Projekt 1.4 De reelle tal og 2. hovedsætning om kontinuitet

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "Projekt 1.4 De reelle tal og 2. hovedsætning om kontinuitet"

Transkript

1 Projekt 1.4 De reelle tal og 2. hovedsætning om kontinuitet Mens den 1. hovedsætning om kontinuerte funktioner kom forholdsvis smertefrit ud af intervalrusebetragtninger, så er 2. hovedsætning betydeligt vanskeligere at bevise. Sætningen siger: 2. Hovedsætning om kontinuerte funktioner Hvis en funktion f er kontinuert på det lukkede og begrænsede interval [ ; ] et lukket og begrænset interval: Vm( f ) = [ α;β]. Specielt har f et maksimum og et minimum i intervallet. Vi er nødt til at gå en lille omvej om de reelle tal for at skaffe os det nødvendige værktøj. ab, så er værdimængden også De reelle tals egenskaber Begreberne og argumentationen i det følgende er ret abstrakte, og det kræver en del arbejde at tilegne sig dette. Men det er umagen værd. Dels får vi her et af de stærkeste redskaber overhovedet indenfor den matematiske analyse, og dels rummer argumentationen stor matematisk skønhed. I dette afsnit vil M betegne en mængde af reelle tal. M er ikke nødvendigvis et interval, det eneste vi forudsætter, er, at M ikke er tom! Definition: Overtal og undertal Et tal K kaldes et overtal for M, hvis K er større end eller lig med alle tal i M. Et tal k kaldes et undertal for M, hvis k er mindre end eller lig med alle tal i M. Hovedsætning om de reelle tal 1. Hvis M er opadtil begrænset, så har M et mindste overtal. 2. Hvis M er nedadtil begrænset, så har M et største undertal. Situationen vedrørende punkt 1 kunne være: M kunne f.eks. være alle reelle tal, der opfylder 2 x < 2. Her bliver = 2. 2 Men hvad hvis M er alle rationale tal, der opfylder x < 2? Der findes ikke et rationalt tal,»lige til højre for 2 «derimod kan vi finde en følge r n af rationale tal, der nærmer sig 2. Alle disse er overtal for M. Derfor ser vi straks, at der ikke kan være et mindste rationalt overtal. Sætningen gælder altså ikke indenfor de rationale tal. Bevis: Lad M være opadtil begrænset. Vi vil først konstruere en intervalruse, der giver os tallet, og dernæst vise, at dette tal er det mindste overtal. 1. trin: Vælg et overtal K 1, og et tal k 1, der ikke er et overtal I = k ; K. Sæt [ ] M ligger inden for dette 2. trin: Kald midtpunktet af intervallet I 1 for m 1. I = k ; m. Hvis m 1 er et overtal, sætter vi: 2 [ 1 1] Hvis m 1 ikke er et overtal, sætter vi: I = [ m ; K ] 2 1 1

2 Under alle omstændigheder er I 2 af formen [ ; ] k K, hvor K 2 er et overtal, og k 2 ikke er et overtal trin: Kald midtpunktet af I 2 for m 2 osv. Proceduren fra 2. trin gentages, og vi får i: I = k ; K, hvor K n er et overtal, og k n ikke er et overtal. n. trin: [ ] n n n På denne måde får vi konstrueret en intervalruse: I1 ÉI2 ÉI3 ÉI4 ÉI5 ÉI6 É... É In idet længden af intervallerne ifølge konstruktionen vil gå mod 0. Aksiomet om de reelle tal giver os da: { I n} bestemmer et reelt tal. Påstand: er et mindste overtal for M. Påstanden indeholder to ting: 1. er et overtal: Antag nemlig, at der findes et mî M, således at < m: K n m Af konstruktionen følger: Kn Overvej dette! Fra et vist trin vil K n derfor ligge til venstre for m. Men det er jo i modstrid med, at K n er et overtal for M. Altså: er et overtal. 2. er det mindste overtal. Antag nemlig at der findes et g<, så g er et overtal: M g k m Af konstruktionen følger: kn Overvej dette! Fra et vist trin, f.eks. m, vil k m derfor ligge til højre for g: g< km. Men da k m ikke er et overtal, findes der tal fra M til højre for k m og disse må da også ligge til højre for g. Altså kan g ikke være et overtal. Altså: er det mindste overtal. Praxis: Betegnelse for mindste overtal og største undertal Et mindste overtal for M kaldes et supremum for M. Vi skriver: = supm Tilsvarende kaldes et største undertal g for et infimum for M. Vi skriver: g = inf M. Øvelse 1 Bevis punkt 2 i hovedsætningen om de reelle tal (Bemærk: Du kan enten gennemføre en argumentation efter samme idé som i ovenstående bevis, eller være mere elegant og udnytte, at sætningen, vi har vist, gælder for alle mængder, der er opadtil begrænset. Hvis vi nu starter med en mængde N, der er nedadtil begrænset, betragt da mængden M= x -xî. Udnyt sætningen for mængden M og overbevis dig om, at det fundne supremum for M er { } et infimum for N). Kontinuerte funktioner M

