Nøgleord og begreber. l Hospitals regel 2. Test l Hospitals regel. Uegentlige integraler 2. Test uegentlige integraler. Sammenligning.

Størrelse: px
Starte visningen fra side:

Download "Nøgleord og begreber. l Hospitals regel 2. Test l Hospitals regel. Uegentlige integraler 2. Test uegentlige integraler. Sammenligning."

Transkript

1 Oversig [S] 4.5, 5. Nøgleord og begreber Ubeseme udryk l Hospils regel l Hospils regel 2 Tes l Hospils regel Uegenlige inegrler Tes uegenlige inegrler Uegenlige inegrler 2 Tes uegenlige inegrler Smmenligning Clculus - 26 Uge 4. - Ubesem udryk [S] 4.5 Indeermine forms nd l Hospil s rule Eksempler Ubeseme udryk ln() 2 ln() Clculus - 26 Uge Ubesem - udryk [S] 4.5 Indeermine forms nd l Hospil s... Definiion Ld, g() når. Udrykke kldes ubesem f form. g() er ubesem f form. 2 Clculus - 26 Uge Ubesem udryk [S] 4.5 Indeermine forms nd l Hospil s rule Definiion Ld, g() når. Udrykke kldes ubesem f form. g() er ubesem f form. ln Clculus - 26 Uge

2 l Hospils regel [S] 4.5 Indeermine forms nd l Hospil s rule Sæning (l Hospils regel) Ang, f, g er differenible og g () for ilps nœr. Hvis g() er e ubesem udryk f form, så er g() = f () g () Clculus - 26 Uge Overbevis [S] 4.5 Indeermine forms nd l Hospil s rule Bevis Fr den udvidede middelværdisæning Beregn nu g ( ) = f ( )g(), < < g() = f ( ) g ( ) = f () g () Clculus - 26 Uge Prøv reglen ubesem f form. [S] 4.5 Indeermine forms nd l Hospil s rule 2 = 2, f () = 2 Herf fås g() =, g () = 2 = 2 = 2 Clculus - 26 Uge l Hospils regel 2 [S] 4.5 Indeermine forms nd l Hospil s rule Sæning (l Hospils regel) Ang, f, g er differenible og g () for ilps nœr. Hvis g() er e ubesem udryk f form, så er g() = f () g () Clculus - 26 Uge

3 Prøv reglen [S] 4.5 Indeermine forms nd l Hospil s rule 6 er ubesem f form. ln = ln, f () = Herf fås g() =, g () = 2 ln = = 2 = Clculus - 26 Uge Brug reglen ubesem f form. [S] 4.5 Indeermine forms nd l Hospil s rule ln() = ln(), f () = Herf fås g() =, g () = ln() = = Clculus - 26 Uge 4. - Brug reglen 2 ubesem f form. [S] 4.5 Indeermine forms nd l Hospil s rule e 2 = e, f () = e, f )) = e Herf fås g() = 2, g () = 2, g () = 2 e = 2 e 2 = e 2 = Clculus - 26 Uge 4. - Øvelse [S] 4.5 Indeermine forms nd l Hospil s rule 9 omformes ved Fr eksempel følger + ln() ln( ) = ln() = ln() = ep( + + ) = e = Clculus - 26 Uge

4 Tes l Hospils regel [S] 4.5 Indeermine forms nd l Hospil s rule Tes (). (b). (c). sin Afkryds den rigige: () (b) (c) =, g() = sin hr f() =, g() = og er ubesem f form. f () =, g () = cos hr f () =, g () =, så f () g () = f () g () Clculus - 26 Uge Uendelige inervller [S] 5. Improper inegrls Inegrle hr grænseværdi [ A() = d = ] = 2 ( A() = ) = Clculus - 26 Uge Uendelige inervller [S] 5. Improper inegrls y y = 2 Uendelig inervl, endelig rel Clculus - 26 Uge Uegenlig inegrl [S] 5. Improper inegrls Definiion De uegenlige inegrl er konvergen, hvis grænseværdien findes; i mods fld divergen. () d = d (b) b d = b d (c) d = d + d Clculus - 26 Uge

5 Uendelige inervller [S] 5. Improper inegrls De uegenlige inegrl er divergen. De uegenlige inegrl d = = ln = d = [ln ] er konvergen. d = 2 d = 2 Clculus - 26 Uge Uendelige inervller [S] 5. Improper inegrls y y = Uendelig inervl, uendelig rel Clculus - 26 Uge Arcn inegrl d = π [S] 5. Improper inegrls + 2 d = [Arcn ] = Arcn Grænseovergnge ± Arcn = ± π 2 giver + d = 2 + d d = π Clculus - 26 Uge Reciprok poens [S] 5. Improper inegrls 4 De uegenlige inegrl p d = p = p er konvergen for p > med værdi og divergen for p. [ d = p p ( ) p d = p p ] p Clculus - 26 Uge

6 Tes uegenlig inegrl [S] 5. Improper inegrls Tes Inegrle 2 3 d er konvergen. Afkryds: j nej 2 /3 d = [ 3 2/3] = 32/3 3 for (Alerniv p = /3 < i 4) Clculus - 26 Uge Uendelige funkioner [S] 5. Improper inegrls 3 Definiion De uegenlige inegrl er konvergen, hvis grænseværdien findes; i mods fld divergen. () b d = b d (b) b d = + b d (c) b d = c d + b c d Clculus - 26 Uge Uendelige funkioner [S] 5. Improper inegrls De uegenlige inegrl er divergen. d = + = + ln = d = [ln ] + Clculus - 26 Uge Uendelige funkioner [S] 5. Improper inegrls - fors De uegenlige inegrl er konvergen. d = + = = 2 [ /2 d = ] 2 /2 + Clculus - 26 Uge

7 Uendelige funkioner [S] 5. Improper inegrls y y = Uendelige værdier, endelig rel Clculus - 26 Uge Uendelige funkioner [S] 5. Improper inegrls 4 De uegenlige inegrl p d = p + = + p er konvergen for p < med værdi og divergen for p. [ d = p + p ( ) p d = p p ] p Clculus - 26 Uge Tes uegenlig inegrl [S] 5. Improper inegrls Tes Inegrle 2 3 d er konvergen. Afkryds: j nej 2 /3 d = [ 3 2/3] = 3 32/3 3 for Clculus - 26 Uge Smmenligning f uegenlige inegrler [S] 5. Improper inegrls Sæning (Smmenligning) Ang koninuere funkioner f, g opfylder uligheden g() for. () (b) d konvergen g() d konvergen. g() d divergen d divergen. Clculus - 26 Uge

