Numerisk løsning af differentialligninger

Størrelse: px
Starte visningen fra side:

Download "Numerisk løsning af differentialligninger"

Transkript

1 KU-LIFE; Matemati og modeller 009 Numeris løsning af differentialligninger Thomas Vils Pedersen 1 Numerise metoder Ved numeris analyse forstås tilnærmet, talmæssig løsning af problemer, som ie, eller un med urimeligt stort besvær, an løses teoretis/esat. Der er tale om numerise metoder, allerede når man tilnærmer et reelt tal med et andet, typis en decimalbrø, idet man f.es. sriver , , π , 3 og når man bruger de velendte regler for regning med sådanne decimaltal, herunder for afortning til et bestemt antal decimaler eller et bestemt antal betydende cifre. Andre numerise metoder, der endes fra tidligere er: 1) Tilnærmet løsning af en ligning f(x) = 0. En effetiv metode er Newtons metode, også aldet Newton-Raphson iteration. Ud fra en gætteværdi x 0 beregnes en forbedret gætteværdi x 1 = x 0 f(x 0 )/f (x 0 ), og beregningen an gentages (itereres), til den ønsede nøjagtighed er nået. ) Brug af Taylors formel til tilnærmet beregning af en funtions værdier i nærheden af et givet punt, idet funtionen erstattes af et Taylor-polynomium af passende grad. Den begåede fejl vurderes vha restleds-udtry. 3) Numeris integration, hvor specielt Simpsons formel gør det muligt på enel vis at udregne gode tilnærmelser til et forelagt bestemt integral. De to grundlæggende synsvinler i numeris analyse er dels at udvile effetive, dvs hurtigt onvergerende og ie for omfangsrige, metoder til at løse et foreliggende problem, dels for en given metode at undersøge, hvor stor en fejl man begår ved at bruge metoden i stedet for at løse problemet - eller tæne sig det løst - esat. Numeris løsning af 1. ordens differentialligninger Den underdisciplin af numeris analyse, der handler om numeris (tilnærmet) løsning af differentialligninger, er allerede gammel og særdeles omfattende. En del af de grundlæggende metoder inden for området bygger på følgende princip. Lad den forelagte differentialligning være y = f(x,y). Problemet an ansues grafis ved at indtegne et stort antal såaldte linieelementer, dvs. små liniestyer gennem forsellige punter (x 0,y 0 ), hver gang med hældningsoefficient f(x 0,y 0 ). 1

2 Esempel (Esempel 1, s. 54 i Differentialligninger af Poul Einer Hansen.) På Figur 1 er linieelementer indtegnet for differentialligningen y = x + y. y x 1 Figur 1 Ved løsning af denne lineære 1. ordens differentialligning fås den fuldstændige løsning y = ce x x 1 (c R). Løsningen gennem puntet (0,1) svarer til c =, og er derfor givet ved y = e x x 1. Grafen for denne partiulære løsning ses ligeledes på Figur 1. Vi vender nu tilbage til den generelle differentialligning og tilføjer en begyndelsesbetingelse y = f(x,y) y(x 0 ) = y 0. Vi ved altså at løsningsurven i ethvert af sine punter (x,y) har tangenthældningen f(x,y), samt at den specifie løsningsurve, vi søger, går gennem puntet (x 0,y 0 ). Vi vil benytte dette til at finde tilnærmede værdier for y(x), når x er i nærheden af x 0. Eulers metode Vi bevæger os et lille step af længde h til højre for x 0, og approsimerer y(x 0 + h) vha. tangentligningen i (x 0,y 0 ) : Med y(x 0 + h) y(x 0 ) + y (x 0 )h = y(x 0 ) + f(x 0,y 0 )h. x 1 = x 0 + h og y 1 = y 0 + f(x 0,y 0 )h, har vi altså y(x 1 ) y 1 (se Figur ). Tilsvarende sætter vi så y er en tilnærmelse til y(x ). x = x 1 + h og y = y 1 + f(x 1,y 1 )h,

3 y y = y(x) y(x ) + y + + y 1 + y(x 1 ) Hældning f(x 0,y 0 ) y 0 + Hældning f(x 1,y 1 ) h h x 0 x 1 x Figur x Generelt finder vi den næste tilnærmede værdi ved at sætte x n+1 = x n + h (= x 0 + (n + 1)h) og y n+1 = y n + f(x n,y n )h. På samme måde an man tilnærme y(x) når x < x 0. Vi sætter x 1 = x 0 h og y 1 = y 0 f(x 0,y 0 )h; derefter osv. x = x 1 h og y = y 1 f(x 1,y 1 )h, Esempel (Esempel, s. 55 i Differentialligninger af Poul Einer Hansen.) differentialligningen y = x + y, med begyndelsesbetingelsen y(0.5) = 0.3, og benytter h = 0.1. Vi har da (angivet med decimaler) Vi betragter x 1 = = 0.6, y 1 = y 0 + (x 0 + y 0 )h = ( ) 0.1 = 0.38, x = = 0.7, y = y 1 + (x 1 + y 1 )h = ( ) 0.1 = 0.48, x 3 = = 0.8, y 3 = y + (x + y )h = ( ) 0.1 = 0.60, osv. Tilsvarende fås x 1 = = 0.4, y 1 = y 0 (x 0 + y 0 )h = 0.3 ( ) 0.1 = 0., x = = 0.3, y = y 1 (x 1 + y 1 )h = 0. ( ) 0.1 = 0.16, x = = 0., y 3 = y (x + y )h = 0.16 ( ) 0.1 = 0.11, 3