3 Vi har nu værktøjet til at kunne bevise: 2. Hovedsætning om kontinuerte funktioner (Sætningen om maksimum og minimum) ab ;, så er værdimængden også Hvis en funktion f er kontinuert på det lukkede og begrænsede interval [ ] et lukket og begrænset interval: Vm( f ) = [ α;β]. Beviset er stort og opdeles for overskuelighedens skyld i tre dele. De tre punkter er hver for sig en lille sætning, hvorfor vi omformulerer hovedsætningen til følgende version: 2. Hovedsætning om kontinuerte funktioner (2. Version) Vm f også et interval. 1. Hvis f er kontinuert i et interval I, så er ( ) 2. Hvis f er kontinuert i [ ab ;], så er Vm( f) 3. Hvis f er kontinuert i [ ab ; ], så er ( ) begrænset. Vm f et lukket interval. I det følgende er kun givet en disposition til de tre beviser. Du skal selv gennemarbejde beviserne og udfylde alle detaljer. Sine steder er det ikke helt let; men arbejdet med de enkelte punkter vil give god indsigt i moderne matematisk teori og argumentation. Punkt 1: f er en kontinuert funktion, og vi vil vise, at ( ) Vm f er et interval. Vi kan slippe nemt om ved dette punkt, for hvad er egentlig definitionen på et interval? Det må være følgende: En delmængde I af de reelle tal kaldes et interval, såfremt der gælder: når a, bî I, og a< c< b, så vil der gælde, at også cî I. Men af denne definition ser vi, at sætningen om mellemliggende værdier (første hovedsætning) giver os, at f I er et interval. Overvej dette! () Imidlertid ønsker vi at henføre f ( I ) til et interval på en af de kendte former. Derfor gør vi følgende: a) Opdel i fire tilfælde, afhængig af om Vm( f ) er begrænset eller ej: 1. Vm( f ) er begrænset både opad og nedad. 2. Vm( f ) er begrænset opad, men ikke nedad. 3. Vm( f ) er begrænset nedad, men ikke opad. 4. Vm( f ) er hverken begrænset opad eller nedad. Se på et af tilfældene, f.eks. nr. 3: Vm( f ) er begrænset nedad, ikke opad. b) Der findes et største undertal g. Marker på tallinje. Vm f Í g;. Så er ( ) [ [ c) Påstand: Enten er Vm( f) [ g; [ = eller Vm( f) = ] g; [. d) Argument: Vælg et y> g. Argumenter for, der findes y 1 og y 2 fra Vm( f ), så: y1 < y< y2. Marker på tallinjen. e) Benyt sætningen om mellemliggende værdier, der siger, at hvis y 1 og y 2 er med i Vm( f ), så er også y med. f) Konkludér. Før vi viser punkt 2, vises følgende: Hjælpesætning Hvis x1, x2, x3,..., x n er en voksende følge af reelle tal, der er opad begrænset (eller en aftagende følge, der

4 er ned begrænset), så findes et x 0, så xn Bevis: Sæt M= x1, x2, x3,..., xn. M er opad begrænset, og har derfor et supremum (mindste overtal), x 0. Påstand: xn Læg et lille interval om x 0 : ] x - ε; x + ε[ : 0 0 x0 - e x 0 x0 x N + e Da x 0 er et overtal for M, vil xn x0 for alle n. Da x 0 er mindste overtal, findes et x N i dette lille interval. Men følgen er voksende, så alle xn, xn+ 1, xn+ 2,... er med i intervallet. Intervallet om x 0 kan imidlertid vælges vilkårligt lille. Det betyder, at følgen nærmer sig vilkårligt tæt til x 0. Altså den ønskede konklusion: xn Nu kan vi så vise: Punkt 2: Vi skal vise, at f er begrænset, dvs. f vokser ikke mod. Vi gennemfører dette som et indirekte bevis: Antag f ikke er begrænset. { } a) Definer mængderne [ ;] ( ) M = xî a b f x ³ k, for k = 1,2,3... k Sæt xk = inf Mk. Overvej at dette er muligt, dvs. x k findes. b) Argumenter for at: M1 ÉM2 ÉM3 É... ÉMn c) Argumenter for at så er x1 x2 x3... xn d) Anvend nu hjælpesætningen på denne monotone følge: Der findes et x 0 så xn f x når e) Udnyt kontinuiteten af f samt punkt d) til at drage en konklusion om grænseværdien af ( ) n n. f x når f) Udnyt konstruktionen af x k erne til at drage en anden konklusion om grænseværdien af ( ) n n. g) Konkludér ud fra modstriden mellem e) og f). Punkt 3: Vi skal endelig vise, at Vm( f ) er lukket: a) Vi ved, Vm( f ) er et begrænset interval, dvs, af typen: [ cd ;],[ cd ;[,] cd ;], eller ] ;[ b) Se på det ene af dem: Antag Vm( f) = [ cd ; [. dvs. f ( x) < d for alle x, eller d- f ( x) > 0 for alle x. c) Se nu på funktionen: 1 g( x) = d - f x ( ) Argumenter for at g er kontinuert. Deraf følger: g er begrænset. g x < K for alle x. Altså findes et tal K, så: ( ) d) Omskriv og vis at så gælder: cd. Vi skal udelukke de sidste tre.

5 1 f ( x) < d-, for alle x. K e) Men så kan Vm( f ) ikke være [ ;[ f) Konkludér. cd, dvs. vi har en modstrid. Hermed er vi nået til vejs ende: Ud fra den dybere forståelse af, hvad de reelle tal er, har vi vist de to hovedsætninger om kontinuerte funktioner. Med disse som grundlag bevises monotonisætningen og begrundes den teknik, vi anvender ved undersøgelser af fortegn og monotoniforhold.

Appendix 1. Nogle egenskaber ved reelle tal.

Appendix 1. Nogle egenskaber ved reelle tal. - 0 - Appendi. Nogle egenskaber ved reelle tal. Som bekendt består de reelle tal R (dvs. alle tal på tallinien) af de rationale tal Q og de irrationale tal I, dvs. R = Q I. De rationale tal Q er mængden

Læs mere

= λ([ x, y)) + λ((y, x]) = ( y ( x)) + (x y) = 2(x y).

= λ([ x, y)) + λ((y, x]) = ( y ( x)) + (x y) = 2(x y). Analyse 2 Øvelser Rasmus Sylvester Bryder 17. og 20. september 2013 Supplerende opgave 1 Lad λ være Lebesgue-målet på R og lad A B(R). Definér en funktion f : [0, ) R ved f(x) = λ(a [ x, x]). Vis, at f(x)

Læs mere

MASO Uge 1. Relle tal Følger. Jesper Michael Møller. 7. september Department of Mathematics University of Copenhagen

MASO Uge 1. Relle tal Følger. Jesper Michael Møller. 7. september Department of Mathematics University of Copenhagen MASO Uge 1 Relle tal Jesper Michael Møller Department of Mathematics University of Copenhagen 7. september 2016 Formålet med MASO Integer sequences Oversigt Relle tal Notation Tal Overtal og undertal Største

Læs mere

Funktionsterminologi

Funktionsterminologi Funktionsterminologi Frank Nasser 12. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk: Dette

Læs mere

Analyse 2. Bevis af Fatous lemma (Theorem 9.11) Supplerende opgave 1. Øvelser

Analyse 2. Bevis af Fatous lemma (Theorem 9.11) Supplerende opgave 1. Øvelser Analyse 2 Øvelser Rasmus Sylvester Bryder 24. og 27. september 203 Bevis af Fatous lemma (Theorem 9.) Hvis (u j ) j er en følge af positive, målelige, numeriske funktioner (dvs. med værdier i [, ]) over