Oversigt [S] 4.5, 5.10

Oversigt [S] 4.5, 5.10 Oversigt [S] 4.5, 5.0 Nøgleord og begreber Ubestemte udtryk l Hospitals regel l Hospitals regel 2 Test l Hospitals regel Uegentlige integraler Test uegentlige integraler Uegentlige integraler 2 Test uegentlige

Læs mere

3. Vilkårlige trekanter

3. Vilkårlige trekanter 3. Vilkårlige treknter 3. Vilkårlige treknter I dette fsnit vil vi beskæftige os med treknter, der ikke nødvendigvis er retvinklede. De formler, der er omtlt i fsnittet om retvinklede treknter, kn ikke

Læs mere

En differentiabel funktion hvis afledte ikke er kontinuert Søren Knudby

En differentiabel funktion hvis afledte ikke er kontinuert Søren Knudby 24 En differentiabel funktion hvis afledte ikke er kontinuert Søren Knudby Det er velkendt for de fleste, at differentiabilitet af en reel funktion f medfører kontinuitet af f, mens det modsatte ikke gælder

Læs mere

Besvarelses forslag til Tag-hjemeksamen Vinteren 02 03

Besvarelses forslag til Tag-hjemeksamen Vinteren 02 03 IMFUFA Carsten Lunde Petersen Besvarelses forslag til Tag-hjemeksamen Vinteren 02 0 Hvor ikke andet er angivet er henvisninger til W.R.Wade An Introduction to analysis. Opgave a) Idet udtrykket e x2 cos

Læs mere

Differential- regning

Differential- regning Differential- regning del () f () m l () 6 Karsten Juul Indhold Tretrinsreglen 59 Formler for differentialkvotienter64 Regneregler for differentialkvotienter67 Differentialkvotient af sammensat funktion7

Læs mere

Kalkulus 1 - Opgaver. Anne Ryelund, Anders Friis og Mads Friis. 20. januar 2015

Kalkulus 1 - Opgaver. Anne Ryelund, Anders Friis og Mads Friis. 20. januar 2015 Kalkulus 1 - Opgaver Anne Ryelund, Anders Friis og Mads Friis 20. januar 2015 Mængder Opgave 1 Opskriv følgende mængder med korrekt mængdenotation. a) En mængde A indeholder alle hele tal fra og med 1

Læs mere

Trigonometri. Matematik A niveau

Trigonometri. Matematik A niveau Trigonometri Mtemtik A niveu Arhus Teh EUX Niels Junge Trigonometri Sinus Cosinus Tngens Her er definitionen for Cosinus Sinus og Tngens Mn kn sige t osinus er den projierede på x-ksen og sinus er den

Læs mere

Potens- sammenhænge. inkl. proportionale og omvendt proportionale variable. 2010 Karsten Juul

Potens- sammenhænge. inkl. proportionale og omvendt proportionale variable. 2010 Karsten Juul Potens- smmenhænge inkl. proportionle og omvendt proportionle vrible 010 Krsten Juul Dette hæfte er en fortsættelse f hæftet "Eksponentielle smmenhænge, udgve ". Indhold 1. Hvd er en potenssmmenhæng?...1.

Læs mere

Pythagoras sætning. I denne note skal vi give tre forskellige beviser for Pythagoras sætning:

Pythagoras sætning. I denne note skal vi give tre forskellige beviser for Pythagoras sætning: Pythgors sætning I denne note skl i gie tre forskellige eiser for Pythgors sætning: Pythgors sætning I en retinklet treknt, hor den rette inkel etegnes med, gælder: + = eis 1 Ld os tegne et stort kdrt

Læs mere

Nøgleord og begreber Komplekse tal Test komplekse tal Polære koordinater Kompleks polarform De Moivres sætning

Nøgleord og begreber Komplekse tal Test komplekse tal Polære koordinater Kompleks polarform De Moivres sætning Oversigt [S] App. I, App. H.1 Nøgleord og begreber Komplekse tal Test komplekse tal Polære koordinater Kompleks polarform De Moivres sætning Test komplekse tal Komplekse rødder Kompleks eksponentialfunktion

Læs mere

Eksponentielle Sammenhænge

Eksponentielle Sammenhænge Kort om Eksponentielle Smmenhænge 011 Krsten Juul Dette hæfte indeholder pensum i eksponentielle smmenhænge for gymnsiet og hf. Indhold 1. Procenter på en ny måde... 1. Hvd er en eksponentiel smmenhæng?....

Læs mere

Opstakning og afstakning, fremadregning og tilbageregning

Opstakning og afstakning, fremadregning og tilbageregning 1 Opstkning og fstkning, fremdregning og tilgeregning 1.1 Fremdregning og tilgeregning...2 1.2 Æskeregning...2 1.3 Høseringe-regning, indkodning og fkodning...3 1.4 Vndret tilgeregning, t dnse en ligning...3

Læs mere

Komplekse tal Matematik og naturfag i verdensklasse, 2004. Komplekse tal

Komplekse tal Matematik og naturfag i verdensklasse, 2004. Komplekse tal Komplekse tl Mtemtik og turfg i verdesklsse, 004 Komplekse tl Dette mterile er ereget til udervisig i mtemtik i gymsiet. Der forudsættes kedsk til løsig f degrdsligiger, trigoometri og e lille smule vektorregig.

Læs mere

Garanti på Point-Two air veste.

