Projektopgave Observationer af stjerneskælv

Størrelse: px
Starte visningen fra side:

Download "Projektopgave Observationer af stjerneskælv"

Transkript

1 Projektopgave Observationer af stjerneskælv Af: Mathias Brønd Christensen ( ), Kristian Jerslev ( ), Kristian Mads Egeris Nielsen ( )

2 Indhold Formål...3 Teori...3 Hvorfor opstår der skælv?...3 FFT...4 Selve Forsøget...4 Resultater...5 Databehandling...5 Fouriertransformation...6 Dataarbejde...7 Vurdering...9 Fejl og usikkerheder...12 Konklusion...12 Side 2 af 13

3 Formål Med rapporten ønskes at undersøge stjernerne Solen, α-centauri A og α-centauri B, ud fra lysspektre. Ud fra analysen skal stjernernes brintindhold, alder, radius og masse bestemmes. Teori Teorien er hentet fra artiklen Observationer af stjerneskælv af Hans Kjeldsen og Tim Bedding. Man kan sige en del om Jorden ud fra forholdene på overfladen. Mange af forholdene er ikke direkte forbundet til den indre del af Jorden, men for at forstå fænomener som Jordskælv og vulkanudbrud er man nødt til at vide hvad der ligger under Jordens overflade. Omvendt kan man også sige noget om forholdene under Jordens overflade ud fra observationer af førnævnte fænomener. Denne tankegang er da også nyttig for at studere astronomiske legemer. Det viser sig nemlig, at stjerner skælver og, at man ved at observere disse skælv kan sige noget om forholdene i himmellegemets indre. Hvorfor opstår der skælv? Som sagt er skælvene et udtryk for forholdene på Solen. Hvis man betragter Solen som en kugle af gas, vil man forvente at der vil opstå svingninger svarende til lydbølger i Jordens atmosfære (blot med en meget anderledes hastighed). Disse svingninger kan permeere dybt ind i Solens indre. Således har faktorer som densiteten, temperaturen og brintindholdet en effekt på karakteren af svingningerne. Ved at observere disse bølger kan førnævnte forhold bestemmes. Mængden af brint og radius af stjernen kan desuden bestemmes når disse forhold kendes. Strukturen af svingningerne beskrives ved hjælp af parametrene l, m og n. n beskriver antallet af bølger ind i stjernen og l og m bestemmer karakteren af bevægelsen på overfladen, ligesom længde og breddegrader bestemmer position på Jorden. l beskriver antallet af ordner rundt på overfladen af stjernen og derved vil lave værdier af l beskrive bølger der permeerer dybt ind i Solens indre. Disse er således specielt interessante for dette forsøg. m (azimutalgraden) er ikke interessant for dette forsøg. De data man får fra observationen af stjernerne består af en baggrund som kommer fra bevægelsen af hele stjernen, samt enkeltstående svingninger, som kommer fra de svingninger, der opstår på Solens overflade. For at kunne analysere dataene er man interesseret i at sætte dem op i et koordinatsystem som brøkdelen af den totale lysstyrke fra stjernen som funktion af frekvensen for svingningen. Der skal således fouriertransformeres, og specifikt vælges algoritmen FFT (Fast Fourier Transformation). Side 3 af 13

4 FFT Fouriertransformationen betragter en sum af harmoniske svingninger, og integrerer, groft sagt, lysstyrken op over en svingning for en given frekvens. Resultatet bliver et diagram med en top, hvor størrelsen af toppen afhænger af antallet og amplituden af svingningerne med en given frekvens og dens position på 1.- aksen afhænger af den frekvens den svinger med. Til matlab anvendes funktion fft, som netop udfører fouriertransformationen for et sæt af harmoniske svingninger. FFT anvender den specifikke struktur af Fouriermatricen til at omskrive processen, således at man reducerer fouriermatricen til en matrice bestående af fouriermatricer af lavere grad. Dette reducerer kraftigt antallet af beregninger, specielt hvis man har mange datapunkter. Selve Forsøget I praksis er det lidt mere kompliceret at bestemme svingningerne. Da der ikke er noget medium for lydbølgerne at bevæge sig mellem Solen og Jorden, kan man ikke måle på lydbølgerne direkte. Derimod kan der kigges på ændringer i absorptionsspektret for stjernen og så via dopplereffekten relatere dette til frekvensen af svingningen. Fra stjerner langt væk er det ret svært at optage gode data, da det lys vi modtager interferer stort set i et punkt, hvorimod man uden problemer kan se forskel på de forskellige dele af lyset på Solen. Det kræver meget gode teleskoper at betragte stjerner længere væk. Lyset kan bearbejdes af specielle teleskoper der kan se det lys man er interesseret i. Til bestemmelsen af massen og brintindholdet skal der bruges både den lille og den store opsplitning. Til dette formål kigges der på den asymptotiske formel: δv ( 4l ) D0 nl = vnl vn 1l Hvor er den lille opsplitning for en given l, og er en parameter der er følsom overfor forholdene nær stjernens kerne. Her har man at gøre med værdier af l på 0 til 1, så man får ved at omarrangere for hhv. l=0 og l=1: Side 4 af 13

5 Da er den samme, betyder det altså at der er to forskellige små opsplitninger. I praksis passer udtrykkene ikke helt, da den asymptotiske formel kun er anvendt på approksimeret form, men faktum er, at der vil være to forskellige små opsplitninger, så dette tages der hensyn for i analysen af spektrummet. Der er speciel interesse i da denne anvendes til at bestemme massen samt brintindholdet (men i princippet kunne man lige så godt vælge m og derved δ v13 ). Eksperimentelt har man bestemt en stjernes egenskaber ved følgende formler: Hvor T er stjernens alder i milliarder af år, X er brintindholdet og M er massen af stjernen målt i enheder af solens masse. Desuden anvendes følgende relation til bestemmelse af stjernens radius: δ v 0 = 135µHz M 3 R Hvor R og M er hhv. radius og masse af stjernen målt i enheder af hhv. Solens radius og Solens masse og er den store opsplitning. Resultater Som resultater anvendes de udleverede data fra hjemmesiden Databehandling Dataene indlæses og behandles i matlab. Side 5 af 13

6 Fouriertransformation Først fouriertransformeres dataene. Dette gøres ved hjælp af matlabs indbyggede funktion fft. Dette resulterer i et datasæt som plottes. Resultatet for Solen ses nedenfor. Lignende spektre optages for α- Centauri A og B Ovenfor ses powerspektret for Solen efter fouriertransformation. Plottet viser svingningsstyrken som funktion af frekvensen for svingningen. Den store og en af de små opsplitninger er også medtaget på plottet. Spektrumanalyse De store og små opsplitninger ( ) er bestemt ved analyse af powerspektret for hver af de tre stjerner. Eksempelvis vil et plot for α-centauri A over den store og den lille opsplitning som funktion af frekvensen se således ud: Side 6 af 13

