Det dobbelte bogholderi og centralperspektivet

Størrelse: px
Starte visningen fra side:

Download "Det dobbelte bogholderi og centralperspektivet"

Transkript

1 aristoteliske opfattelser fandtes stadig, endda helt frem til 1600-tallet, hvor der så til gengæld opstod radikalt andre ideer. Men indtil da udvikledes de aristoteliske og ny-platoniske opfattelser sig synkront og på mange måder kan man sige, at de i forhold til naturvidenskaben ikke adskilte sig synderligt fra hinanden. De baserede sig f.eks. begge på, at man kunne tænke eller føle sig frem til sandheden man behøvede ikke at basere sig systematisk på observation og eksperiment, når man skulle udvikle teorier. i løbet af 1500-tallet optræder en række forskere og tænkere, der går et skridt videre i retning af en naturvidenskab. De begyndte at opfatte mennesket som i stand til empirisk at erkende processer i naturen. For en forsker som Pietro Pomponazzi ( ) er naturen et lukket mekanisk system, der netop skal studeres empirisk. For lægen, teknikeren og matematikeren Geronimo Cardano ( ) er naturen stadig besjælet, dog på en sådan måde, at der ikke kræves magi for at omgås og forstå den, men sådan, at det er muligt at opnå lovmæssig erkendelse. Følger man Pomponazzis og Cardanos tænkemåder, er der således mulighed både for spekulativ naturfilosofi og for empirisk naturvidenskab. Det er en distinktion, der på dette tidspunkt ikke er etableret, og som først for alvor blev udfoldet i løbet af 1600-tallet. Det dobbelte bogholderi og centralperspektivet Et vigtigt fænomen i renæssancens blomstrende handel var regnskaber. Regnskabet baserede sig på optælling og på simple manipulationer med tal. Handlen forudsatte også måling og samfundsmæssigt fastsatte måle-normer, som vi kender det i form af f.eks. meter, kilogram og liter. Handelsregning var derfor noget meget afgørende, og det skabte behov for nye former for uddannelse. De etablerede universiteter underviste nemlig kun i geometri sådan som grækerne krævede det. Men måling og handel krævede arbejde med tal. Flere af renæssancens store kunstnere var både malere og undervisere i talregning de var interesseret i korrekt repræsentation af virkeligheden både plastisk og matematisk, hvilket ofte var to sider af samme sag. To fænomener er her interessante. På den ene side det pålidelige talbaserede bogholderi, det vi kalder det dobbelte bogholderi, og på den anden side det geometriske centralperspektiv, der muliggør en korrekt afbildning af en tredimensional virkelighed i form af et fladt billede. E R G O N AT U RV I D E N S K A B E N S F I L O S O F I S K E H I S T O R I E 83

2 Det dobbelte bogholderi beskrives første gang hos regnelæreren og matematikeren Luca Pacioli ( ) i en større lærebog fra 1494, Summa de Arithmetica, Geometrica, Proportioni et Proportionalita, hvori han opsummerer samtidens kunnen inden for matematik. Det var ikke noget originalt værk, men var karakteristisk for sin samtid ved, at det ikke var skrevet på latin, men på en toskansk dialekt, og at det blev udgivet som bogtryk og dermed blev meget udbredt. det dobbelte bogholderi baserer sig på den ide, at man ved at opgøre udgifter og indtægter på to forskellige måder kan opnå en højere grad af sikkerhed og korrekthed end ved blot at føre en enkelt liste over indtægter og udgifter. Enhver transaktion indføres i bøgerne to gange, som kredit og som debit. Derved kan man se, om der er balance, ud fra en ligning om at debitbevægelsernes sum skal være lig kreditbevægelsernes sum. Man kan sige, at det dobbelte bogholderi er en algoritme, der sikrer, at man til enhver tid kan få et billede af sin aktuelle økonomiske situation. Man kan både se, hvad man har til rådighed likvidt, og hvad man totalt set ejer, dvs. om de indtægter og udgifter man nu har, de fordringer man har, og den gæld man har, faktisk sikrer, at man som virksomhed kan overleve. alt dette hænger nøje sammen med fremkomsten af nye former for økonomisk samarbejde og nye former for risikotagning. Der opstod i renæssancen større firmaer ofte baseret på kortvarige former for samarbejde som f.eks. finansieringen af en handelsrejse med skib og man forsøgte at være flere om investeringerne, risikoen og udbyttet. Nogle har sagt, at det dobbelte bogholderi og den moderne kapitalisme er to sider af samme sag. Sikkert er det i hvert fald, at ideen om at drive virksomhed og forretning for vinding forudsætter, at man kan finde ud af, om man vinder eller taber. Senere opstår netop sandsynlighedsbegrebet og sandsynlighedsregningen ud fra tilsvarende spil-situationer, hvor man forsøger at finde ud af, om der er chance for gevinst eller ej. det dobbelte bogholderi er måske den første praktiske anvendelse af dels de nye arabertal dels ideen om en algoritme, som bliver skabt i Europa. Man havde lært at regne med tallene af araberne, og senere skulle europæerne i 1600-tallet skabe begreber om sandsynlighed og senere igen statistik udvidelser og anvendelser af matematikken, der slet ikke forelå hos de græske og arabiske matematikere. Det dobbelte bogholderi er også det første eksempel på, at man kan have tillid til noget, der kan udtrykkes i tal, og 84 V I D E N S K A B S M A N D E N S O G H U M A N I S T E N S F Ø D S E L