Læs mere

Supplerende opgaver. S1.3.1 Lad A, B og C være delmængder af X. Vis at

Supplerende opgaver. S1.3.1 Lad A, B og C være delmængder af X. Vis at Supplerende opgaver Analyse Jørgen Vesterstrøm Forår 2004 S.3. Lad A, B og C være delmængder af X. Vis at (A B C) (A B C) (A B) C og find en nødvendig og tilstrækkelig betingelse for at der gælder lighedstegn

Læs mere

En differentiabel funktion hvis afledte ikke er kontinuert Søren Knudby

En differentiabel funktion hvis afledte ikke er kontinuert Søren Knudby 24 En differentiabel funktion hvis afledte ikke er kontinuert Søren Knudby Det er velkendt for de fleste, at differentiabilitet af en reel funktion f medfører kontinuitet af f, mens det modsatte ikke gælder

Læs mere

Hvad er matematik? C, i-bog ISBN 978 87 7066 499 8

Hvad er matematik? C, i-bog ISBN 978 87 7066 499 8 Et af de helt store videnskabelige projekter i 1700-tallets Danmark var kortlægningen af Danmark. Projektet blev varetaget af Det Kongelige Danske Videnskabernes Selskab og løb over en periode på et halvt

Læs mere

[FUNKTIONER] Hvornår kan vi kalde en sammenhæng en funktion, og hvilke egenskaber har disse i givet fald. Vers. 2.0

[FUNKTIONER] Hvornår kan vi kalde en sammenhæng en funktion, og hvilke egenskaber har disse i givet fald. Vers. 2.0 MaB Sct. Knud Gymnasium, Henrik S. Hansen % [FUNKTIONER] Hvornår kan vi kalde en sammenhæng en funktion, og hvilke egenskaber har disse i givet fald. Vers..0 Indhold Funktioner... Entydighed... Injektiv...

Læs mere

Punktmængdetopologi. Mikkel Stouby Petersen. 1. marts 2013

Punktmængdetopologi. Mikkel Stouby Petersen. 1. marts 2013 Punktmængdetopologi Mikkel Stouby Petersen 1. marts 2013 I kurset Matematisk Analyse 1 er et metrisk rum et af de mest grundlæggende begreber. Et metrisk rum (X, d) er en mængde X sammen med en metrik

Læs mere

Euklids algoritme og kædebrøker

Euklids algoritme og kædebrøker Euklids algoritme og kædebrøker Michael Knudsen I denne note vil vi med Z, Q og R betegne mængden af henholdsvis de hele, de rationale og de reelle tal. Altså er { m } Z = {..., 2,, 0,, 2,...} og Q = n

Læs mere

Eksempel på den aksiomatisk deduktive metode

Eksempel på den aksiomatisk deduktive metode Eksempel på den aksiomatisk deduktive metode Et rigtig godt eksempel på et aksiomatisk deduktivt system er Euklids Elementer. Euklid var græker og skrev Elemeterne omkring 300 f.kr. Værket består af 13

Læs mere

Optimeringsteori. Tenna Andersen, Tina Sørensen, Majbritt Lundborg, Søren Foged, Jeppe Gravers, Kenneth Andersen & Oskar Aver

Optimeringsteori. Tenna Andersen, Tina Sørensen, Majbritt Lundborg, Søren Foged, Jeppe Gravers, Kenneth Andersen & Oskar Aver Optimeringsteori Tenna Andersen, Tina Sørensen, Majbritt Lundborg, Søren Foged, Jeppe Gravers, Kenneth Andersen & Oskar Aver 20/12/2012 Institut for Matematiske Fag Matematik-Økonomi Fredrik Bajers Vej

Læs mere

MM502+4 forelæsningsslides

MM502+4 forelæsningsslides MM502+4 forelæsningsslides uge 11+12 1, 2009 Produceret af Hans J. Munkholm, delvis på baggrund af lignende materiale udarbejdet af Mikael Rørdam 1 I nærværende forbindelse er 11 + 12 23 1 Egenskaber for

Læs mere

Analyse 2. Gennemgå bevis for Sætning Supplerende opgave 1. Øvelser. Sætning 1. For alle mængder X gælder #X < #P(X).

Analyse 2. Gennemgå bevis for Sætning Supplerende opgave 1. Øvelser. Sætning 1. For alle mængder X gælder #X < #P(X). Analyse 2 Øvelser Rasmus Sylvester Bryder 3. og 6. september 2013 Gennemgå bevis for Sætning 2.10 Sætning 1. For alle mængder X gælder #X < #P(X). Bevis. Der findes en injektion X P(X), fx givet ved x

Læs mere

Skriftlig eksamen - med besvarelse Topologi I (MM508)

Skriftlig eksamen - med besvarelse Topologi I (MM508) INSTITUT FOR MATEMATIK OG DATALOGI SYDDANSK UNIVERSITET, ODENSE Skriftlig eksamen - med besvarelse Topologi I (MM508) Mandag d. 14. januar 2007 2 timer med alle sædvanlige hjælpemidler tilladt. Opgavesættet

Læs mere

Fundamentale begreber fra Analysen. Introduktion. De reelle tal. Carsten Lunde Petersen

Fundamentale begreber fra Analysen. Introduktion. De reelle tal. Carsten Lunde Petersen IMFUFA Carsten Lunde Petersen Fundamentale begreber fra Analysen Introduktion Disse noter udgør et meget ltreret udkik over de grundlæggende begreber i reel analyse. Noten indeholder meget lidt om det

Læs mere

MASO Uge 5. Topologi i euklidiske rum. Jesper Michael Møller. Uge 5. Formålet med MASO. Department of Mathematics University of Copenhagen

MASO Uge 5. Topologi i euklidiske rum. Jesper Michael Møller. Uge 5. Formålet med MASO. Department of Mathematics University of Copenhagen MASO Uge 5 Topologi i euklidiske rum Jesper Michael Møller Department of Mathematics University of Copenhagen Uge 5 Formålet med MASO Oversigt Åbne og afsluttede mængder Det indre, det ydre, afslutningen,