Garanti på Point-Two air veste. den udvidede Garantien omfatter ikke evt. fejl der skyldes punktering grundet udefra den udvidede Garantien omfatter ikke evt. fejl der skyldes punktering grundet udefra den udvidede Garantien omfatter

Læs mere

Integralregning. 2. del. 2006 Karsten Juul

Integralregning. 2. del. 2006 Karsten Juul Integrlregning del ( ( 6 Krsten Juul Indhold 6 Uestemt integrl8 6 Sætning om eksistens stmunktioner 8 6 Oplæg til "regneregler or integrl"8 6 Regneregler or uestemt integrl 9 68 Foreredelse til "integrtion

Læs mere

Matematik. Kompendium i faget. Tømrerafdelingen. 1. Hovedforløb. a 2 = b 2 + c 2 2 b c cos A. cos A = b 2 + c 2 - a 2 2 b c

Matematik. Kompendium i faget. Tømrerafdelingen. 1. Hovedforløb. a 2 = b 2 + c 2 2 b c cos A. cos A = b 2 + c 2 - a 2 2 b c Kompendium i fget Mtemtik Tømrerfdelingen 1. Hovedforlø. Trigonometri nvendes til eregning f snd længde og snd vinkel i profiler. Sinus Cosinus Tngens 2 2 + 2 2 os A os A 2 + 2-2 2 Svendorg Erhvervsskole

Læs mere

Trigonometri. Trigonometri. Sinus og cosinus... 2 Tangens... 6 Opgaver... 9. Side 1

Trigonometri. Trigonometri. Sinus og cosinus... 2 Tangens... 6 Opgaver... 9. Side 1 Trigonometri Sinus og osinus... 2 Tngens... 6 Opgver... 9 Side Sinus og osinus Til lle vinkler hører der to tl, som kldes osinus og sinus. Mn finder sinus og osinus til en vinkel ved t tegne vinklen midt

Læs mere

matx.dk Differentialregning Dennis Pipenbring

matx.dk Differentialregning Dennis Pipenbring mat.dk Differentialregning Dennis Pipenbring 0. december 00 Indold Differentialregning 3. Grænseværdi............................. 3. Kontinuitet.............................. 8 Differentialkvotienten

Læs mere

gudmandsen.net y = b x a Illustration 1: potensfunktioner i 5 forskellige grupper

gudmandsen.net y = b x a Illustration 1: potensfunktioner i 5 forskellige grupper gudmndsen.net Dette dokument er publiceret på http://www.gudmndsen.net/res/mt_vejl/. Ophvsret: Indholdet stilles til rådighed under Open Content License[http://opencontent.org/openpub/]. Kopiering, distribution

Læs mere

13 -Integralregning. Hayati Balo, AAMS,Århus. 1. Det ubestemte integrale som betegnes med f (x)dx. 2. Det bestemte integrale som betegnes med b

13 -Integralregning. Hayati Balo, AAMS,Århus. 1. Det ubestemte integrale som betegnes med f (x)dx. 2. Det bestemte integrale som betegnes med b 3 -Integralregning Hayati Balo, AAMS,Århus 3. Stamfunktioner Der er to slags integralregning:. Det ubestemte integrale som betegnes med f (x)dx. Det bestemte integrale som betegnes med b a f (x)dx Det

Læs mere

Differentialregning. integralregning

Differentialregning. integralregning Differentilregning og integrlregning Ib Micelsen Ikst 013 Indoldsfortegnelse Tegneøvelser...3 Introduktion... Definition f differentilkvotient og tngent...6 Tngentældninger...7 Den fledte funktion...7

Læs mere

(a k cos kx + b k sin kx) k=1. cos θk = sin θ 1 ak. , b k. k=1

(a k cos kx + b k sin kx) k=1. cos θk = sin θ 1 ak. , b k. k=1 SEKTION 7 FOURIERANALYSE 7 Fouriernlyse Periodiske funktioner er vigtige i mnge smmenhænge, både videnskbeligt og teknisk Vi vil normlisere, så ntger, t perioden er π Disse funktioner er bedst nlyseret

Læs mere

Integralregning Infinitesimalregning

Integralregning Infinitesimalregning Udgave 2.1 Integralregning Infinitesimalregning Noterne gennemgår begreberne integral og stamfunktion, og anskuer dette som et redskab til bestemmelse af arealer under funktioner. Noterne er supplement

Læs mere

Kædebrøker. b 0 f.eks. 3 b 0 + a 1. f.eks. 3 + 1 b 1 7. a 1. b 1 + a f.eks. 3 + 1 7 + 1. f.eks. 3 + b 1 + a 2 7 + Notation: a 2 b 2 + an.

Kædebrøker. b 0 f.eks. 3 b 0 + a 1. f.eks. 3 + 1 b 1 7. a 1. b 1 + a f.eks. 3 + 1 7 + 1. f.eks. 3 + b 1 + a 2 7 + Notation: a 2 b 2 + an. Kædebrøker Naturvidenskabsfestivalen 2006 foredrag på Herning htx, 26. september Flemming Topsøe Institut for Matematiske Fag, Københavns Universitet b 0 f.eks. 3 b 0 + a 1 f.eks. 3

Læs mere

Differentiation af potensfunktioner

Differentiation af potensfunktioner Hvd er mtemti? B, i-bog ISBN 978 87 766 494 3 Hjemmesideevisig: Differetitio f potesfutioer, Kpitel 4, side 76 Differetitio f potesfutioer. Pscls tret og biomilformle Vi strter med t mide om t poteser

Læs mere

Mat1GB Minilex. Henrik Dahl, Hold 8. 29. maj 2003. 1 Definitioner 2

Mat1GB Minilex. Henrik Dahl, Hold 8. 29. maj 2003. 1 Definitioner 2 Mt1GB Minilex Henrik Dhl, Hold 8 29. mj 2003 Indhold 1 Definitioner 2 2 Sætninger m.v. 18 2.1 Begrænsethed, åben/lukket..................... 18 2.2 Differentition............................ 18 2.3 Differentilligninger.........................

