Eksempel 10.1 En autoregressiv proces af orden 1 (ofte blot kaldet en AR(1)- proces) pårhar et opdateringsskema (10.1) med funktionen. for y R.

Størrelse: px
Starte visningen fra side:

Download "Eksempel 10.1 En autoregressiv proces af orden 1 (ofte blot kaldet en AR(1)- proces) pårhar et opdateringsskema (10.1) med funktionen. for y R."

Transkript

1 Kapitel 0 Markovkæder Vi vil i det følgede studere processer Y 0, Y, Y 2,... med værdier irgivet på forme Y = f (Y +ǫ for =, 2,... (0. Her erǫ,ǫ 2,... e følge af iid støjvariable med middelværdi 0, alle uafhægige af Y 0, og f :R R er e kedt målelig fuktio. Vi omtaler (0. som et opdaterigsskema med additiv støj, og bemærker at de resulterede Y-proces bliver e homoge Markovkæde på R. Eksempel 0. E autoregressiv proces af orde (ofte blot kaldet e AR(- proces pårhar et opdaterigsskema (0. med fuktioe f (y=β y for y R. Kostate β kaldes processes multiplikator. AR(-processer har meget forskellig opførsel alt efter om β < (det statioære tilfælde, om β = (radom walk tilfældet eller om β > (det eksplosive tilfælde. Fordelige af Y-processe i (0. er bestemt af overgagsstrukture, det vil sige f og fordelige af fejlvariableeǫ i og af begydelsesfordelig, det vil sige fordelige af Y 0. Det ka hæde at der til overgagsstrukture hører et sadsylighedsmål π, der er ivariat uder (0.. Hvis Y 0 har fordeligπ, så vil også Y (og Y 2 og så videre 77

2 78 Kapitel 0. Markovkæder have margial fordelig π. Et sådat π kaldes e statioær begydelsesfordelig. Det viser sig som regel at hvis der eksisterer e statioær begydelsesfordelig, så vil Y-processe i (0. i det lage løb opføre sig som om Y 0 har dee fordelig, uaset hvad Y 0 s faktiske fordelig er. Derfor dukker de statioære begydelsesfordelig uvægerligt op i aalyse. E målelig fuktio V :R [0, der opfylder at V(x for x kaldes e driftfuktio for Y-processe (eller mere præcist: for overgagsstrukture hvis der fides kostater c (0, og c 2 > 0 såda at E V ( f (x+ǫ c V(x+c 2 for alle x R. (0.2 E driftfuktio bruges til at styre de overordede opførsel af processe. Eksempel 0.2 Lad Y 0, Y,... være e autoregressiv proces multiplikator β (,. Hvis fejlvariableeǫ i har k te momet, så opfylder processe kriteriet (0.2 med driftfuktioe V(x= x k. Hvis vi vælger c ( β k, ser vi emlig at lim sup x E V( f (x+ǫ x k lim sup x k j=0 ( k j β j x j k E ǫ k j = β k < c Der fides derfor e kostat R>0 såda at E V( f (x+ǫ c x k for x >R. Hvis vi sætter ser vi let at c 2 = k j=0 ( k j β j R j E ǫ k j E V( f (x+ǫ c 2 for x R, og derfor er (0.2 opfyldt.

3 79 Sætig 0.3 (Ergodesætige for Markovkæder Lad Y 0, Y,... være givet ved opdaterigsskemaet (0.. Atag at støjvariableeǫ i har e tæthed med hesy til Lebesguemålet m, der er kotiuert og overalt positiv. Atag edvidere at der fides e fuktio V, der opfylder driftkriteriet (0.2. Processe har e statioær begydelsesfordeligπ. 2 Der gælder at V erπ-itegrabel, og at g(y i for alle fuktioer g M(R der opfylder at g V. i=0 g(y dπ(y.s. (0.3 Vi udvider u problemstillige ved at forestille os at opdaterigsfuktioe f afhæger af e parameterβ R. På baggrud af observatio af Y 0, Y,...,Y øsker vi at drage iferes om β. Det typiske eksempel er studiet af AR(-processer med ukedt multiplikator β (,. Vi skriver opdaterigsskemaet som Y = f (Y,β+ǫ for =, 2,... og vi atager at f opfører sig passede pæt med hesy tilβ. Vi vil bruge kokordaskombiate h (X,β= ( Yi f (Y i,β 2. (0.4 2 Hvis støjvariablee er N(0, -fordelte er (0.4 idetisk med de betigede loglikelihoodfuktio givet Y 0, se eksempel.7. Hvis støjvariablee er ormalfordelte med ukedt varias, så er kombiate e mooto trasformatio af de betigede profilloglikelihoodfuktio forβ. Bemærk at ige egeskaber ved fejlfordelige idgår i kombiate. Det giver samme type problemer som i de ikke-lieære regressiosmodeller, hvor græsefordelige af M-estimatore potetielt vil ivolvere ukedte størrelser, og hvor der er betydelig risiko for et brud på regularitetsbetigelse D. Det ka ma forholde sig til at ved at udvide iteresseparametere, me vi skal se at ma ogle gage - f.eks. for AR(-processer - ikke ødvedigvis behøver at gøre de slags krumsprig. Vi ser at h (X,β= ( Yi f (Y i,β β (Y i,β, (0.5

4 80 Kapitel 0. Markovkæder og at h (X,β= ( 2 β (Y i,β ( Yi f (Y i,β 2 f β 2 (Y i,β. (0.6 Lad os udersøge om regularitetsbetigelse A ka opfyldes med e simpel - reskalerig. Første led i (0.6 er de kumulerede sum af e vis fuktio reget ud lags Markovkæde, og ka hådteres ved hjælp af et store tals lov argumet som i (0.3. Det adet led kræver lidt mere arbejde. Ma ka ofte få det til at gå mod ul ved at bruge martigalmetoder. Nogle gage ka ma geeralisere det bevis for store tals lov, der baserer sig på baglæs martigaler. Me i fredsommelige situatioer ka simple mometvurderiger være tilstrækkelige. I det følgede arbejder vi med filtrerige (F N givet ved Bemærk atǫ + er uafhægig aff. F =F(Y 0,ǫ,...,ǫ for =, 2,... Lemma 0.4 Lad Z, Z 2,... være e følge af stokastiske variable med 2. momet. Atag at Z erf -målelig for hvert. Hvis så vil Bevis: Vi ser at 2 E Z 2 i 0 for, (0.7 P ǫ i Z i 0. Eǫ i Z i = E E(ǫ i Z i F i =E (Z i E(ǫ i F i =E (Z i E(ǫ i =0. Tilsvarede ræsoemeter viser at Vi har derfor at E ǫ i Z i = Eǫ 2 i Z 2 i = Eǫ 2 E Z2 i, Cov(ǫ i Z i,ǫ j Z j =0 for i j. Eǫ i Z i = 0, V ǫ i Z i = 2 Eǫ 2 E Z2 i. Variase går mod ul ifølge (0.7, så de øskede koverges følger af Chebyshevs ulighed.

