Taylorudvikling I. 1 Taylorpolynomier. Preben Alsholm 3. november Definition af Taylorpolynomium

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "Taylorudvikling I. 1 Taylorpolynomier. Preben Alsholm 3. november Definition af Taylorpolynomium"

Transkript

1 Taylorudvikling I Preben Alsholm 3. november 008 Taylorpolynomier. Definition af Taylorpolynomium Definition af Taylorpolynomium Givet en funktion f : I R! R og et udviklingspunkt x 0 I. Find et polynomium P n af grad højst n, så f og P n har samme nulte, første, anden, tredie,..., n te afledede i punktet x 0. P n skal så opfylde ligningerne Skriver vi P n på formen P n (x 0 ) = f (x 0 ) Pn 0 (x 0 ) = f 0 (x 0 ) Pn 00 (x 0 ) = f 00 (x 0 ). P n (n) (x 0 ) = f (n) (x 0 ) P n (x) = a 0 + a (x x 0 ) + a (x x 0 ) + a 3 (x x 0 ) 3 søger vi nu a 0, a, a,..., a n. +a 4 (x x 0 ) a n (x x 0 ) n. Udledning af formlen for Taylorpolynomiet Udledning af formlen for Taylorpolynomiet Vi ser med det samme, at a 0 = f (x 0 ). Da fås, at a = f 0 (x 0 ). Da P 0 n (x) = a + a (x x 0 ) + 3a 3 (x x 0 ) +4a 4 (x x 0 ) na n (x x 0 ) n P 00 n (x) = a + 3 a 3 (x x 0 ) a 4 (x x 0 ) n (n ) a n (x x 0 ) n

2 fås a = f 00 (x 0 ). Da P 000 n (x) = 3 a a 4 (x x 0 ) fås, at a 3 = 3 f 000 (x 0 )..3 Formlen for Taylorpolynomiet Formlen for Taylorpolynomiet n (n ) (n ) a n (x x 0 ) n 3 Generelt fås altså a k = k! f (k) (x 0 ) således at P n (x) = f (x 0 ) + f 0 (x 0 ) (x x 0 ) + f 00 (x 0 ) (x x 0 ) + 3! f 000 (x 0 ) (x x 0 ) n! f (n) (x 0 ) (x x 0 ) n Dette kan også skrives P n (x) = idet vi definerer 0! = og f (0) = f. n k! f (k) (x 0 ) (x x 0 ) k k=0.4 Eksempel: Eksponenentialfunktionen Eksempel: Exponentialfunktionen f (x) = e x med udviklingspunkt 0, orden n. Vi har jo f 0 (x) = f 00 (x) = f 000 (x) =... = f (n) (x) = e x. Så f (k) (0) = e 0 = for alle k 0. Hermed fås P n (x) = f (0) + f 0 (0) x + f 00 (0) x + 3! f 000 (0) n! f (n) (0) x n Altså P n (x) = + x + x + 3! x n! xn Dette kan også skrives P n (x) = n k! xk k=0

3 .5 Funktion givet ved simpel forskrift Funktion givet ved simpel forskrift f (x) = x arctan x med udviklingspunkt, orden. Vi har f 0 (x) = arctan x + x + x f 00 (x) = x + x ( + x ) Så f () = 4, f 0 () = 4 +, f 00 () =. Hermed fås P (x) = f () + f 0 () (x ) + f 00 () (x ) = (x ) + (x ) = (x ) + (x ) 4 Maple. Funktion givet ved differentialligning Funktion givet ved differentialligning Find det. Taylorpolynomium med udviklingspunkt for løsningen til differentialligningen x 0 (t) = sin t + x (t) med x = 0 Vi skal finde P (t) = x + x 0 t + x 00 t Ved indsættelse af t = i differentialligningen fås x0 = sin + x = sin =. Ved differentiation af differentialligningen fås x 00 (t) = cos t + x (t) ( + x (t) x 0 (t)). Ved indsættelse af t = heri fås x00 = cos + x + x x 0 = 0. Altså fås P (t) = 0 + t + 0 t = t som jo er det samme som det første Taylorpolynomium P (t). Se Maple for P 3 (t). 3

4 Taylors formel. Lineariseringen Lineariseringen I semesteruge E så vi, at definitionen på differentiabilitet kunne formuleres således: f er differentiabel i x 0 med differentialkvotient a, hvis der findes en funktion ε defineret i et interval omkring 0, så f (x 0 + h) f (x 0 ) = ah + ε (h) h og hvor ε (h)! 0 for h! 0. At f er differentiabel i x 0 betyder altså, at f (x) approksimeres godt ved f (x 0 ) + a (x x 0 ), når jx x 0 j er lille. Funktionen P (x) = f (x 0 ) + a (x x 0 ) kaldes for lineariseringen af f i x 0. Lineariseringen P er det første Taylorpolynomium for f med udviklingspunkt x 0. Grafen for P er tangenten til grafen for f i (x 0, f (x 0 )). Hvor meget smider vi væk, når vi erstatter f (x) med P (x)?. Rolles sætning Rolles sætning Antag, at φ er kontinuert i [a, b] og differentiabel i ]a, b[ og at φ (a) = φ (b) = 0. Så findes der et tal ξ ]a, b[, så φ 0 (ξ) = 0. Bevis: Hvis ikke φ er konstant lig nul, antager funktionen enten et positivt maksimum eller et negativt minimum. Her bruges kontinuiteten på [a, b]. I et sådant ekstremumspunkt (som jo må være indre) er differentialkvotienten nødvendigvis nul..3 Middelværdisætningen (den udvidede) Middelværdisætningen (den udvidede) Antag, at funktionerne h og g er kontinuerte i intervallet [a, b] og differentiable i ]a, b[. Så findes der et tal ξ ]a, b[, så Bevis: Lad [h(b) h(a)] g 0 (ξ) = [g(b) g(a)] h 0 (ξ) φ (x) = (g (x) g (a)) (h (b) h (a)) (g (b) g (a)) (h (x) h (a)) 4