Læs mere

Kompendium. Matematik HF C niveau. Frederiksberg HF Kursus. Lars Bronée 2014

Kompendium. Matematik HF C niveau. Frederiksberg HF Kursus. Lars Bronée 2014 Kompendium Mtemtik HF C niveu π Frederiksberg HF Kursus Lrs Bronée 04 Mil: post@lrsbronee.dk Web: www.lrsbronee.dk Indholdsfortegnelse: Forord Det grundlæggende Ligningsløsning 8 Procentregning Rentesregning

Læs mere

Oversigt over undervisningen i matematik - 1x 04/05

Oversigt over undervisningen i matematik - 1x 04/05 Oversigt over undervisningen i matematik - 1x 04/05 side1 Der undervises efter: TGF Claus Jessen, Peter Møller og Flemming Mørk : Tal, Geometri og funktioner. Gyldendal 1997 EKS Knud Nissen : TI-84 familien

Læs mere

Komplekse tal og rækker

Komplekse tal og rækker Komplekse tal og rækker John Olsen 1 Indledning Dette sæt noter er forelæsningsnoter til foredraget Komplekse tal og rækker. Noterne er beregnet til at blive brugt sammen med foredraget. I afsnit 2 bliver

Læs mere

Matricer og lineære ligningssystemer

Matricer og lineære ligningssystemer Matricer og lineære ligningssystemer Grete Ridder Ebbesen Virum Gymnasium Indhold 1 Matricer 11 Grundlæggende begreber 1 Regning med matricer 3 13 Kvadratiske matricer og determinant 9 14 Invers matrix

Læs mere

hvor A er de ydre kræfters arbejde på systemet og Q er varmen tilført fra omgivelserne til systemet.

hvor A er de ydre kræfters arbejde på systemet og Q er varmen tilført fra omgivelserne til systemet. !#" $ "&% (')"&*,+.-&/102%435"&6,+879$ *1')*&: or et system, hvor kun den termiske energi ændres, vil tilvæksten E term i den termiske energi være: E term A + Q hvor A er de ydre kræfters rbejde på systemet

Læs mere

Kapitel 2 Tal og variable

Kapitel 2 Tal og variable Tal og variable Uden tal ingen matematik - matematik handler om tal og anvendelse af tal. Matematik beskæftiger sig ikke udelukkende med konkrete problemer fra andre fag, og de konkrete tal fra andre fagområder

Læs mere

Lektion 10 Reaktionshastigheder Epidemimodeller

Lektion 10 Reaktionshastigheder Epidemimodeller Lekion 1 Reakionshasigheder Epidemimodeller Simpel epidemimodel Kermack-McKendric epidemimodel Kemiske reakionshasigheder 1 Simpel epidemimodel I en populaion af N individer er I() inficerede og resen

Læs mere

Skabelon til funktionsundersøgelser

Skabelon til funktionsundersøgelser Skabelon til funktionsundersøgelser Nedenfor en angivelse af fremgangsmåder ved funktionsundersøgelser. Ofte vil der kun blive spurgt om et udvalg af nævnte spørgsmål. Syntaksen i løsningerne vil være

Læs mere

Matematik for stx C-niveau

Matematik for stx C-niveau Thomas Jensen og Morten Overgård Nielsen Matematik for stx C-niveau Frydenlund Nu 2. reviderede, udvidede og ajourførte udgave Nu 2. reviderede, udvidede og ajourførte udgave Matema10k Matematik for stx

Læs mere

EPIDEMIERS DYNAMIK. Kasper Larsen, Bjarke Vilster Hansen. Henriette Elgaard Nissen, Louise Legaard og

EPIDEMIERS DYNAMIK. Kasper Larsen, Bjarke Vilster Hansen. Henriette Elgaard Nissen, Louise Legaard og EPDEMER DYAMK AF Kasper Larsen, Bjarke Vilser Hansen Henriee Elgaard issen, Louise Legaard og Charloe Plesher-Frankild 1. Miniprojek idefagssupplering, RUC Deember 2007 DLEDG Maemaisk modellering kan anvendes

Læs mere

I dette appendiks uddybes kemien bag enzymkinetikken i Bioteknologi 2, side 60-72.

I dette appendiks uddybes kemien bag enzymkinetikken i Bioteknologi 2, side 60-72. Bioeknologi 2, Tema 4 5 Kineik Kineik er sudier af reakionshasigheden hvor man eksperimenel undersøger de fakorer, der påvirker reakionshasigheden, og hvor resulaerne afslører reakionens mekanisme og ransiion

Læs mere

Matematikkens mysterier - på et højt niveau. 3. Differentialligninger

Matematikkens mysterier - på et højt niveau. 3. Differentialligninger Mtemtikkens msterier - på et højt niveu f Kenneth Hnsen 3. Differentilligninger N N N 3 A A k k Indholdsfortegnelse 3. Introduktion 3. Dnmiske sstemer 3 3.3 Seprtion f de vrible 8 3.4 Vækstmodeller 8 3.5

Læs mere

Mujtaba og Farid Integralregning 06-08-2011

Mujtaba og Farid Integralregning 06-08-2011 Indholdsfortegnelse Integral regning:... 2 Ubestemt integral:... 2 Integrationsprøven:... 3 1) Integration af potensfunktioner:... 3 2) Integration af sum og Differens:... 3 3) Integration ved Multiplikation

Læs mere

TAL OG BOGSTAVREGNING

TAL OG BOGSTAVREGNING TAL OG BOGSTAVREGNING De elementære regnerter I mtemtik kn vi regne med tl, men vi kn også regne med bogstver, som gør det hele en smugle mere bstrkt. Først skl vi se lidt på de fire elementære regnerter,

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Termin Maj 2011 Institution Handelsskolen Tradium, Hobro afd. Uddannelse Fag og niveau Lærer(e) Hold Hhx Matematik A Kenneth Berg k708hhxa3 Oversigt over gennemførte undervisningsforløb

Læs mere

MM01 (Mat A) Ugeseddel 1

MM01 (Mat A) Ugeseddel 1 Institut for Matematik og Datalogi 2. august 200 Syddansk Universitet, Odense HJM/LL MM0 (Mat A) Ugeseddel Velkommen til kurset MM0 (Matematik A). Forelæsninger: afholdes i to ugentlige timer, onsdag kl.

