Komplekse tal i elektronik

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "Komplekse tal i elektronik"

Transkript

1 Januar 5 Komplekse tal i elektronik KOMPLEKSE tal er ideelle til beregning på elektriske og elektroniske kredsløb hvori der indgår komponenter, der ved vekselspændinger fase-forskyder strømme og spændinger, og hvis ohmske værdier afhænger af frekvensen. Dvs. spoler og kondensatorer. Med komplekse tal kan man opstille ligninger hvori frekvensen indgår som variabel. Ligningerne gælder altså for alle frekvenser, der blot skal indsættes og udregnes. Ligningerne giver fx. i forstærkerkoblinger som resultat både forstærkningen og fasedrejning. Komplekse tal opererer med begrebet Imaginære tal uvirkelige eller - indbildte tal. De tal, vi hidtil har opereret med, kan alle afbildes på en tallinie. Et sted er, et sted 47 osv. De er alle beliggende på X-aksen. Med komplekse tal indføres alle tal, der ligger i planet. Et tal kan fx ligge på en position i planet, der kan beskrives som 4 ud ad X-aksen, og 3 op ad Y-aksen. Dette ligner jo meget vektorer, hvor tallet ville benævnes (4, 3). Vektoren kan også angives som en vektors længde, og dens vinkel i forhold til X-aksen. Y-aksen kaldes også den Imaginære akse, og X-aksen den eelle akse. Tilsvarende med komplekse tal. Et komplekst tal kan angives med en vandret del og en lodret del. De kaldes hhv. den reelle del, og den imaginære del. Forkortes til e, og Im. En angivelse af et tal på den form kaldes Sumform. Som med vektorer kan tallet også angives med en længde og en vinkel. Denne form kaldes Polær. Altså afstanden ud til tallet, og vinklen i forhold til vandret mød højre! Den del af et komplekst tal, der er lodret angives med et j foran. I matematikkens verden benyttes i for den imaginære del af et tal, men i elektriske sammenhænge bruges i som formeltegn for strøm, og kan herved forveksles. Det er derfor normalt at bruge j. I komplekse tal findes definitionen, at j gange j = j. Eller som det må fremgå, j Med brug af komplekse tal er det derfor muligt at uddrage kvadratroden af et negativt tal!! Hvorfor er j = -? Af Valle Thorø Side af 3

2 Januar 5 Den komplekse vektor j kan også skrives som + j. Dvs. ud ad x-aksen, og opad Y- aksen. På polær form er + j = 9 j * j er altså lig (9) * (9).Dette er lig *(9 + 9 ) = 8. Som igen er lig + j =. Altså er j j For regneregler for komplekse tal, se sidst i kompendiet! Fasedrejning i modstande, kondensatorer og spoler: For at komme lidt ind på forståelsen af komplekse tal brugt på elektroniske komponenter, undersøges komponenterne, modstande, kondensatorer og spoler, først vektorielt. MODSTANDE. U og I er i fase. I modstande er strøm og spænding i fase. Dvs. at strømmen løber samtidigt med at der er en spænding over modstanden. Der er altså ingen faseforskydning. Modstanden er ren ohmsk, og kan udtrykkes ved = U / I. I et "venstre-roterende" koordinatsystem afbildes U og I vandret ud ad samme akse. Strømmen tegnes vandret mod højre! KONDENSATOE. En kondensators "modstand" kaldes EAKTANS. Den måles i Ohm, og er udtrykt ved formlen X C. Frekvensen indgår i ligningen, dvs. reaktansen er frekvensafhængig og fc omvendt proportional med frekvensen. I en kondensator er strømmen 9 grader før spændingen, og heraf fremgår også, at spændingen er efter strømmen. For en nærmere beskrivelse af hvorfor det er sådan, se speciel kompendium herom Af Valle Thorø Side af 3

3 Januar 5 Navnet "ELICE" bruges ofte som huskeregel. Omkring "C" er "I" før "E".( E burde egentlig være U, fordi vi bruger U som formeltegn for spænding! ). Man siger også, at reaktansen er "kapasitiv". Koordinatsystemet for vektorerne, der viser strøm og spænding ser således ud, idet strømmen er tegnet vandret: Ugen Vac Vdc V C n I [A] ELICE Uc Fi I Uc er 9 grader efter strømmen SPOLE. I en spole er strømmen 9 grader bagud i forhold til spændingen. Dvs. at U er før I. eaktansen kaldes "INDUKTIV", ikke ohmsk!!, og beregnes med X L f L. Enheden er Ohm. Ugen VOFF = VAMPL = FEQ = V L mh I [A] UL Fi I ELICE UL er 9 grader foran strømmen IL Af Valle Thorø Side 3 af 3

4 Januar 5 Simuleres med OCAD skal der sættes en lille modstand ind i serie med spolen, idet en ideel spole jo ikke har nogen trådviklingsmodstand, og strømmen i den kan derfor blive uendelig stor. En graf for strøm og spænding ses her: s 9.96s 9.97s 9.98s 9.99s.s V(UGEN) -I(L) Time På grafen ses, at U er 9 grader før I MODSTAND OG KONDENSATO I SEIE. Er der en modstand og en kondensator i serie, eller i parallel, vil den samlede impedans også være frekvensafhængig. Hermed vil der være en fasedrejning, der også er afhængig af frekvensen. Leddet kaldes også et C-led. Ethvert C-led har en overgangs-frekvens, kaldet f. Det er den frekvens, ved hvilken XC =. Forholdene kan ved en given frekvens tegnes i det roterende koordinatsystem. Strømmen må være ens i serieforbindelsen. Derfor afsættes den vandret. U er i fase med strømmen, og afsættes vandret. UC er 9 grader bagud, ( idet strømmen er forud ), altså afsættes den nedad. Af Valle Thorø Side 4 af 3

5 Januar 5 "fi" er vinklen mellem strøm og spænding. Spidsen af vektoren Z beskriver en cirkelbue fra lodret nedad til vandret mod højre når frekvensen går fra mod uendelig."fi" er 45 grader ved XC =, dvs. ved f. Den samlede "modstand", kaldes impedans, når den ikke er ren ohmsk. Den findes ved at addere de to vektorer "vektorielt", eller ved beregning: Z U U Z X C C eller Modstandstrekanten fremkommer ved at dividere spændingerne med strømmen. Trekanterne ligner altså hinanden hvad størrelsesforholdene angår. De er ligedannede! Af Z X C ses, at for f XC Z. Husk! X C f C Med værdierne = Kohm og C = nf fås følgende graf for Z, altså indgangsmodstanden Z X C Ugen V.M Vac Vdc V k C.M n (.8574K,.369K).Hz Hz Hz.KHz KHz V(UGEN) / I() Frequency Ved lave frekvenser er modstanden i kondensatoren meget stor. Ved meget høje frekvenser går Xc mod nul, og grafen må gå mod K. Modstandens værdi ændres jo ikke! MODSTAND OG SPOLE I SEIE. Af Valle Thorø Side 5 af 3

6 Januar 5 Ved en spole i serie med en modstand er strømmen I igen fælles, og afsættes vandret. U er i fase med I, og afsættes vandret. UL er foran strømmen, dvs. afsættes opad. Fasedrejningen "fi" er vinklen mellem strøm og spænding. Modstandstrekanten fremkommer ved at dividere spændingerne med strømmen, der jo er fælles. = U/I Vac Vdc Ugen V3 k L uh Det ses, at Z X L Idet X L f L findes, at for f XL Z Grafen for Z ser således ud:.5k Vac Vdc V Ugen V k L.K.5K mh (4.69,.K).K Hz Hz.KHz KHz KHz V(UGEN) / I() Frequency MODSTAND, KONDENSATO OG SPOLE I SEIE. Er der både en kondensator, en spole og en modstand i serie fås idet XL og XC er modsat rettede at: Z X X L C Af Valle Thorø Side 6 af 3

7 Januar 5 Ugen k Fasedrejningen "fi" er vinklen mellem strøm og spænding Ugen som også svarer til vinklen mellem Z og. Ved den frekvens, hvor XC = XL, ophæves de helt. De er jo modsat rettede, og den samlede modstand bliver så rent ohmsk. Vac Vdc V C n L uh Ved lave frekvenser er kondensatoren en stor modstand. Ved høje frekvenser er det spolen, der yder stor modstand: Ugen 8K Vac Vdc V k C n L mh 4K (.5744K,.K) Hz Hz KHz.MHz V(UGEN) / I() Frequency Af Valle Thorø Side 7 af 3