5 8 Lemma 0.5 Lad Y 0, Y,... være givet ved opdaterigsskemaet (0.. Atag at støjvariableeǫ i har 2. momet og at de har e tæthed med hesy til Lebesguemålet m, der er kotiuert og overalt positiv. Atag at der fides e fuktio V, der opfylder driftkriteriet (0.2, og så og atag at der fides e kostat K så ( 2 β (y,β V(y for alle y R, (0.8 2 f β 2 (y,β K for alle y R. (0.9 Så gælder der at ( 2 h (X,β P β (y,β dπ(y. Bevis: Ud over at påkalde os ergodesætige for Markovkæder skal vi blot idse at ( Yi f (Y i,β 2 f β 2 (Y i,β= ǫ i 2 f β 2 (Y i,β P 0, me det følger af lemma 0.4 fordi (0.9 til overmål sikrer at de relevate versio af (0.7 er opfyldt. Koklusioe i lemma 0.5 er aturligvis at regularitetsbetigelse A er opfyldt med -reskalerig. For et AR(-skema ses (0.8 at være opfyldt årǫ ere har 2. momet, mes (0.9 er trivielt opfyldt. For at vise regularitetsbetigelse B skal ma i almidelighed i gag med uiforme variater af store tals lov for Markovkæder. Det er ikke emt stof, og vi vil ikke tage fat på det her. Me vi ka bemærke at betigelse B kollapser for et autoregressivt skema: hvis f (y=β y, så er h (X,β= Y 2 i for alleβ. Vi har tidligere (typisk i forbidelse med ekspoetielle familier stået i de situatio at betigelse B var relativt simpel, fordi h viste sig at være determiistisk. Her står vi i de modsatte situatio, hvor h er ret stokastisk, og slet ikke varierer med parametere. Supremet i betigelse B bliver taget over e masse størrelser, der alle er ul.

6 82 Kapitel 0. Markovkæder Lad os edelig se på regularitetsbetigelse C. Vi har at Vi ser let at variablee h (X,β = X i = ǫ i β (Y i,β ǫ i β (Y i,β =, 2,...,,...,, udgør et martigale differece array med hesy til filtrerige (F. De rækkevise kompesatorer er E ( X i 2 F i = ( 2 β (Y i,β Eǫi 2 2 Eǫ ( 2 β (y,β dπ(y uder betigelse (0.8. Tilsvarede ka vi rege på de betigede Lyapouov betigelse: E ( X i 3 F m = 3/2 β (Y i,β 3 E ǫ i 3 Hvis vi styrker (0.8 til ( 3 β (y,β V(y for alle y R, (0.0 ser vi at og derfor vil ( 3 ( 3 β (Y i,β β (y,β dπ(y E ( X i 3 F i 0 Fra de cetrale græseværdisætig for martigale differece arrays ka vi derfor kokludere at ( 2 h (X,β N D 0, Eǫ 2 β (y,β dπ(y. Det vil sige at regularitetsbetigelse C er opfyldt. Som vetet må vi til gegæld skyde e hvid pid efter regularitetsbetigelse D, medmidre støjvariablee har varias. Vi opsummerer ved at sætte id i sætig 5.7:.s.

7 83 Sætig 0.6 Lad Y 0, Y,... være givet ved opdaterigsskemaet (0.. Atag at støjvariableeǫ i har 3. momet og at de har e tæthed med hesy til Lebesguemålet m, der er kotiuert og overalt positiv. Atag at der fides e fuktio V, der opfylder driftkriteriet (0.2, og så ( 3 β (y,β V(y for alle y R, (0. og atag at der fides e kostat K så 2 f β K for alle y R. (0.2 Hvis regularitetsbetigelse B også er opfyldt, så vil M-estimatore ˆβ være kosistet og opfylde at (ˆβ β D N 0, Eǫ 2 ( β (y,β (0.3 2 dπ(y Ma ka idvede at græsevariase i 0.3 ser lidt ubehagelig ud. Hvis resultatet skal kue bruges til oget, for eksempel til Wald test, så skal ma kue rege græsevariase ud for hver potetielβ -værdi. Me græsevariase ivolverer dels støjvariase Eǫ 2 og - edu værre - etπ-itegral. De ivariate fordelig afhæger afβ, skøt det ikke afspejles i otatioe, og vi har slet ikke oge eksplicit repræsetatio afπ. Me i visse lykkelige tilfælde ka ma faktisk rege græsevariase ud alligevel, ved at støtte sig til geerel Markovkædeteori. Lad os fokusere på AR(-tilfældet, hvor β (y,β=y. Bemærk at græsevariase ikke afhæger af Y 0 s fordelig. Hvis det hjælper os, ka vi lade som om Y 0 har e bestemt fordelig mes vi forsøger at rege os frem til græsevariase. Hvis vi kommer frem til et svar, så vil det også gælde for de rigtige Y-proces. Lad os derfor atage at Y 0 har de statioære begydelsesfordeligπ. Da har også Y fordeligπ, og daπhar 2. momet er E Y 2 = E (β Y 0 +ǫ 2 =β 2 E Y β E(Y 0 ǫ +Eǫ 2 =β 2 E Y Eǫ 2 Da Y 0 og Y har samme margiale fordelig, og dermed samme 2. momet, kokluderer vi at ( β 2 E Y 0 2 = Eǫ 2.

8 84 Kapitel 0. Markovkæder I AR(-tilfældet gælder der altså at Sætter vi dette udtryk id i (0.3 får vi ( 2 β (y,β dπ(y= Eǫ 2 β 2. (ˆβ β D N ( 0, β 2 (0.4 Vi ser at græsevariase i virkelighede ikke afhæger af adet ed det sade β! Det betyder at vi smertefrit ka kostruere kofidesområder for β, og teste e hypotese om atβhar e på forhåd givet værdiβ 0. Vi er stadig ikke i stad til at lave test baseret på deviacestørrelse, for regularitetsbetigelse D er ikke opfyldt. Me Wald test er tilgægelige. Ma ka hævde at det er overdrevet besværligt at geemføre aalyse af AR(- processer ved hjælp af de geerelle teori. Vi ser at h (X,β= (Y i βy i 2 = 2 2 Y 2 i 2β Y i Y i +β 2 Yi 2 der let ka miimeres eksplicit, emlig ved ˆβ = Y i Y i Yi 2. (0.5 Det er ikke vaskeligt at udlede (0.4 af dee eksplicitte formel ved hjælp af store tals lov for Markovkæder og de cetrale græseværdisætig for martigale differece arrays. Så i et vist omfag har vi gjort livet vaskeligt for os selv ved partout at ville hevise til regularitetsbetigelsere. Me miraklet, der leder fra (0.3 til (0.4 idtræffer faktisk også i adre situatioer, hvor ma ikke er så priviligeret at have e eksplicit formel for ˆβ. Ma ka f.eks. se at støjvariase altid vil forkorte ud i græsevariase, fordi e skalaparameter på støje bliver oversat til e skalaparameter forπ. Vi kue have geemført mage af oveståede regiger for opdaterigsskemaer af forme (0. pår k fremfor pår, og der er heller ikke oget i veje for at have flerdimesioale β er. Det svulmer op otatiosmæssigt, me essetielt har vi redskabere til at hådtere disse vaskeligheder. Autoregressive skemaer af højere orde, f.eks. Y =β Y +β 2 Y 2 +ǫ for =2, 3,...

9 85 ka stables som i ( Y Y = ( β β 2 0 ( Y Y 2 ( ǫ + 0 så ka de aalyseres som AR(-skemaer i rum af højere dimesio med degeererede fejlfordeliger. Vi ka således udvikle e asymptotisk iferesteori for ret geerelle autoregressive processer. Hvad vi til gegæld ikke rigtig ka, er at udvide parametermægde i de simple AR(-proces fraβ (, til oget større. Hvis de sadeβ-værdi ligger ude for dette iterval, så vil driftkriteriet ikke være opfyldt, og vi har ige store tals lov til rådighed. Det viser sig da også at de eksplicitte estimator (0.5 opfører sig helt aderledes i disse tilfælde. Hvis β = ka ma faktisk få e svag koverges frem, me det vil ikke være mod e ormalfordelig - græsefordelige kaldes e Dicky-Fuller fordelig, og udledes emmest i e ramme af stokastiske itegraler. Hvis β > er der derimod igetig at gøre.

