM02) SYDDANSK UNIVERSITET ODENSE UNIVERSITET INSTITUT FOR MATEMATIK OG DATALOGI Skriftlig eksamen Vejledende besvarelse MATEMATIK B (MM2) Fredag d. 2. januar 22 kl. 9. 3. 4 timer med alle sædvanlige skriftlige

Læs mere

Diagonalisering. Definition (diagonaliserbar)

Diagonalisering. Definition (diagonaliserbar) 1 Diagonalisering 2 Definition (diagonaliserbar) Lad A være en n n-matrix. A siges at være diagonaliserbar hvis A er similær med en diagonal matrix, dvs. A = PDP 1, hvor D er en n n diagonal matrix og

Læs mere

Lineær Algebra eksamen, noter

Lineær Algebra eksamen, noter Lineær Algebra eksamen, noter Stig Døssing, 20094584 June 6, 2011 1 Emne 1: Løsninger og least squares - Løsning, ligningssystem RREF (ERO) løsninger Bevis at RREF matrix findes Løsninger til system (0,

Læs mere

DesignMat Uge 1 Gensyn med forårets stof

DesignMat Uge 1 Gensyn med forårets stof DesignMat Uge 1 Gensyn med forårets stof Preben Alsholm Efterår 2010 1 Hovedpunkter fra forårets pensum 11 Taylorpolynomium Taylorpolynomium Det n te Taylorpolynomium for f med udviklingspunkt x 0 : P

Læs mere

Besvarelser til Lineær Algebra Ordinær Eksamen - 5. Januar 2018

Besvarelser til Lineær Algebra Ordinær Eksamen - 5. Januar 2018 Besvarelser til Lineær Algebra Ordinær Eksamen - 5. Januar 08 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende

Læs mere

Ølopgaver i lineær algebra

Ølopgaver i lineær algebra Ølopgaver i lineær algebra 30. maj, 2010 En stor del af de fænomener, vi observerer, er af lineær natur. De naturlige matematiske objekter i beskrivelsen heraf bliver vektorrum rum hvor man kan lægge elementer

Læs mere

Eksamen i Lineær Algebra. Første Studieår ved Det Tekniske Fakultet for IT og Design samt Det Ingeniør- og Naturvidenskabelige Fakultet

Eksamen i Lineær Algebra. Første Studieår ved Det Tekniske Fakultet for IT og Design samt Det Ingeniør- og Naturvidenskabelige Fakultet Eksamen i Lineær Algebra Første Studieår ved Det Tekniske Fakultet for IT og Design samt Det Ingeniør- og Naturvidenskabelige Fakultet 4. januar 9 kl. 9:-: Dette eksamenssæt består af 8 nummererede sider

Læs mere

6.1 Reelle Indre Produkter

6.1 Reelle Indre Produkter SEKTION 6.1 REELLE INDRE PRODUKTER 6.1 Reelle Indre Produkter Definition 6.1.1 Et indre produkt på et reelt vektorrum V er en funktion, : V V R således at, for alle x, y V, I x, x 0 med lighed x = 0, II

Læs mere

Besvarelser til Lineær Algebra Ordinær Eksamen Juni 2018

Besvarelser til Lineær Algebra Ordinær Eksamen Juni 2018 Besvarelser til Lineær Algebra Ordinær Eksamen - 5. Juni 28 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende

Læs mere

Symmetriske og ortogonale matricer Uge 6

Symmetriske og ortogonale matricer Uge 6 Symmetriske og ortogonale matricer Uge 6 Preben Alsholm Efterår 2010 1 Symmetriske og ortogonale matricer 1.1 Skalarprodukt og Cauchy-Schwarz ulighed Skalarprodukt og Cauchy-Schwarz ulighed Det sædvanlige

Læs mere

Reeksamen i Lineær Algebra

Reeksamen i Lineær Algebra Reeksamen i Lineær Algebra Første Studieår ved Det Tekniske Fakultet for IT og Design samt Det Ingeniør- og Naturvidenskabelige Fakultet. februar 8 Dette eksamenssæt består af 9 nummererede sider med afkrydsningsopgaver.

Læs mere

1.1. n u i v i, (u, v) = i=1

1.1. n u i v i, (u, v) = i=1 1.1 1. Hilbert rum 1.1. Hilbert rum og deres geometri. Definition 1.1. Et komplekst vektor rum V kaldes et indre produkt rum (eller præ-hilbert rum), når det er forsynet med en funktion (, ): V V C, som

Læs mere

Egenværdier og egenvektorer

Egenværdier og egenvektorer enote 9 enote 9 Egenværdier og egenvektorer Denne note indfører begreberne egenværdier og egenvektorer for lineære afbildninger i vilkårlige generelle vektorrum og går derefter i dybden med egenværdier