8 Januar 5 Brug af komplekse tal på modstande, kondensatorer og spoler. I ovenstående eksempler er brugt et roterende koordinatsystem, med en X-akse til ikke faseforskudte størrelser, dvs. reelle, og en Y-akse til de faseforskudte, ( kaldes imaginære = svært forståelige ) størrelser. Vektorer heri udtrykker størrelser og fasedrejning for et givet kredsløb ved en given frekvens. Kompleks e Vektorer: Fra venstre: Tilfældig vektor, der både består af en reel part og en imaginær part. I midten for kondensator og til højre vektoren for en spole. Ved matematisk beskrivelse af vektorerne bruges "j" foran de lodrette vektorer for at angive, at de er 9 grader foran eller bagud, dvs. i vores system opad eller nedad. Modstand: Kompleks fremstilling af vektoren for en modstand er : Z = + j "j", som udtales j nul, angiver, at modstanden ikke har en imaginær del, altså er ren ohmsk eller "reel". Altså er vektoren ud ad den normale talakse. Z bruges om Impedanser, eller Modstande, der ikke er rent ohmske. Kondensator: For kondensatorer fås, at impedansen Zc jxc j fc fc kan også skrives som C, ( omega * C ), så Zc j C eller Zc jc idet j j j jc jc j C C Af Valle Thorø Side 8 af 3

9 Januar 5 Bemærk j*j = -! Vektoren starter i origo, og minustegnet indikerer, at den går nedad. Spoler: Z L j L idet omega = *pi*f. Vektoren starter i origo, og går opad. EKSEMPEL Der ses i dette eksempel på en serieforbindelse af en modstand og en kondensator. Den samlede impedans "Z" er den vektorielle sum af vektoren "" og "XC" lodret nedad. Modstanden kan på kompleks form skrives som + j, og kondensatorens værdi som - jxc. Minusset angiver "nedad". Den samlede impedans Z bliver, idet "j" angiver de 9 graders drejning: Z C Vektoren Zin = ( + j ) + ( - jxc ). De reelle komposanter adderes for sig, og de imaginære adderes for sig, begge med fortegn. I øvrigt henvises til separat afsnit om regneregler. Her fås: Zin = - jxc. Dette angiver at vektoren Zin kan opløses i en projektion på x-aksen som er "" og en projektion på y-aksen der er XC lang i negativ, lodret retning. Længden af Z bliver vha Pythagoras : Z Xc Z C En graf kan tegnes for Z ved forskellige frekvenser. (frekvensen er variabel). Frekvensen indgår i omega. Fasedrejningen Inv-tan( XC/ ) eller på en anden skrivemåde "fi" = tg - (XC/) bliver : Af Valle Thorø Side 9 af 3 f

10 Januar 5 Im tg e eller tg Xc eller tg f C Eksempel på beregning af impedansen Z og fi. Eksempel med spændingsdeler: Flg. eksempel med en spændingsdeler, bestående af en modstand og en kondensator, et såkaldt "lavpas-led", vil være noget svær at overskue vha. vektorer. Men med en undersøgelse eller beregning vha. kompleks regning kan det lade sig gøre, omend mellemregningerne kan være svære at tolke. Først ses rent logisk, at ved høje frekvenser vil udgangen nærmest være kortsluttet, idet en kondensator er en lille modstand ved høje frekvenser. UOut er altså dæmpet ved høje frekvenser. Modsat har kondensatoren en meget stor modstand ved meget lave frekvenser, og dette fører til at kondensatoren ikke belaster eller "stjæler" ret meget af signalet ved lave frekvenser. UOut er altså næsten lig UIn ved lave frekvenser. Heraf navnet, LAVPASFILTE. Lave frekvenser passerer nærmest uhindret, og høje dæmpes. Dæmpningen af udgangen er altså frekvensafhængig. Man kan også opfatte kredsløbet som en forstærker, hvor forstærkningen dog er under gange. Kredsløb med C-led og skitse af dets boodeplot. Inddelingen på X-aksen er logaritmisk! På Y-aksen angives forstærkningen i db. Dvs. * Log ( Uout / Uin ) Af Valle Thorø Side af 3

11 Januar 5 Ser man logisk på kredsløbet, må der være en frekvens, hvor størrelsen af er lig størrelsen af Xc, idet Xc jo er frekvensafhængig. Det er jo en serieforbindelse, så strømmen er ens!! Derfor må spændingen over modstanden have samme størrelse som spændingen over C ved denne frekvens. Men de er jo vinkelrette på hinanden!!!! Og summen af dem må være lig den påtrykte spænding. Grafisk haves en ligesidet retvinklet trekant. Hypotenusen er den påtrykte spænding, og den må være lig Side Side. Eller med andre ord, spændingen over modstanden og kondensatoren er hver især,77 gange den påtrykte spænding.!! Frekvensen, hvor størrelsen af og Xc er ens, kan findes af: X C, f C, f C Undersøges et kredsløb med OCAD, findes følgende: Ugen Uc Til venstre ses et eksempel på et kredsløb. Vac Vdc V V k V+ V- C V n Graferne herunder viser spændingerne over modstanden, ( den blå, ) og over kondensatoren, den røde! Tilsammen er spændingerne lig den påtrykte spænding, Ugen..V.5V V.Hz Hz Hz.KHz KHz KHz.MHz V(UGEN) V(UC) V(UGEN,UC) Frequency Bodeplot Af Valle Thorø Side af 3

12 Januar 5 Et Bodeplot, der viser kredsløbets "forstærkningen" i db ved forskellige frekvenser ser således ud: Hz Hz Hz.KHz KHz KHz.MHz VDB(C:) Frequency En graf for fasedrejningen for udgangsspændingen ser således ud. d -5d -d.hz Hz Hz.KHz KHz KHz.MHz VP(C:) Frequency Ved knækfrekvensen er forstærkningen faldet 3 db, og fasedrejningen er 45 grader. Ved knækfrekvensen er X C Undersøgelse af kredsløbet vha. vektorer: Som det ses af diagrammet ovenover, tages udgangsspændingen UOut over kondensatoren. Fasedrejningen for udgangssignalet må altså være lig fasedrejningen over kondensatoren. Af Valle Thorø Side af 3

13 UC er bagud i forhold til UGen. Stiger frekvensen, bliver XC mindre, derfor også vektoren, og fasedrejning en stiger. Januar 5 UC er bagud i forhold til UGenerator. Vinklen "fi" på fasedrejningen, dvs. vinklen mellem Ugen og UOut beregnes: Tangens "fi" = Modstående Hosliggende = U U C = X C "fi" er følgelig tg X C Længden af XC ændres når frekvensen ændres. XC bliver meget kortere ved høje frekvenser. Det indses også af formlen til beregning af XC. X C. Frekvensen f optræder i fc nævneren. Altså bliver XC mindre ved stigende frekvens. Samtidig ses af tegningen ovenover, at fasedrejningen bliver meget større ved høje frekvenser, op mod 9 grader. Er XC og lige store, er "fi" = tg - (/) = 45 grader. Det sker ved f. Undersøgelse af kredsløbet vha. kompleks regning: Undersøges spændingsdeleren, eller lavpasleddet, med kompleks notation, fås, idet der ses på overføringsfunktionen for kredsløbet: ( spændingsdelerformlen ) Forstærkningen A` X C X C jc jc j C Af Valle Thorø Side 3 af 3

14 Januar 5 Man bør ikke have "j" i nævneren da det ikke er håndterlig. Ligningen forlænges derfor ved at gange i tæller og nævner med den kompleks konjugerede, dvs. den kompleks modsatte. A` jc jc jc jc j C j C j C De to midterste led i nævneren går ud. Nu optræder der et "j ", og der er det specielle ved det komplekse system, at j*j er lig -. Altså fås: A` jc C Dette er en sammensat ligning, hvor nogle af leddene, angivet med "j", er vinkelret på den reelle, vandrette akse. Ligningen opdeles nu i en vandret, dvs. reel del uden "j", og en imaginær, lodret del med "j" foran. Nævneren må være fælles. A` j C C C Længden af de vektorielt sammenlagte dele er: A` C C C Som er det samme som: A C C Dvs. grafen for et Bodeplot for kredsløbet kan tegnes som log A ' med f som variabel! Og fasedrejningen tg Im tg e C Obs: Idet nævneren er ens for den reelle del og den imaginære del, er det nok ved betragtning af fasevinklen at se på tællerne. Prøve: esultatet kan nu underkastes en prøve for at teste resultatet. Der undersøges først for frekvensen f gående mod nul, dvs. omega også går mod nul: Af Valle Thorø Side 4 af 3

15 Januar 5 A` A` tg tg Eller A tg Uout er altså ved meget lave frekvenser Uin ganget med Dvs. at Uout går imod Uin ganget med og "" grader fasedrejning. Det må også være resultatet af en logisk betragtning da kondensatoren ikke udgør en belastning ved frekvensen f gående mod.. Herefter undersøges for frekvensen f gående mod uendelig, dvs. omega også går mod uendelig: A` tg A 9 9 ` Uout er altså ved meget høje frekvenser Uin ganget med 9. Dvs. at Uout går imod Uin ganget med og "9" grader fasedrejning bagud. Outputamplituden går imod "", eller "kortsluttet" til stel, og fasedrejningen er -9 grader. For frekvensen gående mod f, dvs. knækfrekvensen i bodeplottet, eller den frekvens, hvor = Xc fås: Xc C Dette indsættes: C A` tg A` 45 Af Valle Thorø Side 5 af 3