Asymptotisk optimalitet af MLE

Asymptotisk optimalitet af MLE Kapitel 4 Asymptotisk optimalitet af MLE Lad Y 1, Y 2,... være uafhægige, idetisk fordelte variable med værdier i et rum (Y,K). Vi har givet e model (ν θ ) θ Θ for fordelige af Y 1 (og dermed også for

Læs mere

antal gange krone sker i første n kast = n

antal gange krone sker i første n kast = n 1 Uge 15 Teoretisk Statistik, 5. april 004 1. Store tals lov Eksempel: møtkast Koverges i sadsylighed Tchebychevs ulighed Sætig: Store tals lov. De cetrale græseværdisætig 3. Approksimatio af sadsyligheder

Læs mere

hvor i er observationsnummeret, som løber fra 1 til stikprøvestørrelsen n, X i

hvor i er observationsnummeret, som løber fra 1 til stikprøvestørrelsen n, X i Normalfordeliger For at e stokastisk variabel X ka være ormalfordelt, skal X agive værdie af e eller ade målig, f.eks. tid, lægde, vægt, beløb osv. Notatioe er: Xi ~ N( μ, σ hvor i er observatiosummeret,

Læs mere

Analyse 1, Prøve maj 2009

Analyse 1, Prøve maj 2009 Aalyse, Prøve 5. maj 009 Alle hevisiger til TL er hevisiger til Kalkulus (006, Tom Lidstrøm). Direkte opgavehevisiger til Kalkulus er agivet med TLO, ellers er alle hevisiger til steder i de overordede

Læs mere

Motivation. En tegning

Motivation. En tegning Motivatio Scatter-plot at det mådelige salg mod det måedlige reklamebudget. R: plot(salg ~ budget, data = salg) Økoometri Lektio Simpel Lieær Regressio salg 400 450 500 550 20 25 30 35 40 45 50 budget

Læs mere

Definition: Normalfordelingen. siges at være normalfordelt med middelværdi µ og varians σ 2, hvor µ og σ er reelle tal og σ > 0.

Definition: Normalfordelingen. siges at være normalfordelt med middelværdi µ og varians σ 2, hvor µ og σ er reelle tal og σ > 0. Repetitio: Normalfordelige Ladmåliges fejlteori Lektio Trasformatio af stokastiske variable - kkb@math.aau.dk http://people.math.aau.dk/ kkb/udervisig/lf13 Istitut for Matematiske Fag Aalborg Uiversitet

Læs mere

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab Statistik ved Bachelor-uddaelse i folkesudhedsvideskab Græseværdisætiger Det hadler om geemsit Statistikere elsker geemsit Det er oplagt e god ide at tage geemsit. Hvis jeg f.eks skal gætte på vægte af

Læs mere

Økonometri 1. Inferens i den lineære regressionsmodel 29. september Økonometri 1: F7 1

Økonometri 1. Inferens i den lineære regressionsmodel 29. september Økonometri 1: F7 1 Økoometri 1 Iferes i de lieære regressiosmodel 9. september 006 Økoometri 1: F7 1 Dages program Opsamlig af hemmeopgave om Mote Carlo eksperimeter Mere om hypotesetest: Ekelt lieær restriktio på koefficieter

Læs mere

Asymptotisk estimationsteori

Asymptotisk estimationsteori Kapitel 5 Asymptotisk estimatiosteori De fleste eksperimeter har e idbygget størrelse, som regel kaldet eller N. Dette repræseterer typisk atallet af foretage måliger, atallet af udersøgte idivider, atallet

Læs mere

Dagens program. Estimation: Kapitel Eksempler på middelrette og/eller konsistente estimator (de sidste fra sidste forelæsning)

Dagens program. Estimation: Kapitel Eksempler på middelrette og/eller konsistente estimator (de sidste fra sidste forelæsning) Dages program Estimatio: Kapitel 9.4-9.7 Eksempler på middelrette og/eller kosistete estimator (de sidste fra sidste forelæsig) Ko desiterval for store datasæt kap. 9.4 Ko desiterval for små datasæt kap.

Læs mere

Velkommen. Program. Statistik og Sandsynlighedsregning 2 Sandsynlighedstætheder og kontinuerte fordelinger på R. Praktiske ting og sager

Velkommen. Program. Statistik og Sandsynlighedsregning 2 Sandsynlighedstætheder og kontinuerte fordelinger på R. Praktiske ting og sager Program Statistik og Sadsylighedsregig 2 Sadsylighedstætheder og kotiuerte fordeliger på R Helle Sørese Uge 6, madag Velkomme I dag: Praktiske bemærkiger Hvad skal vi lave på SaSt2? Sadsylighedstætheder

Læs mere

Generelle lineære modeller

Generelle lineære modeller Geerelle lieære modeller Regressiosmodeller med é uafhægig itervalskala variabel: Y e eller flere uafhægige variable: X,..,X k De betigede fordelig af Y givet X,..,X k atages at være ormal med e middelværdi,

Læs mere

cos(t), v(t) = , w(t) = e t, z(t) = e t.

cos(t), v(t) = , w(t) = e t, z(t) = e t. Aalyse Øvelser Rasmus Sylvester Bryder. og. oktober 3 Bevis for Cotiuity lemma Theorem. Geemgås af Michael Staal-Olse. Bevis for Lemma.8 Dee har vi faktisk allerede vist; se Opgave 9.5 fra Uge. Det er

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Dages program Kvatitative metoder De multiple regressiosmodel 6. februar 007 Emet for dee forelæsig er de multiple regressiosmodel (Wooldridge kap 3.- 3.+appedix E.) Defiitio og motivatio Fortolkig af

Læs mere

vejer (med fortegn). Det vil vi illustrere visuelt og geometrisk for (2 2)-matricer og (3 3)-matricer i enote 6.

vejer (med fortegn). Det vil vi illustrere visuelt og geometrisk for (2 2)-matricer og (3 3)-matricer i enote 6. enote 5 enote 5 Determiater I dee enote ser vi på kvadratiske matricer. Deres type er altså for 2, se enote 4. Det er e fordel, me ikke absolut ødvedigt, at kede determiatbegrebet for (2 2)-matricer på

Læs mere

Økonometri 1. Definition og motivation. Definition og motivation. Dagens program. Den multiple regressionsmodel 15. februar 2006

Økonometri 1. Definition og motivation. Definition og motivation. Dagens program. Den multiple regressionsmodel 15. februar 2006 Dages program Økoometri De multiple regressiosmodel 5. februar 006 Emet for dee forelæsig er de multiple regressiosmodel (Wooldridge kap 3.-3.3+appedix E.-E.) Defiitio og motivatio Fortolkig af parametree

Læs mere

Mikroøkonomi, matematik og statistik Eksamenshjemmeopgave 14. 20. december 2007

Mikroøkonomi, matematik og statistik Eksamenshjemmeopgave 14. 20. december 2007 Mikroøkoomi, matematik og statistik Eksameshjemmeopgave 14. 20. december 2007 Helle Buzel, Tom Egsted og Michael H.J. Stæhr 14. december 2007 R E T N I N G S L I N I E R F O R E K S A M E N S H J E M M

Læs mere

Løsninger til kapitel 7

Løsninger til kapitel 7 Løsiger til kapitel 7 Opgave 7.1 a) HpoStat giver resultatet: Pop. varias er ukedt, me 30, så Normalf. bruges approksimativt = 54,400 s 1.069,90 = 00,000 0,95 49,868 58,93 Dette betder, at med 95% sikkerhed

Læs mere

Sandsynlighedsteori 1.2 og 2 Uge 5.