Læs mere

x 2 + y 2 dx dy. f(x, y) = ln(x 2 + y 2 ) + 2 1) Angiv en ligning for tangentplanen til fladen z = f(x, y) i punktet

x 2 + y 2 dx dy. f(x, y) = ln(x 2 + y 2 ) + 2 1) Angiv en ligning for tangentplanen til fladen z = f(x, y) i punktet Eksamensopgaver fra Matematik Alfa 1 Naturvidenskabelig Kandidateksamen August 1999. Matematik Alfa 1 Opgave 1. Udregn integralet 1 1 y 2 (Vink: skift til polære koordinater.) Opgave 2. Betragt funktionen

Læs mere

DesignMat Uge 1 Repetition af forårets stof

DesignMat Uge 1 Repetition af forårets stof DesignMat Uge 1 Repetition af forårets stof Preben Alsholm Efterår 008 01 Lineært ligningssystem Lineært ligningssystem Et lineært ligningssystem: a 11 x 1 + a 1 x + + a 1n x n = b 1 a 1 x 1 + a x + +

Læs mere

Symmetriske og ortogonale matricer Uge 7

Symmetriske og ortogonale matricer Uge 7 Symmetriske og ortogonale matricer Uge 7 Preben Alsholm Efterår 2009 1 Symmetriske og ortogonale matricer 1.1 Definitioner Definitioner En kvadratisk matrix A = [ a ij kaldes symmetrisk, hvis aij = a ji

Læs mere

Hilbert rum. Chapter 3. 3.1 Indre produkt rum

Hilbert rum. Chapter 3. 3.1 Indre produkt rum Chapter 3 Hilbert rum 3.1 Indre produkt rum I det følgende skal vi gøre brug af komplekse såvel som reelle vektorrum. Idet L betegner enten R eller C minder vi om, at et vektorrum over L er en mængde E

Læs mere

Besvarelse af Eksamensopgaver Juni 2005 i Matematik H1

Besvarelse af Eksamensopgaver Juni 2005 i Matematik H1 Besvarelse af Eksamensopgaver Juni 5 i Matematik H Opgave De fire vektorer stilles op i en matrix som reduceres: 4 4 4 8 4 4 (a) Der er ledende et-taller så dim U =. Som basis kan f.eks. bruges a a jfr.

Læs mere

EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) JANUAR 2006 AARHUS UNIVERSITET.. Beregn den retningsafledede D u f(0, 0).

EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) JANUAR 2006 AARHUS UNIVERSITET.. Beregn den retningsafledede D u f(0, 0). EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) JANUAR 2006 AARHUS UNIVERSITET H.A. NIELSEN & H.A. SALOMONSEN Opgave. Lad f betegne funktionen f(x, y) = x cos(y) + y sin(x). ) Angiv gradienten f. 2) Lad u betegne

Læs mere

DesignMat. Preben Alsholm. September Egenværdier og Egenvektorer. Preben Alsholm. Egenværdier og Egenvektorer

DesignMat. Preben Alsholm. September Egenværdier og Egenvektorer. Preben Alsholm. Egenværdier og Egenvektorer DesignMat September 2008 fortsat Eksempel : et Eksempel 4 () af I II uden I Lad V være et vektorrum over L (enten R eller C). fortsat Eksempel : et Eksempel 4 () af I II uden I Lad V være et vektorrum

Læs mere

Reeksamen i Lineær Algebra. Første Studieår ved Det Tekniske Fakultet for IT og Design samt Det Ingeniør- og Naturvidenskabelige Fakultet

Reeksamen i Lineær Algebra. Første Studieår ved Det Tekniske Fakultet for IT og Design samt Det Ingeniør- og Naturvidenskabelige Fakultet Reeksamen i Lineær Algebra Første Studieår ved Det Tekniske Fakultet for IT og Design samt Det Ingeniør- og Naturvidenskabelige Fakultet. februar 9 kl. 9:-: Dette eksamenssæt består af 8 nummererede sider

Læs mere

Oversigt [LA] 11, 12, 13

Oversigt [LA] 11, 12, 13 Oversigt [LA] 11, 12, 13 Nøgleord og begreber Ortogonalt komplement Tømrerprincippet Ortogonal projektion Projektion på 1 vektor Projektion på basis Kortest afstand August 2002, opgave 6 Tømrermester Januar

Læs mere

Eksamen i Lineær Algebra

Eksamen i Lineær Algebra Eksamen i Lineær Algebra Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet & Det Sundhedsvidenskabelige Fakultet Tirsdag den 4 januar, 2 Kl 9-3 Nærværende eksamenssæt består af 8 nummererede

Læs mere

Prøveeksamen A i Lineær Algebra

Prøveeksamen A i Lineær Algebra Prøveeksamen A i Lineær Algebra Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet Der må gøres brug af bøger, noter mv Der må ikke benyttes lommeregner,