16 Januar 5 A` A`, A` =,77 og fasedrejningen = 45 grader bagud ved knækfrekvensen. Flg. skitser viser sammenhængen mellem Bodeplot og graf for fasedrejningen: Ovenfor ses OCAD grafer, og igen herunder, med andre komponentværdier: Eksempel: Spændingsdeler: Vac Vdc V k C 5n Uout Hvis viste kredsløb bygges op, og der foretages en række målinger og beregninger ved forskellige frekvenser kan følgende måleskema udfyldes, og på baggrund af denne tegnes en graf for kredsløbet. Ønskes at tegne en graf for et specifikt elektronisk system, kan der foretages en række målinger ved forskellige frekvenser. esultaterne kan placeres i et måleskema, og der kan efterfølgende tegnes en graf: Måleskema: Frekvens Forstærkning A`i db "fi" Af Valle Thorø Side 6 af 3

17 A` Januar 5 Med OCAD fås følgende grafer for hhv. forstærkningen i db og fasedrejningen. (48.63,-3.443) -5 SEL>> -5 d Vdb(UOUT) (48.63,-45.) -5d -d.hz Hz Hz.KHz KHz VP(Uout) Frequency Med Cursorerne blev punkterne 3 db og 45 graders fasedrejning markeret. Ved knækfrekvensen er forstærkningen faldet til -3 db. db udregnes som * Log(Uout/Uin) I knækket er udgangsspændingen faldet til,77 gange Uin. Hvis indgangssignalet sættes til Volt, fås: A,77 Log 3 OPAMP- forstærker-kobling. Af Valle Thorø Side 7 af 3

18 Januar 5 Eksempel med inverterende OP-AMP-forstærker med modstand parallel med kondensator i modkoblings-grenen. C Vac Vdc Uin V m - U OUT + OPAMP Uout Gnd Forstærkningen A` = - m X C ( m Parallel med XC )/ ( Leddene regnes som komplekse vektorer ) Parallelforbindelsen findes ved at gange de to og dividere med deres sum. A` m j C m j C I tæller ganges for oven og neden med j C m jc j C m jc j C A` m j Cm m jcm Der ganges med kompleks konjungerede Af Valle Thorø Side 8 af 3

19 Januar 5 m A` jcm jcm jcm A` m jcm Cm Dette opdeles i længde og vinkel: ( Polær form! ) A` m Cm Cm tg Cm Det minus, der står foran udtrykket, kan tolkes som en fasedrejning på 8 grader. Derfor kan ovenstående også skrives: A` m Cm Cm tg 8 Cm Bodeplot graf for forstærkningen kan findes af log A' Prøve: Der undersøges først for frekvensen f gående mod nul, dvs. omega også går mod nul: A` m tg 8 m m A` 8 A` 8 Ved lave frekvenser findes altså, som forventet, at forstærkningen er m divideret med, og fasedrejningen er 8 grader. Undersøges for frekvensen gående mod uendelig, dvs. at omega også går mod uendelig, fås: m A` tg 8 Af Valle Thorø Side 9 af 3

20 Januar 5 m m A` A` Altså A` 9 Ved høje frekvenser findes altså, igen som forventet, at forstærkningen er faldet meget. XC er jo meget lille, og fasedrejningen er 9 grader forud. Anvendes for ovenstående op-amp-forstærkerkredsløb flg. værdier, fås følgende graf: m = 47 Kohm, = Kohm, C = 47 pf 4 SEL>> -4 8d Vdb( UOUT) 9d d Hz Hz.KHz KHz KHz VP(Uout) Frequency Øverste vises Bodeplot for forstærkningen. Nederste graf viser fasedrejningen. Den starter i 8 grader og ender ved ca. KHz ved 9 grader. ( For endnu højere frekvenser er der indflydelse fra fejl i operationsforstærkeren. ) Af Valle Thorø Side af 3

21 Januar 5 Inverterende forstærker igen: Kredsløbet ser nu således ud! C n k U Uin k - + OUT Uout OPAMP Overføringsfunktionen: A' Xc Nævneren ganges med jc A' jc jc A' jc jc A' A' c c tg Minus tegnet kan opfattes som en fasevinkel på8 grader. Så der fås: A' c c tg 8 Test: A' 8 8 A' 8 tg Af Valle Thorø Side af

22 Januar 5 Bode Plot: Hz Hz Hz.KHz KHz KHz.MHz VDB(Uout) Frequency Og fasedrejningen: 8d 6d 4d d d 8d.Hz Hz Hz.KHz KHz KHz.MHz 36+VP(Uout) Frequency I knækket haves: Af Valle Thorø Side af 3

23 Januar 5 3 db : Xc c A' c c tg A' 45 Non inverting amplifier: Kredsløbet er følgende: U Uin Vac Vdc V + - OUT Uout VDB OPAMP m 47k C 47p k 4 3.Hz Hz Hz.KHz KHz KHz.MHz VDB(Uout) Frequency Det ses, at for højere frekvenser går A mod db, som er lig en forstærkning på gange. Tæller Dette ses også af overføringsfunktionen: A Tælleren er lig 47 K parallel med Nævner 47 pf, og Nævneren er lig K. Af Valle Thorø Side 3 af 3

24 Januar 5 Tælleren bliver ganske vist mindre ved højere frekvenser pga. at kondensatorens mindre impedans kortslutter modstanden, men der er jo stadig et-tallet. Fasegrafen ser således ud: -d -d -4d -6d -8d.Hz Hz Hz.KHz KHz KHz.MHz VP(Uout) Frequency Båndpas forstærker: U Nu monteres der en kondensator C i kredsløbet, som vist herunder. Den vil optræde i nævneren i overføringsfunktionen. Uin Vac Vdc V + OUT - OPAMP Uout m k C 47p k C u Bode Plot: Af Valle Thorø Side 4 af 3

25 Januar (5.57,43.77) (.5849K,43.748) 4 (66.4,46.795) 3 (4.783m,6.65) mhz mhz.hz Hz Hz.KHz KHz KHz.MHz MHz VDB(Uout) Frequency Fasedrejningen er mere kompleks, pga. flere kondensatorer i kredsløbet. d 5d d -5d -d mhz mhz.hz Hz Hz.KHz KHz KHz.MHz MHz VP(Uout) Frequency Givet følgende kredsløb: Af Valle Thorø Side 5 af 3

26 Januar 5 C 3 U - OUT + OPAMP Der kan opstilles følgende overføringsfunktion: X C A Dette er lig med: 3 A C C X X 3 A` 3 jc jc, der kan ordnes til: A C 3 j j C ( ) A c tg C C C 3 tg Ligning () kunne også omdannes, ved at gange med Omega C i tæller og nævner!! C C C 3 C C A tg tg To komplekse tal divideres med hinanden ved at dividere de reelle dele, og subtrahere vinklerne!! Graferne for bodeplot kan plottes, ved at plotte * log(a ) på en logaritmisk X-akse. Af Valle Thorø Side 6 af 3

27 Januar 5 Her er et eksempel på et kredsløb med værdier : C n 56k 3 U 8k Vac Vdc V 5k - OUT + OPAMP VDB Og Bodeplot for det: 5 5.Hz Hz Hz.KHz KHz KHz.MHz VDB(:) Frequency Det ses, at ved høje frekvenser vil kondensatoren kortslutte, og tælleren være de to modstande i parallel. Derfor er forstærkningen lavere ved høje frekvenser!! Og fasen!! Af Valle Thorø Side 7 af 3

28 Januar 5 8d 7d 6d 5d.Hz Hz Hz.KHz KHz KHz.MHz VP(:) Frequency egneregler for komplekse tal!! Først gennemgås her regnereglerne for komplekse tal. Vektorer i det komplekse plan kan beskrives på to måder. På rektangulær eller polær form. På rektangulær form angiver man længden ud ad x-aksen og højden op ad eller ned ad den imaginære akse. På polær form angiver man en vektors længde fra origo (, ) og en retning i form af vektorens vinkel til x-aksen. egnereglerne er forskellige for de to former. De illustreres med bogstav-eksempler og derefter regneeksempler med tal. Vi tænker os, at følgende vektorer, kaldet K, L og M, eksisterer: K a jb, L c jd, M e jf Ved tal-eksempler anvendes: K 3 j4 L j3 og på polær form ( se senere om omregning ): Af Valle Thorø Side 8 af 3