Sandsynlighedsteori 1.2 og 2 Uge 5. Istitut for Matematiske Fag Aarhus Uiversitet De 27. jauar 25. Sadsylighedsteori.2 og 2 Uge 5. Forelæsiger: Geemgage af emere karakteristiske fuktioer og Mometproblemet afsluttes, og vi starter på afsittet

Læs mere

9. Binomialfordelingen

9. Binomialfordelingen 9. Biomialfordelige 9.. Gekedelse Hvert forsøg ka ku resultere i to mulige udfald; succes og fiasko. I modsætig til poissofordelige er atallet af forsøg edeligt. 9.. Model X : Stokastisk variabel, der

Læs mere

Sætning: Middelværdi og varians for linearkombinationer. Lad X 1,X 2,...,X n være stokastiske variable. Da gælder. Var ( a 0 + a 1 X a n X n

Sætning: Middelværdi og varians for linearkombinationer. Lad X 1,X 2,...,X n være stokastiske variable. Da gælder. Var ( a 0 + a 1 X a n X n Ladmåliges fejlteori Lektio 3 Estimatio af σ Dobbeltmåliger Geometrisk ivellemet Lieariserig - rw@math.aau.dk Istitut for Matematiske Fag Aalborg Uiversitet Repetitio: Middelværdi og Varias Sætig: Middelværdi

Læs mere

Statistik Lektion 8. Parrede test Test for forskel i andele Test for ens varians Gensyn med flyskræk!

Statistik Lektion 8. Parrede test Test for forskel i andele Test for ens varians Gensyn med flyskræk! Statistik Lektio 8 Parrede test Test for forskel i adele Test for es varias Gesy med flyskræk! Afhægige og uafhægige stikprøver Ved e uafhægig stikprøve udtages e stikprøve fra hver gruppe.. Mæd og kviders

Læs mere

Projekt 4.8 De reelle tal og 1. hovedsætning om kontinuerte funktioner

Projekt 4.8 De reelle tal og 1. hovedsætning om kontinuerte funktioner Projekter: Kapitel 4 Projekt 48 De reelle tal og hovedsætig om kotiuerte fuktioer Projekt 48 De reelle tal og hovedsætig om kotiuerte fuktioer Kotiuitet og kotiuerte fuktioer Ord som kotiuert og kotiuerlig

Læs mere

Test i to populationer. Hypotesetest for parrede observationer Test for ens varians Gensyn med flyskræk!

Test i to populationer. Hypotesetest for parrede observationer Test for ens varians Gensyn med flyskræk! Test i to populatioer Hypotesetest for parrede observatioer Test for es varias Gesy med flyskræk! Afhægige og uafhægige stikprøver Ved e uafhægig stikprøve udtages e stikprøve fra hver gruppe.. Mæd og

Læs mere

24. januar Epidemiologi og biostatistik. Forelæsning 1 Uge 1, tirsdag. Niels Trolle Andersen, Afdelingen for Biostatistik.

24. januar Epidemiologi og biostatistik. Forelæsning 1 Uge 1, tirsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Epidemiologi og biostatistik. Forelæsig Uge, tirsdag. Niels Trolle Aderse, Afdelige for Biostatistik. Geerelt om kurset: - Formål - Forelæsiger - Øvelser - Forelæsigsoter - Bøger - EpiBasic: http://www.biostat.au.dk/teachig/software

Læs mere

Statistiske test. Efteråret 2010 Jens Friis, AAU. Hjemmeside :

Statistiske test. Efteråret 2010 Jens Friis, AAU. Hjemmeside : Statistiske test Efteråret 00 Jes Friis, AAU Hjemmeside : http://akaaudk/jfj Kotiuerte fordeliger Defiitio: Tæthedsfuktio E sadsylighedstæthedsfuktio på R er e itegrabel fuktio f : R [0; [ hvor f d = Defiitio:

Læs mere

Sammenligning af to grupper

Sammenligning af to grupper Sammeligig af to gruer Reetitio, heruder om kritiske værdier Sammeligig af to gruer Sammeligig af to middelværdier Sammeligig af to adele Sammeligig af to variaser yoteser og hyotesetest. E hyotese er

Læs mere

Tankegangskompetence. Kapitel 9 Algebraiske strukturer i skolen 353

Tankegangskompetence. Kapitel 9 Algebraiske strukturer i skolen 353 Takegagskompetece Hesigte med de følgede afsit er først og fremmest at skabe klarhed over de mere avacerede regeregler i skole og give resultatet i de almee form, der er karakteristisk for algebra. Vi

Læs mere

Den flerdimensionale normalfordeling

Den flerdimensionale normalfordeling De flerdimesioale ormalfordelig Stokastiske vektorer Ved e stokastisk vektor skal vi forstå e vektor, hvor de ekelte kompoeter er sædvalige stokastiske variable. For de stokastiske vektor Y = Y,..., Y

Læs mere

Deskriptiv teori: momenter

Deskriptiv teori: momenter Kapitel 13 Deskriptiv teori: mometer Vi vil i dette og det følgede kapitel idføre e række begreber der bruges til at beskrive sadsylighedsmål på (R, B). Samtlige begreber udspriger i e eller ade forstad

Læs mere

Elementær Matematik. Polynomier

Elementær Matematik. Polynomier Elemetær Matematik Polyomier Ole Witt-Hase 2008 Køge Gymasium Idhold 1. Geerelle polyomier...1 2. Divisio med hele tal....1 3. Polyomiers divisio...2 4. Polyomiers rødder....4 5. Bestemmelse af røddere

Læs mere

Statistik Lektion 7. Hypotesetest og kritiske værdier Type I og Type II fejl Styrken af en test Sammenligning af to populationer

Statistik Lektion 7. Hypotesetest og kritiske værdier Type I og Type II fejl Styrken af en test Sammenligning af to populationer Statistik Lektio 7 Hpotesetest og kritiske værdier Tpe I og Tpe II fejl Strke af e test Sammeligig af to populatioer 1 Tri I e Hpotesetest E hpotesetest består af 5 elemeter: I. Atagelser Primært hvilke

Læs mere

Supplerende noter II til MM04

Supplerende noter II til MM04 Supplerede oter II til MM4 N.J. Nielse 1 Uiform koverges af følger af fuktioer Vi starter med følgede defiitio: Defiitio 1.1 Lad S være e vilkårlig mægde og (X, d et metrisk rum. E følge (f af fuktioer

Læs mere

Estimation ved momentmetoden. Estimation af middelværdiparameter

Estimation ved momentmetoden. Estimation af middelværdiparameter Statistik og Sadsylighedsregig 1 STAT kapitel 4.2 4.3 Susae Ditlevse Istitut for Matematiske Fag Email: susae@math.ku.dk http://math.ku.dk/ susae Estimatio ved mometmetode Idimellem ka det være svært (eller

Læs mere

RESEARCH PAPER. Nr. 2, En model for lagerstørrelsen som determinant for købs- og brugsadfærden for et kortvarigt forbrugsgode.