3 som er resultat af en måling. Regnskabet er en abstrakt repræsentation, der skal vise en forretnings finansielle situation. Det er i overført betydning et billede, hvorfor man stadig i dag siger, at et regnskab skal give et retvisende billede af situationen. Regnskabet og dets tilhørende metoder og begreber forblev lidt ligesom bogtrykket uændret i meget lang tid. Og essentielt er de metoder, der anvendes i dag, de samme som i renæssancens handels- og bankhuse. Regnskabet baserer sig på tal og måling. Ud fra dets praksis kan man nemt slutte, at kun det, man kan aflægge regnskab for, er noget, man har. Dermed kan man gå videre og sige, at kun det, der er repræsenteret i regnskabet, er virkeligt. Repræsentationen skaber på en vis måde kriteriet for, hvad der er virkeligt. Kun det målelige er virkeligt. Det er en helt central ide for videnskab og teknologi i Europa. Perspektivet beskrives første gang udførligt i et værk af humanisten og arkitekten Leon Battista Alberti ( ) fra Det er en geometrisk konstruktion, der baserer sig på visse optiske anskuelser om synsfeltet og om lyset. Derudover forudsætter det en bestemt opfattelse af, hvad et billede grundlæggende er. Før perspektivet var billeder repræsentationer af og symboler på det, der blev opfattet som virkeligt. Men de skulle ikke nødvendigvis ligne virkeligheden, sådan som vi ser den, dvs. der var ikke noget krav om illusion. Afbildede personers størrelse afhang således ofte af deres status i det samfundsmæssige eller religiøse hierarki, og herskeren eller Kristus kunne fremstå som de rene kæmper i forhold til menigmand. ligesom det dobbelte bogholderi på det talmæssige og økonomiske område satte en standard for afbildning og nøjagtighed, satte perspektivet en standard for, hvad det vil sige for et billede at gengive virkeligheden korrekt. De første perspektiv-billeder fremkommer omkring Mange kunstnere havde før da forsøgt at skabe indtryk af rumlighed. Men en egentlig geometrisk teori om, hvordan man omsætter et tredimensionalt synsindtryk til et tilsvarende todimensionalt, fremkommer først med Alberti. Ingeniøren og arkitekten Filippo Brunelleschi ( ) udførte omkring 1430 et forsøg, der gik ud på at se på et motiv i et spejl og derefter male motivet sådan, at hvis man erstattede spejlet med maleriet, ville man ikke kunne se forskel. Et sådant billede ville for Brunelleschi være et korrekt billede. To ting er vigtige i et perspektivisk billede: at der er et fælles forsvindingspunkt, og at horisonten og forkortningen imod horisonten er korrekt. E R G O N AT U RV I D E N S K A B E N S F I L O S O F I S K E H I S T O R I E 85

4 Den første korrekte brug af centralperspektivet tilskrives i dag Masolino da Panicales ( ) La Resurrezione di Tabita fra Bemærk, at forsvindingspunktet er i øjenhøjde på muren af det bagvedliggende hus, hvilket giver illusionen af, at billedet ses af en betragter, som står på pladsen. Denne fuldstændige integration af alle billedets horisontale linjer kan kun opnås ved en eksplicit implementering af centralperspektivet Cappella Brancacci, Firenze. Ellers vil f.eks. vandrette ternede gulve ikke se vandrette ud på billedet. Perspektivet forudsætter en opfattelse af synet og lyset, der siger, at lyset kommer ind i øjet udefra, og at lyset bevæger sig i rette linjer. Derudover skal man have en forståelse af den forkortning, der sker med tingene, når de fjerner sig fra os. Ellers vil en række master af samme højde, der står langs en lige vej, komme til at se ud som om, de har forskellig højde. Mange har fremsat teorier om, hvordan og hvorfor perspektivet netop opstår i Firenze i første halvdel af 1400-tallet. Man ved bl.a., at der i 1428 kommer et geografisk værk af Ptolemaios om kort og kortproduktion til Firenze. Og da kortproduktion drejer sig om det samme som perspektivet at afsætte noget tredimensionalt på et plant stykke papir har Brunelleschi måske været inspireret af Ptolemaios studier. Muligvis var Brunelleschi også inspireret af den fascination af symmetri og rumlighed, som blev dyrket i renæssancens boliger, haver og byanlæg. Fyrsten eller storborgeren viste sin magt i sin evne til at ordne omgivelserne, og orden var baseret på symmetri. Det var omverdenens empiriske egenskaber, hvordan verden faktisk så ud, der interesserede. Der skulle skabes et billede, og billedet skulle ikke kun oplyse træk ved virkeligheden, men ligefrem kunne erstatte den. Man kunne således sidde i en højt placeret loggia 86 V I D E N S K A B S M A N D E N S O G H U M A N I S T E N S F Ø D S E L

5 og se ud på byen eller landskabet, men man kunne også sidde i sin spisestue og betragte billeder af byen eller landskabet på væggene. Oplevelsen skulle være den samme. Renæssancens billeder lavet med centralperspektiv forsøgte ofte at efterligne, hvad en person ville se, hvis vedkommende stod på det sted, hvorfra billedet er set. Denne ide forudsætter, at billedet forstås som bevidsthedsindholdet hos en person. Perspektivbilledet indeholder altså indirekte en person, nemlig den, der observerer motivet et bestemt sted fra. Denne tilstedeværelse af et subjekt er noget helt afgørende. Et kalkmaleri fra middelalderen er f.eks. ikke et billede i samme forstand: det afbilder en scene fra Bibelen, men scenen er ikke set et bestemt sted fra eller forsøgt gengivet, sådan som en betragter ville have oplevet den. I renæssancen ser maleren ud i verden, og verden påvirker ham via lyset, og igennem denne påvirkning opstår indholdet i malerens bevidsthed. Maleren forsøger så igennem perspektivets regler at gengive det, han oplever. Maleren er subjektet, der er til stede i billedet. i renæssancen får netop subjektet og det individuelle en ny status. Ikke kun i malerkunsten, men også i filosofien, i naturen, i forståelsen af historien, i litteraturen og i livsformerne i almindelighed træder det enkelte menneske frem som et fokuspunkt, hvorfra alting kan ses. E R G O N AT U RV I D E N S K A B E N S F I L O S O F I S K E H I S T O R I E 87