29 Januar 5 K 5533, L 3, 656, 3 ( Udtales: K = 5 vinkel 53,3 ) ADDITION Addition af komplekse vektorer foregår på rektangulær form. Summen af K og L er: K L a jb c jd De reelle dele adderes for sig, og de imaginære for sig med fortegn. K L a c j b d K M a e j b f Et tal-eksempel: K L j j j SUBTAKTION Subtraktion af komplekse vektorer foregår også på rektangulær form. Differencen mellem K og L er: K L a jb c jd a c jb d eelle dele subtraheres for sig og imaginære dele for sig. Tal-eksempel: K L 3 j4 j3 3 j 4 3 j Addition og subtraktion svarer til at addere og subtrahere vektorer. MULTIPLIKATION Multiplikation af komplekse vektorer foregår enten på rektangulær eller polær form. ektangulær form: Af Valle Thorø Side 9 af 3

30 Januar 5 komplekse tal på rektangulær form multipliceres med hinanden så hvert led multipliceres med de andre led, ialt 4 "dele" bliver det til., K a jb L c jd K L a c jad jbc jjbd j*j er -, så derfor fås K L ac bd jad bc Tal-eksempel: K L 3 j4 j3 3 j 33 j 4 43 K L 6 j7 Polær form: Følgende vektorer findes: O ab, P cd Vektorerne O og P ganges på polær form ved at gange de reelle dele og addere vinklerne. O P ab cd a cb d Tal-eksempel: K 553, 3 L 3, 656, , 3 3, 6 56, 3 K L K L 53, 6 53, 3 56, 3 8, 39, 44 Omregnes til rektangulær form, fås når den polære vektor opløses i komposanter på den reelle og imaginære akse ( x og y-akse ): j K L 8, 3 cos 9, 44 8, 3 sin 9, 44 K L 6 j7 Af Valle Thorø Side 3 af 3

31 Januar 5 DIVISION ektangulær form: Division på rektangulær form er noget besværligt. Enten omregnes det komplekse tal til polær form, som ovenfor, eller der bruges en omskrivning af udtrykket vha. "den kompleks konjugerede". Herved kan der i stedet anvendes multiplikation. Den kompleks konjugerede er det komplekse tal spejlet i X-aksen., K a jb L c jd K L a jb c jd ( c + jd ) i nævner omdannes ved at der ganges med den kompleks konjungerede i tæller og nævner. K L a jb c jd c jdc jd ac jad jbc jjbd cc jcd jcd jjdd K L ac bd jbc ad c d Dette opdeles til brøkstreger: K L ac bd c d j bc ad c d Tal-eksempel: K L 3 j4 j3 3 j4 j j j jj j3 j3 4 j6 j6 jj9 K L 8 j j 3 Division på polær form: Af Valle Thorø Side 3 af 3

32 Januar 5 På polær form udføres division ved at dividere de reelle dele og subtrahere vinklerne. O ab, P cd O P a b d c Tal-eksempel: K 553, 3 L 3, 656, 3 K L 5 53, , 3 56, 3, 38 3, 8 3, 6 56, 3 3, 6 Omregning fra rektangulær til polær: Vektoren K a jb omregnes til længde og vinkel: K a b tg b a For taleksemplet findes: K 3 4 tg 4 553, 3 grader. 3 Og tilbage igen, idet vektorens projektion på den reelle og imaginær-akse findes: j K 5 cos 53, 3 5 sin 53, 3 K 5, 6 j5, 8 3 j4 Af Valle Thorø Side 3 af 3

Komplekse tal i elektronik

Komplekse tal i elektronik 3/-8 Komplekse tal i elektronik KOMPLEKSE tal er ideelle til beregning på elektriske og elektroniske kredsløb hvori der indgår komponenter, der ved vekselspændinger fase -forskyder strømme og spændinger,

Læs mere

Noter til Komplekse tal i elektronik. Højtaler Bas, lavpasled, Mellemtone, Diskant

Noter til Komplekse tal i elektronik. Højtaler Bas, lavpasled, Mellemtone, Diskant Noter til Komplekse tal i elektronik. Eksempler på steder, hvor der bruges kondensatorer og spoler i elektronik: Equalizer Højtaler Bas, lavpasled, Mellemtone, Diskant Selektive forstærkere. Når der er

Læs mere

Fasedrejning. Fasedrejning i en kondensator og betragtninger vedrørende RC-led.

Fasedrejning. Fasedrejning i en kondensator og betragtninger vedrørende RC-led. Fasedrejning Fasedrejning i en kondensator og betragtninger vedrørende RC-led. Følgende er nogle betragtninger, der gerne skulle føre frem til en forståelse af forholdene omkring kondensatorers og spolers

Læs mere

Fasedrejning i RC / CR led og betragtninger vedrørende spoler

Fasedrejning i RC / CR led og betragtninger vedrørende spoler Fasedrejning i en kondensator og betragtninger vedrørende RC-led. Følgende er nogle betragtninger, der gerne skulle føre frem til en forståelse af forholdene omkring kondensatorers og spolers frekvensafhængighed,

Læs mere

Analog Øvelser. Version. A.1 Afladning af kondensator. Opbyg følgende kredsløb: U TL = 70 % L TL = 50 %

Analog Øvelser. Version. A.1 Afladning af kondensator. Opbyg følgende kredsløb: U TL = 70 % L TL = 50 % A.1 Afladning af kondensator Opbyg følgende kredsløb: U TL = 70 % L TL = 50 % Når knappen har været aktiveret, ønskes lys i D1 i 30 sekunder. Brug formlen U C U start e t RC Beskriv kredsløbet Find komponenter.

Læs mere

Operationsforstærkere

Operationsforstærkere OPamps 1/12215 Kompendium / noter til: Operationsforstærkere Links til afsnit: Generelt, Splitsupply, Impedanskonverter, Delta_Ui_Fejl, Noninverting_Amp, Inverting_Amp, Summationsforstærker, Single_Supply,

Læs mere

IMPEDANSBEGREBET - SPOLEN. Faseforskydning mellem I og U Eksempel: R, X og Z I og U P, Q og S. Diagrammer

IMPEDANSBEGREBET - SPOLEN. Faseforskydning mellem I og U Eksempel: R, X og Z I og U P, Q og S. Diagrammer AC IMPEDANSBEGREBET - SPOLEN Faseforskydning mellem I og U Eksempel: R, X og Z I og U P, Q og S Diagrammer Spolens faseforskydning: En spole består egentlig af en resistiv del (R) og en ideel reaktiv del

Læs mere

Komplekse tal. Jan Scholtyßek 29.04.2009

Komplekse tal. Jan Scholtyßek 29.04.2009 Komplekse tal Jan Scholtyßek 29.04.2009 1 Grundlag Underlige begreber er det, der opstår i matematikken. Blandt andet komplekse tal. Hvad for fanden er det? Lyder...komplekst. Men bare roligt. Så komplekst

Læs mere

Filtre. Passive filtre har ikke forstærkende led, som fx operationsforstærkere.

Filtre. Passive filtre har ikke forstærkende led, som fx operationsforstærkere. 8/5 Filtre bruges til at fremhæve eller dæmpe nogle frekvenser. Dvs. man kan fx få kraftigere diskant, fremhæve lave toner Passive filtre Passive filtre har ikke forstærkende led, som fx operationsforstærkere.

Læs mere

Thevenin / Norton. 1,5k. Når man går rundt i en maske, vil summen af spændingsstigninger og spændingsfald være lig med 0.

Thevenin / Norton. 1,5k. Når man går rundt i en maske, vil summen af spændingsstigninger og spændingsfald være lig med 0. Maskeligninger: Givet følgende kredsløb: 22Vdc 1,5k 1Vdc Når man går rundt i en maske, vil summen af spændingsstigninger og spændingsfald være lig med. I maskerne er der sat en strøm på. Retningen er tilfældig

Læs mere

Kompendium i faget. Matematik. Tømrerafdelingen. 2. Hovedforløb. Y = ax 2 + bx + c. (x,y) Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard

Kompendium i faget. Matematik. Tømrerafdelingen. 2. Hovedforløb. Y = ax 2 + bx + c. (x,y) Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard Kompendium i faget Matematik Tømrerafdelingen 2. Hovedforløb. Y Y = ax 2 + bx + c (x,y) X Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard Indholdsfortegnelse for H2: Undervisningens indhold...

Læs mere

Projekt. Analog Effektforstærker.