Læs mere

Hvad er en funktion? Funktioner og graftegning. Funktioners egenskaber. Funktioners egenskaber. f(b) y = f(x) f(a) f(a)

Hvad er en funktion? Funktioner og graftegning. Funktioners egenskaber. Funktioners egenskaber. f(b) y = f(x) f(a) f(a) Funktioner og graftegning Jeppe Revall Frisvad September 29 Hvad er en funktion? En funktion f er en regel som til hvert element i en mængde A ( A) knytter præcis ét element y i en mængde B Udtrykket f

Læs mere

Projekt 4.12 Definition og differentiation af sammensat funktion og omvendt funktion

Projekt 4.12 Definition og differentiation af sammensat funktion og omvendt funktion ISBN 978-87-766-498- Projekter: Kapitel 4. Projekt 4. Deinition og dierentiation a sammensat unktion og omvendt unktion Projekt 4. Deinition og dierentiation a sammensat unktion og omvendt unktion Materialerne

Læs mere

Matematik - introduktion. Martin Lauesen February 23, 2011

Matematik - introduktion. Martin Lauesen February 23, 2011 Mtemtik - introduktion Mrtin Luesen Februry 23, 2011 1 Contents 1 Aritmetik og elementær lgebr 3 1.1 Symboler............................... 3 1.1.1 ligheder............................ 4 1.1.2 uligheder...........................

Læs mere

Grundlæggende Matematik

Grundlæggende Matematik Grundlæggende Matematik Hayati Balo, AAMS August 2012 1. Matematiske symboler For at udtrykke de verbale udsagn matematisk korrekt, så det bliver lettere og hurtigere at skrive, indføres en række matematiske

Læs mere

syv trinitatis-motetter

syv trinitatis-motetter hilli er 010 yv rinii-moeer O lnde kor divii Node il gennemyn Syv Trinii-moeer or lnde kor divii Coyrigh Philli Fer 010 Pd-verion. Kun il gennemyn. Koiering orud. Nodehæer kn køe å www.hillier.dk hilli

Læs mere

Computer- og El-teknik Formelsamling

Computer- og El-teknik Formelsamling ompuer- og El-eknik ormelsamling E E E + + E + Holsebro HTX ompuer- og El-eknik 5. og 6. semeser HJA/BA Version. ndholdsforegnelse.. orkorelser inden for srøm..... Modsande ved D..... Ohms ov..... Effek

Læs mere

JUMO itron 04 B Kompakt mikroprocessorregulator

JUMO itron 04 B Kompakt mikroprocessorregulator Side 1/6 Kompak mikroprocessorregulaor Indbygningshus ih. DIN 43 700 Kor beskrivelse er en kompak mikroprocessorsyre opunksregulaor med fronrammemåle 96mm x 96mm. Alle re udførelser af regulaoren har e

Læs mere

Proposition I Hvis jeg har samme chance for at få a eller b, er det for mig lige så meget værd som a + b

Proposition I Hvis jeg har samme chance for at få a eller b, er det for mig lige så meget værd som a + b vil have samme chance for at få eller 7 skilling i et retmæssigt spil, som det senere vil blive vist. Proposition I Hvis jeg har samme chance for at få a eller b, er det for mig lige så meget værd som

Læs mere

Potens regression med TI-Nspire

Potens regression med TI-Nspire Potensvækst og modellering - Mt-B/A 2.b 2007-08 Potens regression med TI-Nspire Vi tger her udgngspunkt i et eksempel med tovværk, hvor mn får oplyst en tbel over smmenhængen mellem dimeteren (xdt) i millimeter

Læs mere

Michel Mandix (2010) INDHOLDSFORTEGNELSE:... 2 EN TREKANTS VINKELSUM... 3 PYTHAGORAS LÆRESÆTNING... 4 SINUSRELATIONERNE... 4 COSINUSRELATIONERNE...

Michel Mandix (2010) INDHOLDSFORTEGNELSE:... 2 EN TREKANTS VINKELSUM... 3 PYTHAGORAS LÆRESÆTNING... 4 SINUSRELATIONERNE... 4 COSINUSRELATIONERNE... MATEMATIK NOTAT MATEMATISKE EVISER AF: CAND. POLYT. MICHEL MANDIX SIDSTE REVISION: FERUAR 04 Michel Mndi (00) Side f 35 Indholdsfortegnelse: INDHOLDSFORTEGNELSE:... EN TREKANTS VINKELSUM... 3 PYTHAGORAS

Læs mere

Gödel: Über formal unentschiedbare Sätze der Principia Mathematica und verwandter Systeme I, 1931

Gödel: Über formal unentschiedbare Sätze der Principia Mathematica und verwandter Systeme I, 1931 Kommentar til 1 Gödel: Über formal unentschiedbare Sätze der Principia Mathematica und verwandter Systeme I, 1931 Denne afhandling af den 24-årige Kurt Gödel er blevet en klassiker. Det er vist den eneste

Læs mere

TAL OG REGNEREGLER. Vi ser nu på opbygningen af et legeme og noterer os samtidig, at de reelle tal velkendte regneoperationer + og er et legeme.

TAL OG REGNEREGLER. Vi ser nu på opbygningen af et legeme og noterer os samtidig, at de reelle tal velkendte regneoperationer + og er et legeme. TAL OG REGNEREGLER Inden for lgeren hr mn indført egreet legeme. Et legeme er en slgs konstruktion, hvor mn fstsætter to regneregler og nogle sætninger (ksiomer), der gælder for disse. Pointen med en sådn

Læs mere

Matematik for hf C-niveau

Matematik for hf C-niveau Thomas Jensen og Morten Overgård Nielsen Matematik for hf C-niveau Frydenlund Nu 2. reviderede, udvidede og ajourførte udgave 2. reviderede, udvidede og ajourførte udgave Matema10k Matematik for hf C-niveau

Læs mere

Funktion af flere variable

Funktion af flere variable Funktion af flere variable Preben Alsolm 24. april 2008 1 Funktion af flere variable 1.1 Differentiabilitet for funktion af én variabel Differentiabilitet for funktion af én variabel f kaldes differentiabel

Læs mere

Integralregning. 1. del. 2006 Karsten Juul. M l

Integralregning. 1. del. 2006 Karsten Juul. M l Integralregning del () M l () 6 Karsten Juul Indhold Stamunktion OplÄg om stamunktion Deinition a stamunktion 6 Kontrol a stamunktion 9 SÄtning om stamunktionerne til en unktion Deinition a ubestemt integral

Læs mere

Differentialregning. for B-niveau i hf udgave 3. 2015 Karsten Juul

Differentialregning. for B-niveau i hf udgave 3. 2015 Karsten Juul Dierentialregning r B-niveau i h udgave t s 05 Karsten Juul Dierentialkvtient. Tangent g räringspunkt..... FunktinsvÅrdi g dierentialkvtient..... Frtlkning a ' vedr. gra... 4. Frtlkning a ' nçr er tiden....