6 Den videnskabelige revolution opgøret med Aristoteles Fra midten af 1500-tallet og i hvert fald to hundrede år frem foregår konstante ændringer i opfattelsen af verden og ikke mindst af, Det var ikke nemt at tegne et korrekt perspektivisk billede, og derfor blev der udviklet en række hjælpemidler, bl.a. en pind foran øjet og et gitter, der skulle placeres foran objektet. Her er teknikken gengivet i et træsnit af Aalbrecht Dürer ( ) fra hvad det overhovedet vil sige at vide noget om den. Det kaldes ofte den videnskabelige revolution, selvom der ikke er tale om ændringer fra det ene år til det næste, men om langstrakte forandringer. Termen er dog ikke helt ved siden af, da der rent faktisk sker en række voldsomme ændringer, som selvom de er gradvise og længerevarende er knyttet til få markante fænomener og centrale personer. Perioden er starten på moderniteten, og det er en periode, hvor fornuft, videnskab og rationalitet erstatter tradition, åbenbaring, religion og overtro. Processen starter i 1543, hvor Nikolaus Kopernikus fremlægger sit verdensbillede med Solen i centrum af universet, og den kulminerer i 1684 med fremlæggelsen af Isaac Newtons ( ) mekaniske fysik i værket Philosophiae Naturalis Principia Mathematica ( Naturfilosofiens matematiske principper ). Den ebber ud i løbet af 1700-tallet, hvor universiteter og de dannede kredse rimelig bredt har accepteret hovedindholdet af naturvidenskabens resultater. Dermed er revolutionen så at sige forbi, og erstattet af en art permanent forandringstilstand, hvor videnskabens udvikling ses som noget normalt. Alligevel er det først i vort århundrede, at man for alvor har accepteret, at der ikke bare én gang kan ske en videnskabelig revolution, men at der principielt kan være revolution på revolution i en uendelighed dvs. at det videnskabelige verdensbillede aldrig én gang for alle vil være etableret. Langsomt sker der også ændringer i samfundets teknologi, hvilket 88 V I D E N S K A B S M A N D E N S O G H U M A N I S T E N S F Ø D S E L

Det skabende menneske

Det skabende menneske dominerer diskussionerne inden for videnskab og filosofi i meget lang tid. Det er faktisk først omkring begyndelsen af 1600-tallet, der sker et radikalt opgør med aristotelismen, og man kan på mange måder

Læs mere

Videnskabsmandens og 3humanistens fødsel

Videnskabsmandens og 3humanistens fødsel Videnskabsmandens og 3humanistens fødsel I 1492 opdager Christoffer Columbus Amerika. I 1519 dør Leonardo da Vinci. Få år senere starter reformationen. I 1543 udsender Nikolaus Kopernikus et værk, der

Læs mere

Jorden placeres i centrum

Jorden placeres i centrum Arkimedes vægtstangsprincip. undgik konsekvent at anvende begreber om det uendeligt lille eller uendeligt store, og han udviklede en teori om proportioner, som overvandt forskellige problemer med de irrationale

Læs mere

Verdensbilleder i oldtiden

Verdensbilleder i oldtiden Verdensbilleder Teksten består af to dele. Den første del er uddrag fra Stenomuseets skoletjeneste(http://www.stenomuseet.dk/skoletj/), dog er spørgsmål og billeder udeladt. Teksten fortæller om hvordan

Læs mere

Kom ikke her med dit hændelser, der følges ad, er ikke altid kausalt forbundne! Det er dit!

Kom ikke her med dit hændelser, der følges ad, er ikke altid kausalt forbundne! Det er dit! Måling tvang altså kemikerne til at overveje situationen, og da ideen om stof med negativ masse var yderst uplausibel, måtte man revidere phlogistonteorien. Lavoisier var den første, der fremførte den

Læs mere

10.klasse. Naturfaglige fag: Matematik, Fysik/kemi. Matematik. Formål for faget matematik

10.klasse. Naturfaglige fag: Matematik, Fysik/kemi. Matematik. Formål for faget matematik 10.klasse Naturfaglige fag: Matematik, Fysik/kemi Matematik Formål for faget matematik Formålet med undervisningen er, at eleverne udvikler matematiske kompetencer og opnår viden og kunnen således, at

Læs mere

Månedens astronom februar 2006 side 1. 1: kosmologiens fødsel og problemer

Månedens astronom februar 2006 side 1. 1: kosmologiens fødsel og problemer Månedens astronom februar 2006 side 1 Verdensbilleder * Det geocentriske * Det geo-heliocentriske * Det heliocentriske 1: kosmologiens fødsel og problemer Astronomien er den ældste af alle videnskaber

Læs mere

Fagårsplan 10/11 Fag: Matematik Klasse: 7.ABC Lærer: Henrik Stillits. Fagområde/ emne

Fagårsplan 10/11 Fag: Matematik Klasse: 7.ABC Lærer: Henrik Stillits. Fagområde/ emne Fagårsplan 10/11 Fag: Matematik Klasse: 7.ABC Lærer: Henrik Stillits. Fagområde/ emne Matematiske færdigheder Grundlæggende færdigheder - plus, minus, gange, division (hele tal, decimaltal og brøker) Identificer

Læs mere

Skolens formål med faget matematik følger beskrivelsen af formål i folkeskolens Fælles Mål:

Skolens formål med faget matematik følger beskrivelsen af formål i folkeskolens Fælles Mål: Formål: Skolens formål med faget matematik følger beskrivelsen af formål i folkeskolens Fælles Mål: Formålet med undervisningen i matematik er, at eleverne bliver i forstå og anvende matematik i sammenhænge,