Projekt. Analog Effektforstærker. Projekt. Analog Effektforstærker. Udarbejdet af: Klaus Jørgensen. Gruppe: Klaus Jørgensen Og Morten From Jacobsen. It og Elektronikteknolog. Erhvervsakademiet Fyn Udarbejdet i perioden: 7/0-03 /-03 Vejledere:

Læs mere

Af: Valle Thorø Fil.: Oscilloscopet Side 1 af 10

Af: Valle Thorø Fil.: Oscilloscopet Side 1 af 10 Oscilloscopet Kilde: http://www.doctronics.co.uk/scope.htm Følgende billede viser forsiden på et typisk oscilloskop. Nogle af knapperne og deres indstillinger forklares i det følgende.: Blokdiagram for

Læs mere

Grundlæggende Matematik

Grundlæggende Matematik Grundlæggende Matematik Hayati Balo, AAMS August 2012 1. Matematiske symboler For at udtrykke de verbale udsagn matematisk korrekt, så det bliver lettere og hurtigere at skrive, indføres en række matematiske

Læs mere

Matematik 1 Semesteruge 5 6 (1. oktober oktober 2001) side 1 Komplekse tal Arbejdsplan

Matematik 1 Semesteruge 5 6 (1. oktober oktober 2001) side 1 Komplekse tal Arbejdsplan Matematik 1 Semesteruge 5 6 (1. oktober - 12. oktober 2001) side 1 Komplekse tal Arbejdsplan I semesterugerne 5 og 6 erstattes den regulære undervisning (forelæsninger og fællestimer) af selvstudium med

Læs mere

3 Overføringsfunktion

3 Overføringsfunktion 1 3 Overføringsfunktion 3.1 Overføringsfunktion For et system som vist på figur 3.1 er overføringsfunktionen givet ved: Y (s) =H(s) X(s) [;] (3.1) Y (s) X(s) = H(s) [;] (3.2) Y (s) er den Laplacetransformerede

Læs mere

Hvad er matematik? C, i-bog ISBN 978 87 7066 499 8

Hvad er matematik? C, i-bog ISBN 978 87 7066 499 8 Et af de helt store videnskabelige projekter i 1700-tallets Danmark var kortlægningen af Danmark. Projektet blev varetaget af Det Kongelige Danske Videnskabernes Selskab og løb over en periode på et halvt

Læs mere

VUC Vestsjælland Syd, Slagelse Nr. 1 Institution: Projekt Trigonometri

VUC Vestsjælland Syd, Slagelse Nr. 1 Institution: Projekt Trigonometri VUC Vestsjælland Syd, Slagelse Nr. 1 Institution: 333247 2015 Anders Jørgensen, Mark Kddafi, David Jensen, Kourosh Abady og Nikolaj Eriksen 1. Indledning I dette projekt, vil man kunne se definitioner

Læs mere

Lektion 1. Tal. Ligninger og uligheder. Funktioner. Trigonometriske funktioner. Grænseværdi for en funktion. Kontinuerte funktioner.

Lektion 1. Tal. Ligninger og uligheder. Funktioner. Trigonometriske funktioner. Grænseværdi for en funktion. Kontinuerte funktioner. Lektion Tal Ligninger og uligheder Funktioner Trigonometriske funktioner Grænseværdi for en funktion Kontinuerte funktioner Opgaver Tal Man tænker ofte på de reelle tal, R, som en tallinje (uden huller).

Læs mere

J-fet. Kompendium om J-FET

J-fet. Kompendium om J-FET J-fet 27/8-215 Kompendium om J-FET FET transistorer Generelt Fet-transistorer er opbygget helt anderledes end bipolar transistorerne. Her er det ikke en basisstrøm, der styrer ledeevnen gennem transistoren,

Læs mere

Komplekse tal. x 2 = 1 (2) eller

Komplekse tal. x 2 = 1 (2) eller Komplekse tal En tilegnelse af stoffet i dette appendix kræver at man løser opgaverne Komplekse tal viser sig uhyre nyttige i fysikken, f.eks til løsning af lineære differentialligninger eller beskrivelse

Læs mere

TREKANTER. Indledning. Typer af trekanter. Side 1 af 7. (Der har været tre kursister om at skrive denne projektrapport)

TREKANTER. Indledning. Typer af trekanter. Side 1 af 7. (Der har været tre kursister om at skrive denne projektrapport) Side 1 af 7 (Der har været tre kursister om at skrive denne projektrapport) TREKANTER Indledning Vi har valgt at bruge denne projektrapport til at udarbejde en oversigt over det mest grundlæggende materiale

Læs mere

db og Bodeplot Når man arbejder med forstærkere, skelnes mellem Effektforstærkning, - og Spændingsforstærkning.

db og Bodeplot Når man arbejder med forstærkere, skelnes mellem Effektforstærkning, - og Spændingsforstærkning. db, Decibel Når man arbejder med forstærkere, skelnes mellem Effektforstærkning, - og Spændingsforstærkning. Hvis et forstærkersystem består af 3 trin forstærkere, der forstærker hhv. 57, 78 og 29 gange,

Læs mere

Vektorer og lineær regression. Peter Harremoës Niels Brock

Vektorer og lineær regression. Peter Harremoës Niels Brock Vektorer og lineær regression Peter Harremoës Niels Brock April 2013 1 Planproduktet Vi har set, at man kan gange en vektor med et tal. Et oplagt spørgsmål er, om man også kan gange to vektorer med hinanden.

Læs mere

Grundlæggende Matematik

Grundlæggende Matematik Grundlæggende Matematik Hayati Balo, AAMS Juli 2013 1. Matematiske symboler For at udtrykke de verbale udsagn matematisk korrekt, så det bliver lettere og hurtigere at skrive, indføres en række matematiske

Læs mere

Projekt. HF-forstærker.

Projekt. HF-forstærker. Projekt. HF-forstærker. Rapport. Udarbejdet af: Klaus Jørgensen. Gruppe: Brian Schmidt, Klaus Jørgensen Og Morten From Jacobsen. It og Elektronikteknolog. Erhvervsakademiet Fyn. Udarbejdet i perioden:

Læs mere

Thevenin / mayer-norton Redigeret

Thevenin / mayer-norton Redigeret 6/12217 Thevenin eller MayerNortonomformninger er en måde, at omregne et kredsløb, så det fx bliver lettere at overskue. Maskeligninger: Først ses her lidt på traditionel løsning af et kredsløb: Givet

Læs mere

Eksamensspørgsmål: Trekantberegning

Eksamensspørgsmål: Trekantberegning Eksamensspørgsmål: Trekantberegning Indhold Definition af Sinus og Cosinus... 1 Bevis for Sinus- og Cosinusformlerne... 3 Tangens... 4 Pythagoras s sætning... 4 Arealet af en trekant... 7 Vinkler... 8

Læs mere

til undervisning eller kommercielt brug er Kopiering samt anvendelse af prøvetryk

til undervisning eller kommercielt brug er Kopiering samt anvendelse af prøvetryk Frembringelse af vekselstrøm Når en ledersløjfe drejes i et homogent (ensartet) magnetfelt, opstår der i ledersløjfen en sinusformet vekselspænding. Denne ændrer under drejningen ikke kun sin størrelse,

Læs mere

Komplekse tal. Mikkel Stouby Petersen 27. februar 2013

Komplekse tal. Mikkel Stouby Petersen 27. februar 2013 Komplekse tal Mikkel Stouby Petersen 27. februar 2013 1 Motivationen Historien om de komplekse tal er i virkeligheden historien om at fjerne forhindringerne og gøre det umulige muligt. For at se det, vil

Læs mere

1 monotoni & funktionsanalyse

1 monotoni & funktionsanalyse 1 monotoni & funktionsanalyse I dag har vi grafregnere (TI89+) og programmer på computer (ex.vis Derive og Graph), hvorfor det ikke er så svært at se hvordan grafen for en matematisk funktion opfører sig

Læs mere

Den ideelle operationsforstærker.

Den ideelle operationsforstærker. ELA Den ideelle operationsforstærker. Symbol e - e + v o Differensforstærker v o A OL (e + - e - ) - A OL e ε e ε e - - e + (se nedenstående figur) e - e ε e + v o AOL e - Z in (i in 0) e + i in i in v

Læs mere

Øvelsesvejledning. Frekvenskarakteristikker Simulering og realisering af passive filtre.

Øvelsesvejledning. Frekvenskarakteristikker Simulering og realisering af passive filtre. ELT2, Passive filter, frekvenskarakteristikker Øvelsesvejledning Frekvenskarakteristikker Simulering og realisering af passive filtre. Øvelsen består af 3 dele: 1. En beregningsdel som du forventes at

Læs mere

Frederiksberg HF-kursus Vektorer i planen, Mat B, SSO Kenneth Leerbeck, 2. J. Vektorer. planen

Frederiksberg HF-kursus Vektorer i planen, Mat B, SSO Kenneth Leerbeck, 2. J. Vektorer. planen Vektorer i planen English abstract This report is about the mathematical concept vectors. It explains what a vector is, and how vectors are indicated with coordinates and arrows. It explains calculating

Læs mere

Orcad DC Sweep & Parametrsk analyse

Orcad DC Sweep & Parametrsk analyse Dette kompendium beskriver forskellige simulationsmåder, ved hvilke, der er mulighed for at få ORCAD til at foretage gentagne simuleringer med varierende komponentværdier. Ved at gennemgå forskellige eksempler,

Læs mere

Projekt 1.4 Tagrendeproblemet en instruktiv øvelse i modellering med IT.