Læs mere

-9-8 -7-6 -5-4 -3-2 -1 1 2 3 4 5 6 7 8 9. f(x)=2x-1 Serie 1

-9-8 -7-6 -5-4 -3-2 -1 1 2 3 4 5 6 7 8 9. f(x)=2x-1 Serie 1 En funktion beskriver en sammenhæng mellem elementer fra to mængder - en definitionsmængde = Dm(f) består af -værdier og en værdimængde = Vm(f) består af -værdier. Til hvert element i Dm(f) knttes netop

Læs mere

Komplekse tal og Kaos

Komplekse tal og Kaos Komplekse tal og Kaos Jon Sporring Datalogisk Institut ved Københavns Universitet Universitetsparken 1, 2100 København Ø August, 2006 1 Forord Denne opgave er tiltænkt gymnasiestuderende med matematik

Læs mere

Differentialligninger

Differentialligninger Differentialligninger for A-niveau i st, udgave SkÄrmbillede fra TI-Nspire 015 Karsten Juul Differentialligninger for A-niveau i st, udgave 1 Hvad er en differentialligning? 1a OplÄg til differentialligninger1

Læs mere

Den harmoniske svingning

Den harmoniske svingning Den harmoniske svingning Teori og en anvendelse Preben Møller Henriksen Version. Noterne forudsætter kendskab til sinus og cosinus som funktioner af alle reelle tal, dvs. radiantal. I figuren nedenunder

Læs mere

FORMELSAMLING. Indholdsfortegnelse

FORMELSAMLING. Indholdsfortegnelse FOMELSAMLNG ndholdsfortegnelse ndholdsfortegnelse... EL-LÆE...3 Ohm s lov:...3 Effekt lov:...3 egler ved måling:...3 egler ved serieforbindelser:...3 egler ved prllelforbindelser:...4 egler ved blndede

Læs mere

1 of 5 14-11-2011 21:06

1 of 5 14-11-2011 21:06 1 of 5 14-11-2011 21:06 Du har nu som elev i 1a i nogle måneder været en del af forsøget med at bruge som et dagligt værktøj i undervisningen. For at få indblik i dine erfaringer med brugen af bedes du

Læs mere

fremtiden starter her... Gode råd om... Forandrings- ledelse

fremtiden starter her... Gode råd om... Forandrings- ledelse fremtiden starter her... Gode råd om... Forandrings- ledelse INDHOLD Hvad er forandring? 3 Hvad er forandringsparathed? 3 Forandringsprocessens 8 trin 5 Trin 1: Skab følelsen af forandringens nødvendighed

Læs mere

(3 ;3 ) (2 ;0 ) f(x)=3 *x-6 -1 1 2 3 4 5 6. Serie 1 Serie 2

(3 ;3 ) (2 ;0 ) f(x)=3 *x-6 -1 1 2 3 4 5 6. Serie 1 Serie 2 MAT B GSK august 008 delprøven uden hjælpemidler Opg Grafen for en funktion f er en ret linje, med hældningskoefficienten 3 og skærer -aksen i punktet P(;0). a) Bestem en forskrift for funktionen f. Svar

Læs mere

Komplekse tal. Preben Alsholm Juli 2006

Komplekse tal. Preben Alsholm Juli 2006 Komplekse tal Preben Alsholm Juli 006 Talmængder og regneregler for tal. Talmængder Indenfor matematikken optræder der forskellige klasser af tal: Naturlige tal. N er mængden af naturlige tal, ; ; 3; 4;

Læs mere

Grundlæggende matematiske begreber del 1 Mængdelære Talmængder Tal og regneregler Potensregneregler Numerisk værdi Gennemsnit

Grundlæggende matematiske begreber del 1 Mængdelære Talmængder Tal og regneregler Potensregneregler Numerisk værdi Gennemsnit Grudlæggede mtemtiske begreber del 1 Mægdelære Tlmægder Tl og regeregler Potesregeregler Numerisk værdi Geemsit x-klssere Gmmel Hellerup Gymsium 1 Idholdsfortegelse MÆNGDELÆRE... 3 TAL... 9 De turlige

Læs mere

Tallet π er irrationalt Jens Siegstad

Tallet π er irrationalt Jens Siegstad 32 Tallet π er irrationalt Jens Siegstad At tallet π er irrationalt har været kendt i pænt lang tid Aristoteles postulerede det da han påstod at diameteren og radius i en cirkel er inkommensurable størrelser

Læs mere

Eksempler på elevbesvarelser i Toulmins argumentationsmodel

Eksempler på elevbesvarelser i Toulmins argumentationsmodel Eksempler på elevbesvarelser i Toulmins argumentationsmodel Elevernes debatoplæg blev fremført med fin fornemmelse for drama og retoriske virkemidler. Det var tydeligt at eleverne havde fået god inspiration

Læs mere

Kaos og fraktaler i dynamiske systemer. Bodil Branner Institut for Matematik Danmarks Teniske Universitet (DTU)

Kaos og fraktaler i dynamiske systemer. Bodil Branner Institut for Matematik Danmarks Teniske Universitet (DTU) Kaos og fraktaler i dynamiske systemer Bodil Branner Institut for Matematik Danmarks Teniske Universitet (DTU) UNF Matematik Camp 2010 Oversigt tre simple eksempler på klassiske fraktaler deterministiske

Læs mere

MATINTRO FUNKTIONER AF FLERE VARIABLE

MATINTRO FUNKTIONER AF FLERE VARIABLE MATINTRO FUNKTIONER AF FLERE VARIABLE Tore August Kro Matematisk Institutt Universitetet i Oslo 5.kapitel skrevet af: Jan Philip Solovej Institut for de Matematiske Fag Københavns Universitet Forår 3 På

Læs mere

Faglige målsætning: Der henvises til undervisningsministeriets faglige mål for arbejdet i 0 klasse. Læs dette: www.uvm.dk

Faglige målsætning: Der henvises til undervisningsministeriets faglige mål for arbejdet i 0 klasse. Læs dette: www.uvm.dk Faglige målsætning: Der henvises til undervisningsministeriets faglige mål for arbejdet i 0 klasse. Læs dette: www.uvm.dk Vi har lavet en mere detaljeret undervisningsplan / målsætning for, hvad vi gerne

Læs mere

Ledelse i det grænseløse arbejdsliv Individet træder mere frem i det moderne arbejdsliv

Ledelse i det grænseløse arbejdsliv Individet træder mere frem i det moderne arbejdsliv Ld d grænø rbjdv Indvd rædr mr frm d modrn rbjdv Sgn Groh-Brodrn Novmbr, 2011 Dgordn Sgnd kompk r krv om vd Svdn r cnr dmnonr Ld f vd Dkuon 8. novmbr, 2011 Sgnd kompk r krv om vd Mughdn for rbjd hvor om

Læs mere

13:00-13:10 Velkomst - og præsentation af tankerne bag netværket. 13:10-13:30 Netværksdannelse - fordeling i fagfamilier på tværs af skolerne.