RESEARCH PAPER. Nr. 2, En model for lagerstørrelsen som determinant for købs- og brugsadfærden for et kortvarigt forbrugsgode. RESEARCH PAPER Nr., 005 E model for lagerstørrelse som determiat for købs- og brugsadfærde for et kortvarigt forbrugsgode af Jørge Kai Olse INSTITUT FOR AFSÆTNINGSØKONOMI COPENHAGEN BUSINESS SCHOOL SOLBJERG

Læs mere

og Fermats lille sætning

og Fermats lille sætning Projekter: Kaitel 0. Projekt 0. Modulo-regig, restklassegruer og Fermats lille sætig Projekt 0. Modulo-regig, restklassegruere ( { 0 }, ) og Fermats lille sætig Vi aveder moduloregig og restklasser mage

Læs mere

Forelæsningsnoter til Stokastiske Processer E05. Svend-Erik Graversen Revideret af Jan Pedersen Kapitel 12 og Appendix B og G af Jan Pedersen

Forelæsningsnoter til Stokastiske Processer E05. Svend-Erik Graversen Revideret af Jan Pedersen Kapitel 12 og Appendix B og G af Jan Pedersen Forelæsigsoter til Stokastiske Processer E5 Sved-Erik Graverse Revideret af Ja Pederse Kapitel 12 og Appedix B og G af Ja Pederse 16. august 25 Forord Nærværede otesæt skal bruges i forbidelse med kurset

Læs mere

13. februar Resumé: En statistisk analyse resulterer ofte i : Et estimat ˆ θ med en tilhørende se( ˆ θ )

13. februar Resumé: En statistisk analyse resulterer ofte i : Et estimat ˆ θ med en tilhørende se( ˆ θ ) 3. februar 003 Epidemiologi og biostatistik. Uge, torag d. 3. februar 003 Morte Frydeberg, Istitut for Biostatistik. Type og type fejl Nogle specielle metoder: Test i RxC tabeller Test i x tabeller Fishers

Læs mere

Sandsynlighedsteori 1.2

Sandsynlighedsteori 1.2 Forelæsigsoter til Sadsylighedsteori.2 Sved Erik Graverse Jauar 2006 Istitut for Matematiske Fag Det Naturvideskabelige Fakultet Aarhus Uiversitet. Mometproblemet. I dette afsit beteger X e stokastisk

Læs mere

Matematik A. Studentereksamen. Forberedelsesmateriale. Forsøg med digitale eksamensopgaver med adgang til internettet.

Matematik A. Studentereksamen. Forberedelsesmateriale. Forsøg med digitale eksamensopgaver med adgang til internettet. Matematik A Studetereksame Forsøg med digitale eksamesopgaver med adgag til iterettet Forberedelsesmateriale Vejledede opgave Forår 0 til stx-a-net MATEMATIK Der skal afsættes 6 timer af holdets sædvalige

Læs mere

STATISTIKNOTER Simple normalfordelingsmodeller

STATISTIKNOTER Simple normalfordelingsmodeller STATISTIKNOTER Simple ormalfordeligsmodeller Jørge Larse IMFUFA Roskilde Uiversitetsceter Februar 1999 IMFUFA, Roskilde Uiversitetsceter, Postboks 260, DK-4000 Roskilde. Jørge Larse: STATISTIKNOTER: Simple

Læs mere

Stikprøvefordelinger og konfidensintervaller

Stikprøvefordelinger og konfidensintervaller Stikprøvefordeliger og kofidesitervaller Stikprøvefordelige for middelværdi De Cetrale Græseværdi Sætig Egeskaber Ved Estimatore Kofidesitervaller t-fordelige Estimator og estimat E stikprøve statistik

Læs mere

Modul 14: Goodness-of-fit test og krydstabelanalyse

Modul 14: Goodness-of-fit test og krydstabelanalyse Forskigsehede for Statistik ST01: Elemetær Statistik Bet Jørgese Modul 14: Goodess-of-fit test og krydstabelaalyse 14.1 Idledig....................................... 1 14.2 χ 2 -test i e r c krydstabel.............................

Læs mere

Spørgsmål 3 (5 %) Bestem sandsynligheden for at et tilfældigt valgt vindue har en fejl ved listerne, når man ved at der er fejl i glasset.

Spørgsmål 3 (5 %) Bestem sandsynligheden for at et tilfældigt valgt vindue har en fejl ved listerne, når man ved at der er fejl i glasset. STATISTIK Skriftlig evaluerig, 3. semester, madag de 30. auar 006 kl. 9.00-3.00. Alle hælpemidler er tilladt. Opgaveløsige forsyes med av og CPR-r. OPGAVE Ved e produktio af viduer er der mulighed for,

Læs mere

Undersøgelse af numeriske modeller

Undersøgelse af numeriske modeller Udersøgelse af umeriske modeller Formål E del af målsætige med dette delprojekt er at give kedskab til de begræsiger, fejl og usikkerheder, som optræder ved modellerig. I de forbidelse er følgede udersøgelse

Læs mere

Estimation og test i normalfordelingen

Estimation og test i normalfordelingen af Birger Stjerholm Made Samfudlitteratur 07 Etimatio og tet i ormalfordelige Dee tekt ideholder et overblik over ogle grudlæggede pricipper for etimatio og tet i ormalfordelige i hyppigt forekommede ituatioer:

Læs mere

Branchevejledning. ulykker indenfor. godschauffør. området. Branchearbejdsmiljørådet for transport og engros

Branchevejledning. ulykker indenfor. godschauffør. området. Branchearbejdsmiljørådet for transport og engros Brachevejledig ulykker idefor godschauffør området Brachearbejdsmiljørådet for trasport og egros Baggrud Udersøgelser på lager- og trasportområdet har vist, at beskrivelse af hædelsesforløbet ved udfyldelse

Læs mere

Bjørn Grøn. Analysens grundlag

Bjørn Grøn. Analysens grundlag Bjør Grø Aalyses grudlag Aalyses grudlag Side af 4 Idholdsfortegelse Kotiuerte og differetiable fuktioer 3 Differetial- og itegralregiges udviklig 5 3 Hovedsætiger om differetiable fuktioer 8 Opgaver til

Læs mere

Branchevejledning. ulykker indenfor. lager. området. Branchearbejdsmiljørådet for transport og engros

Branchevejledning. ulykker indenfor. lager. området. Branchearbejdsmiljørådet for transport og engros Brachevejledig ulykker idefor lager området Brachearbejdsmiljørådet for trasport og egros Baggrud Udersøgelser på lager- og trasportområdet har vist, at beskrivelse af hædelsesforløbet ved udfyldelse

Læs mere

Georg Mohr Konkurrencen Noter om uligheder. Søren Galatius Smith

Georg Mohr Konkurrencen Noter om uligheder. Søren Galatius Smith Georg Mohr Kokurrece Noter om uligheder Søre Galatius Smith. juli 2000 Resumé Kapitel geemgår visse metoder fra gymasiepesum, som ka bruges til at løse ulighedsopgaver, og ideholder ikke egetligt yt stof.

Læs mere

Program. Ensidet variansanalyse Normalfordelingen. Antibiotika og nedbrydning af organisk materiale. Tegninger

Program. Ensidet variansanalyse Normalfordelingen. Antibiotika og nedbrydning af organisk materiale. Tegninger Faculty of Life Scieces Program Esidet variasaalyse Normalfordelige Claus Ekstrøm E-mail: ekstrom@life.ku.dk Esidet variasaalyse (oe-way ANOVA) Hvilke type data? Hvad er problemstillige? Variatio mellem

Læs mere

GENEREL INTRODUKTION.