7 Ovenfor ses den lille og den store opsplitning som funktion af frekvensen for α-centauri A. På grafen til venstre er det gennemsnittet af de to små opsplitninger, der er plottet som funktion af frekvensen. Ud fra dette bemærkes det, at der ikke er den store forskel på de to opsplitninger. Det ses, at de to grafer med opsplitninger ligger tilnærmelsesvis på linje, hvilket betyder at vores aflæsning af dataene har været god. Dataarbejde Middelværdien for de store og små opsplitninger bestemmes til: Middelværdi af Sol α-cen A α-cen B δv E E E-04 δv E E E-05 δv E E E-05 Middelværdien af de to små opsplitninger og den store opsplitning for hver af de tre stjerner. Ud fra den store opsplitning kan stjernens masse og brintindhold bestemmes ved følgende graf, idet vi plotter to streger langs akserne, hvor førsteaksen er den store opsplitning og andenaksen er den lille opsplitning( δ v02 ). Side 7 af 13

8 Her ses bestemmelsen af masse og brintindhold af stjernerne. De forskellige farver svarer til farverne i skemaet ovenover diagrammet. Diagrammet er hentet fra Fra diagrammet fås følgende data: Stjerne Masse Radius Brint Alder Solen 1,04M 1,01R 42% 4,66Gyr α-cen A 1,17M 1,24R 24% 4,10Gyr α-cen B 0,92M 0,87R 45% 4,59Gyr I skemaet ses massen, beregnet radius, brintindhold og beregnet alder for hver af de tre stjerner. Alder og radius af stjernene er bestemt ved anvendelse af formlerne fra teoriafsnittet: Side 8 af 13

9 For solen vil beregningerne se ud som følger: 10 14,3 0,4 T = 4, 66Gyr ( 1,02 ) 3 = R = 1, µ Hz 136µ Hz = 1,01 Tilsvarende beregninger laves for de to andre stjerner. Vurdering Efterfølgende kan man da efterprøve disse målinger med nogle andre, hvis powerspektrum ikke nødvendigvis ser fuldstændig indentisk ud. Benyttes følgende datasæt til at bestemme den store og den lille opsplitning, kan det ses om Solens powerspektre er entydige, på trods af at powerspektret for følgende ikke umiddelbart ligner den første fra Solen. A GOLF data: Solen: T=7 døgn, sampling: 80 sec (datasæt 1) GOLF data #1: T=30 dage, sampling: 80 sec. (datasæt 2) GOLF data #2: T=30 dage, sampling: 80 sec. (datasæt 3) Datasæt δv 0 δv 02 Solmasser Brintindhold Alder Radius 1 1,36E-04 1,08E-05 1,04 42% 4,66 Gyr 1,01 2 1,36E-04 9,83E-06 1,03 39% 4,05 Gyr 1,00 3 1,35E-04 1,00E-05 1,02 40% 4,03 Gyr 1,00 Side 9 af 13

10 I tabellen ses en oversigt over resultaterne for analyse af powerspektrum fra solen med tre forskellige datasæt. Det ses at disse datasæt stemmer meget godt overens. Afvigelserne på den store og den lille opsplitning i tabellen ovenfor er meget små. Ud fra disse afvigelser, kan et skøn på afvigelsen af alder, radius, masse og brintindhold dog ikke angives, da disse størrelser er baseret på aflæsning af en graf. Følgende grafer angiver præcisionen af den lille opsplitning. De to ovenstående plots består hver især af to datasæt som er den lille opsplitning for l = 1 skaleret med 1/6 og den lille opsplitning for l = 0 skaleret med 1/10, dvs. D 0. Som det blev nævnt i teorien burde der ikke være eksakt overensstemmelse, men det passer dog alligevel rimeligt overens, hvilket indikerer at dataene er gode. En oversigt over D 0 værdierne ses i nedenstående skema. Det bemærkes, at der er en meget lille relativ afvigelse på værdierne bortset fra den første værdi (se fejlkilder for forklaring på denne afvigelse). Da den relative afvigelse på de to beregnede værdier for D 0 fortæller omkring præcisionen på aflæsningerne af de to små opsplitninger, må disse siges at være udført med stor nøjagtighed og behøver derfor ikke nogen justering for at optimere resultatet. Sol 1 Sol 2 Sol 3 α-cen A α-cen B Side 10 af 13

11 D E E E E E-06 D E E E E E-06 Relativ afvigelse fra D % -1.7% -1.0% 4.5% 6.8% Oversigt over beregnede værdier for D 0 for de forskellige stjerner. For at danne et overblik over, hvor præcis målingerne, og udregningerne med den store opsplitning er, er nedenfor lavet såkaldte Echelle-diagrammer for alle tre stjerner. Diagrammerne er lavet ved at plotte den store opsplitning som funktion af modulus af samme. Dermed fremkommer to grafer for hver stjerne. Hvis disse to grafer med god tilnærmelse er lodrette siges den store opsplitning at være præcis nok til, at der ikke skal ændres på denne. Hvis det derimod viser sig, at graferne hælder til den ene side, så skal den store opsplitning justeres for at få graferne tilbage til at være lodrette. Dermed opnås et bedre resultat af den store opsplitning. Echellediagram over den store opsplitning for Solen. Den store opsplitning er plottet som funktion af modulus til samme. På echellediagrammet for Solen bemærkes det, at de to grafer er tilnærmelsesvis lodrette og dermed er det ikke nødvendigt at justere på værdien for den store opsplitning. Resultaterne bliver dermed optimale. Tilsvarende echellediagrammer fås for de to andre stjerner. Side 11 af 13

12 Fejl og usikkerheder Som mål for usikkerhederne på dataene anvendes et skøn og spredning på den store og den lille opsplitning. Som et skøn anvendes middelværdien af datapunkterne og standardafvigelsen udregnes med matlabs std funktion. Stjerne Skøn/Hz Afvigelse/Hz Afvigelse i % Solen E E-6 2.4% α-cena E E-6 5.1% α-cenb 1.612E E-5 17% I tabellen ses en oversigt over den store opsplitning for hver stjerne og deres standardafvigelse. Som man kan se er dataene fra Solen klart bedst. α-centauri A er rimelig god, men α-centauri B kunne godt have været bedre. Årsagen til de dårlige data kunne være at A overskygger B pga A s større lysstyrke. Der vil desuden være mere støj på α-centauri i forhold til Solen, da de er længere væk, og dataene er optaget fra et teleskop inden for jordens atmosfære. I det tidligere afsnit blev det bemærket, at der var en afvigelse på den beregnede værdi for D 0 for det første sæt data til Solen. Dette kan skyldes, at det første datasæt kun er taget over en tidsperiode på syv døgn, mens de resterende er taget over en tidsperiode på tredve døgn og dermed opnås en større præcision på datasættet. Konklusion Ved analyse af svingningsobservationer på overfladen af stjerner er det blevet muligt at fortælle om de indre forhold af stjernen, der observeres. Vi har i forbindelse med dette projekt fundet frem til massen, radius, brintindhold i kernen og alderen på tre forskellige stjerner inklusiv vores egen lokale stjerne, som vi yderligere kender meget store detaljer omkring. Med disse resultater er formålet med øvelsen opfyldt og forsøget er dermed lykkedes. Side 12 af 13