5 Så er φ kontinuert i [a, b] og differentiabel i ]a, b[ og φ (a) = φ (b) = 0. Ifølge Rolles sætning findes et ξ ]a, b[, så φ 0 (ξ) = 0. Men φ 0 (ξ) = g 0 (ξ) (h (b) h (a)) (g (b) g (a)) h 0 (ξ), så φ 0 (ξ) = 0 giver umiddelbart giver påstanden. Den sædvanlige middelværdisætning fås ved at tage g (x) = x..4 Taylors formel med Lagrange s restled Taylors formel med Lagrange s restled Hvad er den fejl man begår ved at erstatte en funktion f med dens Taylorpolynomium P n? Taylors formel: Lad f være n + gange differentiabel i intervallet I og lad x 0 I. For givet x I findes et tal ξ mellem x 0 og x, så f (x) = f (x 0 ) + f 0 (x 0 ) (x x 0 ) + f 00 (x 0 ) (x x 0 ) n! f (n) (x 0 ) (x x 0 ) n + (n + )! f (n+) (ξ) (x x 0 ) n+ Altså f (x) = P n (x) + (n+)! f (n+) (ξ) (x x 0 ) n+ = P n (x) + R n (x). Vi beviser sætningen i det konkrete tilfælde n = : f (x) = P (x) + 3! f (3) (ξ) (x x 0 ) 3..5 Bevis for Taylors formel Bevis for Taylors formel I middelværdisætningen tager vi h(x) = f (x) P (x) og g(x) = (x x 0 ) 3. Så har h, h 0, h 00 og g, g 0, g 00 alle værdien 0 i x 0. Lad x > x 0. Middelværdisætningen giver nu et ξ ]x 0, x[ så Herefter fås et ξ ]x 0, ξ [ så Til sidst fås et ξ 3 ]x 0, ξ [ så h(x) g(x) = h(x) h(x 0) g(x) g(x 0 ) = h0 (ξ ) g 0 (ξ ) h 0 (ξ ) g 0 (ξ ) = h0 (ξ ) h 0 (x 0 ) g 0 (ξ ) g 0 (x 0 ) = h00 (ξ ) g 00 (ξ ) h 00 (ξ ) g 00 (ξ ) = h00 (ξ ) h 00 (x 0 ) g 00 (ξ ) g 00 (x 0 ) = h000 (ξ 3 ) g 000 (ξ 3 ) = f 000 (ξ 3 ) 3! Så h(x) g(x) = f 000 (ξ 3 ) 3!, dvs. f (x) P (x) = 3! f 000 (ξ 3 ) (x x 0 ) 3. 5

6 . Vurdering af fejlen ved Taylors formel I Vurdering af fejlen ved Taylors formel I Eksempel. f (x) = e x, udviklingspunkt 0. Vi har P n (x) = + x + x + 3! x n! xn. f (n+) (x) = e x. Så je x P n (x)j = (n + )! eξ x n+ = e ξ (n + )! jxjn+ Bestem n, så je x P n (x)j 0 5 for alle x [ 0., 0.]. I Taylors formel gælder så jξj 0. og dermed je x P n (x)j = e ξ (n + )! jxjn+ e0. (n + )! (0.)n+ (n + )! (0.)n+ Vi vælger nu n, så (n+)! (0.)n n = 3 er nok, idet 4! 0 4 = 0 4 < Vurdering af fejlen ved Taylors formel II Vurdering af fejlen ved Taylors formel II Lad f (x) for alle x være givet ved f (x) = Z x 0 ( + t) cos t 3 dt Vurdér den fejl, der begås ved at erstatte f (x) med h dets i. Taylorpolynomium P (x) med udviklingspunkt 0, når x. Vi finder f 0 (x) = ( + x) cos f 00 (x) = cos f 000 (x) = x ( + x) sin ( + x) 3x sin, 9x 4 ( + x) cos Heraf findes P (x) = x + x. h Vha. Maple findes, at j f 000 (x)j.59 for x i,. Altså fås j f (x) P (x)j.59 jxj3.59 Den faktiske maksimale fejl kan findes grafisk til '

7 .8 Taylors grænseformel Taylors grænseformel Lad f C n (I) og lad x 0 I. Der findes da en funktion ε defineret i et interval omkring 0 så for x I gælder hvor ε (h)! 0 for h! 0. f (x) = P n (x) + (x x 0 ) n ε (x x 0 ) Bevis. Taylors formel giver et ξ mellem x og x 0 så f (x) = P n (x) + n! f (n) (ξ) (x x 0 ) n. Heraf fås f (x) = P n (x) + n! f (n) (ξ) f (n) (x 0 ) (x x 0 ) n. f (n) (x 0 )! 0 for x! x 0, da f (n) er kontinuert pr. an- Men f (n) (ξ) tagelse..9 Eksempel Eksempel Vi ønsker at bestemme grænseværdien Vi udnytter, at lim x!0 ln ( + x) = x ln ( + x) x e x x x + ε (x) x e x = + x + (x) + ε (x) x Så for x! 0 fås ln ( + x) x e x x = x + ε (x) x x + ε (x) x =.0 Store O-notationen Store O-notationen + ε (x) + ε (x)! 4 Når Maplekommandoen taylor(sin(x),x=0,4); som resultat giver x x3 + O x 4, betyder der følgende: Der findes en konstant K, så x sin x x3 Kx 4 for alle x i et interval med 0 som indre punkt. 7

8 Generelt betyder f (x) = O (u (x)) for x! a, at der findes en konstant K, så j f (x)j K ju (x)j for alle x i et interval med a som indre punkt. Vi har eksempelvis: sin x = O (x), sin x = x + O x, men også sin x = x + O og den allerede viste. I Taylor-sammenhæng kan O (x højere. x 0 ) n tolkes som led af orden n og. Lille o-notationen Lille o-notationen Udsagnet sin x = x + ε (x). + o betyder det samme som sin x = x Med andre ord: sin x = x + o betyder, at for x! 0. sin x x! 0 Generelt betyder f (x) = o (u (x)) for x! a, at for x! a. f (x) u (x)! 0 Hvis f (x) = O x 4 for x! 0 så gælder også f (x) = o. Den omvendte gælder ikke. 8

Taylorpolynomier og Taylors sætning

Taylorpolynomier og Taylors sætning og Taylors sætning 10. november 2008 I Givet en funktion f og et udviklingspunkt x 0. Find et polynomium P n af grad højst n, så f og P n har samme nulte, første, anden, tredie,..., n te a edede i punktet

Læs mere

Taylorpolynomier. Preben Alsholm. 17. april 2008. Taylorpolynomier. Funktion af ere variable. Preben Alsholm. Taylorpolynomier

Taylorpolynomier. Preben Alsholm. 17. april 2008. Taylorpolynomier. Funktion af ere variable. Preben Alsholm. Taylorpolynomier . 17. april 008 for I Givet en funktion f og et udviklingspunkt x 0. Find et polynomium P n af grad højst n, så f og P n har samme nulte, første, anden, tredie,..., n te a edede i punktet x 0.. for I Givet