Projekt 1.4 Tagrendeproblemet en instruktiv øvelse i modellering med IT. Projekt 1.4 Tagrendeproblemet en instruktiv øvelse i modellering med IT. Projektet kan bl.a. anvendes til et forløb, hvor en af målsætningerne er at lære om samspillet mellem værktøjsprogrammernes geometriske

Læs mere

Tal. Vi mener, vi kender og kan bruge følgende talmængder: N : de positive hele tal, Z : de hele tal, Q: de rationale tal.

Tal. Vi mener, vi kender og kan bruge følgende talmængder: N : de positive hele tal, Z : de hele tal, Q: de rationale tal. 1 Tal Tal kan forekomme os nærmest at være selvfølgelige, umiddelbare og naturgivne. Men det er kun, fordi vi har vænnet os til dem. Som det vil fremgå af vores timer, har de mange overraskende egenskaber

Læs mere

Beregning til brug for opmåling, udfoldning og konstruktion

Beregning til brug for opmåling, udfoldning og konstruktion VVS-branchens efteruddannelse Beregning til brug for opmåling, udfoldning og konstruktion Beregning til brug for opmåling, udfoldning og konstruktion Med de trigonometriske funktioner, kan der foretages

Læs mere

Lektion 7 Funktioner og koordinatsystemer

Lektion 7 Funktioner og koordinatsystemer Lektion 7 Funktioner og koordinatsystemer Brug af grafer og koordinatsystemer Lineære funktioner Andre funktioner lignnger med ubekendte Lektion 7 Side 1 Pris i kr Matematik på Åbent VUC Brug af grafer

Læs mere

Antennens udstrålingsmodstand hvad er det for en størrelse?

Antennens udstrålingsmodstand hvad er det for en størrelse? Antennens udstrålingsmodstand hvad er det for en størrelse? Det faktum, at lyset har en endelig hastighed er en forudsætning for at en antenne udstråler, og at den har en ohmsk udstrålingsmodstand. Den

Læs mere

MODUL 5 ELLÆRE: INTRONOTE. 1 Basisbegreber

MODUL 5 ELLÆRE: INTRONOTE. 1 Basisbegreber 1 Basisbegreber ellæren er de mest grundlæggende størrelser strøm, spænding og resistans Strøm er ladningsbevægelse, og som det fremgår af bogen, er strømmens retning modsat de bevægende elektroners retning

Læs mere

Kapitel 2 Tal og variable

Kapitel 2 Tal og variable Tal og variable Uden tal ingen matematik - matematik handler om tal og anvendelse af tal. Matematik beskæftiger sig ikke udelukkende med konkrete problemer fra andre fag, og de konkrete tal fra andre fagområder

Læs mere

Matematik A STX december 2016 vejl. løsning Gratis anvendelse - læs betingelser!

Matematik A STX december 2016 vejl. løsning  Gratis anvendelse - læs betingelser! Matematik A STX december 2016 vejl. løsning www.matematikhfsvar.page.tl Gratis anvendelse - læs betingelser! Opgave 1 Lineær funktion. Oplysningerne findes i opgaven. Delprøve 1: Forskrift Opgave 2 Da

Læs mere

Ugeopdelte Hjemmeopgaver

Ugeopdelte Hjemmeopgaver Dette er en samling af opgaver opdelt på uger. Vær opmærksom på, at der kan være flere sider pr uge! Uge 5 Nul R 5,k a). I = m[a] R = 5, K[Ω] Find U og den afsatte effekt, P b). U R U = V, R =,5 K, Find

Læs mere

Projekt Modtager. Kapitel 2. Klasse D.

Projekt Modtager. Kapitel 2. Klasse D. Projekt Modtager. Kapitel. Klasse D. Udarbejdet af: Klaus Jørgensen. Gruppe: Klaus Jørgensen Og Morten From Jacobsen. It og Elektronikteknolog. Erhvervsakademiet Fyn Udarbejdet i perioden: /9-3 3/-3 Vejledere:

Læs mere

Oprids over grundforløbet i matematik

Oprids over grundforløbet i matematik Oprids over grundforløbet i matematik Dette oprids er tænkt som en meget kort gennemgang af de vigtigste hovedpointer vi har gennemgået i grundforløbet i matematik. Det er en kombination af at repetere

Læs mere

Geometri, (E-opgaver 9d)

Geometri, (E-opgaver 9d) Geometri, (E-opgaver 9d) GEOMETRI, (E-OPGAVER 9D)... 1 Vinkler... 1 Trekanter... 2 Ensvinklede trekanter... 2 Retvinklede trekanter... 3 Pythagoras sætning... 3 Sinus, Cosinus og Tangens... 4 Vilkårlige

Læs mere

El-Teknik A. Rasmus Kibsgaard Riehn-Kristensen & Jonas Pedersen. Klasse 3.4

El-Teknik A. Rasmus Kibsgaard Riehn-Kristensen & Jonas Pedersen. Klasse 3.4 El-Teknik A Rasmus Kibsgaard Riehn-Kristensen & Jonas Pedersen Klasse 3.4 12-08-2011 Strømstyrke i kredsløbet. Til at måle strømstyrken vil jeg bruge Ohms lov. I kredsløbet kender vi resistansen og spændingen.

Læs mere

Matematik A. 5 timers skriftlig prøve. Højere Teknisk Eksamen i Grønland maj 2009 GLT091-MAA. Undervisningsministeriet

Matematik A. 5 timers skriftlig prøve. Højere Teknisk Eksamen i Grønland maj 2009 GLT091-MAA. Undervisningsministeriet Højere Teknisk Eksamen i Grønland maj 2009 GLT091-MAA Matematik A 5 timers skriftlig prøve Undervisningsministeriet Fredag den 29. maj 2009 kl. 9.00-14.00 Matematik A 2009 Prøvens varighed er 5 timer.

Læs mere

Lærereksemplar. Kun til lærerbrug GEOMETRI 89. Kopiering er u-økonomisk og forbudt til erhvervsformål.

Lærereksemplar. Kun til lærerbrug GEOMETRI 89. Kopiering er u-økonomisk og forbudt til erhvervsformål. Kun salg ved direkte kontakt mellem skole og forlag. Kopiering er u-økonomisk og forbudt til erhvervsformål. GEOMETRI 89 Side Emne 1 Indholdsfortegnelse 2 Måling af vinkler 3 Tegning og måling af vinkler

Læs mere

5: Trigonometri Den del af matematik, der beskæftiger sig med figurer og deres egenskaber, kaldes for geometri. Selve

5: Trigonometri Den del af matematik, der beskæftiger sig med figurer og deres egenskaber, kaldes for geometri. Selve 5: Trigonometri Den del af matematik, der beskæftiger sig med figurer og deres egenskaber, kaldes for geometri. Selve ordet geometri er græsk og betyder jord(=geo)måling(=metri). Interessen for figurer

Læs mere

ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER

ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER INDHOLDSFORTEGNELSE 0. FORMELSAMLING TIL FORMLER OG LIGNINGER... 2 Tal, regneoperationer og ligninger... 2 Isolere en ubekendt... 3 Hvis x står i første brilleglas...

Læs mere

praktiskegrunde Regression og geometrisk data analyse (2. del) Ulf Brinkkjær

praktiskegrunde Regression og geometrisk data analyse (2. del) Ulf Brinkkjær praktiskegrunde Praktiske Grunde. Nordisk tidsskrift for kultur- og samfundsvidenskab Nr. 3 / 2010. ISSN 1902-2271. www.hexis.dk Regression og geometrisk data analyse (2. del) Ulf Brinkkjær Introduktion

Læs mere

Vinkelrette linjer. Frank Villa. 4. november 2014

Vinkelrette linjer. Frank Villa. 4. november 2014 Vinkelrette linjer Frank Villa 4. november 2014 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

gudmandsen.net 1 Parablen 1.1 Grundlæggende forhold y = ax 2 bx c eksempelvis: y = 2x 2 2x 4 y = a x 2 b x 1 c x 0 da x 1 = x og x 0 = 1

gudmandsen.net 1 Parablen 1.1 Grundlæggende forhold y = ax 2 bx c eksempelvis: y = 2x 2 2x 4 y = a x 2 b x 1 c x 0 da x 1 = x og x 0 = 1 gudmandsen.net Ophavsret Indholdet stilles til rådighed under Open Content License[http://opencontent.org/openpub/]. Kopiering, distribution og fremvisning af dette dokument eller dele deraf er fuldt ud

Læs mere

Matematik. 1 Matematiske symboler. Hayati Balo,AAMS. August, 2014

Matematik. 1 Matematiske symboler. Hayati Balo,AAMS. August, 2014 Matematik Hayati Balo,AAMS August, 2014 1 Matematiske symboler For at udtrykke de verbale udsagn matematisk korrekt, så det bliver lettere og hurtigere at skrive, indføres en række matematiske symboler.