13 Det bemærkes desuden, at alderen for α-centauri A og B inden for usikkerhederne i forsøget, er meget tæt på hinanden. Da vi ved, at α-centauri systemet er et triplestjernesystem bør alderen på stjernerne være tæt på hinanden. Ud fra usikkerhederne i dette forsøg er alderen på disse to stjerner også tæt nok på hinanden til, at vi kan konkludere, at dette stemmer godt overens med virkeligheden. Side 13 af 13

Resonans 'modes' på en streng

Resonans 'modes' på en streng Resonans 'modes' på en streng Indhold Elektrodynamik Lab 2 Rapport Fysik 6, EL Bo Frederiksen (bo@fys.ku.dk) Stanislav V. Landa (stas@fys.ku.dk) John Niclasen (niclasen@fys.ku.dk) 1. Formål 2. Teori 3.

Læs mere

Teoretiske Øvelser Mandag den 30. august 2010

Teoretiske Øvelser Mandag den 30. august 2010 Hans Kjeldsen hans@phys.au.dk 3. august 010 Teoretiske Øvelser Mandag den 30. august 010 Computerøvelse (brug MatLab) Det er tanken at I - i forbindelse med hver øvelsesgang - får en opgave som kræver

Læs mere

Dæmpet harmonisk oscillator

Dæmpet harmonisk oscillator FY01 Obligatorisk laboratorieøvelse Dæmpet harmonisk oscillator Hold E: Hold: D1 Jacob Christiansen Afleveringsdato: 4. april 003 Morten Olesen Andreas Lyder Indholdsfortegnelse Indholdsfortegnelse 1 Formål...3

Læs mere

MODUL 1-2: ELEKTROMAGNETISK STRÅLING

MODUL 1-2: ELEKTROMAGNETISK STRÅLING MODUL 1-2: ELEKTROMAGNETISK STRÅLING MODUL 1 - ELEKTROMAGNETISKE BØLGER I 1. modul skal I lære noget omkring elektromagnetisk stråling (EM- stråling). I skal lære noget om synligt lys, IR- stråling, UV-

Læs mere

Forfatter: Torben Arentoft, SAC (Aarhus Universitet), Kristian Jerslev, VUC Aarhus og Christina Ena Skovgaard, VUC Aarhus

Forfatter: Torben Arentoft, SAC (Aarhus Universitet), Kristian Jerslev, VUC Aarhus og Christina Ena Skovgaard, VUC Aarhus Stjernernes klang Opgaver til UV - Origins7 Stjernernes klang Opgaver til UV - Origins7 Forfatter: Torben Arentoft, SAC (Aarhus Universitet), Kristian Jerslev, VUC Aarhus og Christina Ena Skovgaard, VUC

Læs mere

Teoretiske Øvelser Mandag den 13. september 2010

Teoretiske Øvelser Mandag den 13. september 2010 Hans Kjeldsen hans@phys.au.dk 6. september 00 eoretiske Øvelser Mandag den 3. september 00 Computerøvelse nr. 3 Ligning (6.8) og (6.9) på side 83 i Lecture Notes angiver betingelserne for at konvektion

Læs mere

Øvelse 1.5: Spændingsdeler med belastning Udført af: Kari Bjerke Sørensen, Hjalte Sylvest Jacobsen og Toke Lynæs Larsen.

Øvelse 1.5: Spændingsdeler med belastning Udført af: Kari Bjerke Sørensen, Hjalte Sylvest Jacobsen og Toke Lynæs Larsen. Øvelse 1.5: Spændingsdeler med belastning Udført af: Kari jerke Sørensen, Hjalte Sylvest Jacobsen og Toke Lynæs Larsen. Formål: Formålet med denne øvelse er at anvende Ohms lov på en såkaldt spændingsdeler,

Læs mere

Studieretningsopgave

Studieretningsopgave Virum Gymnasium Studieretningsopgave Harmoniske svingninger i matematik og fysik Vejledere: Christian Holst Hansen (matematik) og Bodil Dam Heiselberg (fysik) 30-01-2014 Indholdsfortegnelse Indledning...

Læs mere

Eksperimentelle øvelser, øvelse nummer 3 : Røntgenstråling målt med Ge-detektor

Eksperimentelle øvelser, øvelse nummer 3 : Røntgenstråling målt med Ge-detektor Modtaget dato: (forbeholdt instruktor) Godkendt: Dato: Underskrift: Eksperimentelle øvelser, øvelse nummer 3 : Røntgenstråling målt med Ge-detektor Kristian Jerslev, Kristian Mads Egeris Nielsen, Mathias

Læs mere

Arbejdet på kuglens massemidtpunkt, langs x-aksen, er lig med den resulterende kraft gange strækningen:

Arbejdet på kuglens massemidtpunkt, langs x-aksen, er lig med den resulterende kraft gange strækningen: Forsøgsopstilling: En kugle ligger mellem to skinner, og ruller ned af den. Vi måler ved hjælp af sensorer kuglens hastighed og tid ved forskellige afstand på rampen. Vi måler kuglens radius (R), radius

Læs mere

2 Erik Vestergaard www.matematikfysik.dk

2 Erik Vestergaard www.matematikfysik.dk Erik Vestergaard www.matematikfysik.dk Erik Vestergaard www.matematikfysik.dk 3 Lineære funktioner En vigtig type funktioner at studere er de såkaldte lineære funktioner. Vi skal udlede en række egenskaber

Læs mere

Deskriptiv statistik. Version 2.1. Noterne er et supplement til Vejen til matematik AB1. Henrik S. Hansen, Sct. Knuds Gymnasium

Deskriptiv statistik. Version 2.1. Noterne er et supplement til Vejen til matematik AB1. Henrik S. Hansen, Sct. Knuds Gymnasium Deskriptiv (beskrivende) statistik er den disciplin, der trækker de væsentligste oplysninger ud af et ofte uoverskueligt materiale. Det sker f.eks. ved at konstruere forskellige deskriptorer, d.v.s. regnestørrelser,

Læs mere

Optisk gitter og emissionsspektret

Optisk gitter og emissionsspektret Optisk gitter og emissionsspektret Jan Scholtyßek 19.09.2008 Indhold 1 Indledning 1 2 Formål og fremgangsmåde 2 3 Teori 2 3.1 Afbøjning................................... 2 3.2 Emissionsspektret...............................

Læs mere

Formålet med dette forsøg er at lave en karakteristik af et 4,5 V batteri og undersøge dets effektforhold.