Læs mere

Funktion af flere variable

Funktion af flere variable Funktion af flere variable Preben Alsholm 6. oktober 2008 1 Funktion af flere variable 1.1 Punktmængder i R k : Definitioner Punktmængder i flerdimensionale rum: Definitioner q Normen af x 2 R k er kxk

Læs mere

Funktion af flere variable

Funktion af flere variable Funktion af flere variable Preben Alsolm 24. april 2008 1 Funktion af flere variable 1.1 Differentiabilitet for funktion af én variabel Differentiabilitet for funktion af én variabel f kaldes differentiabel

Læs mere

Taylor s approksimationsformler for funktioner af én variabel

Taylor s approksimationsformler for funktioner af én variabel enote 17 1 enote 17 Taylor s approksimationsformler for funktioner af én variabel I enote 14 og enote 16 er det vist hvordan funktioner af én og to variable kan approksimeres med førstegradspolynomier

Læs mere

En differentiabel funktion hvis afledte ikke er kontinuert Søren Knudby

En differentiabel funktion hvis afledte ikke er kontinuert Søren Knudby 24 En differentiabel funktion hvis afledte ikke er kontinuert Søren Knudby Det er velkendt for de fleste, at differentiabilitet af en reel funktion f medfører kontinuitet af f, mens det modsatte ikke gælder

Læs mere

Noter til Computerstøttet Beregning Taylors formel

Noter til Computerstøttet Beregning Taylors formel Noter til Computerstøttet Beregning Taylors formel Arne Jensen c 23 1 Introduktion I disse noter formulerer og beviser vi Taylors formel. Den spiller en vigtig rolle ved teoretiske overvejelser, og også

Læs mere

Introduktion til differentialregning 1. Jens Siegstad og Annegrethe Bak

Introduktion til differentialregning 1. Jens Siegstad og Annegrethe Bak Introduktion til differentialregning 1 Jens Siegstad og Annegrete Bak 16. juli 2008 1 Indledning I denne note vil vi kort introduktion til differentilregning, idet vi skal bruge teorien i et emne, Matematisk

Læs mere

Partielle afledede og retningsafledede

Partielle afledede og retningsafledede Partielle afledede og retningsafledede 1 Partielle afledede, definitioner og notationer Bertragt en funktion af to reelle variable f : D R, hvor D R 2 er et åbent område Med benyttelse af tilvækstfunktionen

Læs mere

MM501 forelæsningsslides

MM501 forelæsningsslides MM50 forelæsningsslides uge 36, 2009 Produceret af Hans J. Munkholm Nogle talmængder s. 3 N = {, 2, 3, } omtales som de naturlige tal eller de positive heltal. Z = {0, ±, ±2, ±3, } omtales som de hele

Læs mere

Test grafisk afledede Højere partielle afledede Differentiationsordenen er ligegyldig Partielle differentialligninger Test Laplaces ligning

Test grafisk afledede Højere partielle afledede Differentiationsordenen er ligegyldig Partielle differentialligninger Test Laplaces ligning Oversigt [S] 2.7, 3.1, 3.4, 11.3 Nøgleord og begreber Differentiabel funktion i en variabel Partielle afledede i flere variable Notation og regneregler for partielle afledede Test partielle afledede Grafisk

Læs mere

DesignMat Lineære differentialligninger I

DesignMat Lineære differentialligninger I DesignMat Lineære differentialligninger I Preben Alsholm Uge 9 Forår 2010 1 Lineære differentialligninger af første orden 1.1 Normeret lineær differentialligning Normeret lineær differentialligning En

Læs mere

Differentialregning. Ib Michelsen

Differentialregning. Ib Michelsen Differentialregning Ib Michelsen Ikast 2012 Forsidebilledet Tredjegradspolynomium i blåt med rød tangent Version: 0.02 (18-09-12) Denne side er (~ 2) Indholdsfortegnelse Introduktion...5 Definition af

Læs mere

af koblede differentialligninger (se Apostol Bind II, s 229ff) 3. En n te ordens differentialligning

af koblede differentialligninger (se Apostol Bind II, s 229ff) 3. En n te ordens differentialligning EKSISTENS- OG ENTYDIGHEDSSÆTNINGEN Vi vil nu bevise eksistens- og entydighedssætningen for ordinære differentialligninger. For overskuelighedens skyld vil vi indskrænke os til at undersøge een 1. ordens

Læs mere

Grafisk bestemmelse - fortsat Støttepunkter. Grafisk bestemmelse y. giver grafen. Niveaukurver og retning u = ( 1

Grafisk bestemmelse - fortsat Støttepunkter. Grafisk bestemmelse y. giver grafen. Niveaukurver og retning u = ( 1 Oversigt [S]. Nøgleord og begreber Retningsafledt Gradientvektor Gradient i flere variable Fortolkning af gradientvektoren Agst, opgave 5 Delvis afledt [S]. Directional derivatives and te... Definition

Læs mere

Kapitel 2. Differentialregning A

Kapitel 2. Differentialregning A Kapitel 2. Differentialregning A Indhold 2.2 Differentiabilitet og tangenter til grafer... 2 2.3 Sammensat funktion, eksponential-, logaritme- og potensfunktioner... 7 2.4 Regneregler for differentiation

Læs mere

Differential- regning

Differential- regning Differential- regning del () f () m l () 6 Karsten Juul Indhold Tretrinsreglen 59 Formler for differentialkvotienter64 Regneregler for differentialkvotienter67 Differentialkvotient af sammensat funktion7

Læs mere

MATEMATIK 11 Eksamensopgaver Juni 1995 Juni 2001, 4. fjerdedel

MATEMATIK 11 Eksamensopgaver Juni 1995 Juni 2001, 4. fjerdedel Juni 2000 MATEMATIK 11 Eksamensopgaver Juni 1995 Juni 2001, 4. fjerdedel Opgave 1. (a) Find den fuldstændige løsning til differentialligningen y 8y + 16y = 0. (b) Find den fuldstændige løsning til differentialligningen

Læs mere

matx.dk Differentialregning Dennis Pipenbring

matx.dk Differentialregning Dennis Pipenbring mat.dk Differentialregning Dennis Pipenbring 0. december 00 Indold Differentialregning 3. Grænseværdi............................. 3. Kontinuitet.............................. 8 Differentialkvotienten