Læs mere

Lineær Algebra, TØ, hold MA3

Lineær Algebra, TØ, hold MA3 Lineær Algebra, TØ, hold MA3 Lad mig allerførst (igen) bemærke at et vi siger: En matrix, matricen, matricer, matricerne. Og i sammensætninger: matrix- fx matrixmultiplikation. Injektivitet og surjektivitet

Læs mere

Besvarelser til Lineær Algebra Ordinær Eksamen Juni 2017

Besvarelser til Lineær Algebra Ordinær Eksamen Juni 2017 Besvarelser til Lineær Algebra Ordinær Eksamen - 12. Juni 2017 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende

Læs mere

Module 1: Lineære modeller og lineær algebra

Module 1: Lineære modeller og lineær algebra Module : Lineære modeller og lineær algebra. Lineære normale modeller og lineær algebra......2 Lineær algebra...................... 6.2. Vektorer i R n................... 6.2.2 Regneregler for vektorrum...........

Læs mere

Besvarelser til Lineær Algebra Reeksamen August 2016

Besvarelser til Lineær Algebra Reeksamen August 2016 Besvarelser til Lineær Algebra Reeksamen - 9. August 26 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende

Læs mere

Matematisk modellering og numeriske metoder. Lektion 5

Matematisk modellering og numeriske metoder. Lektion 5 Matematisk modellering og numeriske metoder Lektion 5 Morten Grud Rasmussen 19. september, 2013 1 Euler-Cauchy-ligninger [Bogens afsnit 2.5, side 71] 1.1 De tre typer af Euler-Cauchy-ligninger Efter at

Læs mere

Sylvesters kriterium. Nej, ikke mit kriterium. Sætning 9. Rasmus Sylvester Bryder

Sylvesters kriterium. Nej, ikke mit kriterium. Sætning 9. Rasmus Sylvester Bryder Sætning 9 Sylvesters kriterium Nej, ikke mit kriterium Rasmus Sylvester Bryder Inspireret af en statistikers manglende råd om hvornår en kvadratisk matrix er positivt definit uden at skulle ud i at bestemme

Læs mere

3.1 Baser og dimension

3.1 Baser og dimension SEKTION 3 BASER OG DIMENSION 3 Baser og dimension Definition 3 Lad V være et F-vektorrum Hvis V = {0}, så har V dimension 0 2 Hvis V har en basis bestående af n vektorer, så har V dimension n 3 Hvis V

Læs mere

Symmetriske matricer

Symmetriske matricer Symmetriske matricer Preben Alsholm 17. november 008 1 Symmetriske matricer 1.1 Definitioner Definitioner En kvadratisk matrix A = a ij kaldes symmetrisk, hvis aij = a ji for alle i og j. Altså hvis A

Læs mere

Egenværdier og egenvektorer

Egenværdier og egenvektorer 1 Egenværdier og egenvektorer 2 Definition Lad A være en n n matrix. En vektor v R n, v 0, kaldes en egenvektor for A, hvis der findes en skalar λ således Av = λv Skalaren λ kaldes en tilhørende egenværdi.

Læs mere

Teoretiske Øvelsesopgaver:

Teoretiske Øvelsesopgaver: Teoretiske Øvelsesopgaver: TØ-Opgave 1 Subtraktion division i legemer: Er subtraktion division med elementer 0 i legemer veldefinerede, eller kan et element b have mere end ét modsat element -b eller mere

Læs mere

Lineær algebra: Egenværdier, egenvektorer, diagonalisering

Lineær algebra: Egenværdier, egenvektorer, diagonalisering Lineær algebra: Egenværdier, egenvektorer, diagonalisering Institut for Matematiske Fag Aalborg Universitet 2011 Egenvektorer og egenværdier Mål: Forståelse af afbildningen x Ax fra R n R n for en n n-matrix

Læs mere

DesignMat Uge 2. Preben Alsholm. Efterår Lineære afbildninger. Preben Alsholm. Lineære afbildninger. Eksempel 2 på lineær.

DesignMat Uge 2. Preben Alsholm. Efterår Lineære afbildninger. Preben Alsholm. Lineære afbildninger. Eksempel 2 på lineær. er DesignMat Uge 2 er er lineær lineær lineær lineære er I smatrix lineære er II smatrix I smatrix II Efterår 2010 Lad V og W være vektorrum over samme skalarlegeme L (altså enten R eller C for begge).