4 osv. For at vurdere den præcision, der opnås ved Eulers metode, vil vi finde den esate løsning til differentialligningen, og benytte denne til at beregne y(x n ). Som nævnt ovenfor er den fuldstændige løsning til differentialligningen y = x + y givet ved y = ce x x 1 (c R). For løsningen gennem (0.5,0.3) gælder 0.3 = ce , dvs. c = 1.8/e 0.5 = 1.09 og dermed y = 1.09 e x x 1. De tilnærmede og esate værdier fremgår af Tabel 1 (hvor vi har tilføjet værdierne svarende til n = 4 og n = 5): n x n y n y(x n ) Tabel 1 Det ses, at fejlen bliver større jo længere væ fra udgangspuntet (0.3,0.5) man ommer, og at fejlen efterhånden bliver relativt stor. Generelt an man vise, at den begåede fejl i fast afstand fra udgangspuntet er omtrent proportional med h. Man siger derfor, at Eulers metode er af 1. orden. Eulers forbedrede metode Når løsningsfuntionen som på Figur er onves (opad rum), vil tangenthældningen i puntet (x 0,y(x 0 )) undervurdere den fatise hældning af linien mellem (x 0,y(x 0 )) og (x 1,y(x 1 )), så den beregnede tilnærmede funtionsværdi y 1 bliver for lille. Der sal dog ie så meget til for at forbedre metoden betragteligt. Den sande hældning af linien mellem (x 0,y(x 0 )) og (x 1,y(x 1 )) ligger betydeligt nærmere ved middeltallet mellem tangenthældningerne f(x 0,y(x 0 )) og f(x 1,y(x 1 )) i hhv. (x 0,y(x 0 )) og (x 1,y(x 1 )). (Dette an i øvrigt vises at gælde esat for enhver parabel i ethvert interval.) Dette giver og da x 1 x 0 = h fås y(x 1 ) y(x 0 ) f(x 0,y(x 0 )) + f(x 1,y(x 1 )), x 1 x 0 y(x 1 ) y(x 0 ) + f(x 0,y(x 0 )) + f(x 1,y(x 1 )) Nu ender man ganse vist ie y(x 1 ); det er jo netop den, vi ønser at finde (eller rettere tilnærme). Af denne grund vil vi først approsimere y(x 1 ) vha. Eulers metode og derefter benytte denne værdi til at approsimere f(x 1,y(x 1 )). Vi sætter altså y 1 = y 0 + f(x 0,y 0 )h, h. og derefter y 1 = y 0 + f(x 0,y 0 ) + f(x 1,y 1 ) h. 4

5 Den grafise fortolning af dette er, at vi i intervallet [x 0,x 0 + h/] approsimerer y(x) med en ret linie med hældning f(x 0,y 0 ), og i intervallet [x 0 + h/,x 1 ] approsimerer y(x) med en ret linie med hældning f(x 1,y1 ) (se Figur 3). y(x 1 ) y 1 y1 y 0 y Hældning f(x 0,y 0 ) y = y(x) Hældning f(x 1,y 1 ) h h x 0 x 1 Figur 3 x Generelt sætter vi yn+1 = y n + f(x n,y n )h, og derefter y n+1 = y n + f(x n,y n ) + f(x n+1,yn+1 ) h. Metoden an naturligvis også anvendes til at finde de tilnærmede værdier y 1, y osv. Esempel Benyttes Eulers forbedrede metode på esemplet ovenfor fås (med 3 decimaler) og dermed x 1 = = 0.6, y 1 = y 0 + (x 0 + y 0 )h = ( ) 0.1 = 0.380, y 1 = y 0 + (x 0 + y 0 ) + (x 1 + y 1 ) I næste sridt fås og dermed h = ( ) + ( ) 0.1 = x = = 0.7, y = y 1 + (x 1 + y 1 )h = ( ) 0.1 = 0.488, y = y 1 + (x 1 + y 1 ) + (x + y ) h = ( ) + ( ) 0.1 =

6 Fortsættes på denne måde fås værdierne i Tabel : n x n y n y n y(x n ) Tabel Det ses, at metoden giver væsentligt bedre resultater end Eulers simple metode. Generelt an man vise, at Eulers forbedrede metode er af. orden, dvs. at den begåede fejl i fast afstand fra udgangspuntet er omtrent proportional med h. Der findes forsellige videreudvilinger af Eulers forbedrede metode, som vi ie vil omme nærmere ind på her, men blot nævne den måse mest berømte af dem, nemlig Runge-Kuttas metode, der tilnærmer hældningen af linien mellem (x 0,y(x 0 )) og (x 1,y(x 1 )) med et vægtet gennemsnit af fire forsellige f-værdier valgt på så raffineret vis, at metoden bliver af 4. orden. Ved tilnærmet løsning ifølge Runge-Kuttas metode eller andre tilsvarende an man opnå meget stor nøjagtighed, selv med en ie særlig lille h. Det sal til slut nævnes, at mange metoder benytter sig af variable steplængder, hvor x n+1 x n an variere med n. Ideen er at benytte små steplængder de steder, hvor løsningsfuntionen varierer raftigt. Endvidere an de samme principper som i Eulers (forbedrede) metode overføres til numeris løsning af systemer af samhørende differentialligninger. Det er ofte sådanne principper, der er indbygget i færdige programpaer (såsom Maple) til behandling af disse spørgsmål. 3 Numeris løsning af diffusionsligningen Vi betragter metalstangen fra Esempel 1 i noterne om partielle differentialligninger, og har da diffusionsligningen T t = D T x, randbetingelserne T(0,t) = 0 og T(L,t) = 0, samt begyndelsesbetingelsen T(x,0) = u(x) (0 x L). 6

7 Vi vi finde tilnærmede værdier T nm til T(x n,t m ) for punter (x n,t m ) i et gitter (se Figur 4). t t t 3 t t 1 T(0,t) = 0 T(L,t) = 0 T 0 T 1 T T 3 T 4 T 5 T 01 T 11 T 1 T 31 T 41 T 51 T 00 T 10 T 0 T 30 T 40 T 50 x = 0 h x 1 h x x 3 h x 4 h x = L T(x,0) = u(x) Figur 4 Steplængden er h på x-asen og på t-asen, så x n = nh og t m = m. På x-asen er der ialt N step, hvor Nh = L, mens der på t-asen i princippet er et ubegrænset antal step. dvs. Nederste ræe (m = 0, dvs. t = t 0 = 0) findes vha. begyndelsesbetingelsen T n0 = T(nh,0) = u(nh), T 00 = u(0) = 0, T 10 = u(h), T 0 = u(h) osv. Endvidere vil første og sidste søjle være 0, dvs. for alle m pga. randbetingelserne. T 0m = 0 og T Nm = 0 For at unne benytte selve diffusionsligningen vil vi finde tilnærmede udtry for T t og T et gitterpunt (x n,t m ). Da har vi T(x n,t m+1 ) T(x n,t m ) T t (x n,t m ), For at tilnærme T x har vi brug for følgende Hjælperesultat For en funtion g(x) gælder tilnærmelsen x x i T t (x n,t m ) T n,m+1 T nm. ( ) g (x) g(x + h) g(x) + g(x h) h 7