Læs mere

Differential- regning

Differential- regning Differential- regning del f(5) () f f () f ( ) I 5 () 006 Karsten Juul Indhold 6 Kontinuert funktion 7 Monotoniforhold7 8 Lokale ekstrema44 9 Grænseværdi5 Differentialregning del udgave 006 006 Karsten

Læs mere

Komplekse tal. Mikkel Stouby Petersen 27. februar 2013

Komplekse tal. Mikkel Stouby Petersen 27. februar 2013 Komplekse tal Mikkel Stouby Petersen 27. februar 2013 1 Motivationen Historien om de komplekse tal er i virkeligheden historien om at fjerne forhindringerne og gøre det umulige muligt. For at se det, vil

Læs mere

11. Funktionsundersøgelse

11. Funktionsundersøgelse 11. Funktionsundersøgelse Hayati Balo,AAMS Følgende fremstilling er baseret på 1. Nils Victor-Jensen,Matematik for adgangskursus, B-niveau 2, 2. udg. 11.1 Generelt om funktionsundersøgelse Formålet med

Læs mere

Lad os som eksempel se på samtidigt kast med en terning og en mønt:

Lad os som eksempel se på samtidigt kast med en terning og en mønt: SANDSYNLIGHEDSREGNING Stokastisk eksperiment Et stokastisk eksperiment er et eksperiment, hvor vi fornuftigvis ikke på forhånd kan have en formodning om resultatet af eksperimentet Til gengæld kan vi prøve

Læs mere

Grundlæggende Matematik

Grundlæggende Matematik Grundlæggende Matematik Hayati Balo, AAMS August 2012 1. Matematiske symboler For at udtrykke de verbale udsagn matematisk korrekt, så det bliver lettere og hurtigere at skrive, indføres en række matematiske

Læs mere

Eksempler på problemløsning med differentialregning

Eksempler på problemløsning med differentialregning Eksempler på problemløsning med differentialregning 004 Karsten Juul Opgave 1: Monotoniforhold = 1+, x 3 3 x Bestem monotoniforholdene for f Besvarelse af opgave 1 Først differentierer vi f : (3 x) (3

Læs mere

Matematisk induktion

Matematisk induktion Induktionsbeviser MT01.0.07 1 1 Induktionsbeviser Matematisk induktion Sætninger der udtaler sig om hvad der gælder for alle naturlige tal n N, kan undertiden bevises ved matematisk induktion. Idéen bag

Læs mere

Polynomier. Indhold. Georg Mohr-Konkurrencen. 1 Polynomier 2. 2 Polynomiumsdivision 4. 3 Algebraens fundamentalsætning og rødder 6

Polynomier. Indhold. Georg Mohr-Konkurrencen. 1 Polynomier 2. 2 Polynomiumsdivision 4. 3 Algebraens fundamentalsætning og rødder 6 Indhold 1 Polynomier 2 Polynomier 2 Polynomiumsdivision 4 3 Algebraens fundamentalsætning og rødder 6 4 Koefficienter 8 5 Polynomier med heltallige koefficienter 9 6 Mere om polynomier med heltallige koefficienter

Læs mere

Besvarelses forslag til Tag-hjemeksamen Vinteren 02 03

Besvarelses forslag til Tag-hjemeksamen Vinteren 02 03 IMFUFA Carsten Lunde Petersen Besvarelses forslag til Tag-hjemeksamen Vinteren 02 0 Hvor ikke andet er angivet er henvisninger til W.R.Wade An Introduction to analysis. Opgave a) Idet udtrykket e x2 cos

Læs mere

Taylor s approksimationsformler for funktioner af én variabel

Taylor s approksimationsformler for funktioner af én variabel enote 17 1 enote 17 Taylor s approksimationsformler for funktioner af én variabel I enote 14 og enote 16 er det vist hvordan funktioner af én og to variable kan approksimeres med førstegradspolynomier

Læs mere

GEOMETRI-TØ, UGE 8. X = U xi = {x i } = {x 1,..., x n }, U α, U α = α. (X \ U α )

GEOMETRI-TØ, UGE 8. X = U xi = {x i } = {x 1,..., x n }, U α, U α = α. (X \ U α ) GEOMETRI-TØ, UGE 8 Hvis I falder over tryk- eller regne-fejl i nedenstående, må I meget gerne sende rettelser til fuglede@imf.au.dk. Opvarmningsopgave 1. Lad X være en mængde og T familien af alle delmængder

Læs mere

Differentialregning. Ib Michelsen

Differentialregning. Ib Michelsen Differentialregning Ib Michelsen Ikast 2012 Forsidebilledet Tredjegradspolynomium i blåt med rød tangent Version: 0.02 (18-09-12) Denne side er (~ 2) Indholdsfortegnelse Introduktion...5 Definition af

Læs mere

Konstruktion af de reelle tal

Konstruktion af de reelle tal Konstruktion af de reelle tal Rasmus Villemoes 17. oktober 2005 Indledning De fleste tager eksistensen af de reelle tal R for givet. I Matematisk Analyse-bogen Funktioner af en og flere variable af Ebbe

Læs mere

Tal. Vi mener, vi kender og kan bruge følgende talmængder: N : de positive hele tal, Z : de hele tal, Q: de rationale tal.

Tal. Vi mener, vi kender og kan bruge følgende talmængder: N : de positive hele tal, Z : de hele tal, Q: de rationale tal. 1 Tal Tal kan forekomme os nærmest at være selvfølgelige, umiddelbare og naturgivne. Men det er kun, fordi vi har vænnet os til dem. Som det vil fremgå af vores timer, har de mange overraskende egenskaber

Læs mere

π er irrationel Frank Nasser 10. december 2011

π er irrationel Frank Nasser 10. december 2011 π er irrationel Frank Nasser 10. december 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

Grundlæggende Matematik

Grundlæggende Matematik Grundlæggende Matematik Hayati Balo, AAMS Juli 2013 1. Matematiske symboler For at udtrykke de verbale udsagn matematisk korrekt, så det bliver lettere og hurtigere at skrive, indføres en række matematiske

Læs mere

De rigtige reelle tal

De rigtige reelle tal De rigtige reelle tal Frank Villa 17. januar 2014 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

af koblede differentialligninger (se Apostol Bind II, s 229ff) 3. En n te ordens differentialligning

af koblede differentialligninger (se Apostol Bind II, s 229ff) 3. En n te ordens differentialligning EKSISTENS- OG ENTYDIGHEDSSÆTNINGEN Vi vil nu bevise eksistens- og entydighedssætningen for ordinære differentialligninger. For overskuelighedens skyld vil vi indskrænke os til at undersøge een 1. ordens