GENEREL INTRODUKTION. Study Guide til Matematik C. OVERSIGT. Dee study guide ideholder følgede afsit - Geerel itroduktio. - Emeliste. - Eksame. - Bilag. Udervisigsmiisteriets bekedtgørelse for matematik C. GENEREL INTRODUKTION.

Læs mere

29. januar Epidemiologi og biostatistik Forelæsning 2 Uge 1, torsdag 2. februar 2006 Michael Væth, Afdeling for Biostatistik.

29. januar Epidemiologi og biostatistik Forelæsning 2 Uge 1, torsdag 2. februar 2006 Michael Væth, Afdeling for Biostatistik. Epidemiologi og biostatistik Forelæsig Uge 1, torsdag. februar 006 ichael Væth, Afdelig for Biostatistik. Sammeligig af to middelværdier sikkerhedsitervaller statistisk test Sammeligig af to proportioer

Læs mere

Introduktion til Statistik

Introduktion til Statistik Itroduktio til Statistik 4. udgave Susae Ditlevse og Helle Sørese Susae Ditlevse, susae@math.ku.dk Helle Sørese, helle@math.ku.dk Istitut for Matematiske Fag Købehavs Uiversitet Uiversitetsparke 5 2100

Læs mere

Kvantemekanik 4 Side 1 af 11 Energi og tid. Hamiltonoperatoren

Kvantemekanik 4 Side 1 af 11 Energi og tid. Hamiltonoperatoren Kvateekaik 4 Side 1 af 11 ergi og tid Hailtooperatore Af KM3 fregik det, at ehver observabel er repræseteret ved e operator, f.eks. jf. udtryk (3.1) og (3.). Ispireret af det klassiske udtryk for kietisk

Læs mere

Talfølger og -rækker

Talfølger og -rækker Da Beltoft og Klaus Thomse Aarhus Uiversitet 2009 Talfølger og -rækker Itroduktio til Matematisk Aalyse Zeos paradoks om Achilleus og skildpadde Achilleus løber om kap med e skildpadde. Achilleus løber

Læs mere

30. august Epidemiologi og biostatistik. Forelæsning 3 Uge 2, torsdag d. 8. september 2005 Michael Væth, Afdeling for Biostatistik.

30. august Epidemiologi og biostatistik. Forelæsning 3 Uge 2, torsdag d. 8. september 2005 Michael Væth, Afdeling for Biostatistik. 30. august 005 Epidemiologi og biostatistik. Forelæsig 3 Uge, torag d. 8. september 005 Michael Væth, Afdelig for Biostatistik. Mere om kategoriske data Test for uafhægighed I RxC tabeller Test for uafhægighed

Læs mere

Om Følger og Rækker. Nyttige Grænseværdier. Nyttige Rækker. Carsten Lunde Petersen. lim. lim = 0. lim (1 + x n n )n = e x. n n n.

Om Følger og Rækker. Nyttige Grænseværdier. Nyttige Rækker. Carsten Lunde Petersen. lim. lim = 0. lim (1 + x n n )n = e x. n n n. IMFUFA Carste Lude Peterse Om Følger og Ræer Nyttige Græseværdier lim = 1 lim! = x = 0! lim lim (1 + x ) = e x! lim = e 1 Nyttige Ræer 1 p < p > 1 1 log p ( + 1) < p > 1 x = = x 1 x for x < 1 og Z, diverget

Læs mere

Diskrete og kontinuerte stokastiske variable

Diskrete og kontinuerte stokastiske variable Diskrete og kotiuerte stokastiske variable Beroulli Biomial fordelig Negativ biomial fordelig Hypergeometrisk fordelig Poisso fordelig Kotiuerte stokastiske variable Uiform fordelig Ekspoetial fordelig

Læs mere

Formelskrivning i Word 2. Sådan kommer du i gang 4. Eksempel med skrivning af brøker 5. Brøker skrevet med småt 6. Hævet og sænket skrift 6

Formelskrivning i Word 2. Sådan kommer du i gang 4. Eksempel med skrivning af brøker 5. Brøker skrevet med småt 6. Hævet og sænket skrift 6 Dee udgave er til geemkig på ettet. Boge ka købes for kr. 5 hos EH-Mat. E y og udvidet udgave med title»symbol- og formelskrivig«er udkommet september 00. Se mere om de her. Idholdsfortegelse Formelskrivig

Læs mere

Simpel Lineær Regression. Opsplitning af variationen Determinations koefficient Variansanalyse F-test Model-kontrol

Simpel Lineær Regression. Opsplitning af variationen Determinations koefficient Variansanalyse F-test Model-kontrol Simpel Lieær Regressio Opsplitig af variatioe Determiatios koefficiet Variasaalse F-test Model-kotrol Opbgig af statistisk model Specificer model Ligiger og atagelser Estimer parametre Modelkotrol Er modelle

Læs mere

r n E[ X n ]/n! for alle r > 0 ifølge monoton konvergens, giver potensrækketeori, at ( ) er ækvivalent med, at ρ n E[ X n ]/n!

r n E[ X n ]/n! for alle r > 0 ifølge monoton konvergens, giver potensrækketeori, at ( ) er ækvivalent med, at ρ n E[ X n ]/n! Mometproblemet. Lad i dette afsit X betege e stokastisk variabel med mometer af ehver orde. Mometfølge (E[X ]) er derfor e vel defieret reel talfølge bestemt ved fordelige, og spørgsmålet om, de omvedt

Læs mere

Analyse 1, Prøve maj Lemma 2. Enhver konstant funktion f : R R, hvor f(x) = a, a R, er kontinuert.

Analyse 1, Prøve maj Lemma 2. Enhver konstant funktion f : R R, hvor f(x) = a, a R, er kontinuert. Alyse, Prøve. mj 9 Alle hevisiger til TL er hevisiger til Klkulus 6, Tom Lidstrøm. Direkte opgvehevisiger til Klkulus er givet med TLO, ellers er lle hevisiger til steder i de overordede fsit. Hevises

Læs mere

Indholdsfortegnelse Generelt Diskrete stokastiske variable: Kontinuerte stokastiske variable: Regneregler for stokastiske variable

Indholdsfortegnelse Generelt Diskrete stokastiske variable: Kontinuerte stokastiske variable: Regneregler for stokastiske variable Idholdsfortegelse Geerelt:...3 Stokastisk variabel:...3 Tæthedsfuktio/sadsylighedsfuktio for stokastisk variabel:...3 Fordeligsfuktio/sumfuktio for stokastisk variabel:...3 Middelværdi:...4 Geemsit:...4

Læs mere

Projekt 1.3 Brydningsloven

Projekt 1.3 Brydningsloven Projekt 1.3 Brydigslove Når e bølge, fx e lysbølge, rammer e græseflade mellem to stoffer, vil bølge ormalt blive spaltet i to: Noget af bølge kastes tilbage (spejlig), hvor udfaldsvikle u er de samme

Læs mere

Renteformlen. Erik Vestergaard

Renteformlen. Erik Vestergaard Reteformle Erik Vestergaard 2 Erik Vestergaard www.matematikfysik.dk Erik Vestergaard, 2010. Billeder: Forside: istock.com/ilbusca Side 4: istock.com/adresrimagig Desude ege illustratioer. Erik Vestergaard

Læs mere

Opsamling. Lidt om det hele..!