Læs mere

Selam Friskole Fagplan for Matematik

Selam Friskole Fagplan for Matematik Selam Friskole Fagplan for Matematik Formål Formålet med undervisningen er, at eleverne udvikler matematiske kompetencer og opnår viden og kunnen således, at de bliver i stand til at begå sig hensigtsmæssigt

Læs mere

LÆRINGSMÅL PÅ NIF MATEMATIK 2014-15

LÆRINGSMÅL PÅ NIF MATEMATIK 2014-15 LÆRINGSMÅL PÅ NIF MATEMATIK 2014-15 Mål for undervisningen i Matematik på NIF Følgende er baseret på de grønlandske læringsmål, tilføjelser fra de danske læringsmål står med rød skrift. Læringsmål Yngstetrin

Læs mere

Når vi forbereder et nyt emne eller område vælger vi de metoder, materialer og evalueringsformer, der egner sig bedst til forløbet.

Når vi forbereder et nyt emne eller område vælger vi de metoder, materialer og evalueringsformer, der egner sig bedst til forløbet. MATEMATIK Delmål for fagene generelt. Al vores undervisning hviler på de i Principper for skole & undervisning beskrevne områder (- metoder, materialevalg, evaluering og elevens personlige alsidige udvikling),

Læs mere

3. klasse 6. klasse 9. klasse

3. klasse 6. klasse 9. klasse Børne- og Undervisningsudvalget 2012-13 BUU Alm.del Bilag 326 Offentligt Elevplan 3. klasse 6. klasse 9. klasse Matematiske kompetencer Status tal og algebra sikker i, er usikker i de naturlige tals opbygning

Læs mere

Matematik på Humlebæk lille Skole

Matematik på Humlebæk lille Skole Matematik på Humlebæk lille Skole Matematikundervisningen på HLS er i overensstemmelse med Undervisningsministeriets Fælles Mål, dog med få justeringer som passer til vores skoles struktur. Det betyder

Læs mere

Matematik. Matematikundervisningen tager udgangspunkt i Folkeskolens Fælles Mål

Matematik. Matematikundervisningen tager udgangspunkt i Folkeskolens Fælles Mål Matematik Matematikundervisningen tager udgangspunkt i Folkeskolens Fælles Mål Formålet med undervisningen i matematik er, at eleverne bliver i stand til at forstå og anvende matematik i sammenhænge, der

Læs mere

Sansernes og forstandens tvivlsomme brugbarhed

Sansernes og forstandens tvivlsomme brugbarhed Sansernes og forstandens tvivlsomme brugbarhed I de syditalienske byer Kroton og Elea opstod omkring 500 f.v.t. to filosofiske retninger, som fik stor betydning for senere tænkning og forskning. Den ene

Læs mere

Naturlove som norm. n 1 n 2. Normalen

Naturlove som norm. n 1 n 2. Normalen Normalen u n 1 n 2 v Descartes lov, også kaldet Snels lov (efter den hollandske matematiker Willebrord Snel (1580-1636), som fandt den uafhængigt af Descartes), bruges til at beregne refraktionsindekset

Læs mere

MATEMATIK. GIDEONSKOLENS UNDERVISNINGSPLAN Oversigt over undervisning i forhold til trinmål og slutmål

MATEMATIK. GIDEONSKOLENS UNDERVISNINGSPLAN Oversigt over undervisning i forhold til trinmål og slutmål MATEMATIK GIDEONSKOLENS UNDERVISNINGSPLAN Oversigt over undervisning i forhold til trinmål og slutmål KOMMENTAR Vi har i det følgende foretaget en analyse og en sammenstilling af vore materialer til skriftlig

Læs mere

Metoder og erkendelsesteori

Metoder og erkendelsesteori Metoder og erkendelsesteori Af Ole Bjerg Inden for folkesundhedsvidenskabelig forskning finder vi to forskellige metodiske tilgange: det kvantitative og det kvalitative. Ser vi på disse, kan vi konstatere

Læs mere

Introduktion til mat i 4 klasse Vejle Privatskole 2013/14:

Introduktion til mat i 4 klasse Vejle Privatskole 2013/14: Introduktion til mat i 4 klasse Vejle Privatskole 2013/14: Udgangspunktet bliver en blød screening, der skal synliggøre summen af elevernes standpunkt. Det betyder i realiteten, at der uddeles 4 klasses

Læs mere

Om at erkende verden den moderne filosofi

Om at erkende verden den moderne filosofi af samme art som fysiske processer. Et væsentligt eksempel herpå var f.eks. den engelske læge William Harveys (1578-1657) nye teorier om hjertet og blodets cirkulation fra 1628. tidligere anatomer havde

Læs mere

M A T E M A T I K FAGBESKRIVELSE FOR UNDERVISNING I MATEMATIK PÅ HARESKOVENS LILLESKOLE:

M A T E M A T I K FAGBESKRIVELSE FOR UNDERVISNING I MATEMATIK PÅ HARESKOVENS LILLESKOLE: M A T E M A T I K FAGBESKRIVELSE FOR UNDERVISNING I MATEMATIK PÅ HARESKOVENS LILLESKOLE: Udgangspunktet for Hareskovens Lilleskoles matematikundervisning er vores menneskesyn: det hele menneske. Der lægges

Læs mere

Læseplan for faget matematik. 1. 9. klassetrin

Læseplan for faget matematik. 1. 9. klassetrin Læseplan for faget matematik 1. 9. klassetrin Matematikundervisningen bygger på elevernes mange forudsætninger, som de har med når de starter i skolen. Der bygges videre på elevernes forskellige faglige