Læs mere

z + w z + w z w = z 2 w z w = z w z 2 = z z = a 2 + b 2 z w

z + w z + w z w = z 2 w z w = z w z 2 = z z = a 2 + b 2 z w Komplekse tal Hvis z = a + ib og w = c + id gælder z + w = (a + c) + i(b + d) z w = (a c) + i(b d) z w = (ac bd) + i(ad bc) z w = a+ib c+id = ac+bd + i bc ad, w 0 c +d c +d z a b = i a +b a +b Konjugation

Læs mere

Differentialkvotient af cosinus og sinus

Differentialkvotient af cosinus og sinus Differentialkvotient af cosinus og sinus Overgangsformler cos( + p ) = cos sin( + p ) = sin cos( -) = cos sin( -) = -sin cos( p - ) = - cos sin( p - ) = sin cos( p + ) = -cos sin( p + ) = -sin (bevises

Læs mere

GEOMETRI-TØ, UGE 6. . x 1 x 1. = x 1 x 2. x 2. k f

GEOMETRI-TØ, UGE 6. . x 1 x 1. = x 1 x 2. x 2. k f GEOMETRI-TØ, UGE 6 Hvis I falder over tryk- eller regne-fejl i nedenstående, må I meget gerne sende rettelser til fuglede@imfaudk Opvarmningsopgave 1 Lad f : R 2 R være tre gange kontinuert differentierbar

Læs mere

Numerisk. differentiation. Erik Vestergaard

Numerisk. differentiation. Erik Vestergaard Numerisk differentiation Erik Vestergaard 2 Erik Vestergaard www.matematikfysik.dk Erik Vestergaard, 25. Billeder: Forside: istock.com/iunewind Side 5: istock.com/cienpies Desuden egne illustrationer Erik

Læs mere

1 Differentialkvotient

1 Differentialkvotient gudmandsen.net Ophavsret Kopiering, distribution og fremvisning af dette dokument eller dele deraf er tilladt i ikke-kommercielle sammenhænge, sålænge dette foregår med tydelig kildeangivelse. Al anden

Læs mere

Besvarelses forslag til Tag-hjemeksamen Vinteren 02 03

Besvarelses forslag til Tag-hjemeksamen Vinteren 02 03 IMFUFA Carsten Lunde Petersen Besvarelses forslag til Tag-hjemeksamen Vinteren 02 0 Hvor ikke andet er angivet er henvisninger til W.R.Wade An Introduction to analysis. Opgave a) Idet udtrykket e x2 cos

Læs mere

MASO Uge 7. Differentiable funktioner. Jesper Michael Møller. Uge 7. Formålet med MASO. Department of Mathematics University of Copenhagen

MASO Uge 7. Differentiable funktioner. Jesper Michael Møller. Uge 7. Formålet med MASO. Department of Mathematics University of Copenhagen MASO Uge 7 Differentiable funktioner Jesper Michael Møller Department of Mathematics University of Copenhagen Uge 7 Formålet med MASO Oversigt Differentiable funktioner R n R m Differentiable funktioner

Læs mere

Ekstrema: Teori og praksis Ubegrænset, ikke-lineær optimering

Ekstrema: Teori og praksis Ubegrænset, ikke-lineær optimering Ekstrema: Teori og praksis Ubegrænset, ikke-lineær optimering Gruppe G3-106 Aalborg Universitet Institut for Matematiske Fag 20. december 2012 Institut for Matematiske Fag Fredrik Bajers Vej 7G 9220 Aalborg

Læs mere

10. Differentialregning

10. Differentialregning 10. Differentialregning Hayati Balo,AAMS Følgende fremstilling er baseret på 1. Nils Victor-Jensen, Matematik for adgangskursus, B-niveau 2, 2. udg. 10.1 Grænseværdibegrebet I afsnit 7. Funktioner på side

Læs mere

Introduktion til Laplace transformen (Noter skrevet af Nikolaj Hess-Nielsen sidst revideret marts 2013)

Introduktion til Laplace transformen (Noter skrevet af Nikolaj Hess-Nielsen sidst revideret marts 2013) Introduktion til Laplace transformen (oter skrevet af ikolaj Hess-ielsen sidst revideret marts 23) Integration handler ikke kun om arealer. Tværtimod er integration basis for mange af de vigtigste værktøjer

Læs mere

PeterSørensen.dk : Differentiation

PeterSørensen.dk : Differentiation PeterSørensen.dk : Differentiation Betydningen af ordet differentialkvotient...2 Sekant...2 Differentiable funktioner...3 Bestemmelse af differentialkvotient i praksis ved opgaveløsning...3 Regneregler:...3

Læs mere

Funktionsundersøgelse. Rasmus Sylvester Bryder

Funktionsundersøgelse. Rasmus Sylvester Bryder Funktionsundersøgelse Rasmus Sylvester Bryder 7. november 2008 Dette projekt aeveres i forbindelse med LA T EX 2ε-kurset vejledningsuge 2, 2008-09 på KU; til projektet benyttes noter givet til opgaveløsning.

Læs mere

INSTITUT FOR MATEMATIK OG DATALOGI. TIDLIGERE EKSAMENSOPGAVER MM501 Calculus I, MM502 Calculus II Januar 2006 juni 2010

INSTITUT FOR MATEMATIK OG DATALOGI. TIDLIGERE EKSAMENSOPGAVER MM501 Calculus I, MM502 Calculus II Januar 2006 juni 2010 INSTITUT FOR MATEMATIK OG DATALOGI TIDLIGERE EKSAMENSOPGAVER MM501 Calculus I, MM502 Calculus II Januar 2006 juni 2010 Forord Denne opgavesamling indeholder samtlige eksamensopgaver, der har været stillet

Læs mere

Differentiation. Frank Nasser. 11. juli 2011

Differentiation. Frank Nasser. 11. juli 2011 Differentiation Frank Nasser 11. juli 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

Noter om Komplekse Vektorrum, Funktionsrum og Differentialligninger LinAlg 2004/05-Version af 16. Dec.