13:00-13:10 Velkomst - og præsentation af tankerne bag netværket. 13:10-13:30 Netværksdannelse - fordeling i fagfamilier på tværs af skolerne. 2013-11-13 Netværksmøde for faglige IT-vejledere 13:00-13:10 Velkomst - og præsentation af tankerne bag netværket. 13:10-13:30 Netværksdannelse - fordeling i fagfamilier på tværs af skolerne. -> 13:30-14:15

Læs mere

Åbningshistorie. kend kristus: Teenagere

Åbningshistorie. kend kristus: Teenagere Studie 1 Guds ord 9 Åbningshistorie Jeg stod bagerst i folkemængden i indkøbscentret og kiggede på trylleshowet. Men min opmærksomhed blev draget endnu mere mod den lille pige ved siden af mig end mod

Læs mere

Diverse. Ib Michelsen

Diverse. Ib Michelsen Diverse Ib Michelsen Ikst 2008 Forsidebilledet http://www.smtid.dk/visen/billede.php?billedenr69 Version: 0.02 (2-1-2009) Diverse (Denne side er A-2 f 32 sider) Indholdsfortegnelse Regning med procent

Læs mere

Tlf.: 96 17 02 02 info@artof.dk www.artof.dk

Tlf.: 96 17 02 02 info@artof.dk www.artof.dk Vielsesringe Designer og guldsmed Jn Jørgensen Siden 1995 hr Jn Jørgensen hft egen virksomhed, hvor nturen i det rske og åne Nordjyllnd hr givet inspirtion til det meste f designet. Smykker i de ædleste

Læs mere

Matematisk induktion

Matematisk induktion Induktionsbeviser MT01.0.07 1 1 Induktionsbeviser Matematisk induktion Sætninger der udtaler sig om hvad der gælder for alle naturlige tal n N, kan undertiden bevises ved matematisk induktion. Idéen bag

Læs mere

Projekt 4.1 Weierstrass metode til at håndtere grænseværdiproblemer - grundlaget for moderne analyse

Projekt 4.1 Weierstrass metode til at håndtere grænseværdiproblemer - grundlaget for moderne analyse ISBN 978-87-7066-498- Projekter: Kapitel 4 Projekt 4 Weierstrass metode til at håndtere grænseværdiproblemer Projekt 4 Weierstrass metode til at håndtere grænseværdiproblemer - grundlaget for moderne analyse

Læs mere

Træning med Redondobold

Træning med Redondobold Øvelse 1 Rygstræk Læn forover med strakte arme og bolden mellem hænderne. Spænd i maven. Løft armene så langt op du kan uden at bukke armene. Øvelsen kan mærkes på skuldre og øvre ryg. Øvelse 2 Squat med

Læs mere

gudmandsen.net Integraler

gudmandsen.net Integraler gudmandsen.net 2000-203 Jako SvH Gudmandsen Kopiering fra denne pulikation må kun finde sted i overensstemmelse aftale mellem Copy-Dan og Undervisningsministeriet. Integraler Indholdsfortegnelse Integraler...

Læs mere

Analyse 30. januar 2015

Analyse 30. januar 2015 30. jnur 2015 Større dnsk indkomstulighed skyldes i høj grd stigende kpitlindkomster Af Kristin Thor Jkosen Udgivelsen f Thoms Pikettys Kpitlen i det 21. århundrede hr fstedkommet en del diskussion f de

Læs mere

UKLASSIFICERET Fagplan 1409 DeMars DIR D 02846858 MD/ÅR HJEMMEVÆRNSSKOLEN FAGPLAN

UKLASSIFICERET Fagplan 1409 DeMars DIR D 02846858 MD/ÅR HJEMMEVÆRNSSKOLEN FAGPLAN UKLASSIFICERET Fagplan 1409 DeMars DIR D 02846858 MD/ÅR HJEMMEVÆRNSSKOLEN Side 1 A. Langt navn Maritimt engelsk B. Kort navn MARENG FAGPLAN C. Formål At genopfriske kursisternes engelske tale, således

Læs mere

Oprids over grundforløbet i matematik

Oprids over grundforløbet i matematik Oprids over grundforløbet i matematik Dette oprids er tænkt som en meget kort gennemgang af de vigtigste hovedpointer vi har gennemgået i grundforløbet i matematik. Det er en kombination af at repetere

Læs mere

Dagens program. Afsnit 1.1-1.3 Eksperimenter med usikkerhed Sandsynlighedsmodel - Udfaldsrum - Hændelser - Sandsynligheder Eksempler

Dagens program. Afsnit 1.1-1.3 Eksperimenter med usikkerhed Sandsynlighedsmodel - Udfaldsrum - Hændelser - Sandsynligheder Eksempler Dagens program Afsnit 1.1-1.3 Eksperimenter med usikkerhed Sandsynlighedsmodel - Udfaldsrum - Hændelser - Sandsynligheder Eksempler 1 Sandsynlighedsmodel Kvantitative Metoder 1 - Efterår 2006 Eksperiment

Læs mere

Eksamen på Økonomistudiet 2009-I. Makro 2. Udleveres d. 14. januar kl. 10.00 A everes d. 16. januar kl.10.00

Eksamen på Økonomistudiet 2009-I. Makro 2. Udleveres d. 14. januar kl. 10.00 A everes d. 16. januar kl.10.00 Eksamen på Økonomistudiet 2009-I Makro 2 2. årsprøve Udleveres d. 14. januar kl. 10.00 A everes d. 16. januar kl.10.00 Der er fokus på at undgå tilfælde af eksamenssnyd I tilfælde af formodet eksamenssnyd,

Læs mere

43-43 Geometri. Cirkelring. m = π ( r 2. R, r er radierne, t er tykkelsen og m er middelomkreds. Ellipse

43-43 Geometri. Cirkelring. m = π ( r 2. R, r er radierne, t er tykkelsen og m er middelomkreds. Ellipse 4-4 eometi Fiu ikelin Ellipse t Fomle O π ( t m π ( m π ( t, e diene, t e tykkelsen o m e middelomkeds. O π π e den le stokse o den le lillekse. Pelstykke Tpez ektnel O 6 4 ln 8 e øjden på pelstykket o

Læs mere

Hvorfor kører Michael Rasmussen så hurtigt op ad bakke? Og hvorfor vinder Tom Boonen spurterne?