Læs mere

MATEMATIK. Formål for faget

MATEMATIK. Formål for faget MATEMATIK Formål for faget Formålet med undervisningen er, at eleverne udvikler matematiske kompetencer og opnår viden og kunnen således, at de bliver i stand til at begå sig hensigtsmæssigt i matematikrelaterede

Læs mere

Undervisningsplan for matematik

Undervisningsplan for matematik Undervisningsplan for matematik Formål for faget Formålet med undervisningen i matematik er, at eleverne udvikler kompetencer og opnår viden og kunnen således, at de bliver i stand til at begå sig hensigtsmæssigt

Læs mere

Analytisk Geometri. Frank Nasser. 12. april 2011

Analytisk Geometri. Frank Nasser. 12. april 2011 Analytisk Geometri Frank Nasser 12. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk: Dette er

Læs mere

Den sproglige vending i filosofien

Den sproglige vending i filosofien ge til forståelsen af de begreber, med hvilke man udtrykte og talte om denne viden. Det blev kimen til en afgørende ændring af forståelsen af forholdet mellem empirisk videnskab og filosofisk refleksion,

Læs mere

Årsplan for matematik i 1. klasse 2010-11

Årsplan for matematik i 1. klasse 2010-11 Årsplan for matematik i 1. klasse 2010-11 Vanløse den 6. juli 2010 af Musa Kronholt Formål for faget matematik Formålet med undervisningen er, at eleverne udvikler matematiske kompetencer og opnår viden

Læs mere

TROMPE L OEIL 27183 1/6

TROMPE L OEIL 27183 1/6 TROMPE L OEIL 27183 1/6 N 1:1000 Situationsplan Pavillonen TROMPE L OEIL indskriver sig som en del af Gl. Holtegaards karakteristiske barokhave, samtidig med at den markerer sig som en selvstændig figur,

Læs mere

Evaluering af matematik undervisning

Evaluering af matematik undervisning Evaluering af matematik undervisning Udarbejdet af Khaled Zaher, matematiklærer 6-9 klasse og Boushra Chami, matematiklærer 2-5 klasse Matematiske kompetencer. Fællesmål efter 3.klasse indgå i dialog om

Læs mere

ÅRSPLAN MATEMATIK 2. KLASSE 2016/17 I

ÅRSPLAN MATEMATIK 2. KLASSE 2016/17 I ÅRSPLAN MATEMATIK 2. KLASSE 2016/17 I de enkelte undervisningsforløb indgår der mål fra både de matematiske kompetencer og fra de 3 stofområder: Matematiske kompetencer Eleven kan handle hensigtsmæssigt

Læs mere

Verdensbilleder Side 1 af 7

Verdensbilleder Side 1 af 7 Verdensbilleder ide 1 af 7 Verdensbilleder A. elvstændigt arbejde som forberedelse: 1. Følgende tekster læses grundigt forud, og der tages notater om personer, årstal, betydningsfulde opdagelser, samt

Læs mere

Undervisningsplan for faget matematik. Ørestad Friskole

Undervisningsplan for faget matematik. Ørestad Friskole Undervisningsplan for faget matematik Ørestad Friskole 1. af 11 sider Undervisningsplan for faget matematik. Ørestad Friskole Undervisningsplanens indhold Undervisningens organisering og omfang side 2

Læs mere

Matematik. Matematiske kompetencer

Matematik. Matematiske kompetencer Matematiske kompetencer skelne mellem definitioner og sætninger, mellem enkelttilfælde og generaliseringer og anvende denne indsigt til at udforske og indgå i dialog om forskellige matematiske begrebers

Læs mere

Årsplan for Matematik 8. klasse 2011/2012

Årsplan for Matematik 8. klasse 2011/2012 Årsplan for Matematik 8. klasse 2011/2012 Formål for faget matematik Formålet med undervisningen er, at eleverne udvikler matematiske kompetencer og opnår viden og kunnen således, at de bliver i stand

Læs mere

Analytisk Geometri. Frank Nasser. 11. juli 2011

Analytisk Geometri. Frank Nasser. 11. juli 2011 Analytisk Geometri Frank Nasser 11. juli 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

Kortlægningen af den ydre og indre verden

Kortlægningen af den ydre og indre verden en start på. Derefter sker det ved udviklingen af et vidensproducerende system, hvor forskningsinstitutioner, læreanstalter, eksperter, industrilaboratorier osv. indgår som helt centrale elementer. den

Læs mere

Matematik - undervisningsplan

Matematik - undervisningsplan I 4. klasse starter man på andet forløb i matematik, der skal lede frem mod at eleverne kan opfylde fagets trinmål efter 6. klasse. Det er dermed det som undervisningen tilrettelægges ud fra og målsættes

Læs mere

Årsplan for matematik 2012-13

Årsplan for matematik 2012-13 Årsplan for matematik 2012-13 Uge Tema/emne Metode/mål 32 Matematiske arbejdsmåder(metode) 33 Intro 34 Tal + talforståelse 35 Brøker-procent 36 Potens+kvadrat-og kubikrod 37 Emneuge 38 Ligninger-uligheder

Læs mere

Alle vandrette linjer, der er vinkelrette med synslinjen, er parallelle med horisonten.

Alle vandrette linjer, der er vinkelrette med synslinjen, er parallelle med horisonten. Perspektiv tegning Hjælp til perspektivtegning. Illustrationerne er købt fra Perspektivtegning - Matematik i Billedkunst, billedkunst i matematik. - en kopimappe som er lavet af Jørgen Skourup og Ole Stærkjær.