Læs mere

Noter om polynomier, Kirsten Rosenkilde, Marts Polynomier

Noter om polynomier, Kirsten Rosenkilde, Marts Polynomier Noter om polynomier, Kirsten Rosenkilde, Marts 2006 1 Polynomier Disse noter giver en kort introduktion til polynomier, og de fleste sætninger nævnes uden bevis. Undervejs er der forholdsvis nemme opgaver,

Læs mere

Nøgleord og begreber Ortogonalt komplement Tømrerprincippet. [LA] 13 Ortogonal projektion

Nøgleord og begreber Ortogonalt komplement Tømrerprincippet. [LA] 13 Ortogonal projektion Oversigt [LA] 11, 12, 13 Nøgleord og begreber Ortogonalt komplement Tømrerprincippet Ortogonal projektion Projektion på 1 vektor Projektion på basis Kortest afstand August 2002, opgave 6 Tømrermester Januar

Læs mere

Oversigt [LA] 1, 2, 3, [S] 9.1-3

Oversigt [LA] 1, 2, 3, [S] 9.1-3 Oversigt [LA], 2, 3, [S] 9.-3 Nøgleord og begreber Koordinatvektorer, talpar, taltripler og n-tupler Linearkombination Underrum og Span Test linearkombination Lineær uafhængighed Standard vektorer Basis

Læs mere

Lineær Algebra F08, MØ

Lineær Algebra F08, MØ Lineær Algebra F08, MØ Vejledende besvarelser af udvalgte opgaver fra Ugeseddel 3 og 4 Ansvarsfraskrivelse: Den følgende vejledning er kun vejledende. Opgaverne kommer i vilkårlig rækkefølge. Visse steder

Læs mere

To find the English version of the exam, please read from the other end! Eksamen i Lineær Algebra

To find the English version of the exam, please read from the other end! Eksamen i Lineær Algebra To find the English version of the exam, please read from the other end! Se venligst bort fra den engelske tekst på bagsiden, hvis du følger den danske version af prøven. Eksamen i Lineær Algebra Første

Læs mere

MATEMATIK 1 LINEÆR ALGEBRA OG DYNAMISKE SYSTEMER 1. september 2009 Oversigt nr. 1

MATEMATIK 1 LINEÆR ALGEBRA OG DYNAMISKE SYSTEMER 1. september 2009 Oversigt nr. 1 LINEÆR ALGEBRA OG DYNAMISKE SYSTEMER 1. september 2009 Oversigt nr. 1 I PE-kurset i skal vi bruge [A] Sheldon Axler: Linear algebra done right, 2nd ed., Springer. [P] Lawrence Perko: Differential equations

Læs mere

Noter om Komplekse Vektorrum, Funktionsrum og Differentialligninger LinAlg 2004/05-Version af 16. Dec.

Noter om Komplekse Vektorrum, Funktionsrum og Differentialligninger LinAlg 2004/05-Version af 16. Dec. Noter om Komplekse Vektorrum, Funktionsrum og Differentialligninger LinAlg 2004/05-Version af 16. Dec. 1 Komplekse vektorrum I defininitionen af vektorrum i Afsnit 4.1 i Niels Vigand Pedersen Lineær Algebra

Læs mere

Taylors formel. Kapitel Klassiske sætninger i en dimension

Taylors formel. Kapitel Klassiske sætninger i en dimension Kapitel 3 Taylors formel 3.1 Klassiske sætninger i en dimension Sætning 3.1 (Rolles sætning) Lad f : [a, b] R være kontinuert, og antag at f er differentiabel i det åbne interval (a, b). Hvis f (a) = f

Læs mere

Besvarelser til de to blokke opgaver på Ugeseddel 7

Besvarelser til de to blokke opgaver på Ugeseddel 7 Besvarelser til de to blokke opgaver på Ugeseddel 7 De anførte besvarelser er til dels mere summariske end en god eksamensbesvarelse bør være. Der kan godt være fejl i - jeg vil meget gerne informeres,

Læs mere

DESIGNMAT FORÅR 2012: UGESEDDEL Forberedelse Læs alle opgaverne fra tidligere ugesedler, og læg særlig mærke til dem du har spørgsmål til.

DESIGNMAT FORÅR 2012: UGESEDDEL Forberedelse Læs alle opgaverne fra tidligere ugesedler, og læg særlig mærke til dem du har spørgsmål til. DESIGNMAT FORÅR 2012: UGESEDDEL 13 INSTITUT FOR MATEMATIK 1. Forberedelse Læs alle opgaverne fra tidligere ugesedler, og læg særlig mærke til dem du har spørgsmål til. 2. Aktiviteter mandag 13 17 2.1.

Læs mere

Besvarelser til Lineær Algebra Ordinær eksamen - 6. Juni 2016

Besvarelser til Lineær Algebra Ordinær eksamen - 6. Juni 2016 Besvarelser til Lineær Algebra Ordinær eksamen - 6. Juni 2016 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende

Læs mere

Chapter 3. Modulpakke 3: Egenværdier. 3.1 Indledning

Chapter 3. Modulpakke 3: Egenværdier. 3.1 Indledning Chapter 3 Modulpakke 3: Egenværdier 3.1 Indledning En vektor v har som bekendt både størrelse og retning. Hvis man ganger vektoren fra højre på en kvadratisk matrix A bliver resultatet en ny vektor. Hvis