Hvorfor kører Michael Rasmussen så hurtigt op ad bakke? Og hvorfor vinder Tom Boonen spurterne? Hvorfor kører Michael Rasmussen så hurtigt op ad bakke? Og hvorfor vinder Tom Boonen spurterne? - en fortælling om potensfunktioner 133 Af Seniorforsker Ken H. Andersen, DTU Aqua Tour de France søndag

Læs mere

Lege som oldemor og oldefar legede, da de var børn

Lege som oldemor og oldefar legede, da de var børn Lege som oldemor og oldefar legede, da de var børn Stikke Palles øje ud Ant al: 2 Du skal b r ug e: en st o k o g t o t r æklo d ser Stil jer ryg mod ryg med en stok m ellem benene Når der bliver råbt

Læs mere

2. Ligningsløsning i Maple. Kommandoerne solve, evalf, Digits og with(realdomain).

2. Ligningsløsning i Maple. Kommandoerne solve, evalf, Digits og with(realdomain). En introduktion til Maple i 1.g. 1. En første introduktion til Maple. Kommandoerne expand, factor og normal. 2. Ligningsløsning i Maple. Kommandoerne solve, evalf, Digits og with(realdomain). 3. Uligheder

Læs mere

BOSK F2012, 1. del: Prædikatslogik

BOSK F2012, 1. del: Prædikatslogik ε > 0. δ > 0. x. x a < δ f (x) L < ε February 8, 2012 Prædikater Vi skal lære om prædikatslogik lad os starte med prædikater. Et prædikat er et orakel der svarer ja eller nej. Eller mere præcist: Prædikater

Læs mere

* Grenkursus for Børneledere. * Grenkursus for Ungdomsledere. * Grenkursus for Voksenledere. * Praktisk kursus

* Grenkursus for Børneledere. * Grenkursus for Ungdomsledere. * Grenkursus for Voksenledere. * Praktisk kursus * Grenkursus for Ungdomsledere Et kursus for trop-, seniortrop- eller klanledere, med fokus på: Hvorfor er temaer godt, oplevelser, inspiration, hvordan fanger man aldersgruppen. -Gerne vil lære mere om

Læs mere

MAKRO 2 DEN BASALE SOLOW-MODEL. Y t = BK α t L 1 α. K t+1 K t = sy t δk t, L 0 givet. L t+1 =(1+n) L t, 2. årsprøve. r t = αb L t.

MAKRO 2 DEN BASALE SOLOW-MODEL. Y t = BK α t L 1 α. K t+1 K t = sy t δk t, L 0 givet. L t+1 =(1+n) L t, 2. årsprøve. r t = αb L t. DEN BASALE SOLOW-MODEL Y t = BK α t L 1 α t MAKRO 2 K t+1 K t = sy t δk t, L t+1 =(1+n) L t, K 0 givet L 0 givet 2. årsprøve Forelæsning 4 Kapitel 3 og 4 Hans Jørgen Whitta-Jacobsen econ.ku.dk/okojacob/makro-2-f07/makro

Læs mere

Noter om Komplekse Vektorrum, Funktionsrum og Differentialligninger LinAlg 2004/05-Version af 16. Dec.

Noter om Komplekse Vektorrum, Funktionsrum og Differentialligninger LinAlg 2004/05-Version af 16. Dec. Noter om Komplekse Vektorrum, Funktionsrum og Differentialligninger LinAlg 2004/05-Version af 16. Dec. 1 Komplekse vektorrum I defininitionen af vektorrum i Afsnit 4.1 i Niels Vigand Pedersen Lineær Algebra

Læs mere

Trigonometri og afstandsbestemmelse i Solsystemet

Trigonometri og afstandsbestemmelse i Solsystemet Trigonometri og afstandsbestemmelse i Solsystemet RT1: fstandsberegning (Fra katederet) 5 RT2: Bold og Glob 6 OT1:Bestemmelse af Jordens radius 9 OT2:Modelafhængighed 11 OT3:fstanden til Månen 12 OT4:Månens

Læs mere

!!!!! af Brian Kristensen! http://akrylkunst.dk. Tegne et ansigt

!!!!! af Brian Kristensen! http://akrylkunst.dk. Tegne et ansigt af Brian Kristensen http://akrylkunst.dk side 1 af 6 Denne quick guide viser i korte steps hvordan man tegner de rigtige proportioner i et ansigt. For at have et fundament når du tegner et ansigt er det

Læs mere

SPILØVELSER FOR MÆND MOTIONSFODBOLD FOR MÆND KOM I FORM MED FODBOLD FITNESS

SPILØVELSER FOR MÆND MOTIONSFODBOLD FOR MÆND KOM I FORM MED FODBOLD FITNESS SPILØVELSER FOR MÆND MOTIONSFODBOLD FOR MÆND KOM I FORM MED FODBOLD FITNESS FORORD TIL SPILØVELSER KÆRE FODBOLDSPILLER Fodbolddelen består af 12 øvelseskort med en øvelse på forsiden og et spil på bagsiden.

Læs mere

FitzHugh Nagumo modellen

FitzHugh Nagumo modellen FizHugh Nagumo modellen maemaisk modellering af signaler i nerve- og muskelceller Torsen Tranum Rømer, Frederikserg Gymnasium Fagene maemaik og idræ supplerer hinanden god inden for en lang række emner.

Læs mere