Noter om Komplekse Vektorrum, Funktionsrum og Differentialligninger LinAlg 2004/05-Version af 16. Dec. Noter om Komplekse Vektorrum, Funktionsrum og Differentialligninger LinAlg 2004/05-Version af 16. Dec. 1 Komplekse vektorrum I defininitionen af vektorrum i Afsnit 4.1 i Niels Vigand Pedersen Lineær Algebra

Læs mere

Matematikprojekt. Differentialregning. Lavet af Arendse Morsing Gunilla Olesen Julie Slavensky Michael Hansen. 4 Oktober 2010

Matematikprojekt. Differentialregning. Lavet af Arendse Morsing Gunilla Olesen Julie Slavensky Michael Hansen. 4 Oktober 2010 Matematikprojekt om Differentialregning Lavet af Arendse Morsing Gunilla Olesen Julie Slavensky Michael Hansen 4 Oktober 2010 Indhold I Del 1................................ 3 I Differentialregningens

Læs mere

Matematik A-niveau - bestemmelse af monotoniforhold (EKSEMPEL 1): Side 94 opgave 11:

Matematik A-niveau - bestemmelse af monotoniforhold (EKSEMPEL 1): Side 94 opgave 11: Matematik A-niveau - bestemmelse af monotoniforhold (EKSEMPEL 1): Side 94 opgave 11: Opgave a) Ligningen for tangenten bestemmes. Dog defineres funktionen. Tangent-formlen er pr. definition. (1) Altså

Læs mere

MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 Differentialligninger

MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 Differentialligninger MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 Differentialligninger 2016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver

Læs mere

OPGAVER 1. Approksimerende polynomier. Håndregning

OPGAVER 1. Approksimerende polynomier. Håndregning OPGAVER 1 Opgaver til Uge 4 Store Dag Opgave 1 Approksimerende polynomier. Håndregning a) Find for hver af de følgende funktioner deres approksimerende polynomiumer af første og anden grad med udviklingspunkt

Læs mere

Differentialregning 2

Differentialregning 2 Differentialregning Hvis man ønsker mere udfordring, kan man springe de første 7 opgaver over. Opgave 1 Udregn monotoniintervallerne for funktionerne f 1 () = + 4, f () = 4 3 f 3 () = 3 6 + 9 +, f 4 ()

Læs mere

Eksamen i Calculus Mandag den 4. juni 2012

Eksamen i Calculus Mandag den 4. juni 2012 Eksamen i Calculus Mandag den 4. juni 212 Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet Nærværende eksamenssæt består af 7 nummererede sider med ialt

Læs mere

Funktioner af flere variable

Funktioner af flere variable Funktioner af flere variable Stud. Scient. Martin Sparre Københavns Universitet 23-10-2006 Definition 1 (Definition af en funktion af flere variable). En funktion af n variable defineret på en delmængde,

Læs mere

Funktioner af to variable

Funktioner af to variable enote 15 1 enote 15 Funktioner af to variable I denne og i de efterfølgende enoter vil vi udvide funktionsbegrebet til at omfatte reelle funktioner af flere variable; vi starter udvidelsen med 2 variable,

Læs mere

8 Regulære flader i R 3

8 Regulære flader i R 3 8 Regulære flader i R 3 Vi skal betragte særligt pæne delmængder S R 3 kaldet flader. I det følgende opfattes S som et topologisk rum i sportopologien, se Definition 5.9. En åben omegn U af p S er således

Læs mere

Matematisk modellering og numeriske metoder. Lektion 1

Matematisk modellering og numeriske metoder. Lektion 1 Matematisk modellering og numeriske metoder Lektion 1 Morten Grud Rasmussen 4. september, 2013 1 Ordinære differentialligninger ODE er 1.1 ODE er helt grundlæggende Definition 1.1 (Ordinære differentialligninger).

Læs mere

Komplekse Tal. 20. november 2009. UNF Odense. Steen Thorbjørnsen Institut for Matematiske Fag Århus Universitet

Komplekse Tal. 20. november 2009. UNF Odense. Steen Thorbjørnsen Institut for Matematiske Fag Århus Universitet Komplekse Tal 20. november 2009 UNF Odense Steen Thorbjørnsen Institut for Matematiske Fag Århus Universitet Fra de naturlige tal til de komplekse Optælling af størrelser i naturen De naturlige tal N (N

Læs mere

MM502+4 forelæsningsslides. uge 6, 2009

MM502+4 forelæsningsslides. uge 6, 2009 MM502+4 forelæsningsslides uge 6, 2009 1 Definition partielle afledede: De (første) partielle afledede af en funktion f(x, y) af to variable er f(x + h, y) f(x, y) f 1 (x, y) := lim h 0 h f(x, y + k) f(x,

Læs mere

Oversigt Matematik Alfa 1, Januar 2003

Oversigt Matematik Alfa 1, Januar 2003 Oversigt [S], [LA] Nøgleord og begreber Egenvektorer, egenværdier og diagonalisering Dobbelt integral og polært koordinatskift Ortogonal projektion og mindste afstand Retningsafledt og gradient Maksimum/minimums

Læs mere

matx.dk Mikroøkonomi

matx.dk Mikroøkonomi matx.dk Mikroøkonomi Dennis Pipenbring 31. august 2011 Indold 1 Udbuds- og efterspørgselskurver 3 1.1 Lineær.............................. 4 1.2 Eksponentiel........................... 5 1.3 Potens..............................

Læs mere

Analyse 1, Prøve 2 Besvarelse

Analyse 1, Prøve 2 Besvarelse Københavns Universitet Prøve ved Det naturvidenskabelige Fakultet maj Analyse, Prøve Besvarelse Opgave (3%) (a) (%) Bestem mængden af x R for hvilke rækken ( + (x) n ) er konvergent og angiv sumfunktionen

Læs mere

MATEMATIK 11 Eksamensopgaver Juni 1995 Juni 2001, 3. fjerdedel

MATEMATIK 11 Eksamensopgaver Juni 1995 Juni 2001, 3. fjerdedel MATEMATIK Eksamensopgaver Juni 995 Juni 200, 3. fjerdedel August 998 Opgave. Lad f : R \ {0} R betegne funktionen givet ved f(x) = ex x for x 0. (a) Find eventuelle lokale maksimums- og minimumspunkter

Læs mere

Oversigt [S] 8.7, 8.8, 8.9

Oversigt [S] 8.7, 8.8, 8.9 Oversigt [S] 8.7, 8.8, 8.9 Nøgleord og begreber Potensrækker og opgaver Binomialformlen Binomialkoefficienter Binomialrækken Taylor polynomier Vurdering af Taylor s restled Eksponentialrækken konvereger

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Som 2015 Institution VUC Vest Uddannelse Fag og niveau Lærer(e) Hold Hf/hfe Mat B Niels Johansson 14MACB11E14

Læs mere

Supplerende opgaver. S1.3.1 Lad A, B og C være delmængder af X. Vis at

Supplerende opgaver. S1.3.1 Lad A, B og C være delmængder af X. Vis at Supplerende opgaver Analyse Jørgen Vesterstrøm Forår 2004 S.3. Lad A, B og C være delmængder af X. Vis at (A B C) (A B C) (A B) C og find en nødvendig og tilstrækkelig betingelse for at der gælder lighedstegn

Læs mere

MATEMATIK B. Videooversigt

MATEMATIK B. Videooversigt MATEMATIK B Videooversigt 2. grads ligninger.... 2 CAS værktøj... 3 Differentialregning... 3 Eksamen... 5 Funktionsbegrebet... 5 Integralregning... 5 Statistik... 6 Vilkårlige trekanter... 7 71 videoer.