Læs mere

Vejledende besvarelse på august 2009-sættet 2. december 2009

Vejledende besvarelse på august 2009-sættet 2. december 2009 Vejledende besvarelse på august 29-sættet 2. december 29 Det følgende er en vejledende besvarelse på eksamenssættet i kurset Calculus, som det så ud i august 29. Den tjener primært til illustration af,

Læs mere

Oversigt Matematik Alfa 1, August 2002

Oversigt Matematik Alfa 1, August 2002 Oversigt [S], [LA] Nøgleord og begreber Egenvektorer, egenværdier og diagonalisering Dobbelt integral og polært koordinatskift Ortogonal projektion og mindste afstand Retningsafledt og gradient Maksimum/minimums

Læs mere

Definition. og lœngden, normen. og afstanden mellem vektorer a og b. Der gælder

Definition. og lœngden, normen. og afstanden mellem vektorer a og b. Der gælder Oversigt [LA] 11, 1, 13 Prikprodukt Nøgleord og begreber Ortogonalitet Ortogonalt komplement Tømrerprincippet Ortogonal projektion Pythagoras formel Kortest afstand August 00, opgave 6 Cauchy-Schwarz ulighed

Læs mere

2010 Matematik 2A hold 4 : Prøveeksamen juni 2010

2010 Matematik 2A hold 4 : Prøveeksamen juni 2010 1 of 7 31-05-2010 13:18 2010 Matematik 2A hold 4 : Prøveeksamen juni 2010 Welcome Jens Mohr Mortensen [ My Profile ] View Details View Grade Help Quit & Save Feedback: Details Report [PRINT] 2010 Matematik

Læs mere

Reeksamen i Lineær Algebra

Reeksamen i Lineær Algebra Reeksamen i Lineær Algebra Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet & Det Sundhedsvidenskabelige Fakultet Torsdag den 8. august, 2. Kl. 9-3. Nærværende eksamenssæt består af 8 nummererede

Læs mere

Oversigt [LA] 1, 2, 3, [S] 9.1-3

Oversigt [LA] 1, 2, 3, [S] 9.1-3 Oversigt [LA] 1, 2, 3, [S] 9.1-3 Nøgleord og begreber Koordinatvektorer, talpar, taltripler og n-tupler Linearkombination Underrum og Span Test linearkombination Lineær uafhængighed Standard vektorer Basis

Læs mere

Jeg foretager her en kort indføring af polynomier over såvel de reelle som

Jeg foretager her en kort indføring af polynomier over såvel de reelle som Polynomier, rødder og division Sebastian Ørsted 20. november 2016 Jeg foretager her en kort indføring af polynomier over såvel de reelle som de komplekse tal, hvor fokus er på at opbygge værktøjer til

Læs mere

Oversigt Matematik Alfa 1, Januar 2003

Oversigt Matematik Alfa 1, Januar 2003 Oversigt [S], [LA] Nøgleord og begreber Egenvektorer, egenværdier og diagonalisering Dobbelt integral og polært koordinatskift Ortogonal projektion og mindste afstand Retningsafledt og gradient Maksimum/minimums

Læs mere

MATEMATIK 1 LINEÆR ALGEBRA OG DYNAMISKE SYSTEMER 2. september 2008 Oversigt nr. 1

MATEMATIK 1 LINEÆR ALGEBRA OG DYNAMISKE SYSTEMER 2. september 2008 Oversigt nr. 1 LINEÆR ALGEBRA OG DYNAMISKE SYSTEMER 2. september 2008 Oversigt nr. 1 I PE-kurset i skal vi bruge [A] Sheldon Axler: Linear algebra done right, 2nd ed., Springer. [AB] K. G. Andersson og L.-C. Böiers:

Læs mere

Besvarelser til Calculus og Lineær Algebra Globale Forretningssystemer Eksamen - 8. Juni 2015

Besvarelser til Calculus og Lineær Algebra Globale Forretningssystemer Eksamen - 8. Juni 2015 Besvarelser til Calculus og Lineær Algebra Globale Forretningssystemer Eksamen - 8. Juni 05 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en

Læs mere

EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) AUGUST 2006 AARHUS UNIVERSITET

EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) AUGUST 2006 AARHUS UNIVERSITET EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) AUGUST 2006 AARHUS UNIVERSITET H.A. NIELSEN & H.A. SALOMONSEN Opgave. Lad f betegne funktionen f(x,y) = x 3 + x 2 y + xy 2 + y 3. ) Angiv gradienten f. 2) Angiv

Læs mere

Lidt alment om vektorrum et papir som grundlag for diskussion

Lidt alment om vektorrum et papir som grundlag for diskussion Definition : vektorrum, vektorer Et vektorrum er en mængde af elementer med operationerne sum (+) og numerisk multiplikation (), så følgende regler gælder for alle a, b, c og for alle reelle tal s, t R.