Læs mere

MATEMATIK. Formål for faget

MATEMATIK. Formål for faget Fælles Mål II MATEMATIK Formål for faget Fælles Mål Formålet med undervisningen i matematik er, at eleverne bliver i stand til at forstå og anvende matematik i sammenhænge, der vedrører dagligliv, samfundsliv

Læs mere

. Verdensbilledets udvikling

. Verdensbilledets udvikling . Verdensbilledets udvikling Vores viden om Solsystemets indretning er resultatet af mange hundrede års arbejde med at observere himlen og opstille teorier. Stjernerne flytter sig ligesom Solen 15' på

Læs mere

Universet. Opgavehæfte. Navn: Klasse

Universet. Opgavehæfte. Navn: Klasse Universet Opgavehæfte Navn: Klasse Mål for emnet: Rummet Hvor meget ved jeg før jeg går i gang Skriv et tal fra 0-5 Så meget ved jeg, når jeg er færdig Skriv et tal fra 0-5 Jeg kan beskrive, hvad Big Bang

Læs mere

Årsplan for 7. klasse, matematik

Årsplan for 7. klasse, matematik Årsplan for 7. klasse, matematik I matematik bruger vi bogsystemet Sigma som grundmateriale. I systemet er der, ud over grundbogen, også kopiark og tests tilknyttet de enkelte kapitler. Systemet er udarbejdet

Læs mere

Faglige delmål og slutmål i faget Matematik. Trin 1

Faglige delmål og slutmål i faget Matematik. Trin 1 Faglige delmål og slutmål i faget Matematik. Trin 1 Faglige delmål for matematik i 1. og 2. klasse. Undervisningen skal lede frem mod, at eleverne efter 2. klasse har tilegnet sig kundskaber og færdigheder,

Læs mere

Gennem de sidste par årtier er en digital revolution fejet ind over vores tidligere så analoge samfund.

Gennem de sidste par årtier er en digital revolution fejet ind over vores tidligere så analoge samfund. Den digitale verden et barn af oplysningstiden Af redaktionen Gennem de sidste par årtier er en digital revolution fejet ind over vores tidligere så analoge samfund. Den elektroniske computer er blevet

Læs mere

forstå, arbejde med og analysere problemstillinger af matematisk art i sammenhænge, der vedrører dagligliv, samfundsliv og naturforhold

forstå, arbejde med og analysere problemstillinger af matematisk art i sammenhænge, der vedrører dagligliv, samfundsliv og naturforhold Årsplan for undervisningen i matematik på 4. klassetrin 2006/2007 Retningslinjer for undervisningen i matematik: Da Billesborgskolen ikke har egne læseplaner for faget matematik, udgør folkeskolens formål

Læs mere

Naturvidenskab. En fællesbetegnelse for videnskaberne om naturen, dvs. astronomi, fysik, kemi, biologi, naturgeografi, biofysik, meteorologi, osv

Naturvidenskab. En fællesbetegnelse for videnskaberne om naturen, dvs. astronomi, fysik, kemi, biologi, naturgeografi, biofysik, meteorologi, osv Naturvidenskab En fællesbetegnelse for videnskaberne om naturen, dvs. astronomi, fysik, kemi, biologi, naturgeografi, biofysik, meteorologi, osv Naturvidenskab defineres som menneskelige aktiviteter, hvor

Læs mere

Aristoteles og de athenske akademier

Aristoteles og de athenske akademier lige geometriske genstande, som var evige og foranderlige størrelser i en abstrakt verden. Erkendelse var således ikke erkendelse af sansernes verden, men af en anden verden, kun tilgængelig for ånden.

Læs mere

Matematik. Læseplan og formål:

Matematik. Læseplan og formål: Matematik Læseplan og formål: Formålet med undervisningen i matematik er, at eleverne bliver i stand til at forstå og anvende matematik i sammenhænge, der vedrører dagligliv, samfundsliv og naturforhold.

Læs mere

Renæssancen i Norditalien

Renæssancen i Norditalien Kulturspillets weekendkurser 2014 Renæssancen i Norditalien Tid: Lørdag den 1. feb. 2014 Sted: Århus, nærmere adresse følger Norditalien blev arnested for den historiske epoke, der trak Europa ud af Middelalderens

Læs mere

Eleverne skal lære at:

Eleverne skal lære at: PK: Årsplan 8.Ga. M, matematik Tid og fagligt område Aktivitet Læringsmål Uge 32 uge 50 Tal og algebra Eleverne skal arbejde med at: kende de reelle tal og anvende dem i praktiske og teoretiske sammenhænge

Læs mere

Fælles Mål 2009. Matematik. Faghæfte 12

Fælles Mål 2009. Matematik. Faghæfte 12 Fælles Mål 2009 Matematik Faghæfte 12 Undervisningsministeriets håndbogsserie nr. 14 2009 Fælles Mål 2009 Matematik Faghæfte 12 Undervisningsministeriets håndbogsserie nr. 14 2009 Indhold Formål for faget

Læs mere

Fælles Mål 2009. Matematik. Faghæfte 12

Fælles Mål 2009. Matematik. Faghæfte 12 Fælles Mål 2009 Matematik Faghæfte 12 Undervisningsministeriets håndbogsserie nr. 14 2009 Fælles Mål 2009 Matematik Faghæfte 12 Undervisningsministeriets håndbogsserie nr. 14 2009 Indhold Formål for faget

Læs mere

Figur 2: Forsiden af Dialogue fra 1632.

Figur 2: Forsiden af Dialogue fra 1632. Indledning Når man hører fortællinger om fysikkens historie, virker det ofte som om, der sker en lineær, kontinuert udvikling af naturvidenskaben. En ny og bedre teori afløser straks ved sin fremkomst

Læs mere

Brug og Misbrug af logiske tegn

Brug og Misbrug af logiske tegn Brug og Misbrug af logiske tegn Frank Nasser 20. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk:

Læs mere

Tal. Vi mener, vi kender og kan bruge følgende talmængder: N : de positive hele tal, Z : de hele tal, Q: de rationale tal.