Opsamling. Lidt om det hele..! Opsamlig Lidt om det hele..! Kursus oversigt Hvad har vi været igeem: Deskriptiv statistik Sadsyligheder Stokastiske variable diskrete og kotiuerte Fordeliger Estimatio Test Iferes Sammeligig af middelværdier

Læs mere

Matematikkens mysterier - på et obligatorisk niveau. 7. Ligninger, polynomier og asymptoter

Matematikkens mysterier - på et obligatorisk niveau. 7. Ligninger, polynomier og asymptoter Matematikkes mysterier - på et obligatorisk iveau af Keeth Hase 7. Ligiger, polyomier og asymptoter Hvad er e asymotote? Og hvorda fides de? 7. Ligiger, polyomier og asymptoter Idhold 7.0 Idledig 7.1 Udsag

Læs mere

IMFUFA TEKST NR TEKSTER fra ROSKILDE UNIVERSITETSCENTER. Jørgen Larsen

IMFUFA TEKST NR TEKSTER fra ROSKILDE UNIVERSITETSCENTER. Jørgen Larsen TEKST NR 435 2004 Basisstatistik 2. udgave Jørge Larse August 2006 TEKSTER fra IMFUFA INSTITUT ROSKILDE UNIVERSITETSCENTER FOR STUDIET AF MATEMATIK OG FYSIK SAMT DERES FUNKTIONER I UNDERVISNING, FORSKNING

Læs mere

Teoretisk Statistik, 9. februar Beskrivende statistik

Teoretisk Statistik, 9. februar Beskrivende statistik Uge 7 I Teoretisk Statistik, 9 februar 004 Beskrivede statistik Kategoriserede variable 3 Kvatitative variable 4 Fraktiler for ugrupperede observatioer 5 Fraktiler for grupperede observatioer 6 Beliggeheds-

Læs mere

Prisfastsættelse af digitale goder - Microsoft

Prisfastsættelse af digitale goder - Microsoft Iteretøkoomi: risfastsættelse af digitale goder Afleveret d. 9 maj 003 Af Julie ech og Malee Aja org risfastsættelse af digitale goder - Microsoft Af Julie ech og Malee Aja org.0.0 DIGITALE GODER....0.0

Læs mere

Vejledende besvarelser til opgaver i kapitel 15

Vejledende besvarelser til opgaver i kapitel 15 Vejledede besvarelser til opgaver i apitel 5 Opgave a) De teststatistier, ma aveder til at teste om to middelværdier er es, består af et estimat på forselle mellem middelværdiere,, divideret med et udtry

Læs mere

STATISTISKE GRUNDBEGREBER

STATISTISKE GRUNDBEGREBER MOGENS ODDERSHEDE LARSEN STATISTISKE GRUNDBEGREBER 18 15 1 9 6 3 0 Histogram for ph 6,9 7,1 7,3 7,5 7,7 7,9 ph 13 udgave 013 FORORD Der er i dee bog søgt at give letlæst og askuelig fremstillig af de statistiske

Læs mere

Morten Frydenberg version dato:

Morten Frydenberg version dato: Morte Frdeberg versio dato: 4--4 Itroduktio til kurset Statistik Forelæsig Morte Frdeberg, Sektio for Biostatistik af Biostatistik dele af. semester kurset. Statistiske modeller Biomialfordelige Normalfordelige

Læs mere

6 Populære fordelinger

6 Populære fordelinger 6 Populære fordeliger I apitel 4 itroducerede vi stoastise variabler so e åde at repræsetere udfald af et esperiet på. De stoastise variabler ue være både disrete (fx terigslag) og otiuerte (fx vareægder).

Læs mere

DATV: Introduktion til optimering og operationsanalyse, 2007. Bin Packing Problemet

DATV: Introduktion til optimering og operationsanalyse, 2007. Bin Packing Problemet DATV: Itroduktio til optimerig og operatiosaalyse, 2007 Bi Packig Problemet David Pisiger, Projektopgave 2 Dette er de ade obligatoriske projektopgave på kurset DATV: Itroduktio til optimerig og operatiosaalyse.

Læs mere

STATISTISKE GRUNDBEGREBER

STATISTISKE GRUNDBEGREBER MOGENS ODDERSHEDE LARSEN STATISTISKE GRUNDBEGREBER med avedelse af TI 89 og Excel 8 5 9 6 3 0 Histogram for ph 6,9 7, 7,3 7,5 7,7 7,9 ph. udgave 0 FORORD Der er i dee bog søgt at give letlæst og askuelig

Læs mere

Matematisk Modellering 1 Hjælpeark

Matematisk Modellering 1 Hjælpeark Matematisk Modellerig Hjælpeark Kaare B. Mikkelse 2005090 3. september 2007 Idhold Formler 2 2 Aalyse af k ormalfordelte prøver 2 2. Modelcheck............................................ 2 2.2 Test af

Læs mere

Skitse til notat om hvor de forskellige sandsynlighedsfordelinger kan tænkes at komme fra

Skitse til notat om hvor de forskellige sandsynlighedsfordelinger kan tænkes at komme fra E6 efterår 1999 Notat 8 Jørge Larse 12. oktober 1999 Skitse til otat om hvor de forskellige sadsylighedsfordeliger ka tækes at komme fra I statistik opererer ma i vid udstrækig med et lille atal»stadardfordeliger«.

Læs mere

Gamle eksamensopgaver. Diskret Matematik med Anvendelser (DM72) & Diskrete Strukturer(DM504)

Gamle eksamensopgaver. Diskret Matematik med Anvendelser (DM72) & Diskrete Strukturer(DM504) Gamle eksamesopgaver Diskret Matematik med Avedelser (DM72) & Diskrete Strukturer(DM504) Istitut for Matematik& Datalogi Syddask Uiversitet, Odese Alle sædvalige hjælpemidler(lærebøger, otater etc.), samt

Læs mere

Noter om kombinatorik, Kirsten Rosenkilde, februar 2008 1. Kombinatorik

Noter om kombinatorik, Kirsten Rosenkilde, februar 2008 1. Kombinatorik Noter om ombiatori, Kirste Roseilde, februar 008 Kombiatori Disse oter er e itrodutio til ombiatori og starter helt fra bude, så e del af det idledede er siert edt for dig allerede, me der ommer også hurtigt

Læs mere

A14 4 Optiske egenskaber

A14 4 Optiske egenskaber A4 4 Optiske egeskaber Brydigsideks Når lys træffer e græseflade mellem to materialer, kastes oget af lyset tilbage (refleksio), mes oget går igeem græseflade med foradret retig (brydig eller refraktio).