Læs mere

Besvarelser til Calculus og Lineær Algebra Globale Forretningssystemer Eksamen - 3. Juni 2014

Besvarelser til Calculus og Lineær Algebra Globale Forretningssystemer Eksamen - 3. Juni 2014 Besvarelser til Calculus og Lineær Algebra Globale Forretningssystemer Eksamen - 3. Juni 204 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over

Læs mere

Oversigt [LA] 11, 12, 13

Oversigt [LA] 11, 12, 13 Oversigt [LA] 11, 12, 13 Nøgleord og begreber Ortogonalitet Ortogonalt komplement Tømrerprincippet Ortogonal projektion Pythagoras formel Kortest afstand August 2002, opgave 6 Cauchy-Schwarz ulighed Calculus

Læs mere

Calculus Uge

Calculus Uge Oversigt [S], [LA] Nøgleord og begreber Egenvektorer, egenværdier og diagonalisering Dobbelt integral og polært koordinatskift Ortogonal projektion og mindste afstand Retningsafledt og gradient Maksimum/minimums

Læs mere

Opgave 1 Betragt funktionen. x + y for x > 0, y > 0. 3) Angiv en enhedsvektor u så at den retningsafledede D u f(5, 2) er 0.

Opgave 1 Betragt funktionen. x + y for x > 0, y > 0. 3) Angiv en enhedsvektor u så at den retningsafledede D u f(5, 2) er 0. Oversigt [S], [LA] Nøgleord og begreber Egenvektorer, egenværdier og diagonalisering Dobbelt integral og polært koordinatskift Ortogonal projektion og mindste afstand Retningsafledt og gradient Maksimum/minimums

Læs mere

Lineære 1. ordens differentialligningssystemer

Lineære 1. ordens differentialligningssystemer enote enote Lineære ordens differentialligningssystemer Denne enote beskriver ordens differentialligningssystemer og viser, hvordan de kan løses enoten er i forlængelse af enote, der beskriver lineære

Læs mere

DesignMat Uge 11 Lineære afbildninger

DesignMat Uge 11 Lineære afbildninger DesignMat Uge Lineære afbildninger Preben Alsholm Forår 008 Lineære afbildninger. Definition Definition Lad V og W være vektorrum over samme skalarlegeme L (altså enten R eller C for begge). Afbildningen

Læs mere

9.1 Egenværdier og egenvektorer

9.1 Egenværdier og egenvektorer SEKTION 9.1 EGENVÆRDIER OG EGENVEKTORER 9.1 Egenværdier og egenvektorer Definition 9.1.1 1. Lad V være et F-vektorrum; og lad T : V V være en lineær transformation. λ F er en egenværdi for T, hvis der

Læs mere

z 1 = z 1z 1z 1 z 1 2 = z z2z 1 z 2 2

z 1 = z 1z 1z 1 z 1 2 = z z2z 1 z 2 2 M å l e p u n k t R i e m a n n s k G e o m e t r i E 8 J a ko b L i n d b l a d B l a ava n d 2 5 3 6 7 5 27 oktober 28 I n s t i t u t fo r M at e m at i s k e Fag A a r h u s U n i v e r s i t e t indledning

Læs mere

Opgave 1 - løsning 1) De partielle afledede beregnes. Opgave 1 Betragt funktionen. x + y for x > 0, y > 0. f x = y 1 (x + y) 2.

Opgave 1 - løsning 1) De partielle afledede beregnes. Opgave 1 Betragt funktionen. x + y for x > 0, y > 0. f x = y 1 (x + y) 2. Oversigt Nøgleord og begreber Egenvektorer, egenværdier og diagonalisering Dobbelt integral og polært koordinatskift Ortogonal projektion og mindste afstand Retningsafledt og gradient Maksimum/minimums

Læs mere

Differentiation af Trigonometriske Funktioner

Differentiation af Trigonometriske Funktioner Differentiation af Trigonometriske Funktioner Frank Villa 15. oktober 01 Dette dokument er en del af MatBog.dk 008-01. IT Teaching Tools. ISBN-13: 978-87-9775-00-9. Se yderligere betingelser for brug her.

Læs mere

Eksamen i Lineær Algebra

Eksamen i Lineær Algebra Eksamen i Lineær Algebra Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet & Det Sundhedsvidenskabelige Fakultet Tirsdag den 8 januar, Kl 9- Nærværende eksamenssæt består af 8 nummererede sider

Læs mere

Modulpakke 3: Lineære Ligningssystemer

Modulpakke 3: Lineære Ligningssystemer Chapter 4 Modulpakke 3: Lineære Ligningssystemer 4. Homogene systemer I teknikken møder man meget ofte modeller der leder til systemer af koblede differentialligninger. Et eksempel på et sådant system

Læs mere

Lineær Algebra - Beviser

Lineær Algebra - Beviser Lineær Algebra - Beviser Mads Friis 8 oktober 213 1 Lineære afbildninger Jeg vil i denne note forsøge at give et indblik i, hvor kraftfuldt et værktøj matrix-algebra kan være i analyse af lineære funktioner