Læs mere

t a l e n t c a m p d k Matematiske Metoder Anders Friis Anne Ryelund 25. oktober 2014 Slide 1/42

t a l e n t c a m p d k Matematiske Metoder Anders Friis Anne Ryelund 25. oktober 2014 Slide 1/42 Slide 1/42 Hvad er matematik? 1) Den matematiske metode 2) Hvad vil det sige at bevise noget? 3) Hvor begynder det hele? 4) Hvordan vælger man et sæt aksiomer? Slide 2/42 Indhold 1 2 3 4 Slide 3/42 Mængder

Læs mere

Spilstrategier. 1 Vindermængde og tabermængde

Spilstrategier. 1 Vindermængde og tabermængde Spilstrategier De spiltyper vi skal se på her, er primært spil af følgende type: Spil der spilles af to spillere A og B som skiftes til at trække, A starter, og hvis man ikke kan trække har man tabt. Der

Læs mere

Egenskaber ved Krydsproduktet

Egenskaber ved Krydsproduktet Egenskaber ved Krydsproduktet Frank Nasser 23. december 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold

Læs mere

Projekt 4.6 Løsning af differentialligninger ved separation af de variable

Projekt 4.6 Løsning af differentialligninger ved separation af de variable Projekt 4.6 Løsning af differentialligninger ved separation af de variable Differentialligninger af tpen d hx () hvor hx ()er en kontinuert funktion, er som nævnt blot et stamfunktionsproblem. De løses

Læs mere

matx.dk Differentialregning Dennis Pipenbring

matx.dk Differentialregning Dennis Pipenbring mat.dk Differentialregning Dennis Pipenbring 0. december 00 Indold Differentialregning 3. Grænseværdi............................. 3. Kontinuitet.............................. 8 Differentialkvotienten

Læs mere

Partielle afledede og retningsafledede

Partielle afledede og retningsafledede Partielle afledede og retningsafledede 1 Partielle afledede, definitioner og notationer Bertragt en funktion af to reelle variable f : D R, hvor D R 2 er et åbent område Med benyttelse af tilvækstfunktionen

Læs mere

Noter til Perspektiver i Matematikken

Noter til Perspektiver i Matematikken Noter til Perspektiver i Matematikken Henrik Stetkær 25. august 2003 1 Indledning I dette kursus (Perspektiver i Matematikken) skal vi studere de hele tal og deres egenskaber. Vi lader Z betegne mængden

Læs mere

MATEMATIK 11 Eksamensopgaver Juni 1995 Juni 2001, 4. fjerdedel

MATEMATIK 11 Eksamensopgaver Juni 1995 Juni 2001, 4. fjerdedel Juni 2000 MATEMATIK 11 Eksamensopgaver Juni 1995 Juni 2001, 4. fjerdedel Opgave 1. (a) Find den fuldstændige løsning til differentialligningen y 8y + 16y = 0. (b) Find den fuldstændige løsning til differentialligningen

Læs mere

Matematisk modellering og numeriske metoder. Lektion 8

Matematisk modellering og numeriske metoder. Lektion 8 Matematisk modellering og numeriske metoder Lektion 8 Morten Grud Rasmussen 18. oktober 216 1 Fourierrækker 1.1 Periodiske funktioner Definition 1.1 (Periodiske funktioner). En periodisk funktion f er

Læs mere

MM501 forelæsningsslides

MM501 forelæsningsslides MM50 forelæsningsslides uge 36, 2009 Produceret af Hans J. Munkholm Nogle talmængder s. 3 N = {, 2, 3, } omtales som de naturlige tal eller de positive heltal. Z = {0, ±, ±2, ±3, } omtales som de hele

Læs mere

Taylorudvikling I. 1 Taylorpolynomier. Preben Alsholm 3. november Definition af Taylorpolynomium

Taylorudvikling I. 1 Taylorpolynomier. Preben Alsholm 3. november Definition af Taylorpolynomium Taylorudvikling I Preben Alsholm 3. november 008 Taylorpolynomier. Definition af Taylorpolynomium Definition af Taylorpolynomium Givet en funktion f : I R! R og et udviklingspunkt x 0 I. Find et polynomium

Læs mere

Funktionalligninger. Anders Schack-Nielsen. 25. februar 2007

Funktionalligninger. Anders Schack-Nielsen. 25. februar 2007 Funktionalligninger Anders Schack-Nielsen 5. februar 007 Disse noter er en introduktion til funktionalligninger. En funktionalligning er en ligning (eller et ligningssystem) hvor den ubekendte er en funktion.

Læs mere

Introduktion til differentialregning 1. Jens Siegstad og Annegrethe Bak

Introduktion til differentialregning 1. Jens Siegstad og Annegrethe Bak Introduktion til differentialregning 1 Jens Siegstad og Annegrete Bak 16. juli 2008 1 Indledning I denne note vil vi kort introduktion til differentilregning, idet vi skal bruge teorien i et emne, Matematisk

Læs mere

Tallet π er irrationalt Jens Siegstad

Tallet π er irrationalt Jens Siegstad 32 Tallet π er irrationalt Jens Siegstad At tallet π er irrationalt har været kendt i pænt lang tid Aristoteles postulerede det da han påstod at diameteren og radius i en cirkel er inkommensurable størrelser

Læs mere

Matematik. 1 Matematiske symboler. Hayati Balo,AAMS. August, 2014

Matematik. 1 Matematiske symboler. Hayati Balo,AAMS. August, 2014 Matematik Hayati Balo,AAMS August, 2014 1 Matematiske symboler For at udtrykke de verbale udsagn matematisk korrekt, så det bliver lettere og hurtigere at skrive, indføres en række matematiske symboler.