Læs mere

Rettevejledning til HJEMMEOPGAVE 1 Makro 1, 2. årsprøve, foråret 2007 Peter Birch Sørensen

Rettevejledning til HJEMMEOPGAVE 1 Makro 1, 2. årsprøve, foråret 2007 Peter Birch Sørensen Rettevejledig til HJEMMEOPGAVE Makro, 2. årsprøve, foråret 2007 Peter Birch Sørese Opgave... Udsaget er forkert. De omtalte skatteomlægig må atages at øge beskæftigelse p.gr.a. e positiv substitutioseffekt

Læs mere

STATISTISK MODELLERING OG ANALYSE 19. DECEMBER 2008 ET MAT3-PROJEKT I BAYESIANSK INFERENS VEJLEDER: JAKOB G. RASMUSSEN GRUPPE: G4-115

STATISTISK MODELLERING OG ANALYSE 19. DECEMBER 2008 ET MAT3-PROJEKT I BAYESIANSK INFERENS VEJLEDER: JAKOB G. RASMUSSEN GRUPPE: G4-115 STATISTISK MODELLERING OG ANALYSE ET MAT3-PROJEKT I BAYESIANSK INFERENS 19. DECEMBER 2008 θ x VEJLEDER: JAKOB G. RASMUSSEN GRUPPE: G4-115 INSTITUT FOR MATEMATISKE FAG Istitut for Matematiske Fag Fredrik

Læs mere

Kvadratisk 0-1 programmering. David Pisinger

Kvadratisk 0-1 programmering. David Pisinger Kvadratisk - programmerig David Pisiger 27-8 MAX-CUT problemet Givet e ikke-orieteret graf G = (V, E) er MAX-CUT problemet defieret som MAX-CUT = {< G > : fid et sit S, T i grafe G som maksimerer atal

Læs mere

x-klasserne Gammel Hellerup Gymnasium

x-klasserne Gammel Hellerup Gymnasium SANDSYNLIGHEDSREGNING OG KOMBINATORIK x-klassere Gammel Hellerup Gymasium Idholdsfortegelse SANDSYNLIGHEDSREGNING... 3 SANDSYNLIGHEDSFELT... 3 DE STORE TALS LOV... 4 Sadsyligheder og frekveser:... 4 STOKASTISK

Læs mere

Statistik 8. gang 1 KONFIDENSINTERVALLER. Konfidensintervaller: kapitel 11. Valg og test af fordelingsfunktion

Statistik 8. gang 1 KONFIDENSINTERVALLER. Konfidensintervaller: kapitel 11. Valg og test af fordelingsfunktion Statistik 8. gag 1 KONIDENSINTERVALLER Kofidesitervaller: kapitel 11 Valg og test af fordeligsfuktio Statistik 8. gag 11. KONIDENS INTERVALLER Et kofides iterval udtrykker itervallet hvori de rigtige værdi

Læs mere

Bent Willum Hansen. Vejledende løsninger S2 S1

Bent Willum Hansen. Vejledende løsninger S2 S1 Bet Willum Hase Vejledede løsiger 6 5 4 3 3 4 5 6 S S Sæt U Sæt U Opgave. a) A = Turist tilhører de primære kudegruppe P(A) =,9 b) B = Turist bor i et sommerhus med havudsigt P(B) =,8 c) A = Turist tilhører

Læs mere

Sprednings problemer. David Pisinger

Sprednings problemer. David Pisinger Spredigs problemer David Pisiger 2001 Idledig Jukfood A/S er e amerikask kæde af familierestaurater der etop er ved at etablere sig i Damark. E massiv reklamekampage med de to slogas vores fritter er de

Læs mere

Matematisk trafikmodellering

Matematisk trafikmodellering - Mathematical traffic modelig Grupper.: 8 Gruppemedlemmer: Jacob Hallberg Hasema Kim Alla Hase Ria Roja Kari Vejleder: Morte Blomhøj Semester: 4. Semester, forår 2007, hus 13.1 Studieretig: Det aturvideskabelige

Læs mere

DATV: Introduktion til optimering og operationsanalyse, 2007. Følsomhed af Knapsack Problemet

DATV: Introduktion til optimering og operationsanalyse, 2007. Følsomhed af Knapsack Problemet DATV: Itroduktio til optimerig og operatiosaalyse, 2007 Følsomhed af Kapsack Problemet David Pisiger, Projektopgave 1 Dette er de første obligatoriske projektopgave på kurset DATV: Itroduktio til optimerig

Læs mere

Supplement til Kreyszig

Supplement til Kreyszig Supplemet til Kreyszig Forelæsigsoter til Matematik F Idholdsfortegelse side 1. Numerisk itegratio. Fejlvurderig af trapez og Simpso algoritmere 1. Dekompoerig af brøker (Laplace trasformatio) 3. Permutatioer

Læs mere

Sandsynlighedsregning i biologi

Sandsynlighedsregning i biologi Om begrebet sadsylighed Sadsylighedsregig i biologi Hvis vi kaster e almidelig, symmetrisk terig, er det klart for de fleste af os, hvad vi meer, år vi siger, at sadsylighede for at få e femmer er 1/6.

Læs mere

Blisterpakninger i det daglige arbejde

Blisterpakninger i det daglige arbejde Bettia Carlse Marts 2013 Blisterpakiger i det daglige arbejde I paeludersøgelse 35 1 har 1.708 beskæftigede sygeplejersker besvaret e række spørgsmål om (hådterige af) blisterpakiger i det daglige arbejde.

Læs mere

Termodynamik. Indhold. Termodynamik. Første og anden hovedsætning 1/18

Termodynamik. Indhold. Termodynamik. Første og anden hovedsætning 1/18 ermodyamik. Første og ade hovedsætig /8 ermodyamik Idhold. Isoterme og adiabatiske tilstadsædriger for gasser...3 3. ermodyamikkes. hovedsætig....5 4. Reversibilitet...6 5. Reversibel maskie og maksimalt

Læs mere

Vejledende opgavebesvarelser

Vejledende opgavebesvarelser Vejledede opgavebesvarelser 1. Atal hæder er lig med K(52,5), altså 2598960. Ved brug af multiplikatiospricippet ka atal hæder med 3 ruder og 2 spar udreges som K(13, 3) K(13, 2), hvilket giver 22308.

Læs mere

Noter om polynomier, Kirsten Rosenkilde, Marts Polynomier

Noter om polynomier, Kirsten Rosenkilde, Marts Polynomier Noter om polyomier, Kirste Rosekilde, Marts 2006 1 Polyomier Disse oter giver e kort itroduktio til polyomier, og de fleste sætiger æves ude bevis. Udervejs er der forholdsvis emme opgaver, mes der til

Læs mere

Oversigt. Kursus 02402/02323 Introducerende Statistik. Forelæsning 12: Inferens for andele. Klaus K. Andersen og Per Bruun Brockhoff

Oversigt. Kursus 02402/02323 Introducerende Statistik. Forelæsning 12: Inferens for andele. Klaus K. Andersen og Per Bruun Brockhoff Kursus 02402/02323 Itroducerede Statistik Forelæsig 12: Iferes for adele Klaus K. Aderse og Per Bruu Brockhoff DTU Compute, Statistik og Dataaalyse Damarks Tekiske Uiversitet 2800 Lygby Damark e-mail:

Læs mere

Uge 40 I Teoretisk Statistik, 30. september 2003

Uge 40 I Teoretisk Statistik, 30. september 2003 Uge 40 Teoretis tatisti, 30. september 003 Esidet variasaalyse Model, otatio, hypotese og hælpehypotese Test af hælpehypotese Opdaterig af variasestimat Test af hypotese om es middelværdier Variasaalysesema

Læs mere

- et værktøj til fejlrettende QR-koder. Projekt 0.3 Galois-legemerne. Indhold. Hvad er matematik? A, i-bog

- et værktøj til fejlrettende QR-koder. Projekt 0.3 Galois-legemerne. Indhold. Hvad er matematik? A, i-bog Projekt 0.3 Galois-legemere GF é ëp û - et værktøj til fejlrettede QR-koder Idhold De karakteristiske egeskaber ved de tre mest almidelige talsystemer, og... De kommutative, associative og distributive

Læs mere