Tal. Vi mener, vi kender og kan bruge følgende talmængder: N : de positive hele tal, Z : de hele tal, Q: de rationale tal. 1 Tal Tal kan forekomme os nærmest at være selvfølgelige, umiddelbare og naturgivne. Men det er kun, fordi vi har vænnet os til dem. Som det vil fremgå af vores timer, har de mange overraskende egenskaber

Læs mere

Space Challenge og Undervisningsminsteriets Fælles Mål for folkeskolen

Space Challenge og Undervisningsminsteriets Fælles Mål for folkeskolen Space Challenge og Undervisningsminsteriets Fælles Mål for folkeskolen I dette kapitel beskrives det, hvilke Fælles Mål man kan nå inden for udvalgte fag, når man i skolen laver aktiviteter med Space Challenge.

Læs mere

Årsplan for matematik i 4. klasse 2014-15

Årsplan for matematik i 4. klasse 2014-15 Årsplan for matematik i 4. klasse 2014-15 Klasse: 4. Fag: Matematik Lærer: Ali Uzer Lektioner pr. uge: 4(mandag, tirsdag, torsdag, fredag) Formål for faget matematik Formålet med undervisningen er, at

Læs mere

Fagplan for matematik

Fagplan for matematik Fagplan for matematik Formål Undervisningen i matematik skal give eleverne lyst til, forståelse for og teoretisk baggrund for at analysere, vurdere, kontrollere og argumentere, når de i deres dagligdag

Læs mere

Matematik. Matematiske kompetencer

Matematik. Matematiske kompetencer Matematiske kompetencer formulere sig skriftligt og mundtligt om matematiske påstande og spørgsmål og have blik for hvilke typer af svar, der kan forventes (tankegangskompetence) løse matematiske problemer

Læs mere

Fagårsplan 10/11 Fag: Matematik Klasse: 8.A Lærer: Henrik Stillits Fagområde/ emne Færdighedsregning - Typer af opgaver - Systematik

Fagårsplan 10/11 Fag: Matematik Klasse: 8.A Lærer: Henrik Stillits Fagområde/ emne Færdighedsregning - Typer af opgaver - Systematik Fagårsplan 10/11 Fag: Matematik Klasse: 8.A Lærer: Henrik Stillits Fagområde/ emne Færdighedsregning - Typer af opgaver - Systematik Periode Mål Eleverne skal: 32/33 Få kendskab til opgavetypen og få rutine.

Læs mere

Hjerner i et kar - Hilary Putnam. noter af Mogens Lilleør, 1996

Hjerner i et kar - Hilary Putnam. noter af Mogens Lilleør, 1996 Hjerner i et kar - Hilary Putnam noter af Mogens Lilleør, 1996 Historien om 'hjerner i et kar' tjener til: 1) at rejse det klassiske, skepticistiske problem om den ydre verden og 2) at diskutere forholdet

Læs mere

Klassen er sammenlæst, altså 5 og 6 klasse på en og samme tid. Samtidig er klassen pt på ca 11 elever ialt.

Klassen er sammenlæst, altså 5 og 6 klasse på en og samme tid. Samtidig er klassen pt på ca 11 elever ialt. Introduktion til mat i 5/6 klasse Vejle Privatskole 13/14: Klassen er sammenlæst, altså 5 og 6 klasse på en og samme tid. Samtidig er klassen pt på ca 11 elever ialt. Udgangspunktet bliver en blød screening,

Læs mere

AT og elementær videnskabsteori

AT og elementær videnskabsteori AT og elementær videnskabsteori Hvilke metoder og teorier bruger du, når du søger ny viden? 7 begrebspar til at karakterisere viden og måden, du søger viden på! Indholdsoversigt s. 1: Faglige mål for AT

Læs mere

Verdens alder ifølge de højeste autoriteter

Verdens alder ifølge de højeste autoriteter Verdens alder 1 Erik Høg 11. januar 2007 Verdens alder ifølge de højeste autoriteter Alle religioner har beretninger om verdens skabelse og udvikling, der er meget forskellige og udsprunget af spekulation.

Læs mere

Årsplan 9. klasse matematik 2013-2014 Uge Emne Faglige mål Trinmål Materialer/ systemer 33 Årsprøven i matematik

Årsplan 9. klasse matematik 2013-2014 Uge Emne Faglige mål Trinmål Materialer/ systemer 33 Årsprøven i matematik Årsplan 9. klasse matematik 2013-2014 33 Årsprøven i matematik Årsprøve og rettevejledledning 34-35 36 og løbe nde Talmængder og regnemetoder Mundtlig matematik 37 Fordybelses uge 38-39 Procent - Gennemgå

Læs mere

Formål & Mål. Ingeniør- og naturvidenskabelig. Metodelære. Kursusgang 1 Målsætning. Kursusindhold. Introduktion til Metodelære. Indhold Kursusgang 1

Formål & Mål. Ingeniør- og naturvidenskabelig. Metodelære. Kursusgang 1 Målsætning. Kursusindhold. Introduktion til Metodelære. Indhold Kursusgang 1 Ingeniør- og naturvidenskabelig metodelære Dette kursusmateriale er udviklet af: Jesper H. Larsen Institut for Produktion Aalborg Universitet Kursusholder: Lars Peter Jensen Formål & Mål Formål: At støtte

Læs mere

Projekt 3.8. Månens bjerge

Projekt 3.8. Månens bjerge Projekt 3.8. Månens bjerge Introduktion til hvordan man kan arbejde med dette projekt. Det følgende kan integreres i et projekt om verdensbilleder, hvor man både kommer ind på diskussioner om at opnå erkendelse,