Læs mere

Skabelon til funktionsundersøgelser

Skabelon til funktionsundersøgelser Skabelon til funktionsundersøgelser Nedenfor en angivelse af fremgangsmåder ved funktionsundersøgelser. Ofte vil der kun blive spurgt om et udvalg af nævnte spørgsmål. Syntaksen i løsningerne vil være

Læs mere

Kapitel 2. Differentialregning A

Kapitel 2. Differentialregning A Kapitel 2. Differentialregning A Indhold 2.2 Differentiabilitet og tangenter til grafer... 2 2.3 Sammensat funktion, eksponential-, logaritme- og potensfunktioner... 7 2.4 Regneregler for differentiation

Læs mere

Integration. Frank Villa. 8. oktober 2012

Integration. Frank Villa. 8. oktober 2012 Integration Frank Villa 8. oktober 2012 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser for brug her. Indhold 1 Introduktion 1

Læs mere

UENDELIG, MERE UENDELIG, ENDNU MERE UENDELIG, Indledning

UENDELIG, MERE UENDELIG, ENDNU MERE UENDELIG, Indledning UENDELIG, MERE UENDELIG, ENDNU MERE UENDELIG, ESBEN BISTRUP HALVORSEN 1 Indledning De fleste kan nok blive enige om, at mængden {a, b, c} er større end mængden {d} Den ene indeholder jo tre elementer,

Læs mere

Mere om differentiabilitet

Mere om differentiabilitet Mere om differentiabilitet En uddybning af side 57 i Spor - Komplekse tal Kompleks funktionsteori er et af de vigtigste emner i matematikken og samtidig et af de smukkeste I bogen har vi primært beskæftiget

Læs mere

Kvadratiske matricer. enote Kvadratiske matricer

Kvadratiske matricer. enote Kvadratiske matricer enote enote Kvadratiske matricer I denne enote undersøges grundlæggende egenskaber ved mængden af kvadratiske matricer herunder indførelse af en invers matrix for visse kvadratiske matricer. Det forudsættes,

Læs mere

Algebra - Teori og problemløsning

Algebra - Teori og problemløsning Algebra - Teori og problemløsning, januar 05, Kirsten Rosenkilde. Algebra - Teori og problemløsning Kapitel -3 giver en grundlæggende introduktion til at omskrive udtryk, faktorisere og løse ligningssystemer.

Læs mere

Polynomium Et polynomium. Nulpolynomiet Nulpolynomiet er funktionen der er konstant nul, dvs. P(x) = 0, og dets grad sættes per definition til.

Polynomium Et polynomium. Nulpolynomiet Nulpolynomiet er funktionen der er konstant nul, dvs. P(x) = 0, og dets grad sættes per definition til. Polynomier Polynomier Polynomium Et polynomium P(x) = a n x n + a n x n +... + a x + a 0 Disse noter giver en introduktion til polynomier, centrale sætninger om polynomiumsdivision, rødder og koefficienter

Læs mere

GEOMETRI-TØ, UGE 6. . x 1 x 1. = x 1 x 2. x 2. k f

GEOMETRI-TØ, UGE 6. . x 1 x 1. = x 1 x 2. x 2. k f GEOMETRI-TØ, UGE 6 Hvis I falder over tryk- eller regne-fejl i nedenstående, må I meget gerne sende rettelser til fuglede@imfaudk Opvarmningsopgave 1 Lad f : R 2 R være tre gange kontinuert differentierbar

Læs mere

Lineære differentialligningers karakter og lineære 1. ordens differentialligninger

Lineære differentialligningers karakter og lineære 1. ordens differentialligninger enote 11 1 enote 11 Lineære differentialligningers karakter og lineære 1. ordens differentialligninger I denne note introduceres lineære differentialligninger, som er en speciel (og bekvem) form for differentialligninger.

Læs mere

Grænseværdier og Kontinuitet

Grænseværdier og Kontinuitet Grænseværdier og Kontinuitet Frank Nasser 12. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk:

Læs mere

Spilstrategier. Indhold. Georg Mohr-Konkurrencen. 1 Vindermængde og tabermængde 2. 2 Kopier modpartens træk 4

Spilstrategier. Indhold. Georg Mohr-Konkurrencen. 1 Vindermængde og tabermængde 2. 2 Kopier modpartens træk 4 Indhold 1 Vindermængde og tabermængde 2 2 Kopier modpartens træk 4 3 Udnyt modpartens træk 5 4 Strategityveri 6 5 Løsningsskitser 7 Spilstrategier De spiltyper vi skal se på her, er primært spil af følgende

Læs mere

-9-8 -7-6 -5-4 -3-2 -1 1 2 3 4 5 6 7 8 9. f(x)=2x-1 Serie 1

-9-8 -7-6 -5-4 -3-2 -1 1 2 3 4 5 6 7 8 9. f(x)=2x-1 Serie 1 En funktion beskriver en sammenhæng mellem elementer fra to mængder - en definitionsmængde = Dm(f) består af -værdier og en værdimængde = Vm(f) består af -værdier. Til hvert element i Dm(f) knttes netop

Læs mere

Ny skriftlighed - Matematik

Ny skriftlighed - Matematik Ny skriftlighed - Matematik Indhold Andres tanker og ideer:... 2 Andre nyttige links:... 2 Kompetencer:... 2 Eksempler på opgaver der træner forskellige kompetencer... 3 Eksempel 1: Opgaveløsning med forskellige

Læs mere

Tal og algebra. I kapitlet arbejdes med følgende centrale matematiske begreber: algebra variable. Huskeliste: Tændstikker (til side 146) FRA FAGHÆFTET

Tal og algebra. I kapitlet arbejdes med følgende centrale matematiske begreber: algebra variable. Huskeliste: Tændstikker (til side 146) FRA FAGHÆFTET I kapitlet skal eleverne arbejde med fire forskellige vinkler på algebra de præsenteres på kapitlets første mundtlige opslag. De fire vinkler er algebra som et redskab til at løse matematiske problemer.

Læs mere

Komplekse tal og algebraens fundamentalsætning.

Komplekse tal og algebraens fundamentalsætning. Komplekse tal og algebraens fundamentalsætning. Michael Knudsen 10. oktober 2005 1 Ligningsløsning Lad N = {0,1,2,...} betegne mængden af de naturlige tal og betragt ligningen ax + b = 0, a,b N,a 0. Findes

Læs mere

Nogle grundlæggende begreber

Nogle grundlæggende begreber BE2-kursus 2010 Jørgen Larsen 5. februar 2010 Nogle grundlæggende begreber Lidt simpel mængdelære Mængder består af elementer; mængden bestående af ingen elementer er, den tomme mængde. At x er element

Læs mere

Eksamensnoter til Analyse 1

Eksamensnoter til Analyse 1 ksamensnoter til Analyse 1 Martin Geisler gimpster@daimi.au.dk Sommer 23 Indledning Disse noter gennemgår de 26 spørgsmål stillet til den mundtlige eksamen i Analyse 1 ved Aarhus Universitet sommeren 23.