8 når h er lille. Bevis Vi tilnærmer g med dets. Taylorpolynomium i udvilingspuntet x : g(x + h) g(x) + g (x)h + 1 g (x)h. Vi udsifter h med h g(x h) g(x) g (x)h + 1 g (x)h og lægger de to ligninger sammen: g(x + h) + g(x h) g(x) + g (x)h, hvoraf resultatet følger. Vi anvender hjælperesultatet på T(x,t) som funtion af x (med t = t m fastholdt) og får T x (x n,t m ) T(x n+1,t m ) T(x n,t m ) + T(x n 1,t m ) h T n+1,m T nm + T n 1,m h. ( ) Nu indsætter vi de tilnærmede udtry ( ) og ( ) for T t og T x i diffusionsligningen og får T n,m+1 T nm = D Tn+1,m T nm + T n 1,m h. Af de indgående størrelser er T n,m+1 den eneste, der ligger i (m + 1) te ræe, så vi isolerer denne: T n,m+1 = T nm + D h (T n+1,m T nm + T n 1,m ). Med r = D h fås T n,m+1 = (1 r)t nm + r(t n+1,m + T n 1,m ). Denne formel an nu anvendes succesivt til finde T nm ; f.es. er T 11 = (1 r)t 10 + r(t 0 + T 00 ). Når hele ræen med m = 1 er beregnet, an man gå videre og beregne ræen med m =, osv. Man an vise, at det er nødvendigt at r 1, dvs. D h 1 for på denne måde at få gode tilnærmelser til løsningsfuntionen T(x,t). 8

Det skrå kast - med luftmodstand. Erik Vestergaard

Det skrå kast - med luftmodstand. Erik Vestergaard Det srå ast - ed luftodstand Eri Vestergaard Eri Vestergaard www.ateatisider.d Eri Vestergaard, Haderslev 9. Eri Vestergaard www.ateatisider.d 3. Indledning Denne note an danne udgangspunt for et 3g-projet

Læs mere

Differentialligninger af første orden

Differentialligninger af første orden Differentialligninger af første orden Preben Alsholm Februar 2006 Basale begreber. Eksistens og entydighed. En differentialligning af første orden er en ligning, der sammenknytter differentialkvotienten

Læs mere

Numeriske metoder. Af: Alexander Bergendorff, Frederik Lundby Trebbien Rasmussen og Jonas Degn. Side 1 af 15

Numeriske metoder. Af: Alexander Bergendorff, Frederik Lundby Trebbien Rasmussen og Jonas Degn. Side 1 af 15 Numeriske metoder Af: Alexander Bergendorff, Frederik Lundby Trebbien Rasmussen og Jonas Degn Side 1 af 15 Indholdsfortegnelse Matematik forklaring... 3 Lineær regression... 3 Numerisk differentiation...

Læs mere

Maple. Skærmbilledet. Vi starter med at se lidt nærmere på opstartsbilledet i Maple. Værktøjslinje til indtastningsområdet. Menulinje.

Maple. Skærmbilledet. Vi starter med at se lidt nærmere på opstartsbilledet i Maple. Værktøjslinje til indtastningsområdet. Menulinje. Maple Dette kapitel giver en kort introduktion til hvordan Maple 12 kan benyttes til at løse mange af de opgaver, som man bliver mødt med i matematiktimerne på HHX. Skærmbilledet Vi starter med at se lidt

Læs mere

Vejledende løsninger, Mat A, maj 2015 Peter Bregendal

Vejledende løsninger, Mat A, maj 2015 Peter Bregendal Delprøven uden hjælpemidler Opgave 1 a) Se graf: Opgave 2 a) f (x)= 25000x + 475000 År hvor værdien er 150000: 25000x + 475000 = 150000 25000x = 325000 x = 13 I år 2025 vil værdien være faldet til 150000

Læs mere

Mujtaba og Farid Integralregning 06-08-2011

Mujtaba og Farid Integralregning 06-08-2011 Indholdsfortegnelse Integral regning:... 2 Ubestemt integral:... 2 Integrationsprøven:... 3 1) Integration af potensfunktioner:... 3 2) Integration af sum og Differens:... 3 3) Integration ved Multiplikation

Læs mere

Noter om Komplekse Vektorrum, Funktionsrum og Differentialligninger LinAlg 2004/05-Version af 16. Dec.

Noter om Komplekse Vektorrum, Funktionsrum og Differentialligninger LinAlg 2004/05-Version af 16. Dec. Noter om Komplekse Vektorrum, Funktionsrum og Differentialligninger LinAlg 2004/05-Version af 16. Dec. 1 Komplekse vektorrum I defininitionen af vektorrum i Afsnit 4.1 i Niels Vigand Pedersen Lineær Algebra

Læs mere

Differentialligninger med TI Nspire CAS version 3.1

Differentialligninger med TI Nspire CAS version 3.1 Differentialligninger med TI Nspire CAS version 3.1 Der er tilføjet en ny graftype til Graf værkstedet kaldet Diff lign. Denne nye graftype er en implementering af differentialligningerne som vi kender

Læs mere

Graph brugermanual til matematik C

Graph brugermanual til matematik C Graph brugermanual til matematik C Forord Efterfølgende er en guide til programmet GRAPH. Programmet kan downloades gratis fra nettet og gemmes på computeren/et usb-stik. Det betyder, det også kan anvendes

Læs mere

Imputeret forbrug over livscyklussen

Imputeret forbrug over livscyklussen Imputeret forbrug over livscylussen Stephanie Koefoed Rebbe Danish Rational Economic Agents Model, DREAM DREAM Arbejdspapir 2014:1 Marts 2014 Abstract Arbejdspapiret beregner individers private forbrug

Læs mere

Kapitel 2 Tal og variable

Kapitel 2 Tal og variable Tal og variable Uden tal ingen matematik - matematik handler om tal og anvendelse af tal. Matematik beskæftiger sig ikke udelukkende med konkrete problemer fra andre fag, og de konkrete tal fra andre fagområder

Læs mere

Kapitel 3 Lineære sammenhænge

Kapitel 3 Lineære sammenhænge Matematik C (må anvendes på Ørestad Gymnasium) Lineære sammenhænge Det sker tit, at man har flere variable, der beskriver en situation, og at der en sammenhæng mellem de variable. Enhver formel er faktisk

Læs mere

Emneopgave: Lineær- og kvadratisk programmering:

Emneopgave: Lineær- og kvadratisk programmering: Emneopgave: Lineær- og kvadratisk programmering: LINEÆR PROGRAMMERING I lineær programmering løser man problemer hvor man for en bestemt funktion ønsker at finde enten en maksimering eller en minimering

Læs mere

Computerundervisning

Computerundervisning Frederiksberg Seminarium Computerundervisning Koordinatsystemer og funktioner Elevmateriale 30-01-2009 Udarbejdet af: Pernille Suhr Poulsen Christina Klitlyng Julie Nielsen Opgaver GeoGebra Om at genkende

Læs mere

2 Erik Vestergaard www.matematikfysik.dk

2 Erik Vestergaard www.matematikfysik.dk Erik Vestergaard www.matematikfysik.dk Erik Vestergaard www.matematikfysik.dk 3 Lineære funktioner En vigtig type funktioner at studere er de såkaldte lineære funktioner. Vi skal udlede en række egenskaber

Læs mere

Differential- regning

Differential- regning Differential- regning del () f () m l () 6 Karsten Juul Indhold Tretrinsreglen 59 Formler for differentialkvotienter64 Regneregler for differentialkvotienter67 Differentialkvotient af sammensat funktion7

Læs mere

matx.dk Enkle modeller

matx.dk Enkle modeller matx.dk Enkle modeller Dennis Pipenbring 28. juni 2011 Indhold 1 Indledning 4 2 Funktionsbegrebet 4 3 Lineære funktioner 8 3.1 Bestemmelse af funktionsværdien................. 9 3.2 Grafen for en lineær

Læs mere

Komplekse tal. Mikkel Stouby Petersen 27. februar 2013

Komplekse tal. Mikkel Stouby Petersen 27. februar 2013 Komplekse tal Mikkel Stouby Petersen 27. februar 2013 1 Motivationen Historien om de komplekse tal er i virkeligheden historien om at fjerne forhindringerne og gøre det umulige muligt. For at se det, vil

Læs mere

SRO. Newtons afkølingslov og differentialligninger. Josephine Dalum Clausen 2.Y Marts 2011 SRO

SRO. Newtons afkølingslov og differentialligninger. Josephine Dalum Clausen 2.Y Marts 2011 SRO SRO Newtons afkølingslov og differentialligninger Josephine Dalum Clausen 2.Y Marts 2011 SRO 0 Abstract In this assignment I want to illuminate mathematic models and its use in the daily movement. By math

Læs mere

For at få tegnet en graf trykkes på knappen for graftegning. Knap for graftegning

For at få tegnet en graf trykkes på knappen for graftegning. Knap for graftegning Graftegning på regneark. Ved hjælp af Excel regneark kan man nemt tegne grafer. Man åbner for regnearket ligger under Microsoft Office. Så indtaster man tallene fra tabellen i regnearkets celler i en vandret

Læs mere

Opgave 1 Regning med rest

Opgave 1 Regning med rest Den digitale signatur - anvendt talteori og kryptologi Opgave 1 Regning med rest Den positive rest, man får, når et helt tal a divideres med et naturligt tal n, betegnes rest(a,n ) Hvis r = rest(a,n) kan

Læs mere

Et CAS program til Word.

Et CAS program til Word. Et CAS program til Word. 1 WordMat WordMat er et CAS-program (computer algebra system) som man kan downloade gratis fra hjemmesiden www.eduap.com/wordmat/. Programmet fungerer kun i Word 2007 og 2010.

Læs mere

Eksponentielle sammenhænge

Eksponentielle sammenhænge Eksponentielle sammenhænge 0 1 2 3 4 5 6 7 8 9 10 11 12 13 Indholdsfortegnelse Variabel-sammenhænge... 1 1. Hvad er en eksponentiel sammenhæng?... 2 2. Forklaring med ord af eksponentiel vækst... 2, 6

Læs mere

Computerundervisning

Computerundervisning Frederiksberg Seminarium Computerundervisning Koordinatsystemer og Funktioner Lærervejledning 12-02-2009 Udarbejdet af: Pernille Suhr Poulsen Christina Klitlyng Julie Nielsen Indhold Introduktion... 3

Læs mere

Mini-formelsamling. Matematik 1

Mini-formelsamling. Matematik 1 Indholdsfortegnelse 1 Diverse nyttige regneregler... 1 1.1 Regneregler for brøker... 1 1.2 Potensregneregler... 1 1.3 Kvadratsætninger... 2 1.4 (Nogle) Rod-regneregler... 2 1.5 Den naturlige logaritme...

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj 2011 Institution Herningsholm Gymnasium, hhx i Herning Uddannelse Fag og niveau Lærer(e) hhx Matematik

Læs mere

Kvadratrodsberegning ved hjælp af de fire regningsarter

Kvadratrodsberegning ved hjælp af de fire regningsarter Kvadratrodsberegning ved hjælp af de fire regningsarter Tidligt i historien opstod et behov for at beregne kvadratrødder med stor nøjagtighed. Kvadratrødder optræder i forbindelse med retvinklede trekanter,

Læs mere

Brugervejledning til Graph

Brugervejledning til Graph Graph (brugervejledning) side 1/17 Steen Toft Jørgensen Brugervejledning til Graph Graph er et gratis program, som ikke fylder meget. Downloades på: www.padowan.dk/graph/. Programmet er lavet af Ivan Johansen,

Læs mere

Berlin eksempel på opgavebesvarelse i Word m/mathematics

Berlin eksempel på opgavebesvarelse i Word m/mathematics Berlin eksempel på opgavebesvarelse i Word m/mathematics 1.1 Gennemsnitsfarten findes ved at dividere den kørte strækning med den forbrugte tid i decimaltal. I regnearket bliver formlen =A24/D24. Resultatet

Læs mere

Kalkulus 1 - Opgaver. Anne Ryelund, Anders Friis og Mads Friis. 20. januar 2015

Kalkulus 1 - Opgaver. Anne Ryelund, Anders Friis og Mads Friis. 20. januar 2015 Kalkulus 1 - Opgaver Anne Ryelund, Anders Friis og Mads Friis 20. januar 2015 Mængder Opgave 1 Opskriv følgende mængder med korrekt mængdenotation. a) En mængde A indeholder alle hele tal fra og med 1

Læs mere

Approksimation af løsninger til systemer af første ordens differentialligninger. Anvendt på tennisbold med topspin