Læs mere

Samtaleanlæg Projekt.

Samtaleanlæg Projekt. Projekt: Beskrivelse: I større bygninger kan det være praktisk med et samtaleanlæg, så der kan kommunikeres over større afstande. Det kan fx. være mellem stuehuset og stalden på en landbrugsejendom, eller

Læs mere

Uge Emne Formål Faglige mål Evaluering

Uge Emne Formål Faglige mål Evaluering Uge Emne Formål Faglige mål Evaluering (Der evalueres løbende på følgende hovedpunkter) 33-36 Regneregler Vedligeholde og udbygge forståelse og færdigheder inden for de fire regningsarter Blive fortrolig

Læs mere

Produkter af vektorer i 2 dimensioner. Peter Harremoës Niels Brock

Produkter af vektorer i 2 dimensioner. Peter Harremoës Niels Brock Produkter af vektorer i dimensioner Peter Harremoës Niels Brock Septemer 00 Indledning Disse noter er skrevet som supplement og delvis erstatning for tilsvarende materiale i øgerne Mat B og Mat A. Vi vil

Læs mere

1 v out. v in. out 2 = R 2

1 v out. v in. out 2 = R 2 EE Basis 200 KRT3 - Løsningsforslag 2/9/0/JHM Opgave : Figur : Inverterende forstærker. Figur 2: Ikke-inverterende. Starter vi med den inverterende kobling så identificeres der et knudepunkt ved OPAMP

Læs mere

Inden der siges noget om komplekse tal, vil der i dette afsnit blive gennemgået en smule teori om trigonometriske funktioner.

Inden der siges noget om komplekse tal, vil der i dette afsnit blive gennemgået en smule teori om trigonometriske funktioner. Komplekse tal Mike Auerbach Odense 2012 1 Vinkelmål og trigonometriske funktioner Inden der siges noget om komplekse tal, vil der i dette afsnit blive gennemgået en smule teori om trigonometriske funktioner.

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj-juni 2015 Københavns

Læs mere

Formelsamling Matematik C

Formelsamling Matematik C Formelsamling Matematik C Ib Michelsen Ikast 2011 Ligedannede trekanter Hvis to trekanter er ensvinklede har de proportionale sider (dvs. alle siderne i den ene er forstørrelser af siderne i den anden

Læs mere

2 Erik Vestergaard www.matematikfysik.dk

2 Erik Vestergaard www.matematikfysik.dk Erik Vestergaard www.matematikfysik.dk Erik Vestergaard www.matematikfysik.dk 3 Lineære funktioner En vigtig type funktioner at studere er de såkaldte lineære funktioner. Vi skal udlede en række egenskaber

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin August 2008-juni 2011 Institution Sukkertoppen/Københavns tekniske skole Uddannelse Fag og niveau Lærer(e)

Læs mere

Introduktion til cosinus, sinus og tangens

Introduktion til cosinus, sinus og tangens Introduktion til cosinus, sinus og tangens Jes Toft Kristensen 24. maj 2010 1 Forord Her er en lille introduktion til cosinus, sinus og tangens. Det var et af de emner jeg selv havde svært ved at forstå,

Læs mere

EDR Frederikssund afdeling Almen elektronik kursus. Afsnit 9-9B-10. EDR Frederikssund Afdelings Almen elektronik kursus. Joakim Soya OZ1DUG Formand

EDR Frederikssund afdeling Almen elektronik kursus. Afsnit 9-9B-10. EDR Frederikssund Afdelings Almen elektronik kursus. Joakim Soya OZ1DUG Formand Afsnit 9-9B-10 EDR Frederikssund Afdelings Joakim Soya OZ1DUG Formand 1 Opgaver fra sidste gang Pico, nano, micro, milli,, kilo, mega Farvekode for modstande og kondensatorer. 10 k 10 k m A Modstanden

Læs mere

Matematikprojekt Belysning

Matematikprojekt Belysning Matematikprojekt Belysning 2z HTX Vibenhus Vejledning til eleven Du skal nu i gang med matematikprojektet Belysning. Dokumentationen Din dokumentation skal indeholde forklaringer mm, således at din tankegang

Læs mere

Øvelse 1.5: Spændingsdeler med belastning Udført af: Kari Bjerke Sørensen, Hjalte Sylvest Jacobsen og Toke Lynæs Larsen.

Øvelse 1.5: Spændingsdeler med belastning Udført af: Kari Bjerke Sørensen, Hjalte Sylvest Jacobsen og Toke Lynæs Larsen. Øvelse 1.5: Spændingsdeler med belastning Udført af: Kari jerke Sørensen, Hjalte Sylvest Jacobsen og Toke Lynæs Larsen. Formål: Formålet med denne øvelse er at anvende Ohms lov på en såkaldt spændingsdeler,

Læs mere

Impedans. I = C du dt (1) og en spole med selvinduktionen L

Impedans. I = C du dt (1) og en spole med selvinduktionen L Impedans I et kredsløb, der består af andre netværkselementer end blot lække (modstande) og kilder vil der ikke i almindelighed være en simpel proportional, tidslig sammenhæng mellem strøm og spænding,

Læs mere

Trigonometri. for 9. klasse. Geert Cederkvist

Trigonometri. for 9. klasse. Geert Cederkvist Trigonometri Ved konstruktion af bygningsværker, hvor der kræves stor nøjagtighed, er der ofte brug for, at man kan beregne sider og vinkler i geometriske figurer. Alle polygoner kan deles op i trekanter,

Læs mere

Løsning til aflevering - uge 12

Løsning til aflevering - uge 12 Løsning til aflevering - uge 00/nm Opg.. Længden af kilerem til drejebænk. Hjælp mig med at beregne den udvendige, længde af kileremmen, der er anvendt på min ældre drejebænk. Største diameter på det store

Læs mere

Graph brugermanual til matematik C

Graph brugermanual til matematik C Graph brugermanual til matematik C Forord Efterfølgende er en guide til programmet GRAPH. Programmet kan downloades gratis fra nettet og gemmes på computeren/et usb-stik. Det betyder, det også kan anvendes

Læs mere

1 Geometri & trigonometri

1 Geometri & trigonometri 1 Geometri & trigonometri 1.0.1 Generelle forhold Trigonometri tager sit udgangspunkt i trekanter, hvor der er visse generelle regler: vinkelsum areal A trekant = 1 2 h G A B C = 180 o retvinklet trekant

Læs mere

En forståelsesramme for de reelle tal med kompositioner.

En forståelsesramme for de reelle tal med kompositioner. 1 En forståelsesramme for de reelle tal med kompositioner. af Ulrich Christiansen, sem.lekt. KDAS. Den traditionelle tallinjemodel, hvor tallene svarer til punkter langs tallinjen, dækker fornuftigt (R,

Læs mere

Grundlæggende matematik

Grundlæggende matematik Grundlæggende matematik Henrik S. Hansen, Sct. Knuds Gymnasium Noterne vil indeholde gennemgang af grundlæggende regneregler og regneoperationer afledt af disse. Dette er (vil mange påstå) det vigtigste

Læs mere

Erhvervsakademiet Fyn Signalbehandling Aktivt lavpas filter Chebyshev Filter

Erhvervsakademiet Fyn Signalbehandling Aktivt lavpas filter Chebyshev Filter Erhvervsaademiet Fyn Signalbehandling Ativt lavpas filter --3 Chebyshev Filter Udarbejdet af: Klaus Jørgensen & Morten From Jacobsen. It- og Eletronitenolog, Erhvervsaademiet Fyn Udarbejdet i perioden:

Læs mere

Nøgleord og begreber Komplekse tal Test komplekse tal Polære koordinater Kompleks polarform De Moivres sætning

Nøgleord og begreber Komplekse tal Test komplekse tal Polære koordinater Kompleks polarform De Moivres sætning Oversigt [S] App. I, App. H.1 Nøgleord og begreber Komplekse tal Test komplekse tal Polære koordinater Kompleks polarform De Moivres sætning Test komplekse tal Komplekse rødder Kompleks eksponentialfunktion

Læs mere

Undersøgelser af trekanter

Undersøgelser af trekanter En rød tråd igennem kapitlet er en søgen efter svar på spørgsmålet: Hvordan kan vi beregne os frem til længder, vi ikke kan komme til at måle?. Hvordan kan vi fx beregne højden på et træ eller et hus,

Læs mere

Matricer og lineære ligningssystemer

Matricer og lineære ligningssystemer Matricer og lineære ligningssystemer Grete Ridder Ebbesen Virum Gymnasium Indhold 1 Matricer 11 Grundlæggende begreber 1 Regning med matricer 3 13 Kvadratiske matricer og determinant 9 14 Invers matrix