Læs mere

Værktøjskasse til analytisk Geometri

Værktøjskasse til analytisk Geometri Værktøjskasse til analytisk Geometri Frank Villa. september 04 Dette dokument er en del af MatBog.dk 008-0. IT Teaching Tools. ISBN-3: 978-87-9775-00-9. Se yderligere betingelser for brug her. Indhold

Læs mere

Potensrækker. Morten Grud Rasmussen 1 10. november 2015. Definition 1 (Potensrække). En potensrække er en uendelig række på formen

Potensrækker. Morten Grud Rasmussen 1 10. november 2015. Definition 1 (Potensrække). En potensrække er en uendelig række på formen Potensrækker Morten Grud Rasmussen 1 10 november 2015 Definition og konvergens af potensrækker Definition 1 Potensrække) En potensrække er en uendelig række på formen a n pz aq n, 1) hvor afsnittene er

Læs mere

Matematik H 2 ANALYSE OG OPTIMERING

Matematik H 2 ANALYSE OG OPTIMERING Matematik H 2 ANALYSE OG OPTIMERING 1999 Indhold Talfølger, rækker og komplekse tal, noter ved Tage Gutmann Madsen, omredigeret til HHK af Gerd Grubb: 1 De reelle tal 1 5 2 Reelle talfølger 6 19 3 Uendelige

Læs mere

Projekt 2.1: Parabolantenner og parabelsyning

Projekt 2.1: Parabolantenner og parabelsyning Projekter: Kapitel Projekt.1: Parabolantenner og parabelsyning En af de vigtigste egenskaber ved en parabel er dens brændpunkt og en af parablens vigtigste anvendelser er som profilen for en parabolantenne,

Læs mere

Side 9 sætningen: Kolmogorov s konsistensætning Tue Tjur, Institut for Matematisk Statistik

Side 9 sætningen: Kolmogorov s konsistensætning Tue Tjur, Institut for Matematisk Statistik Side 9 sætningen: Kolmogorov s konsistensætning Tue Tjur, Institut for Matematisk Statistik Advarsel: I denne artikel gives udtryk for holdninger til sandsynlighedsregningens grundlag. Disse er forfatterens

Læs mere

TALTEORI Wilsons sætning og Euler-Fermats sætning.

TALTEORI Wilsons sætning og Euler-Fermats sætning. Wilsons sætning og Euler-Fermats sætning, oktober 2008, Kirsten Rosenkilde 1 TALTEORI Wilsons sætning og Euler-Fermats sætning. Disse noter forudsætter et grundlæggende kendskab til talteori som man kan

Læs mere

Projekt 2.5 Brændpunkt og ledelinje

Projekt 2.5 Brændpunkt og ledelinje Projekter. Kapitel. Projekt.5 Brændpunkt og ledelinje Projekt.5 Brændpunkt og ledelinje En af de vigtigste egenskaber ved en parabel er dens brændpunkt og en af parablens vigtigste anvendelser er som profilen

Læs mere

Matematiske metoder - Opgaver

Matematiske metoder - Opgaver Matematiske metoder - Opgaver Anders Friis, Anne Ryelund 25. oktober 2014 Logik Opgave 1 Find selv på tre udtalelser (gerne sproglige). To af dem skal være udsagn, mens det tredje ikke må være et udsagn.

Læs mere

og til summer af stambrøker. Bemærk: De enkelte brøker kan opskrives på flere måder som summer af stambrøker.

og til summer af stambrøker. Bemærk: De enkelte brøker kan opskrives på flere måder som summer af stambrøker. Hvad er en brøk? Når vi taler om brøker i dette projekt, mener vi tal på formen a, hvor a og b er hele tal (og b b 0 ), fx 2,, 3 og 3 7 13 1. Øvelse 1 Hvordan vil du forklare, hvad 7 er? Brøker har været

Læs mere

Brug og Misbrug af logiske tegn

Brug og Misbrug af logiske tegn Brug og Misbrug af logiske tegn Frank Nasser 20. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk:

Læs mere

Funktionel afhængighed

Funktionel afhængighed Databaser, efterår 2002 Funktionel afhængighed Troels Andreasen Datalogiafdelingen, hus 42.1 Roskilde Universitetscenter Universitetsvej 1 Postboks 260 4000 Roskilde Telefon: 4674 2000 Fax: 4674 3072 www.dat.ruc.dk

Læs mere

Uendelighed og kardinalitet

Uendelighed og kardinalitet Steen Bentzen Uendelighed og kardinalitet - mængder og de reelle tal. Forlaget Bentz - - Indholdsfortegnelse Forord.. s. 2 Kapitel : Ækvipotens og kardinalitet generelt... s. 3 Kapitel 2: Ækvipotens og

Læs mere

i x-aksens retning, så fås ). Forskriften for g fås altså ved i forskriften for f at udskifte alle forekomster af x med x x 0

i x-aksens retning, så fås ). Forskriften for g fås altså ved i forskriften for f at udskifte alle forekomster af x med x x 0 BAndengradspolynomier Et polynomium er en funktion på formen f ( ) = an + an + a+ a, hvor ai R kaldes polynomiets koefficienter. Graden af et polynomium er lig med den højeste potens af, for hvilket den

Læs mere

Integralregning Infinitesimalregning

Integralregning Infinitesimalregning Udgave 2.1 Integralregning Infinitesimalregning Noterne gennemgår begreberne integral og stamfunktion, og anskuer dette som et redskab til bestemmelse af arealer under funktioner. Noterne er supplement

Læs mere

Største- og mindsteværdi Uge 11

Største- og mindsteværdi Uge 11 Uge 11 : Definitioner Efterår 2009 : Definitioner Lad A R n og f : A R en reel funktion af n. : Definitioner : Definitioner Lad A R n og f : A R en reel funktion af n. Punktet a = (a 1, a 2,..., a n )

Læs mere

Optimering i Moderne Portefølje Teori

Optimering i Moderne Portefølje Teori Aalborg universitet P3-3. semestersprojekt Optimering i Moderne Portefølje Teori 15. december 2011 AAUINSTITUT FOR MATEMATISKE FAG TITEL: Optimering - Lineær programmering - Moderne Portefølje Teori PROJEKT

Læs mere

t a l e n t c a m p d k Matematik Intro Mads Friis, stud.scient 7. november 2015 Slide 1/25

t a l e n t c a m p d k Matematik Intro Mads Friis, stud.scient 7. november 2015 Slide 1/25 Slide 1/25 Indhold 1 2 3 4 5 6 7 8 Slide 2/25 Om undervisningen Hvorfor er vi her? Slide 3/25 Om undervisningen Hvorfor er vi her? Hvad kommer der til at ske? 1) Teoretisk gennemgang ved tavlen. 2) Instruktion

Læs mere

TALTEORI Ligninger og det der ligner.