Approksimation af løsninger til systemer af første ordens differentialligninger. Anvendt på tennisbold med topspin Approksimation af løsninger til systemer af første ordens differentialligninger Anvendt på tennisbold med topspin KORT AFGANGSPROJEKT (4. SEMESTER, MSC) MAJBRITT SLOTH THOMASSEN MATEMATIK & STATISTIK AALBORG

Læs mere

Studieretningsprojekter i machine learning

Studieretningsprojekter i machine learning i machine learning 1 Introduktion Machine learning (ml) er et område indenfor kunstig intelligens, der beskæftiger sig med at konstruere programmer, der kan kan lære fra data. Tanken er at give en computer

Læs mere

Noter til elementær numerisk regning

Noter til elementær numerisk regning Noter til elementær numerisk regning Dieter Britz Kemisk Institut, Aarhus Universitet 19 juli 2010 Foreord Dette hæfte er vokset fra noter oprindeligt skrevet af forskellige forfattere til kurset DatA,

Læs mere

Integralregning Infinitesimalregning

Integralregning Infinitesimalregning Udgave 2.1 Integralregning Infinitesimalregning Noterne gennemgår begreberne integral og stamfunktion, og anskuer dette som et redskab til bestemmelse af arealer under funktioner. Noterne er supplement

Læs mere

Opvarmningsopgaver. Gang parentesen ud: Forkort brøken: Gang parentesen ud: (1.5 + x) 2 (1 + x) 3. Forkort brøken. Gang parentesen ud: (x 0 + x) 3

Opvarmningsopgaver. Gang parentesen ud: Forkort brøken: Gang parentesen ud: (1.5 + x) 2 (1 + x) 3. Forkort brøken. Gang parentesen ud: (x 0 + x) 3 eks. Intro til differentialregning side 1 Opvarmningsopgaver 10. november 2012 12:58 Gang parentesen ud: Forkort brøken: Gang parentesen ud: (1.5 + x) 2 (1 + x) 3 Gang parentesen ud: Forkort brøken (x

Læs mere

Om at finde bedste rette linie med Excel

Om at finde bedste rette linie med Excel Om at finde bedste rette linie med Excel Det er en vigtig og interessant opgave at beskrive fænomener i naturen eller i samfundet matematisk. Dels for at få en forståelse af sammenhængende indenfor det

Læs mere

Peter Harremoës Matematik A med hjælpemidler 16. december 2013. M = S 1 + a = a + b a b a = b 1. b 1 a = b 1. a = b 1. b 1 a = b

Peter Harremoës Matematik A med hjælpemidler 16. december 2013. M = S 1 + a = a + b a b a = b 1. b 1 a = b 1. a = b 1. b 1 a = b stk. Peter Harremoës Matematik A med hjælpemidler 16. december 2013 Opagve 6 Variables a isoleres: M = S 1 + a = a + b b a b a = b 1 ( ) 1 b 1 a = b 1 a = b 1 1 b 1 a = b Hvis b = 1, så gælder ligningen

Læs mere

Lektion 13 Homogene lineære differentialligningssystemer

Lektion 13 Homogene lineære differentialligningssystemer Lektion 13 Lineære differentialligningssystemer Homogene lineære differentialligningssystemer med konstante koefficienter Inhomogene systemer To-kammer modeller Lotka Volterra (ikke lineært) 1 To-kammer

Læs mere

Computerstøttet beregning

Computerstøttet beregning CSB 2009 p. 1/16 Computerstøttet beregning Lektion 1. Introduktion Martin Qvist qvist@math.aau.dk Det Ingeniør-, Natur-, og Sundhedsvidenskabelige Basisår, Aalborg Universitet, 3. februar 2009 people.math.aau.dk/

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin 5. 6. semester efterår 2013-forår 2014 Institution Grenaa Tekniske Gymnasium Uddannelse Fag og niveau Lærer(e)

Læs mere

-9-8 -7-6 -5-4 -3-2 -1 1 2 3 4 5 6 7 8 9. f(x)=2x-1 Serie 1

-9-8 -7-6 -5-4 -3-2 -1 1 2 3 4 5 6 7 8 9. f(x)=2x-1 Serie 1 En funktion beskriver en sammenhæng mellem elementer fra to mængder - en definitionsmængde = Dm(f) består af -værdier og en værdimængde = Vm(f) består af -værdier. Til hvert element i Dm(f) knttes netop

Læs mere

Løsninger til udvalgte opgaver i opgavehæftet

Løsninger til udvalgte opgaver i opgavehæftet V3. Marstal solvarmeanlæg a) Den samlede effekt, som solfangeren tilføres er Solskinstiden omregnet til sekunder er Den tilførte energi er så: Kun af denne er nyttiggjort, så den nyttiggjorte energi udgør

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Termin Efterår 2014 Institution Niels Brock Uddannelse Fag og niveau Lærer Hold HHX Matematik - Niveau A Peter Harremoës GSK hold t14gymaau1o2 Oversigt over gennemførte undervisningsforløb

Læs mere

Kapital- og rentesregning

Kapital- og rentesregning Rentesregning Rettet den 28-12-11 Kapital- og rentesregning Kapital- og rentesregning Navngivning ved rentesregning I eksempler som Niels Oles, hvor man indskyder en kapital i en bank (én gang), og banken

Læs mere

Lineære funktioner. Erik Vestergaard

Lineære funktioner. Erik Vestergaard Lineære funktioner Erik Vestergaard Erik Vestergaard www.matematikfsik.dk Erik Vestergaard www.matematikfsik.dk Lineære funktioner En vigtig tpe funktioner at studere er de såkaldte lineære funktioner.