Formålet med dette forsøg er at lave en karakteristik af et 4,5 V batteri og undersøge dets effektforhold. Formål Formålet med dette forsøg er at lave en karakteristik af et 4,5 V batteri og undersøge dets effektforhold. Teori Et batteri opfører sig som en model bestående af en ideel spændingskilde og en indre

Læs mere

Øvelsesvejledning FH Stående bølge. Individuel rapport

Øvelsesvejledning FH Stående bølge. Individuel rapport Teori Stående bølge Individuel rapport Betragt en snøre udspændt mellem en vibrator og et fast punkt. Vibratorens svingninger får en bølge til at forplante sig hen gennem snøren. Så snart bølgerne når

Læs mere

Projekt 1 Spørgeskemaanalyse af Bedst på Nettet

Projekt 1 Spørgeskemaanalyse af Bedst på Nettet Projekt 1 Spørgeskemaanalyse af Bedst på Nettet D.29/2 2012 Udarbejdet af: Katrine Ahle Warming Nielsen Jannie Jeppesen Schmøde Sara Lorenzen A) Kritik af spørgeskema Set ud fra en kritisk vinkel af spørgeskemaet

Læs mere

Modellering af elektroniske komponenter

Modellering af elektroniske komponenter Modellering af elektroniske komponenter Formålet er at give studerende indblik i hvordan matematik som fag kan bruges i forbindelse med at modellere fysiske fænomener. Herunder anvendelse af Grafregner(TI-89)

Læs mere

Begge bølgetyper er transport af energi.

Begge bølgetyper er transport af energi. I 1. modul skal I lære noget omkring elektromagnetisk stråling(em-stråling). Herunder synligt lys, IR-stråling, Uv-stråling, radiobølger samt gamma og røntgen stråling. I skal stifte bekendtskab med EM-strålings

Læs mere

Lineære sammenhænge. Udgave 2. 2009 Karsten Juul

Lineære sammenhænge. Udgave 2. 2009 Karsten Juul Lineære sammenhænge Udgave 2 y = 0,5x 2,5 2009 Karsten Juul Dette hæfte er en fortsættelse af hæftet "Variabelsammenhænge, 2. udgave 2009". Indhold 1. Lineære sammenhænge, ligning og graf... 1 2. Lineær

Læs mere

Projektopgave Matematik A. Vejleder: Jørn Bendtsen. Navn: Devran Kücükyildiz Klasse: 2,4 Roskilde Tekniske Gymnasium

Projektopgave Matematik A. Vejleder: Jørn Bendtsen. Navn: Devran Kücükyildiz Klasse: 2,4 Roskilde Tekniske Gymnasium Projektopgave Matematik A Tema: Eksponentielle modeller Vejleder: Jørn Bendtsen Navn: Devran Kücükyildiz Klasse: 2,4 Roskilde Tekniske Gymnasium Dato: 01-01-2008 Indholdsfortegnelse Indledning... 3 1.

Læs mere

Graph brugermanual til matematik C

Graph brugermanual til matematik C Graph brugermanual til matematik C Forord Efterfølgende er en guide til programmet GRAPH. Programmet kan downloades gratis fra nettet og gemmes på computeren/et usb-stik. Det betyder, det også kan anvendes

Læs mere

Tallene angivet i rapporten som kronologiske punkter refererer til de i opgaven stillede spørgsmål.

Tallene angivet i rapporten som kronologiske punkter refererer til de i opgaven stillede spørgsmål. Labøvelse 2, fysik 2 Uge 47, Kalle, Max og Henriette Tallene angivet i rapporten som kronologiske punkter refererer til de i opgaven stillede spørgsmål. 1. Vi har to forskellige størrelser: a: en skive

Læs mere

Mikro-kursus i statistik 1. del. 24-11-2002 Mikrokursus i biostatistik 1

Mikro-kursus i statistik 1. del. 24-11-2002 Mikrokursus i biostatistik 1 Mikro-kursus i statistik 1. del 24-11-2002 Mikrokursus i biostatistik 1 Hvad er statistik? Det systematiske studium af tilfældighedernes spil!dyrkes af biostatistikere Anvendes som redskab til vurdering

Læs mere

Matematik A og Informationsteknologi B

Matematik A og Informationsteknologi B Matematik A og Informationsteknologi B Projektopgave 2 Eksponentielle modeller Benjamin Andreas Olander Christiansen Jens Werner Nielsen Klasse 2.4 6. december 2010 Vejledere: Jørn Christian Bendtsen og

Læs mere

Formler, ligninger, funktioner og grafer

Formler, ligninger, funktioner og grafer Formler, ligninger, funktioner og grafer Omskrivning af formler, funktioner og ligninger... 1 Grafisk løsning af ligningssystemer... 1 To ligninger med to ubekendte beregning af løsninger... 15 Formler,

Læs mere

Antal timer 19 5 7 10 0 6 6 3 7 6 4 14 6 5 12 10 Køn k m k m m k m k m k k k m k k k

Antal timer 19 5 7 10 0 6 6 3 7 6 4 14 6 5 12 10 Køn k m k m m k m k m k k k m k k k Statistik 5 Statistik er en meget omfattende matematisk disciplin, og den anvendes i meget stor udstrækning i vores moderne samfund. Den handler om at analysere et (ofte meget stort) talmateriale. Det

Læs mere

Undersøgelse af lyskilder

Undersøgelse af lyskilder Felix Nicolai Raben- Levetzau Fag: Fysik 2014-03- 21 1.d Lærer: Eva Spliid- Hansen Undersøgelse af lyskilder bølgelængde mellem 380 nm til ca. 740 nm (nm: nanometer = milliardnedel af en meter), samt at

Læs mere

Excel tutorial om lineær regression

Excel tutorial om lineær regression Excel tutorial om lineær regression I denne tutorial skal du lære at foretage lineær regression i Microsoft Excel 2007. Det forudsættes, at læseren har været igennem det indledende om lineære funktioner.

Læs mere

Eksponentielle sammenhænge

Eksponentielle sammenhænge Eksponentielle sammenhænge Udgave 009 Karsten Juul Dette hæfte er en fortsættelse af hæftet "Lineære sammenhænge, udgave 009" Indhold 1 Eksponentielle sammenhænge, ligning og graf 1 Procent 7 3 Hvad fortæller

Læs mere

Hvad er meningen? Et forløb om opinionsundersøgelser

Hvad er meningen? Et forløb om opinionsundersøgelser Hvad er meningen? Et forløb om opinionsundersøgelser Jette Rygaard Poulsen, Frederikshavn Gymnasium og HF-kursus Hans Vestergaard, Frederikshavn Gymnasium og HF-kursus Søren Lundbye-Christensen, AAU 17-10-2004

Læs mere

Uafhængig og afhængig variabel

Uafhængig og afhængig variabel Uddrag fra http://www.emu.dk/gym/fag/ma/undervisningsforloeb/hf-mat-c/introduktion.doc ved Hans Vestergaard, Morten Overgaard Nielsen, Peter Trautner Brander Variable og sammenhænge... 1 Uafhængig og afhængig

Læs mere

Bilag til Statistik i løb : Statistik og Microsoft Excel tastevejledning / af Lars Bo Kristensen

Bilag til Statistik i løb : Statistik og Microsoft Excel tastevejledning / af Lars Bo Kristensen Bilag til Statistik i løb : Statistik og Microsoft Excel tastevejledning / af Lars Bo Kristensen Microsoft Excel har en del standard anvendelsesmuligheder i forhold til den beskrivende statistik og statistisk

Læs mere

Projekt 8.3 Hvordan undersøges om et talmateriale normalfordelt?