Læs mere

Elektrodynamik Lab 1 Rapport

Elektrodynamik Lab 1 Rapport Elektrodynamik Lab 1 Rapport Indhold Fysik 6, EL Bo Frederiksen (bo@fys.ku.dk) Stanislav V. Landa (stas@fys.ku.dk) John Niclasen (niclasen@fys.ku.dk) 1. Transienter og RC-kredsløb 1.1 Formål 1. Teori 1.3

Læs mere

Trigonometri. Store konstruktioner. Måling af højde

Trigonometri. Store konstruktioner. Måling af højde Trigonometri Ordet trigonometri er sammensat af de to ord trigon og metri, hvor trigon betyder trekant og metri kommer af det græske ord metros, som kan oversættes til måling. Så ordet trigonometri er

Læs mere

Strømforsyning +/- 12V serieregulator og 5V Switch mode

Strømforsyning +/- 12V serieregulator og 5V Switch mode Udarbejdet af: +/- 12V serieregulator og 5V Switch mode Side 1 af 15 Udarbejdet af: Komponentliste. B1: 4 stk. LN4007 1A/1000V diode D1: RGP30D diode Fast Recovery 150nS - 500nS, 3A 200V C1 C3 og C4: 100nF

Læs mere

Den lille hjælper. Positionssystem...3. Positive tal...3. Negative tal...3. Hele tal...3. Potenstal...3. Kvadrattal...3

Den lille hjælper. Positionssystem...3. Positive tal...3. Negative tal...3. Hele tal...3. Potenstal...3. Kvadrattal...3 Den lille hjælper Positionssystem...3 Positive tal...3 Negative tal...3 Hele tal...3 Potenstal...3 Kvadrattal...3 Parentes...4 Parentesregler...4 Primtal...4 Addition (lægge sammen) også med decimaltal...4

Læs mere

Kapitel 4. Trigonometri. Matematik C (må anvendes på Ørestad Gymnasium) Kapitel 4

Kapitel 4. Trigonometri. Matematik C (må anvendes på Ørestad Gymnasium) Kapitel 4 Matematik C (må anvendes på Ørestad Gymnasium) Trigonometri Den del af matematik, der beskæftiger sig med figurer og deres egenskaber, kaldes for geometri. Selve ordet geometri er græsk og betyder jord(=geo)måling(=metri).

Læs mere

Komplekse tal. Mike Auerbach. Tornbjerg Gymnasium, Odense 2015

Komplekse tal. Mike Auerbach. Tornbjerg Gymnasium, Odense 2015 Komplekse tal Mike Auerbach Tornbjerg Gymnasium, Odense 2015 Indhold 1 Vinkelmål og trigonometriske funktioner 2 1.1 Radianer................................................ 2 1.2 Cosinus og sinus som

Læs mere

U Efter E12 rækken da dette er den nærmeste I

U Efter E12 rækken da dette er den nærmeste I Transistorteknik ved D & A forold. 4--3 Afkoblet Jordet mitter: Opbygning og beregning af transistorkobling af typen Jordet mitter ud fra følgende parameter erunder. Alle modstande vælges / beregnes ud

Læs mere

t a l e n t c a m p d k Matematik Intro Mads Friis, stud.scient 27. oktober 2014 Slide 1/25

t a l e n t c a m p d k Matematik Intro Mads Friis, stud.scient 27. oktober 2014 Slide 1/25 Slide 1/25 Indhold 1 2 3 4 5 6 7 8 Slide 2/25 Om undervisningen Hvorfor er vi her? Hvad kommer der til at ske? 1) Teoretisk gennemgang ved tavlen. 2) Instruktion i eksempler. 3) Opgaveregning. 4) Opsamling.

Læs mere

Matematik 1 Semesteruge 4 5 (25. september - 6. oktober 2006) side 1 Komplekse tal Arbejdsplan

Matematik 1 Semesteruge 4 5 (25. september - 6. oktober 2006) side 1 Komplekse tal Arbejdsplan Matematik 1 Semesteruge 4 5 (25. september - 6. oktober 2006 side 1 Komplekse tal Arbejdsplan I semesterugerne 4 og 5 erstattes den regulære undervisning (forelæsninger og fællestimer af selvstudium med

Læs mere

Basal Matematik 2. Navn: Klasse: Matematik Opgave Kompendium. Opgaver: 67 Ekstra: 7 Mundtlig: 1 Point:

Basal Matematik 2. Navn: Klasse: Matematik Opgave Kompendium. Opgaver: 67 Ekstra: 7 Mundtlig: 1 Point: Matematik / Basal Matematik Navn: Klasse: Matematik Opgave Kompendium Basal Matematik Følgende gennemgås De regnearter Afrunding af tal Større & mindre end Enheds omregning Regne hierarki Brøkregning Potenser

Læs mere

Rettevejledning, FP10, endelig version

Rettevejledning, FP10, endelig version Rettevejledning, FP10, endelig version I forbindelse med FP9, Matematik, Prøven med hjælpemidler, maj 2016, afholdes forsøg med en udvidet rettevejledning. I forbindelse med FP10 fremstiller opgavekommissionen

Læs mere

Studieretningsopgave

Studieretningsopgave Virum Gymnasium Studieretningsopgave Harmoniske svingninger i matematik og fysik Vejledere: Christian Holst Hansen (matematik) og Bodil Dam Heiselberg (fysik) 30-01-2014 Indholdsfortegnelse Indledning...

Læs mere

Skriftlig prøve i KDS

Skriftlig prøve i KDS Kredsløbsteori & dynamiske systemer for EIT2/16 Opgavesæt 02 160728HEb Kredsløbsteori & dynamiske systemer Skriftlig prøve i KDS Omprøve d. 16. august 2016 kl. 09.00-13.00. Ved bedømmelsen vægtes de 4

Læs mere

cvbnmrtyuiopasdfghjklæøzxcvbnmq wertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwer tyuiopåasdfghjklæøzxcvbnmqwerty

cvbnmrtyuiopasdfghjklæøzxcvbnmq wertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwer tyuiopåasdfghjklæøzxcvbnmqwerty cvbnmrtyuiopasdfghjklæøzxcvbnmq wertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwer tyuiopåasdfghjklæøzxcvbnmqwerty Matematik Den kinesiske prøve uiopåasdfghjklæøzxcvbnmqwertyui 45 min 01 11

Læs mere

Matematik projekt. Klasse: Sh-mab05. Fag: Matematik B. Projekt: Trigonometri

Matematik projekt. Klasse: Sh-mab05. Fag: Matematik B. Projekt: Trigonometri Matematik projekt Klasse: Sh-mab05 Fag: Matematik B Projekt: Trigonometri Kursister: Anders Jørgensen, Kirstine Irming, Mark Petersen, Tobias Winberg & Zehra Köse Underviser: Vibeke Wulff Side 1 af 11

Læs mere

Pythagoras og andre sætninger

Pythagoras og andre sætninger Pythagoras og andre sætninger Pythagoras Pythagoras fra den græske ø Samos levede i det 6. århundrede f.v.t. fra ca. 580 til ca. 500. Han lægger som sagt navn til den sætning, vi tidligere har nævnt,

Læs mere

Design & Produktion. Valle Thorø. Sønderborg. ELektronik. ( Pendler-ordning gør det muligt! )

Design & Produktion. Valle Thorø. Sønderborg. ELektronik. ( Pendler-ordning gør det muligt! ) Design & Produktion Valle Thorø Sønderborg ELektronik ( Pendler-ordning gør det muligt! ) 1.G 2.G 3.G Teknologi B Teknologi B Evt. teknologi A Teknikfag, Elektronik 5 lekt. Pr uge 5 lekt. Pr uge 9 lekt.

Læs mere

Elektronikken bag medicinsk måleudstyr

Elektronikken bag medicinsk måleudstyr Elektronikken bag medicinsk måleudstyr Måling af svage elektriske signaler Indholdsfortegnelse Indholdsfortegnelse... 1 Introduktion... 1 Grundlæggende kredsløbteknik... 2 Ohms lov... 2 Strøm- og spændingsdeling...

Læs mere

Matematik. Grundforløbet. Mike Auerbach (2) Q 1. y 2. y 1 (1) x 1 x 2

Matematik. Grundforløbet. Mike Auerbach (2) Q 1. y 2. y 1 (1) x 1 x 2 Matematik Grundforløbet (2) y 2 Q 1 a y 1 P b x 1 x 2 (1) Mike Auerbach Matematik: Grundforløbet 1. udgave, 2014 Disse noter er skrevet til matematikundervisning i grundforløbet på stx og kan frit anvendes

Læs mere

matx.dk Differentialregning Dennis Pipenbring

matx.dk Differentialregning Dennis Pipenbring mat.dk Differentialregning Dennis Pipenbring 0. december 00 Indold Differentialregning 3. Grænseværdi............................. 3. Kontinuitet.............................. 8 Differentialkvotienten

Læs mere