Læs mere

Løsninger til eksamensopgaver på B-niveau 2015

Løsninger til eksamensopgaver på B-niveau 2015 Løsninger til eksamensopgaver på B-niveau 2015 22. maj 2015: Delprøven UDEN hjælpemidler Opgave 1: Ligningen løses ved at isolere x i det åbne udsagn: 4 x 7 81 4 x 88 88 x 22 4 Opgave 2: y 87 0,45 x Det

Læs mere

Kapitel 7 Matematiske vækstmodeller

Kapitel 7 Matematiske vækstmodeller Matematiske vækstmodeller I matematik undersøger man ofte variables afhængighed af hinanden. Her ser man, at samme type af sammenhænge tit forekommer inden for en lang række forskellige områder. I kapitel

Læs mere

Matema10k. Matematik for hhx C-niveau. Arbejdsark til kapitlerne i bogen

Matema10k. Matematik for hhx C-niveau. Arbejdsark til kapitlerne i bogen Matema10k Matematik for hhx C-niveau Arbejdsark til kapitlerne i bogen De følgende sider er arbejdsark og opgaver som kan bruges som introduktion til mange af bogens kapitler og underemner. De kan bruges

Læs mere

Løsningsforslag MatB December 2013

Løsningsforslag MatB December 2013 Løsningsforslag MatB December 2013 Opgave 1 (5 %) a) En linje l går gennem punkterne: P( 2,3) og Q(2,1) a) Bestem en ligning for linjen l. Vi ved at linjen for en linje kan udtrykkes ved: y = αx + q hvor

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Termin Maj 2011 Institution Handelsskolen Tradium, Hobro afd. Uddannelse Fag og niveau Lærer(e) Hold Hhx Matematik A Kenneth Berg k708hhxa3 Oversigt over gennemførte undervisningsforløb

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Termin hvori undervisningen afsluttes: maj-juni, 2013 HTX Vibenhus

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni 15 Institution VUC Thy-Mors Uddannelse Fag og niveau Lærer(e) Hold stx Matematik niveau A Knud Søgaard

Læs mere

PARTIELT MOLÆRT VOLUMEN

PARTIELT MOLÆRT VOLUMEN KemiF1 laboratorieøvelser 2008 ØvelseF1-2 PARTIELT MOLÆRT VOLUMEN Indledning I en binær blanding vil blandingens masse være summen af komponenternes masse; men blandingens volumen vil ikke være summen

Læs mere

Kom godt i gang med Maple 12 (Document mode)

Kom godt i gang med Maple 12 (Document mode) Kom godt i gang med Maple 12 (Document mode) Adept Scientific 2008 I Document mode har du en helt blank side at skrive på, og altså ingen røde >. Når du åbner en ny side, ser øverste venstre hjørne således

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Januer-maj 15 Institution Kolding HF & VUC Uddannelse Fag og niveau Lærer(e) Hold hfe Matematik C Glenn Aarhus

Læs mere

Indholdsfortegnelse. Regneark for matematiklærere

Indholdsfortegnelse. Regneark for matematiklærere Indholdsfortegnelse Forord... 3 Diskettens indhold... 4 Grafer i koordinatsystemet... 5 Brug af guiden diagram... 5 Indret regnearket fornuftigt... 9 Regneark hentet på Internettet... 15 Læsevenlige tal

Læs mere

Excel - begynderkursus

Excel - begynderkursus Excel - begynderkursus 1. Skriv dit navn som undertekst på et Excel-ark Det er vigtigt når man arbejder med PC er på skolen at man kan få skrevet sit navn på hver eneste side som undertekst.gå ind under

Læs mere

Minut pris. (efter 4 timer : 0,69 pr minut) Happii Basiic 0 0,60 sekund Lebara 0,49 0,19 minut

Minut pris. (efter 4 timer : 0,69 pr minut) Happii Basiic 0 0,60 sekund Lebara 0,49 0,19 minut Mobilaftaler Se alle mulige selskaber: http://telepristjek.dk/ Mobil-priser efterår 2010. Hvad er mon billigst nu? Besvar opgaverne på de følgende sider, mindst til og med opgave 4 Teleselskaber Abonnement

Læs mere

Matematik. Grundforløbet. Mike Auerbach (2) Q 1. y 2. y 1 (1) x 1 x 2

Matematik. Grundforløbet. Mike Auerbach (2) Q 1. y 2. y 1 (1) x 1 x 2 Matematik Grundforløbet (2) y 2 Q 1 a y 1 P b x 1 x 2 (1) Mike Auerbach Matematik: Grundforløbet 1. udgave, 2014 Disse noter er skrevet til matematikundervisning i grundforløbet på stx og kan frit anvendes

Læs mere

Studentereksamen i Matematik B 2012

Studentereksamen i Matematik B 2012 Studentereksamen i Matematik B 2012 (Gammel ordning) Besvarelse Ib Michelsen Ib Michelsen stx_121_b_gl 2 af 11 Opgave 1 På tegningen er gengivet 3 grafer for de nævnte funktioner. Alle funktionerne er

Læs mere

Excel tutorial om lineær regression

Excel tutorial om lineær regression Excel tutorial om lineær regression I denne tutorial skal du lære at foretage lineær regression i Microsoft Excel 2007. Det forudsættes, at læseren har været igennem det indledende om lineære funktioner.

Læs mere

Bedømmelseskriterier for skriftlig matematik stx A-niveau

Bedømmelseskriterier for skriftlig matematik stx A-niveau Bedømmelseskriterier for skriftlig matematik stx A-niveau Sådan bedømmes opgaverne ved skriftlig studentereksamen i matematik En vejledning for elever Skriftlighedsgruppe 01.04.09 Dette dokument henvender

Læs mere

Oprids over grundforløbet i matematik

Oprids over grundforløbet i matematik Oprids over grundforløbet i matematik Dette oprids er tænkt som en meget kort gennemgang af de vigtigste hovedpointer vi har gennemgået i grundforløbet i matematik. Det er en kombination af at repetere

Læs mere

Kompendium i faget. Matematik. Tømrerafdelingen. 2. Hovedforløb. Y = ax 2 + bx + c. (x,y) Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard

Kompendium i faget. Matematik. Tømrerafdelingen. 2. Hovedforløb. Y = ax 2 + bx + c. (x,y) Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard Kompendium i faget Matematik Tømrerafdelingen 2. Hovedforløb. Y Y = ax 2 + bx + c (x,y) X Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard Indholdsfortegnelse for H2: Undervisningens indhold...