Læs mere

Differentialregning Infinitesimalregning

Differentialregning Infinitesimalregning Udgave 2.1 Differentialregning Infinitesimalregning Noterne gennemgår begreberne differentialregning, og anskuer dette som et derligere redskab til vækst og funktioner. Noterne er supplement til kapitel

Læs mere

Det teknisk-naturvidenskabelige basisår Matematik 1A, Efterår 2005, Hold 3 Prøveopgave A

Det teknisk-naturvidenskabelige basisår Matematik 1A, Efterår 2005, Hold 3 Prøveopgave A Det teknisk-naturvidenskabelige basisår Matematik 1A, Efterår 2005, Hold 3 Prøveopgave A Opgaven består af tre dele, hver med en række spørgsmål, efterfulgt af en liste af teorispørgsmål. I alle opgavespørgsmålene

Læs mere

11. Funktionsundersøgelse

11. Funktionsundersøgelse 11. Funktionsundersøgelse Hayati Balo,AAMS Følgende fremstilling er baseret på 1. Nils Victor-Jensen,Matematik for adgangskursus, B-niveau 2, 2. udg. 11.1 Generelt om funktionsundersøgelse Formålet med

Læs mere

Projekt 2.2 Omvendt funktion og differentiation af omvendt funktion

Projekt 2.2 Omvendt funktion og differentiation af omvendt funktion ISBN 978877664974 Projekter: Kapitel. Projekt. Omvendt funktion og differentiation af omvendt funktion Projekt. Omvendt funktion og differentiation af omvendt funktion Vi har i Bbogens kapitel 4 afsnit

Læs mere

DesignMat Den komplekse eksponentialfunktion og polynomier

DesignMat Den komplekse eksponentialfunktion og polynomier DesignMat Den komplekse eksponentialfunktion og polynomier Preben Alsholm Uge 8 Forår 010 1 Den komplekse eksponentialfunktion 1.1 Definitionen Definitionen Den velkendte eksponentialfunktion x e x vil

Læs mere

VUC Vestsjælland Syd, Slagelse Nr. 1 Institution: Projekt Trigonometri

VUC Vestsjælland Syd, Slagelse Nr. 1 Institution: Projekt Trigonometri VUC Vestsjælland Syd, Slagelse Nr. 1 Institution: 333247 2015 Anders Jørgensen, Mark Kddafi, David Jensen, Kourosh Abady og Nikolaj Eriksen 1. Indledning I dette projekt, vil man kunne se definitioner

Læs mere

Oversigt [S] 4.5, 5.10

Oversigt [S] 4.5, 5.10 Oversigt [S] 4.5, 5.0 Nøgleord og begreber Ubestemte udtryk l Hospitals regel l Hospitals regel 2 Test l Hospitals regel Uegentlige integraler Test uegentlige integraler Uegentlige integraler 2 Test uegentlige

Læs mere

Matematisk modellering og numeriske metoder. Lektion 5

Matematisk modellering og numeriske metoder. Lektion 5 Matematisk modellering og numeriske metoder Lektion 5 Morten Grud Rasmussen 19. september, 2013 1 Euler-Cauchy-ligninger [Bogens afsnit 2.5, side 71] 1.1 De tre typer af Euler-Cauchy-ligninger Efter at

Læs mere

Differentialligninger. Ib Michelsen

Differentialligninger. Ib Michelsen Differentialligninger Ib Michelsen Ikast 203 2 Indholdsfortegnelse Indholdsfortegnelse Indholdsfortegnelse...2 Ligninger og løsninger...3 Indledning...3 Lineære differentialligninger af første orden...3

Læs mere

Integralregning Infinitesimalregning

Integralregning Infinitesimalregning Udgave 2.1 Integralregning Infinitesimalregning Noterne gennemgår begreberne integral og stamfunktion, og anskuer dette som et redskab til bestemmelse af arealer under funktioner. Noterne er supplement

Læs mere

Største- og mindsteværdi Uge 11

Største- og mindsteværdi Uge 11 Uge 11 : Definitioner Efterår 2009 : Definitioner Lad A R n og f : A R en reel funktion af n. : Definitioner : Definitioner Lad A R n og f : A R en reel funktion af n. Punktet a = (a 1, a 2,..., a n )

Læs mere

Taylorpolynomier og -rækker samt lokale ekstrema for funktioner af flere variable

Taylorpolynomier og -rækker samt lokale ekstrema for funktioner af flere variable Taylorpolynomier og -rækker samt lokale ekstrema for funktioner af flere variable Morten Grud Rasmussen 1. marts 2016 1 Taylors Sætning for funktioner af én variabel Sætning 1.1 (Taylors Sætning med restled).

Læs mere

[FUNKTIONER] Hvornår kan vi kalde en sammenhæng en funktion, og hvilke egenskaber har disse i givet fald. Vers. 2.0

[FUNKTIONER] Hvornår kan vi kalde en sammenhæng en funktion, og hvilke egenskaber har disse i givet fald. Vers. 2.0 MaB Sct. Knud Gymnasium, Henrik S. Hansen % [FUNKTIONER] Hvornår kan vi kalde en sammenhæng en funktion, og hvilke egenskaber har disse i givet fald. Vers..0 Indhold Funktioner... Entydighed... Injektiv...