Projekt 8.3 Hvordan undersøges om et talmateriale normalfordelt? Projekt 8.3 Hvordan undersøges om et talmateriale normalfordelt? Projektet drejer sig om at udvikle en metode, til at undersøge om et givet talmateriale med rimelighed kan siges at være normalfordelt.

Læs mere

Lektion 9s Statistik - supplerende eksempler

Lektion 9s Statistik - supplerende eksempler Lektion 9s Statistik - supplerende eksempler Middelværdi for grupperede observationer... Summeret frekvens og sumkurver... Indekstal... Lektion 9s Side 1 Grupperede observationer Hvis man stiller et spørgsmål,

Læs mere

Modelkontrol i Faktor Modeller

Modelkontrol i Faktor Modeller Modelkontrol i Faktor Modeller Julie Lyng Forman Københavns Universitet Afdeling for Anvendt Matematik og Statistik Statistik for Biokemikere 2003 For at konklusionerne på en ensidet, flersidet eller hierarkisk

Læs mere

Oscillator. Af: Alexander Rosenkilde Alexander Bork Christian Jensen

Oscillator. Af: Alexander Rosenkilde Alexander Bork Christian Jensen Oscillator Af: Alexander Rosenkilde Alexander Bork Christian Jensen Oscillator øvelse Formål Øvelse med oscillator, hvor frekvensen bestemmes, for den frie og dæmpede svingning. Vi vil tilnærme data fra

Læs mere

Bilag 7 Analyse af alternative statistiske modeller til DEA Dette bilag er en kort beskrivelse af Forsyningssekretariatets valg af DEAmodellen.

Bilag 7 Analyse af alternative statistiske modeller til DEA Dette bilag er en kort beskrivelse af Forsyningssekretariatets valg af DEAmodellen. Bilag 7 Analyse af alternative statistiske modeller til DEA Dette bilag er en kort beskrivelse af Forsyningssekretariatets valg af DEAmodellen. FORSYNINGSSEKRETARIATET OKTOBER 2011 INDLEDNING... 3 SDEA...

Læs mere

Exoplaneter. Rasmus Handberg. Planeter omkring andre stjerner end Solen. Institut for Fysik og Astronomi Aarhus Universitet rasmush@phys.au.

Exoplaneter. Rasmus Handberg. Planeter omkring andre stjerner end Solen. Institut for Fysik og Astronomi Aarhus Universitet rasmush@phys.au. Exoplaneter Planeter omkring andre stjerner end Solen Rasmus Handberg Institut for Fysik og Astronomi Aarhus Universitet rasmush@phys.au.dk Er der andre jordkloder derude? Med liv som vores? Du er her!

Læs mere

BESTEMMELSE AF RADIALHASTIGHEDER

BESTEMMELSE AF RADIALHASTIGHEDER BESTEMMELSE AF RADIALHASTIGHEDER FOR STJERNER I NGC2506 Billede af stjernehoben NGC2506 ABSTRACT Denne opgave handler om stjerner i hoben NGC2506 der er en åben stjernehob. Ud fra 15 spektre pr stjerne

Læs mere

At vurdere om NitFom kan anvendes på slagtelinjen til prædiktion af slagtekroppes fedtkvalitet.

At vurdere om NitFom kan anvendes på slagtelinjen til prædiktion af slagtekroppes fedtkvalitet. Rapport Fedtkvalitet i moderne svineproduktion NitFom til måling af fedtkvalitet i svineslagtekroppe Chris Claudi-Magnussen, DMRI og Mette Christensen, Carometec 23. maj 2014 Projektnr. 2001474 CCM Indledning

Læs mere

Supplement til kapitel 7: Approksimationen til normalfordelingen, s. 136

Supplement til kapitel 7: Approksimationen til normalfordelingen, s. 136 Supplement til kapitel 7: Approksimationen til normalfordelingen, s. 36 Det er besværligt at regne med binomialfordelingen, og man vælger derfor ofte at bruge en approksimation med normalfordeling. Man

Læs mere

2 -test. Fordelingen er særdeles kompleks at beskrive med matematiske formler. 2 -test blev opfundet af Pearson omkring år 1900.

2 -test. Fordelingen er særdeles kompleks at beskrive med matematiske formler. 2 -test blev opfundet af Pearson omkring år 1900. 2 -fordeling og 2 -test Generelt om 2 -fordelingen 2 -fordelingen er en kontinuert fordeling, modsat binomialfordelingen som er en diskret fordeling. Fordelingen er særdeles kompleks at beskrive med matematiske

Læs mere

Bestemmelse af Radiale Hastigheder

Bestemmelse af Radiale Hastigheder Bestemmelse af Radiale Hastigheder Jens Chr. H. Riggelsen 20040428 10. april 2007 1 Introduktion Jeg vil i denne raport forsøge at lave et program der kan finde de radiale hastigheder på udvalgte stjerner

Læs mere

Statistik. Deskriptiv statistik, normalfordeling og test. Karsten Juul

Statistik. Deskriptiv statistik, normalfordeling og test. Karsten Juul Statistik Deskriptiv statistik, normalfordeling og test Karsten Juul Intervalhyppigheder En elevgruppe på et gymnasium har spurgt 100 tilfældigt valgte elever på gymnasiet om hvor lang tid det tager dem

Læs mere

Kvadratrodsberegning ved hjælp af de fire regningsarter

Kvadratrodsberegning ved hjælp af de fire regningsarter Kvadratrodsberegning ved hjælp af de fire regningsarter Tidligt i historien opstod et behov for at beregne kvadratrødder med stor nøjagtighed. Kvadratrødder optræder i forbindelse med retvinklede trekanter,

Læs mere

Statistik (deskriptiv)

Statistik (deskriptiv) Statistik (deskriptiv) Ikke-grupperede data For at behandle ikke-grupperede data i TI, skal data tastes ind i en liste. Dette kan gøres ved brug af List, hvis ikon er nr. 5 fra venstre på værktøjsbjælken

Læs mere

MODELSÆT 2; MATEMATIK TIL LÆREREKSAMEN

MODELSÆT 2; MATEMATIK TIL LÆREREKSAMEN MODELSÆT ; MATEMATIK TIL LÆREREKSAMEN Forberedende materiale Den individuelle skriftlige røve i matematik vil tage udgangsunkt i følgende materiale:. En diskette med to regnearks-filer og en MathCad-fil..