TALTEORI Ligninger og det der ligner. Ligninger og det der ligner, december 006, Kirsten Rosenkilde 1 TALTEORI Ligninger og det der ligner. Disse noter forudsætter et grundlæggende kendskab til talteori som man kan få i Marianne Terps og Peter

Læs mere

Idenne note giver vi et eksempel på, hvorledes det er vigtigt at holde sig

Idenne note giver vi et eksempel på, hvorledes det er vigtigt at holde sig Analyse : Eulers formel Sebastian rsted 9. maj 015 Idenne note giver vi et eksempel på, hvorledes det er vigtigt at holde sig for øje, hvor de matematiske resultater kommer fra, og hvad de baseres på;

Læs mere

Første konstruktion af Cantor mængden

Første konstruktion af Cantor mængden DYNAMIK PÅ CANTOR MÆNGDEN KLAUS THOMSEN Første konstruktion af Cantor mængden For de fleste der har hørt on Cantor-mængden, er den blevet defineret på flg måde: I = 0 I = I = 0 0 OSV Cantor mængden C er

Læs mere

Lineære sammenhænge. Udgave 2. 2009 Karsten Juul

Lineære sammenhænge. Udgave 2. 2009 Karsten Juul Lineære sammenhænge Udgave 2 y = 0,5x 2,5 2009 Karsten Juul Dette hæfte er en fortsættelse af hæftet "Variabelsammenhænge, 2. udgave 2009". Indhold 1. Lineære sammenhænge, ligning og graf... 1 2. Lineær

Læs mere

Kapitel 3: Præferencer. Hvordan skal vi modellere præferencer?

Kapitel 3: Præferencer. Hvordan skal vi modellere præferencer? Kapitel 3: Præferencer Hvordan skal vi modellere præferencer? 1. Paradigme (husk fra forrige kapitel): Forbrugeren vælger det bedste varebundt som han/hun har råd til. 2. Vi har set på hvordan man kan

Læs mere

Landmålingens fejlteori - Lektion 2. Sandsynlighedsintervaller Estimation af µ Konfidensinterval for µ. Definition: Normalfordelingen

Landmålingens fejlteori - Lektion 2. Sandsynlighedsintervaller Estimation af µ Konfidensinterval for µ. Definition: Normalfordelingen Landmålingens fejlteori Lektion Sandsynlighedsintervaller Estimation af µ Konfidensinterval for µ - rw@math.aau.dk Institut for Matematiske Fag Aalborg Universitet En stokastisk variabel er en variabel,

Læs mere

Ligninger med reelle løsninger

Ligninger med reelle løsninger Ligninger med reelle løsninger Når man løser ligninger, er der nogle standardmetoder som er vigtige at kende. Her er der en kort introduktion til forskellige teknikker efterfulgt af opgaver hvor man kan

Læs mere

Vektorfelter langs kurver

Vektorfelter langs kurver enote 25 1 enote 25 Vektorfelter langs kurver I enote 24 dyrkes de indledende overvejelser om vektorfelter. I denne enote vil vi se på vektorfelternes værdier langs kurver og benytte metoder fra enote

Læs mere

Affine rum. a 1 u 1 + a 2 u 2 + a 3 u 3 = a 1 u 1 + (1 a 1 )( u 2 + a 3. + a 3. u 3 ) 1 a 1. Da a 2

Affine rum. a 1 u 1 + a 2 u 2 + a 3 u 3 = a 1 u 1 + (1 a 1 )( u 2 + a 3. + a 3. u 3 ) 1 a 1. Da a 2 Affine rum I denne note behandles kun rum over R. Alt kan imidlertid gennemføres på samme måde over C eller ethvert andet legeme. Et underrum U R n er karakteriseret ved at det er en delmængde som er lukket

Læs mere

4. Snittets kædebrøksfremstilling og dets konvergenter

4. Snittets kædebrøksfremstilling og dets konvergenter Dette er den fjerde af fem artikler under den fælles overskrift Studier på grundlag af programmet SKALAGENERATOREN (forfatter: Jørgen Erichsen) 4. Snittets kædebrøksfremstilling og dets konvergenter Vi

Læs mere

Fraktaler. Mandelbrots Mængde. Foredragsnoter. Af Jonas Lindstrøm Jensen. Institut For Matematiske Fag Århus Universitet

Fraktaler. Mandelbrots Mængde. Foredragsnoter. Af Jonas Lindstrøm Jensen. Institut For Matematiske Fag Århus Universitet Fraktaler Mandelbrots Mængde Foredragsnoter Af Jonas Lindstrøm Jensen Institut For Matematiske Fag Århus Universitet Indhold Indhold 1 1 Komplekse tal 3 1.1 Definition.......................................

Læs mere

Projekt 4.9 Bernouillis differentialligning

Projekt 4.9 Bernouillis differentialligning Projekt 4.9 Bernouillis differentialligning (Dette projekt dækker læreplanens krav om supplerende stof vedr. differentialligningsmodeller. Projektet hænger godt sammen med projekt 4.0: Fiskerimodeller,

Læs mere

Grafmanipulation. Frank Nasser. 14. april 2011

Grafmanipulation. Frank Nasser. 14. april 2011 Grafmanipulation Frank Nasser 14. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk: Dette er

Læs mere

Projekt 3.5 faktorisering af polynomier

Projekt 3.5 faktorisering af polynomier Projekt 3.5 faktorisering af polynomier Hvilke hele tal går op i tallet 60? Det kan vi få svar på ved at skrive 60 som et produkt af sine primtal: 60 3 5 Divisorerne i 60 er lige præcis de tal, der kan

Læs mere