Læs mere

Formelsamling til MatIntro kurset på Københavns Universitet

Formelsamling til MatIntro kurset på Københavns Universitet Formelsamling til MatIntro kurset på Københavns Universitet af Michael Flemming Hansen Version 1.0 1. februar 2012 Indhold 1 Funktioner af en variabel 4 1.1 Komplekse tal........................... 4 1.1.1

Læs mere

Betydningen af ordet differentialkvotient...2. Sekant...2

Betydningen af ordet differentialkvotient...2. Sekant...2 PeterSørensen.dk Differentiation Indold Betydningen af ordet differentialkvotient... Sekant... Differentiable funktioner...3 f (x) er grafens ældning i punktet med første-koordinaten x....3 Ikke alle grafpunkter

Læs mere

Matematisk modellering og numeriske metoder. Lektion 16

Matematisk modellering og numeriske metoder. Lektion 16 Matematisk modellering og numeriske metoder Lektion 16 Morten Grud Rasmussen 6. november, 2013 1 Interpolation [Bogens afsnit 19.3 side 805] 1.1 Interpolationspolynomier Enhver kontinuert funktion f på

Læs mere

Monotoniforhold Der gælder følgende sætninger om en differentiabel funktions monotoniforhold:

Monotoniforhold Der gælder følgende sætninger om en differentiabel funktions monotoniforhold: Side 21 Oversigt over undervisningen i matematik - 2x 05/06 Der undervises efter: Claus Jessen, Peter Møller og Flemming Mørk : Tal, Geometri og funktioner. Gyldendal 1997 Claus Jessen, Peter Møller og

Læs mere

Løsning MatB - januar 2013

Løsning MatB - januar 2013 Løsning MatB - januar 2013 Opgave 1 (5%) a) Løs uligheden: 2 x > 5x 6. a) 2 x > 5x 6 2 + 6 > 5x + x 8 > 4x Divideres begge sider med 4 og uligheden vendes. Dvs. 8 4 < x x > 2 Løsningsmængden bliver L =]

Læs mere

Matematik A. Studentereksamen. Forberedelsesmateriale til de digitale eksamensopgaver med adgang til internettet

Matematik A. Studentereksamen. Forberedelsesmateriale til de digitale eksamensopgaver med adgang til internettet Matematik A Studentereksamen Forberedelsesmateriale til de digitale eksamensopgaver med adgang til internettet st131-matn/a-6513 Mandag den 6 maj 13 Forberedelsesmateriale til st A Net MATEMATIK Der skal

Læs mere

Indhold. Forord. Det græske alfabet. 1. Kontinuitet og grænseværdi Indledning Kontinuitet Opgaver til 1.2

Indhold. Forord. Det græske alfabet. 1. Kontinuitet og grænseværdi Indledning Kontinuitet Opgaver til 1.2 Indhold Forord Det græske alfabet 1. Kontinuitet og grænseværdi 1.1. Indledning 1.2. Kontinuitet Opgaver til 1.2 1.3. Regning med kontinuerte funktioner Opgaver til 1.3 1.4. Kontinuerte funktioners egenskaber

Læs mere

MASO Uge 1. Relle tal Følger. Jesper Michael Møller. 7. september Department of Mathematics University of Copenhagen

MASO Uge 1. Relle tal Følger. Jesper Michael Møller. 7. september Department of Mathematics University of Copenhagen MASO Uge 1 Relle tal Jesper Michael Møller Department of Mathematics University of Copenhagen 7. september 2016 Formålet med MASO Integer sequences Oversigt Relle tal Notation Tal Overtal og undertal Største

Læs mere

Ang. skriftlig matematik B på hf

Ang. skriftlig matematik B på hf Peter Sørensen: 02-04-2012 Ang. skriftlig matematik B på hf Til skriftlig eksamen i matematik B på hf skal man ikke kunne hele pensum. Pensum til skriftlig eksamen kan defineres ved, at opgaverne i opgavehæftet

Læs mere

Mere om differentiabilitet

Mere om differentiabilitet Mere om differentiabilitet En uddybning af side 57 i Spor - Komplekse tal Kompleks funktionsteori er et af de vigtigste emner i matematikken og samtidig et af de smukkeste I bogen har vi primært beskæftiget

Læs mere

Newton-Raphsons metode

Newton-Raphsons metode Newton-Raphsons metode af John V. Petersen Indhold Indledning: Numerisk analyse og Newton-Raphsons metode... 2 Udlede Newtons iterations formel... 2 Sætning 1 Newtons metode... 4 Eksempel 1 konvergens...

Læs mere

Ekstremum for funktion af flere variable

Ekstremum for funktion af flere variable Ekstremum for funktion af flere variable Preben Alsholm 28. april 2008 1 Ekstremum for funktion af flere variable 1.1 Hessematricen I Hessematricen I Et stationært punkt for en funktion af flere variable

Læs mere

Optimeringsteori. Tenna Andersen, Tina Sørensen, Majbritt Lundborg, Søren Foged, Jeppe Gravers, Kenneth Andersen & Oskar Aver

Optimeringsteori. Tenna Andersen, Tina Sørensen, Majbritt Lundborg, Søren Foged, Jeppe Gravers, Kenneth Andersen & Oskar Aver Optimeringsteori Tenna Andersen, Tina Sørensen, Majbritt Lundborg, Søren Foged, Jeppe Gravers, Kenneth Andersen & Oskar Aver 20/12/2012 Institut for Matematiske Fag Matematik-Økonomi Fredrik Bajers Vej

Læs mere

MM502+4 forelæsningsslides

MM502+4 forelæsningsslides MM502+4 forelæsningsslides uge 11+12 1, 2009 Produceret af Hans J. Munkholm, delvis på baggrund af lignende materiale udarbejdet af Mikael Rørdam 1 I nærværende forbindelse er 11 + 12 23 1 Egenskaber for

Læs mere

Kalkulus 2 - Grænseovergange, Kontinuitet og Følger

Kalkulus 2 - Grænseovergange, Kontinuitet og Følger Kalkulus - Grænseovergange, Kontinuitet og Følger Mads Friis 8. januar 05 Indhold Grundlæggende uligheder Grænseovergange 3 3 Kontinuitet 9 4 Følger 0 5 Perspektivering 4 Grundlæggende uligheder Sætning

Læs mere

Regning med funktioner - TAVLENOTER

Regning med funktioner - TAVLENOTER Sammensat funktion [Elevsamtaler] Jens Thostrup, GUX Nuuk 1 FACIT b) 1 og 3 er de eneste løsninger, der optræder i tabellen Jens Thostrup, GUX Nuuk 2 Regningsarter for funktioner Sumfunktion: (f+g)(x)