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj-juni, 2013 IBC-Kolding

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj juni 2012 Institution Campus Vejle Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik B Ejner Husum

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Juni 2013 Institution Uddannelse Fag og niveau Lærere Hold Favrskov Gymnasium Stx Matematik A Peter Lundøer

Læs mere

Positivlisten. Ra værdi Farve Vurdering >= 80 Grøn God ifølge EU QC 80 65 Orange Acceptabel < 65 Rød Ikke god

Positivlisten. Ra værdi Farve Vurdering >= 80 Grøn God ifølge EU QC 80 65 Orange Acceptabel < 65 Rød Ikke god Positivlisten Resultatet af projektet er en demonstrationsversion af LED positivlisten og der er udviklet en hjemmeside til listen, hvortil der er adgang fra www.lednet.dk. Det er i princippet en sortérbar

Læs mere

STUDENTEREKSAMEN MATHIT PRØVESÆT MAJ 2007 2010 MATEMATIK A-NIVEAU. MATHIT Prøvesæt 2010. Kl. 09.00 14.00 STXA-MATHIT

STUDENTEREKSAMEN MATHIT PRØVESÆT MAJ 2007 2010 MATEMATIK A-NIVEAU. MATHIT Prøvesæt 2010. Kl. 09.00 14.00 STXA-MATHIT STUDENTEREKSAMEN MATHIT PRØVESÆT MAJ 007 010 MATEMATIK A-NIVEAU MATHIT Prøvesæt 010 Kl. 09.00 14.00 STXA-MATHIT Opgavesættet er delt i to dele. Delprøve 1: timer med autoriseret formelsamling Delprøve

Læs mere

APPENDIX A INTRODUKTION TIL DERIVE

APPENDIX A INTRODUKTION TIL DERIVE APPENDIX A INTRODUKTION TIL DERIVE z x y z=exp( x^2 0.5y^2) CAS er en fællesbetegnelse for matematikprogrammer, som foruden numeriske beregninger også kan regne med symboler og formler. Det betyder: Computer

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2014 Institution Campus Vejle Uddannelse HHX Fag og niveau Matematik B ( Valghold ) Lærer(e) LSP (

Læs mere

Frit fald med luftmodstand

Frit fald med luftmodstand Frit fald med luftmodstand Indholdsfortegnelse ABSTRACT... INDLEDNING... 2 NEWTONS 2. LOV... 2 BEVIS FOR SEPARATION AF DE VARIABLE... 3 FRIT FALD UDEN LUFTMODSTAND... 7 FRIT FALD MED LUFTMODSTAND... 8

Læs mere

Projekt 10.16: Matematik og demokrati Mandatfordelinger ved sidste kommunalvalg

Projekt 10.16: Matematik og demokrati Mandatfordelinger ved sidste kommunalvalg Projekt 10.16: Matematik og demokrati Mandatfordelinger ved sidste kommunalvalg Introduktion: Vi vil nu se på et konkret eksempel på hvordan man i praksis fordeler mandaterne i et repræsentativt demokrati,

Læs mere

Løsninger til eksamensopgaver på B-niveau 2011-2012

Løsninger til eksamensopgaver på B-niveau 2011-2012 Løsninger til eksamensopgaver på B-niveau 011-01 18. maj 011: Delprøven UDEN hjælpemidler Opgave 1: 5x 11 19x 17 1117 19x 5x 8 14x x Opgave : T K T K KT T K T K KT KT T Parentesen er udregnet ved hjælp

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin December/januar 14/15 Institution VUC Vestegnen Uddannelse Fag og niveau Lærer(e) Hold stx Mat A Karin Hansen

Læs mere

Differentialligninger Et undervisningsforløb med Derive og modelbygning Højt niveau i matematik i gymnasiet

Differentialligninger Et undervisningsforløb med Derive og modelbygning Højt niveau i matematik i gymnasiet Differentialligninger Et undervisningsforløb med Derive og modelbygning Højt niveau i matematik i gymnasiet Niels Hjersing Per Hammershøj Jensen Børge Jørgensen Indholdsfortegnelse 1 1. Forord... 3 2.

Læs mere

Formelsamling til MatIntro kurset på Københavns Universitet

Formelsamling til MatIntro kurset på Københavns Universitet Formelsamling til MatIntro kurset på Københavns Universitet af Michael Flemming Hansen Version 1.0 1. februar 2012 Indhold 1 Funktioner af en variabel 4 1.1 Komplekse tal........................... 4 1.1.1

Læs mere

Her er et spørgsmål, du måske aldrig har overvejet: kan man finde to trekanter med samme areal?

Her er et spørgsmål, du måske aldrig har overvejet: kan man finde to trekanter med samme areal? Her er et spørgsmål, du måske aldrig har overvejet: kan man finde to trekanter med samme areal? Det er ret let at svare på: arealet af en trekant, husker vi fra vor kære folkeskole, findes ved at gange

Læs mere

Lineær programmering. med Derive. Børge Jørgensen

Lineær programmering. med Derive. Børge Jørgensen Lineær programmering med Derive Børge Jørgensen 1 Indholdsfortegnelse. Forord ---------------------------------------------------------------------------------- 2 Introduktion til lineær programmering

Læs mere

Grundlæggende Matematik

Grundlæggende Matematik Grundlæggende Matematik Hayati Balo, AAMS August 2012 1. Matematiske symboler For at udtrykke de verbale udsagn matematisk korrekt, så det bliver lettere og hurtigere at skrive, indføres en række matematiske

Læs mere

Svar : d(x) = s(x) <=> x + 12 = 2 6 = 2. x = 4 <=> d(4) = s(4) = 8 dvs. Ligevægtsprisen er 8. Opg 2. <=> x = 4 eller x = 1; <=> x =

Svar : d(x) = s(x) <=> x + 12 = 2 6 = 2. x = 4 <=> d(4) = s(4) = 8 dvs. Ligevægtsprisen er 8. Opg 2. <=> x = 4 eller x = 1; <=> x = MAT B GSK august 009 delprøven uden hjælpemidler Opg 1 For en vare er sammenhængen mellem pris og efterspørgsel bestemt ved funktionen d() = + 1 0 1 hvor angiver den efterspurgte mængde og d() angiver

Læs mere

Eksaminationsgrundlag for selvstuderende

Eksaminationsgrundlag for selvstuderende Eksaminationsgrundlag for selvstuderende Jeg ønsker at aflægge prøve på nedenstående eksaminationsgrundlag. Jeg har foretaget ændringer i vejlederens fortrykte forslag: nej ja Dato: Underskrift HUSK at

Læs mere

og til summer af stambrøker. Bemærk: De enkelte brøker kan opskrives på flere måder som summer af stambrøker.

og til summer af stambrøker. Bemærk: De enkelte brøker kan opskrives på flere måder som summer af stambrøker. Hvad er en brøk? Når vi taler om brøker i dette projekt, mener vi tal på formen a, hvor a og b er hele tal (og b b 0 ), fx 2,, 3 og 3 7 13 1. Øvelse 1 Hvordan vil du forklare, hvad 7 er? Brøker har været

Læs mere

Årsprøve i matematik 1y juni 2007

Årsprøve i matematik 1y juni 2007 Opgave 1 Årsprøve i matematik 1y juni 2007 Figuren viser to ensvinklede trekanter PQR og P 1 Q 1 R 1 a) Bestem længden af siden P 1 Q 1 Skalafaktoren beregnes : k = 30/24 P 1 Q 1 = 20 30/24 P 1 Q 1 = 25

Læs mere

MODUL 8. Differensligninger. Forfattere: Michael ELMEGÅRD & Øistein WIND-WILLASSEN. Modulet er baseret på noter af Peter BEELEN.