Læs mere

DesignMat Den komplekse eksponentialfunktion og polynomier

DesignMat Den komplekse eksponentialfunktion og polynomier DesignMat Den komplekse eksponentialfunktion og polynomier Preben Alsholm Uge 8 Forår 010 1 Den komplekse eksponentialfunktion 1.1 Definitionen Definitionen Den velkendte eksponentialfunktion x e x vil

Læs mere

Det teknisk-naturvidenskabelige basisår Matematik 1A, Efterår 2005, Hold 3 Prøveopgave C

Det teknisk-naturvidenskabelige basisår Matematik 1A, Efterår 2005, Hold 3 Prøveopgave C Det teknisk-naturvidenskabelige basisår Matematik 1A, Efterår 2005, Hold 3 Prøveopgave C Opgaven består af tre dele, hver med en række spørgsmål, efterfulgt af en liste af teorispørgsmål. I alle opgavespørgsmålene

Læs mere

Eksamen i Lineær Algebra

Eksamen i Lineær Algebra To find the English version of the exam, please read from the other end Eksamen i Lineær Algebra Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet & Det Sundhedsvidenskabelige Fakultet 6. januar,

Læs mere

(Prøve)eksamen i Lineær Algebra

(Prøve)eksamen i Lineær Algebra (Prøve)eksamen i Lineær Algebra Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet & Det Sundhedsvidenskabelige Fakultet Nærværende eksamenssæt bestaår af 9 nummererede sider med ialt 15 opgaver.

Læs mere

Eksamen i Lineær Algebra

Eksamen i Lineær Algebra Eksamen i Lineær Algebra Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet 6. juni, 26. Kl. 9-3. Nærværende eksamenssæt består af nummererede sider med ialt 5 opgaver. Alle opgaver er multiple

Læs mere

π er irrationel Frank Nasser 10. december 2011

π er irrationel Frank Nasser 10. december 2011 π er irrationel Frank Nasser 10. december 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

Lineære 1. ordens differentialligningssystemer

Lineære 1. ordens differentialligningssystemer enote 7 enote 7 Lineære ordens differentialligningssystemer Denne enote beskriver ordens differentialligningssystemer og viser, hvordan de kan løses Der bruges egenværdier og egenvektorer i løsningsproceduren,

Læs mere

MATEMATIK 3 LINEÆR ALGEBRA M. ANV. 29. august 2017 Oversigt nr. 1

MATEMATIK 3 LINEÆR ALGEBRA M. ANV. 29. august 2017 Oversigt nr. 1 LINEÆR ALGEBRA M. ANV. 9. august 017 Oversigt nr. 1 Lærebøgerne for kurset er [SA] Sheldon Axler, Linear algebra done right, 3. udgave, Springer 015. [AJ] Matrix factorizations, af Arne Jensen, Aalborg

Læs mere

Hilbert rum. Chapter Indre produkt rum

Hilbert rum. Chapter Indre produkt rum Chapter 4 Hilbert rum 4.1 Indre produkt rum I det følgende skal vi gøre brug af komplekse såvel som reelle vektorrum. Idet L betegner enten R eller C minder vi om, at et vektorrum over L er en mængde E

Læs mere

Lineære 1. ordens differentialligningssystemer

Lineære 1. ordens differentialligningssystemer enote enote Lineære ordens differentialligningssystemer Denne enote beskriver ordens differentialligningssystemer og viser, hvordan de kan løses enoten er i forlængelse af enote, der beskriver lineære

Læs mere

(Prøve)eksamen i Lineær Algebra

(Prøve)eksamen i Lineær Algebra (Prøve)eksamen i Lineær Algebra Maj 016 Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet & Det Sundhedsvidenskabelige Fakultet Nærværende eksamenssæt består af 10 nummererede sider med ialt

Læs mere

Vektorrum. enote Generalisering af begrebet vektor

Vektorrum. enote Generalisering af begrebet vektor enote 7 1 enote 7 Vektorrum I denne enote opstilles en generel teori for mængder, for hvilke der er defineret addition og multiplikation med skalar, og som opfylder de samme regneregler som geometriske

Læs mere

Lineær algebra 1. kursusgang

Lineær algebra 1. kursusgang Lineær algebra 1. kursusgang Eksempel, anvendelse To kendte punkter A og B på en linie, to ukendte punkter x 1 og x 2. A x 1 x 2 B Observationer af afstande: fra A til x 1 : b 1 fra x 1 til x 2 : b 2 fra

Læs mere

Kalkulus 2 - Grænseovergange, Kontinuitet og Følger

Kalkulus 2 - Grænseovergange, Kontinuitet og Følger Kalkulus - Grænseovergange, Kontinuitet og Følger Mads Friis 8. januar 05 Indhold Grundlæggende uligheder Grænseovergange 3 3 Kontinuitet 9 4 Følger 0 5 Perspektivering 4 Grundlæggende uligheder Sætning