Læs mere

MATEMATIK A-NIVEAU-Net Forberedelsesmateriale

MATEMATIK A-NIVEAU-Net Forberedelsesmateriale STUDENTEREKSAMEN SOMMERTERMIN 13 MATEMATIK A-NIVEAU-Net Forberedelsesmateriale 6 timer med vejledning Forberedelsesmateriale til de skriftlige prøver sommertermin 13 st131-matn/a-6513 Forberedelsesmateriale

Læs mere

Projekt 4.6 Løsning af differentialligninger ved separation af de variable

Projekt 4.6 Løsning af differentialligninger ved separation af de variable Projekt 4.6 Løsning af differentialligninger ved separation af de variable Differentialligninger af tpen d hx () hvor hx ()er en kontinuert funktion, er som nævnt blot et stamfunktionsproblem. De løses

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Termin august 2015 maj 2016 Institution Rybners Uddannelse Fag og niveau Lærer(e) HTX A Steffen Podlech Hold 2.E Oversigt over gennemførte undervisningsforløb Titel 1 Titel 2 Titel

Læs mere

(Prøve)Eksamen i Calculus

(Prøve)Eksamen i Calculus (Prøve)Eksamen i Calculus Sæt 1, april 2011 Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet Nærværende (prøve)eksamenssæt består af 7 nummererede sider

Læs mere

M A T E M A T I K A 2

M A T E M A T I K A 2 M A T E M A T I K A 2 M I K E A U E R B A C H WWW.MATHEMATICUS.DK (2) f 4 () Matematik A2 2. udgave, 206 Disse noter er skrevet til matematikundervisning på stx og kan frit anvendes til ikke-kommercielle

Læs mere

Vejledende besvarelse på august 2009-sættet 2. december 2009

Vejledende besvarelse på august 2009-sættet 2. december 2009 Vejledende besvarelse på august 29-sættet 2. december 29 Det følgende er en vejledende besvarelse på eksamenssættet i kurset Calculus, som det så ud i august 29. Den tjener primært til illustration af,

Læs mere

Lineære differentialligningers karakter og lineære 1. ordens differentialligninger

Lineære differentialligningers karakter og lineære 1. ordens differentialligninger enote 11 1 enote 11 Lineære differentialligningers karakter og lineære 1. ordens differentialligninger I denne note introduceres lineære differentialligninger, som er en speciel (og bekvem) form for differentialligninger.

Læs mere

DesignMat Uge 1 Gensyn med forårets stof

DesignMat Uge 1 Gensyn med forårets stof DesignMat Uge 1 Gensyn med forårets stof Preben Alsholm Efterår 2010 1 Hovedpunkter fra forårets pensum 11 Taylorpolynomium Taylorpolynomium Det n te Taylorpolynomium for f med udviklingspunkt x 0 : P

Læs mere

Noter om komplekse tal

Noter om komplekse tal Noter om komplekse tal Preben Alsholm Januar 008 1 Den komplekse eksponentialfunktion Vi erindrer først om den sædvanlige og velkendte reelle eksponentialfunktion. Vi skal undertiden nde det nyttigt, at

Læs mere

Figur y. Nøgleord og begreber Tangentlinje for graf Tangentplan for graf

Figur y. Nøgleord og begreber Tangentlinje for graf Tangentplan for graf Oversigt [S] 2.7, 2.9, 11. Tangentlinje [S] 2.7 Derivatives Nøgleord og begreber Tangentlinje for graf Tangentplan for graf Figur y y = f(a) + f (a)( a) Test tangentplan Lineær approimation i en og flere

Læs mere

5.3 Konvergens i sandsynlighed Konvergens i sandsynlighed 55. Hvis vi regner den karakteristiske funktion for X, v ud i argumentet 1, fås

5.3 Konvergens i sandsynlighed Konvergens i sandsynlighed 55. Hvis vi regner den karakteristiske funktion for X, v ud i argumentet 1, fås 5.3. Konvergens i sandsynlighed 55 BEVIS: Lad φ 1, φ 2,... og φ være de karakteristiske funktioner for X 1, X 2,... og X. Hvis vi regner den karakteristiske funktion for X, v ud i argumentet 1, fås φ X,v

Læs mere

Differentialregning. Supplerende opgaver til HTX Matematik 1 Nyt Teknisk Forlag. Opgaverne må frit benyttes i undervisningen.

Differentialregning. Supplerende opgaver til HTX Matematik 1 Nyt Teknisk Forlag. Opgaverne må frit benyttes i undervisningen. Differentialregning Side 1 0401 Figuren viser grafen for en funktion f. a) Find ud fra aflæsning på figuren f (3) og f (5) b) Find ud fra aflæsning på figuren fortegnet for hvert af tallene f (1,5), f

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni, 2009 Institution Silkeborg Handelsskole Uddannelse Fag og niveau Lærer(e) Hold Hhx Matematik, niveau

Læs mere

M A T E M A T I K B 2

M A T E M A T I K B 2 M A T E M A T I K B 2 M I K E A U E R B A C H WWW.MATHEMATICUS.DK (2) f a x b () Matematik B2 2. udgave, 206 Disse noter er skrevet til matematikundervisning på stx og kan frit anvendes til ikke-kommercielle

Læs mere

Polynomier. Indhold. Georg Mohr-Konkurrencen. 1 Polynomier 2. 2 Polynomiumsdivision 4. 3 Algebraens fundamentalsætning og rødder 6

Polynomier. Indhold. Georg Mohr-Konkurrencen. 1 Polynomier 2. 2 Polynomiumsdivision 4. 3 Algebraens fundamentalsætning og rødder 6 Indhold 1 Polynomier 2 Polynomier 2 Polynomiumsdivision 4 3 Algebraens fundamentalsætning og rødder 6 4 Koefficienter 8 5 Polynomier med heltallige koefficienter 9 6 Mere om polynomier med heltallige koefficienter

Læs mere

Idenne note giver vi et eksempel på, hvorledes det er vigtigt at holde sig

Idenne note giver vi et eksempel på, hvorledes det er vigtigt at holde sig Analyse : Eulers formel Sebastian rsted 9. maj 015 Idenne note giver vi et eksempel på, hvorledes det er vigtigt at holde sig for øje, hvor de matematiske resultater kommer fra, og hvad de baseres på;

Læs mere

MATEMATIK A-NIVEAU. Anders Jørgensen & Mark Kddafi. Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012.

MATEMATIK A-NIVEAU. Anders Jørgensen & Mark Kddafi. Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012. MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 Kapitel 6 Differentialregning og modellering med f 2016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver

Læs mere