Læs mere

Studieretningsprojekter i machine learning

Studieretningsprojekter i machine learning i machine learning 1 Introduktion Machine learning (ml) er et område indenfor kunstig intelligens, der beskæftiger sig med at konstruere programmer, der kan kan lære fra data. Tanken er at give en computer

Læs mere

Vektorer og lineær regression. Peter Harremoës Niels Brock

Vektorer og lineær regression. Peter Harremoës Niels Brock Vektorer og lineær regression Peter Harremoës Niels Brock April 2013 1 Planproduktet Vi har set, at man kan gange en vektor med et tal. Et oplagt spørgsmål er, om man også kan gange to vektorer med hinanden.

Læs mere

Lineære modeller. Taxakørsel: Et taxa selskab tager 15 kr. pr. km man kører i deres taxa. Hvis vi kører 2 km i taxaen koster turen altså

Lineære modeller. Taxakørsel: Et taxa selskab tager 15 kr. pr. km man kører i deres taxa. Hvis vi kører 2 km i taxaen koster turen altså Lineære modeller Opg.1 Taxakørsel: Et taxa selskab tager 15 kr. pr. km man kører i deres taxa. Hvis vi kører 2 km i taxaen koster turen altså Hvor meget koster det at køre så at køre 10 km i Taxaen? Sammenhængen

Læs mere

Maple. Skærmbilledet. Vi starter med at se lidt nærmere på opstartsbilledet i Maple. Værktøjslinje til indtastningsområdet. Menulinje.

Maple. Skærmbilledet. Vi starter med at se lidt nærmere på opstartsbilledet i Maple. Værktøjslinje til indtastningsområdet. Menulinje. Maple Dette kapitel giver en kort introduktion til hvordan Maple 12 kan benyttes til at løse mange af de opgaver, som man bliver mødt med i matematiktimerne på HHX. Skærmbilledet Vi starter med at se lidt

Læs mere

Astronomer vil benytte NASA's nye, store Kepler-satellit til at undersøge hvordan stjerner skælver

Astronomer vil benytte NASA's nye, store Kepler-satellit til at undersøge hvordan stjerner skælver Fælles pressemeddelelse fra NASA og konsortiet bag Kepler-satellitten: Astronomer vil benytte NASA's nye, store Kepler-satellit til at undersøge hvordan stjerner skælver Astronomer fra Aarhus Universitet

Læs mere

Schweynoch, 2003. Se eventuelt http://www.mathematik.uni-kassel.de/~fathom/projekt.htm.

Schweynoch, 2003. Se eventuelt http://www.mathematik.uni-kassel.de/~fathom/projekt.htm. Projekt 8.5 Hypotesetest med anvendelse af t-test (Dette materiale har været anvendt som forberedelsesmateriale til den skriftlige prøve 01 for netforsøget) Indhold Indledning... 1 χ -test... Numeriske

Læs mere

Introduktion til differentialregning 1. Jens Siegstad og Annegrethe Bak

Introduktion til differentialregning 1. Jens Siegstad og Annegrethe Bak Introduktion til differentialregning 1 Jens Siegstad og Annegrete Bak 16. juli 2008 1 Indledning I denne note vil vi kort introduktion til differentilregning, idet vi skal bruge teorien i et emne, Matematisk

Læs mere

Eksempel på logistisk vækst med TI-Nspire CAS

Eksempel på logistisk vækst med TI-Nspire CAS Eksempel på logistisk vækst med TI-Nspire CAS Tabellen herunder viser udviklingen af USA's befolkning fra 1850-1910 hvor befolkningstallet er angivet i millioner: Vi har tidligere redegjort for at antallet

Læs mere

VUC Vestsjælland Syd, Slagelse Nr. 1 Institution: Projekt Trigonometri

VUC Vestsjælland Syd, Slagelse Nr. 1 Institution: Projekt Trigonometri VUC Vestsjælland Syd, Slagelse Nr. 1 Institution: 333247 2015 Anders Jørgensen, Mark Kddafi, David Jensen, Kourosh Abady og Nikolaj Eriksen 1. Indledning I dette projekt, vil man kunne se definitioner

Læs mere

Matematik A. Studentereksamen. Forberedelsesmateriale til de digitale eksamensopgaver med adgang til internettet

Matematik A. Studentereksamen. Forberedelsesmateriale til de digitale eksamensopgaver med adgang til internettet Matematik A Studentereksamen Forberedelsesmateriale til de digitale eksamensopgaver med adgang til internettet stx11-matn/a-080501 Tirsdag den 8. maj 01 Forberedelsesmateriale til stx A Net MATEMATIK Der

Læs mere

Vi har valgt at analysere vores gruppe ud fra belbins 9 grupperoller, vi har følgende roller

Vi har valgt at analysere vores gruppe ud fra belbins 9 grupperoller, vi har følgende roller Forside Indledning Vi har fået tildelt et skema over nogle observationer af gærceller, ideen ligger i at gærceller på bestemt tidspunkt vokser eksponentielt. Der skal nu laves en model over som bevise

Læs mere

Måling af turbulent strømning

Måling af turbulent strømning Måling af turbulent strømning Formål Formålet med at måle hastighedsprofiler og fluktuationer i en turbulent strømning er at opnå et tilstrækkeligt kalibreringsgrundlag til modellering af turbulent strømning

Læs mere

Drivhuseffekten. Hvordan styres Jordens klima?

Drivhuseffekten. Hvordan styres Jordens klima? Drivhuseffekten Hvordan styres Jordens klima? Jordens atmosfære og lyset Drivhusgasser Et molekyle skal indeholde mindst 3 atomer for at være en drivhusgas. Eksempler: CO2 (Kuldioxid.) H2O (Vanddamp.)

Læs mere

Indhold En statistisk beskrivelse... 3 Bølgefunktionen... 4 Eksempel... 4 Opgave 1... 5 Tidsafhængig og tidsuafhængig... 5 Opgave 2...

Indhold En statistisk beskrivelse... 3 Bølgefunktionen... 4 Eksempel... 4 Opgave 1... 5 Tidsafhængig og tidsuafhængig... 5 Opgave 2... Introduktion til kvantemekanik Indhold En statistisk beskrivelse... 3 Bølgefunktionen... 4 Eksempel... 4 Opgave 1... 5 Tidsafhængig og tidsuafhængig... 5 Opgave 2... 6 Hvordan må bølgefunktionen se ud...