Læs mere

Besvarelser til Calculus Ordinær eksamen - Forår - 6. Juni 2016

Besvarelser til Calculus Ordinær eksamen - Forår - 6. Juni 2016 Besvarelser til Calculus Ordinær eksamen - Forår - 6. Juni 16 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende

Læs mere

MATEMATIK 3 LINEÆR ALGEBRA 2. september 2016 Oversigt nr. 1

MATEMATIK 3 LINEÆR ALGEBRA 2. september 2016 Oversigt nr. 1 LINEÆR ALGEBRA 2. september 2016 Oversigt nr. 1 Lærebøgerne for kurset er [LNS]Linear algebra as an introduction to abstract mathematics, af I. Lankham, B. Nachtergaele og A. Schilling, Lecture notes for

Læs mere

n=1 er veldefineret for alle følger for hvilke højresiden er endelig. F.eks. tilhører følgen

n=1 er veldefineret for alle følger for hvilke højresiden er endelig. F.eks. tilhører følgen 2 Hilbert rum 2. Eksempler på Hilbert rum Vi skal nu først forsøge at begrunde, at de indre produkt rum af funktioner eller følger, som blev indført i Kapitel, ikke er omfattende nok til vores formål.

Læs mere

(c) Opskriv den reelle Fourierrække for funktionen y(t) fra (b), og afgør dernæst om y(t) er en lige eller ulige funktion eller ingen af delene.

(c) Opskriv den reelle Fourierrække for funktionen y(t) fra (b), og afgør dernæst om y(t) er en lige eller ulige funktion eller ingen af delene. MATEMATIK 3 EN,MP 4. februar 2016 Eksamenopgaver fra 2011 2016 (jan. 2016) Givet at 0 for 0 < t < 1 mens e (t 1) cos(7(t 1)) for t 1, betragt da begyndelsesværdiproblemet for t > 0: y (t) + 2y (t) + 50y(t)

Læs mere

Reeksamen i Calculus

Reeksamen i Calculus Reeksamen i Calculus Torsdag den 11. august 2011 Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet Nærværende eksamenssæt består af 8 nummererede sider

Læs mere

Nøgleord og begreber. Definition 15.1 Den lineære 1. ordens differentialligning er

Nøgleord og begreber. Definition 15.1 Den lineære 1. ordens differentialligning er Oversigt [S] 7.3, 7.4, 7.5, 7.6; [LA] 15, 16, 17 Nøgleord og begreber 1. ordens lineær ligning Løsningsmetode August 2002, opgave 7 1. ordens lineært system Løsning ved egenvektor Lille opgave Stor opgave

Læs mere

Uge 6 Store Dag. Opgaver til OPGAVER 1. Opgave 1 Udregning af determinant. Håndregning Der er givet matricen A =

Uge 6 Store Dag. Opgaver til OPGAVER 1. Opgave 1 Udregning af determinant. Håndregning Der er givet matricen A = OPGAVER Opgaver til Uge 6 Store Dag Opgave Udregning af determinant. Håndregning 0 Der er givet matricen A = 0 2 2 4 0 0. 2 0 a) Udregn det(a) ved opløsning efter en selvvalgt række eller søjle. b) Omform

Læs mere

Polynomium Et polynomium. Nulpolynomiet Nulpolynomiet er funktionen der er konstant nul, dvs. P(x) = 0, og dets grad sættes per definition til.

Polynomium Et polynomium. Nulpolynomiet Nulpolynomiet er funktionen der er konstant nul, dvs. P(x) = 0, og dets grad sættes per definition til. Polynomier Polynomier Polynomium Et polynomium P(x) = a n x n + a n x n +... + a x + a 0 Disse noter giver en introduktion til polynomier, centrale sætninger om polynomiumsdivision, rødder og koefficienter

Læs mere

Polynomier. Indhold. Georg Mohr-Konkurrencen. 1 Polynomier 2. 2 Polynomiumsdivision 4. 3 Algebraens fundamentalsætning og rødder 6

Polynomier. Indhold. Georg Mohr-Konkurrencen. 1 Polynomier 2. 2 Polynomiumsdivision 4. 3 Algebraens fundamentalsætning og rødder 6 Indhold 1 Polynomier 2 Polynomier 2 Polynomiumsdivision 4 3 Algebraens fundamentalsætning og rødder 6 4 Koefficienter 8 5 Polynomier med heltallige koefficienter 9 6 Mere om polynomier med heltallige koefficienter

Læs mere

Underrum - generaliserede linjer og planer

Underrum - generaliserede linjer og planer 1 Om miniprojekt 2 2 Kirchoffs love. Opstil lineære ligningssystemer og løs dem. 0-1-matricer. Systematisk information om grafer/netværk (som i Dagens anvendelse kursusgang 9): Flyforbindelser. Skemalægning.

Læs mere