MODUL 8. Differensligninger. Forfattere: Michael ELMEGÅRD & Øistein WIND-WILLASSEN. Modulet er baseret på noter af Peter BEELEN. MODUL 8 Differensligninger Forfattere: Michael ELMEGÅRD & Øistein WIND-WILLASSEN Modulet er baseret på noter af Peter BEELEN. 26. august 2014 2 Indhold 1 Introduktion 5 1.1 Rekursioner og differensligninger.........................

Læs mere

Rente, lån og opsparing

Rente, lån og opsparing Rente, lån og opsparing Simpel rente og sammensat rente... 107 Nogle vigtige begreber omkring lån og opsparing... 109 Serielån... 110 Annuitetslån... 111 Opsparing... 115 Rente, lån og opsparing Side 106

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Mundtlig eksamen Maj-Juni 2014 Institution VUF Uddannelse Fag og niveau stx (Studenterkursus) Matematik C

Læs mere

Tak for kaffe! 17-10-2004 Tak for kaffe! Side 1 af 16

Tak for kaffe! 17-10-2004 Tak for kaffe! Side 1 af 16 Tak for kaffe! Jette Rygaard Poulsen, Frederikshavn Gymnasium og HF-kursus Hans Vestergaard, Frederikshavn Gymnasium og HF-kursus Søren Lundbye-Christensen, AAU 17-10-2004 Tak for kaffe! Side 1 af 16 Tak

Læs mere

1. Kræfter. 2. Gravitationskræfter

1. Kræfter. 2. Gravitationskræfter 1 M1 Isaac Newton 1. Kræfter Vi vil starte med at se på kræfter. Vi ved fra vores hverdag, at der i mange daglige situationer optræder kræfter. Skal man fx. cykle op ad en bakke, bliver man nødt til at

Læs mere

Matricer og lineære ligningssystemer

Matricer og lineære ligningssystemer Matricer og lineære ligningssystemer Grete Ridder Ebbesen Virum Gymnasium Indhold 1 Matricer 11 Grundlæggende begreber 1 Regning med matricer 3 13 Kvadratiske matricer og determinant 9 14 Invers matrix

Læs mere

brikkerne til regning & matematik funktioner preben bernitt

brikkerne til regning & matematik funktioner preben bernitt brikkerne til regning & matematik funktioner 2+ preben bernitt brikkerne til regning & matematik funktioner 2+ beta udgave som E-bog ISBN: 978-87-92488-32-9 2009 by bernitt-matematik.dk Kopiering af denne

Læs mere

Statistik. Deskriptiv statistik, normalfordeling og test. Karsten Juul

Statistik. Deskriptiv statistik, normalfordeling og test. Karsten Juul Statistik Deskriptiv statistik, normalfordeling og test Karsten Juul Intervalhyppigheder En elevgruppe på et gymnasium har spurgt 100 tilfældigt valgte elever på gymnasiet om hvor lang tid det tager dem

Læs mere

Opstilling af model ved hjælp af differentialkvotient

Opstilling af model ved hjælp af differentialkvotient Opstilling af model ved hjælp af differentialkvotient N 0,35N 0, 76t 2010 Karsten Juul Til eleven Dette hæfte giver dig mulighed for at arbejde sådan med nogle begreber at der er god mulighed for at der

Læs mere

Uafhængig og afhængig variabel

Uafhængig og afhængig variabel Uddrag fra http://www.emu.dk/gym/fag/ma/undervisningsforloeb/hf-mat-c/introduktion.doc ved Hans Vestergaard, Morten Overgaard Nielsen, Peter Trautner Brander Variable og sammenhænge... 1 Uafhængig og afhængig

Læs mere

Lineær Programmering i GeoGebra Side 1 af 8

Lineær Programmering i GeoGebra Side 1 af 8 Lineær Programmering i GeoGebra Side 1 af 8 Grundlæggende find selv flere funktioner, fx i GG s indbyggede hjælpefunktion. Vær opmærksom på at grænsefladen i GeoGebra ændrer sig med tiden, da værktøjet

Læs mere

Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer Hold

Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer Hold Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution 414 Københavns VUC Uddannelse Fag og niveau Lærer Hold Hf Matematik C-B Pia Hald ph@kvuc.dk

Læs mere

Regnetest B: Praktisk regning. Træn og Test. Niveau: 9. klasse. Med brug af lommeregner

Regnetest B: Praktisk regning. Træn og Test. Niveau: 9. klasse. Med brug af lommeregner Regnetest B: Praktisk regning Træn og Test Niveau: 9. klasse Med brug af lommeregner 1 INFA-Matematik: Informatik i matematikundervisningen Et delprojekt under INFA: Informatik i skolens fag Et forskningsprogram

Læs mere

Skabelon til funktionsundersøgelser

Skabelon til funktionsundersøgelser Skabelon til funktionsundersøgelser Nedenfor en angivelse af fremgangsmåder ved funktionsundersøgelser. Ofte vil der kun blive spurgt om et udvalg af nævnte spørgsmål. Syntaksen i løsningerne vil være

Læs mere

Tal. Vi mener, vi kender og kan bruge følgende talmængder: N : de positive hele tal, Z : de hele tal, Q: de rationale tal.

Tal. Vi mener, vi kender og kan bruge følgende talmængder: N : de positive hele tal, Z : de hele tal, Q: de rationale tal. 1 Tal Tal kan forekomme os nærmest at være selvfølgelige, umiddelbare og naturgivne. Men det er kun, fordi vi har vænnet os til dem. Som det vil fremgå af vores timer, har de mange overraskende egenskaber

Læs mere

Kom hurtigt i gang Maplesoft, 2014

Kom hurtigt i gang Maplesoft, 2014 Kom hurtigt i gang Maplesoft, 014 Kom hurtigt i gang med Maple Start Maple. Opstartsbilledet sådan ud Klik på knappen New Document, og du får nyt ark altså et blankt stykke papir, hvor første linje starter

Læs mere