Læs mere

a og b. Den magnetiske kraftlov Og måling af B ved hjælp af Tangensboussole

a og b. Den magnetiske kraftlov Og måling af B ved hjælp af Tangensboussole 3.1.2. a og b Den magnetiske kraftlov Og måling af B ved hjælp af Tangensboussole Udført d. 15.04.08 Deltagere Kåre Stokvad Hansen Max Berg Michael Ole Olsen 1 Formål: Formålet med øvelsen er at måle/beregne

Læs mere

Simulering af stokastiske fænomener med Excel

Simulering af stokastiske fænomener med Excel Simulering af stokastiske fænomener med Excel John Andersen, Læreruddannelsen i Aarhus, VIA Det kan være en ret krævende læreproces at udvikle fornemmelse for mange begreber fra sandsynlighedsregningen

Læs mere

Kasteparabler i din idræt øvelse 1

Kasteparabler i din idræt øvelse 1 Kasteparabler i din idræt øvelse 1 Vi vil i denne første øvelse arbejde med skrå kast i din idræt. Du skal lave en optagelse af et hop, kast, spark eller slag af en person eller genstand. Herefter skal

Læs mere

a og b Den magnetiske kraftlov Og måling af B ved hjælp af Tangensboussole

a og b Den magnetiske kraftlov Og måling af B ved hjælp af Tangensboussole 3.1.2. a og b Den magnetiske kraftlov Og måling af B ved hjælp af Tangensboussole Udført d. 15.04.08 Deltagere Kåre Stokvad Hansen Max Berg Michael Ole Olsen 1 Formål: Formålet med øvelsen er at måle/beregne

Læs mere

Salt 2. ovenfor. x = Tid (minutter) y = gram salt i vandet

Salt 2. ovenfor. x = Tid (minutter) y = gram salt i vandet Projekt om medicindosering Fra http://www.ruc.dk/imfufa/matematik/deltidsudd_mat/sidefagssupplering_mat/rap_medicinering.pdf/ Lav mindst side 1-4 t.o.m. Med 7 Ar b ejd ssed d el 0 Salt 1 Forestil Jer at

Læs mere

Universets opståen og udvikling

Universets opståen og udvikling Universets opståen og udvikling 1 Universets opståen og udvikling Grundtræk af kosmologien Universets opståen og udvikling 2 Albert Einstein Omkring 1915 fremsatte Albert Einstein sin generelle relativitetsteori.

Læs mere

Elevforsøg i 10. klasse Lyd

Elevforsøg i 10. klasse Lyd Fysik/kemi Viborg private Realskole Elevforsøg i 10. klasse Lyd Lydbølger og interferens SIDE 2 1062 At påvise fænomenet interferens At demonstrere interferens med to højttalere Teori Interferens: Det

Læs mere

Monter Photogaten og kraftsensoren på stativet som vis på figuren nedenfor.

Monter Photogaten og kraftsensoren på stativet som vis på figuren nedenfor. Cirkelbevægelse. Formålet med øvelser er: - At undersøge sammenhængen mellem kraften og hastigheden i en cirkelbevægelse. - At undersøge hvorledes ændring af massen og radius påvirker kraften. (variabelkontrol)

Læs mere

Svingningsrapport. Projektopgave 2, 41035 Dynamik og Svingninger Danmarks Tekniske Universitet Jakob Wulff Andersen, s112985

Svingningsrapport. Projektopgave 2, 41035 Dynamik og Svingninger Danmarks Tekniske Universitet Jakob Wulff Andersen, s112985 Projektopgave 2, 41035 Dynamik og Svingninger Danmarks Tekniske Universitet Jakob Wulff Andersen, s112985 Opgaverne er udregnet i samarbejde med Thomas Salling, s110579 og Mikkel Seibæk, s112987. 11/12-2012

Læs mere

Gennemsnit og normalfordeling illustreret med terningkast, simulering og SLUMP()

Gennemsnit og normalfordeling illustreret med terningkast, simulering og SLUMP() Gennemsnit og normalfordeling illustreret med terningkast, simulering og SLUMP() John Andersen, Læreruddannelsen i Aarhus, VIA Et kast med 10 terninger gav følgende udfald Fig. 1 Result of rolling 10 dices

Læs mere

Begge bølgetyper er transport af energi.

Begge bølgetyper er transport af energi. I 1. modul skal I lære noget omkring elektromagnetisk stråling(em-stråling). Herunder synligt lys, IR-stråling, Uv-stråling, radiobølger samt gamma og røntgen stråling. I skal stifte bekendtskab med EM-strålings

Læs mere

Projekt 5.3. Kropsvægt og andre biologiske størrelser hos pattedyr

Projekt 5.3. Kropsvægt og andre biologiske størrelser hos pattedyr Projekt 5.3. ropsvægt og andre biologiske størrelser hos pattedyr (Projektet er en let bearbejdelse af et materiale, der indgår i Væksthæftet, udgivet af matematiklærerforeningen, og som er stillet til

Læs mere

Indhold Grupperede observationer... 1 Ugrupperede observationer... 3 Analyse af normalfordelt observationssæt... 4

Indhold Grupperede observationer... 1 Ugrupperede observationer... 3 Analyse af normalfordelt observationssæt... 4 BH Test for normalfordeling i WordMat Indhold Grupperede observationer... 1 Ugrupperede observationer... 3 Analyse af normalfordelt observationssæt... 4 Grupperede observationer Vi tager udgangspunkt i

Læs mere

El-Teknik A. Rasmus Kibsgaard Riehn-Kristensen & Jonas Pedersen. Klasse 3.4

El-Teknik A. Rasmus Kibsgaard Riehn-Kristensen & Jonas Pedersen. Klasse 3.4 El-Teknik A Rasmus Kibsgaard Riehn-Kristensen & Jonas Pedersen Klasse 3.4 12-08-2011 Strømstyrke i kredsløbet. Til at måle strømstyrken vil jeg bruge Ohms lov. I kredsløbet kender vi resistansen og spændingen.

Læs mere

Køretider, belastningsgrader og forsinkelser i kryds beregnet ud fra Floating Car Data

Køretider, belastningsgrader og forsinkelser i kryds beregnet ud fra Floating Car Data Køretider, belastningsgrader og forsinkelser i kryds beregnet ud fra Floating Car Data Kristian Torp torp@cs.aau.dk Institut for Datalogi Aalborg Universitet Harry Lahrmann lahrmann@plan.aau.dk Trafikforskningsgruppen

Læs mere

Løsning af simple Ligninger

Løsning af simple Ligninger Løsning af simple Ligninger Frank Nasser 19. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk:

Læs mere

Om at finde bedste rette linie med Excel

Om at finde bedste rette linie med Excel Om at finde bedste rette linie med Excel Det er en vigtig og interessant opgave at beskrive fænomener i naturen eller i samfundet matematisk. Dels for at få en forståelse af sammenhængende indenfor det

Læs mere

Den harmoniske svingning

Den harmoniske svingning Den harmoniske svingning Teori og en anvendelse Preben Møller Henriksen Version. Noterne forudsætter kendskab til sinus og cosinus som funktioner af alle reelle tal, dvs. radiantal. I figuren nedenunder

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: sommer 2015 VUC-

Læs mere

Fysikrapport: Rapportøvelse med kalorimetri. Maila Walmod, 1.3 HTX, Rosklide. I gruppe med Ulrik Stig Hansen og Jonas Broager

Fysikrapport: Rapportøvelse med kalorimetri. Maila Walmod, 1.3 HTX, Rosklide. I gruppe med Ulrik Stig Hansen og Jonas Broager Fysikrapport: Rapportøvelse med kalorimetri Maila Walmod, 1.3 HTX, Rosklide I gruppe med Ulrik Stig Hansen og Jonas Broager Afleveringsdato: 30. oktober 2007* *Ny afleveringsdato: 13. november 2007 1 Kalorimetri

Læs mere

Dig og din puls. 17-10-2004 Dig og din puls Side 1 af 17

Dig og din puls. 17-10-2004 Dig og din puls Side 1 af 17 Dig og din puls Jette Rygaard Poulsen, Frederikshavn Gymnasium og HF-kursus Hans Vestergaard, Frederikshavn Gymnasium og HF-kursus Søren Lundbye-Christensen, AAU 17-10-2004 Dig og din puls Side 1 af 17

Læs mere

Andengradsligninger. Frank Nasser. 11. juli 2011

Andengradsligninger. Frank Nasser. 11. juli 2011 Andengradsligninger Frank Nasser 11. juli 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

Enkelt og dobbeltspalte

Enkelt og dobbeltspalte Enkelt og dobbeltsalte Jan Scholtyßek 4.09.008 Indhold 1 Indledning 1 Formål 3 Teori 3.1 Enkeltsalte.................................. 3. Dobbeltsalte................................. 3 4 Fremgangsmåde

Læs mere

Hubble relationen Øvelsesvejledning

Hubble relationen Øvelsesvejledning Hubble relationen Øvelsesvejledning Matematik/fysik samarbejde Henning Fisker Langkjer Til øvelsen benyttes en computer med CLEA-programmet Hubble Redshift Distance Relation. Galakserne i Universet bevæger

Læs mere

i x-aksens retning, så fås ). Forskriften for g fås altså ved i forskriften for f at udskifte alle forekomster af x med x x 0

i x-aksens retning, så fås ). Forskriften for g fås altså ved i forskriften for f at udskifte alle forekomster af x med x x 0 BAndengradspolynomier Et polynomium er en funktion på formen f ( ) = an + an + a+ a, hvor ai R kaldes polynomiets koefficienter. Graden af et polynomium er lig med den højeste potens af, for hvilket den

Læs mere

Exoplaneter fundet med Kepler og CoRoT

Exoplaneter fundet med Kepler og CoRoT Exoplaneter fundet med Kepler og CoRoT Analyse af data fra to forskningssatellitter Af Hans Kjeldsen, Institut for Fysik og Astronomi, Aarhus Universitet I denne artikel demonstreres det hvordan man kan

Læs mere

Transienter og RC-kredsløb

Transienter og RC-kredsløb Transienter og RC-kredsløb Fysik 6 Elektrodynamiske bølger Joachim Mortensen, Edin Ikanovic, Daniel Lawther 4. december 2008 (genafleveret 4. januar 2009) 1. Formål med eksperimentet og den teoretiske

Læs mere

Projekt 6.1 Rygtespredning - modellering af logistisk vækst

Projekt 6.1 Rygtespredning - modellering af logistisk vækst Projekt 6.1 Rygtespredning - modellering af logistisk vækst (Projektet anvender værktøjsprogrammet TI Nspire) Alle de tilstedeværende i klassen tildeles et nummer, så med 28 elever i klassen uddeles numrene

Læs mere

Mørk energi Anja C. Andersen, Dark Cosmology Centre, Niels Bohr Institutet, Københavns Universitet

Mørk energi Anja C. Andersen, Dark Cosmology Centre, Niels Bohr Institutet, Københavns Universitet Mørk energi Anja C. Andersen, Dark Cosmology Centre, Niels Bohr Institutet, Københavns Universitet En af de mest opsigtsvækkende opdagelser inden for astronomien er, at Universet udvider sig. Det var den

Læs mere

C) Perspektiv jeres kommunes resultater vha. jeres svar på spørgsmål b1 og b2.

C) Perspektiv jeres kommunes resultater vha. jeres svar på spørgsmål b1 og b2. C) Perspektiv jeres kommunes resultater vha. jeres svar på spørgsmål b1 og b. 5.000 4.800 4.600 4.400 4.00 4.000 3.800 3.600 3.400 3.00 3.000 1.19% 14.9% 7.38% 40.48% 53.57% 66.67% 79.76% 9.86% 010 011

Læs mere

Kroppens energiomsætning

Kroppens energiomsætning Kroppens energiomsætning Stofskiftet Menneskets stofskifte består af tre dele: Hvilestofskiftet BMR (Basal Metabolic Rate), det fødeinducerede stofskifte FIT (Food Induced Thermogenesis) og stofskiftet

Læs mere

Lommeregnerkursus 2008

Lommeregnerkursus 2008 Mikkel Stouby Petersen Lommeregnerkursus 008 Med gennemregnede eksempler og øvelser Materialet er udarbejdet til et kursus i brug af TI-89 Titanium afholdt på Odder Gymnasium. april 008 1. Ligningsløsning

Læs mere

Svingninger og bølger

Svingninger og bølger Fysik/kemi Viborg private Realskole Elevforsøg i 10. klasse Svingninger og bølger Pendulet svinger SIDE 2 1051 Formål At bestemme sammenhængen mellem pendulets længde og dets svingningstid. Materialer

Læs mere

Massespektrometri og kulstof-14-datering

Massespektrometri og kulstof-14-datering Massespektrometri og kulstof-14-datering Opgavehæfte AMS 14 C Daterings Center Institut for Fysik og Astronomi, Aarhus Universitet JO\ AUG 2004 BP\FEB 2010 Opgaverne 5,6 og 7 er hentet eller modificeret

Læs mere

Kvadratisk regression

Kvadratisk regression Kvadratisk regression Helle Sørensen Institut for Matematiske Fag Københavns Universitet Juli 2011 I kapitlet om lineær regression blev det vist hvordan man kan modellere en lineær sammenhæng mellem to

Læs mere

Det er ikke personligt

Det er ikke personligt Det er ikke personligt Hans Harhoff Andersen 18. september 2013 Forudsætninger for dette kursus Forudsætninger for dette kursus Forudsætninger for dette kursus Fysik Forudsætninger for dette kursus Fysik

Læs mere

Løsninger til udvalgte opgaver i opgavehæftet

Løsninger til udvalgte opgaver i opgavehæftet V3. Marstal solvarmeanlæg a) Den samlede effekt, som solfangeren tilføres er Solskinstiden omregnet til sekunder er Den tilførte energi er så: Kun af denne er nyttiggjort, så den nyttiggjorte energi udgør

Læs mere

Opdrift i vand og luft

Opdrift i vand og luft Fysikøvelse Erik Vestergaard www.matematikfysik.dk Opdrift i vand og luft Formål I denne øvelse skal vi studere begrebet opdrift, som har en version i både en væske og i en gas. Vi skal lave et lille forsøg,

Læs mere

Bilag 4.A s MASH. Indhold

Bilag 4.A s MASH. Indhold Bilag 4.A s MASH Indhold 1.1 Indledning 1 1.1.1 Formål med undersøgelsen 1 1.1.2 Beskrivelse af smash metoden 1 1.2 s MASH målinger (omfang, placering og resultater) 1.2.1 Undersøgelsens forløb 5 5 1.2.2

Læs mere