Læs mere

De fire elementers kostbare spejl

De fire elementers kostbare spejl Projekt.6 Lineær algebra moderne og klassisk kinesisk De fire elementers kostbare spejl "Som bekendt anses matematikken for at være en meget vigtig videnskab. Denne bog om matematik vil derfor være af

Læs mere

Årsplan 9. klasse matematik 2014-2015 Uge Emne Faglige mål Trinmål Materialer/ systemer 33-34

Årsplan 9. klasse matematik 2014-2015 Uge Emne Faglige mål Trinmål Materialer/ systemer 33-34 Årsplan 9. klasse matematik 2014-2015 33-34 Årsprøve og rettevejledledning 34-36 Årsprøven i matematik Talmængder og regnemetoder 37 Fordybelses uge 38-39 40 Termins-prøve 41 Studieturen 42 Efterårsferie

Læs mere

INDVIELSE. i Egypten. Erik Ansvang. www.visdomsnettet.dk

INDVIELSE. i Egypten. Erik Ansvang. www.visdomsnettet.dk 1 INDVIELSE i Egypten Erik Ansvang www.visdomsnettet.dk 2 INDVIELSE i Egypten Af Erik Ansvang Indviet i Egypten Den traditionelle egyptologi afviser kategorisk, at pyramider og templer fungerede som en

Læs mere

Trekanter. Frank Villa. 8. november 2012

Trekanter. Frank Villa. 8. november 2012 Trekanter Frank Villa 8. november 2012 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser for brug her. Indhold 1 Introduktion 1 1.1

Læs mere

Verdensbilleder. Oldtidskundskab C og Fysik B Jens Jensen 3x Rungsted Gymnasium

Verdensbilleder. Oldtidskundskab C og Fysik B Jens Jensen 3x Rungsted Gymnasium Verdensbilleder Oldtidskundskab C og Fysik B Jens Jensen 3x Rungsted Gymnasium 1 Indholdsfortegnelse Indhold Problemformulering... 3 Underspørgsmål... 3 Materialer, metoder og teorier... 3 Delkonklusioner...

Læs mere

Årsplan 2015/2016. Uge 33-43. Tal - Eleven har viden om regningsarternes hierarki. Mundtlig evaluering Skriftlige prøver Kan kan næsten cirkel

Årsplan 2015/2016. Uge 33-43. Tal - Eleven har viden om regningsarternes hierarki. Mundtlig evaluering Skriftlige prøver Kan kan næsten cirkel Kompetencemål: - Eleven kan handle med dømmekraft i komplekse situationer med matematik - Eleven kan anvende reelle tal og algebraiske udtryk i matematiske undersøgelser - Eleven kan forklare geometriske

Læs mere

Perspektiv. At illustrerer rumligt. Forsvindingspunkt Horisont

Perspektiv. At illustrerer rumligt. Forsvindingspunkt Horisont Rumlig afbildning For at illustrere en bygning eller et Rum, i et sprog der er til at forstå, for ikke byggefolk, kan det være en fordel at lave en gengivelse af virkeligheden. Perspektiv At illustrerer

Læs mere

Matematik B - hf-enkeltfag, april 2011

Matematik B - hf-enkeltfag, april 2011 Matematik B - hf-enkeltfag, april 2011 1. Identitet og formål 1.1. Identitet Matematik bygger på abstraktion og logisk tænkning og omfatter en lang række metoder til modellering og problembehandling. Matematik

Læs mere

Computeren repræsenterer en teknologi, som er tæt knyttet til den naturvidenskabelige tilgang.

Computeren repræsenterer en teknologi, som er tæt knyttet til den naturvidenskabelige tilgang. Den tekniske platform Af redaktionen Computeren repræsenterer en teknologi, som er tæt knyttet til den naturvidenskabelige tilgang. Teknologisk udvikling går således hånd i hånd med videnskabelig udvikling.

Læs mere

Aristoteles om uendelighed

Aristoteles om uendelighed Aristoteles om uendelighed Af Charlotte Stefansen En af de stridigheder man møder inden for matematik vedrører, om man kan tillade brugen af uendeligheder. Groft sagt kan man dele opfattelser af matematik

Læs mere

En national vision for folkeoplysningen i Danmark. Af kulturminister Marianne Jelved

En national vision for folkeoplysningen i Danmark. Af kulturminister Marianne Jelved En national vision for folkeoplysningen i Danmark Af kulturminister Marianne Jelved En national vision for folkeoplysningen i Danmark Udgivet november 2014 Kulturministeriet Nybrogade 2 1203 København

Læs mere

Guide til lektielæsning

Guide til lektielæsning Guide til lektielæsning Gefions lærere har udarbejdet denne guide om lektielæsning. Den henvender sig til alle Gefions elever og er relevant for alle fag. Faglig læsning (=lektielæsning) 5- trinsmodellen

Læs mere

Andreas Nielsen Kalbyrisskolen 2009

Andreas Nielsen Kalbyrisskolen 2009 Andreas Nielsen Kalbyrisskolen 2009 Matematiske kompetencer. Matematiske emner (tal og algebra, geometri, statistik og sandsynlighed). Matematik i anvendelse. Matematiske arbejdsmåder. Tankegangskompetence

Læs mere

Aristoteles Metafysik 2. bog (a) oversat af Chr. Gorm Tortzen

Aristoteles Metafysik 2. bog (a) oversat af Chr. Gorm Tortzen Aristoteles Metafysik 2. bog (a) oversat af Chr. Gorm Tortzen Indledning Denne lille bog (eller fragment af en bog, kaldet Lille alfa ) er en selvstændig introduktionsforelæsning til fysikken, dvs. det

Læs mere

Undervisningsplan: Matematik Skoleåret 2014/2015 Strib Skole: 5B Ugenumre: Hovedområder: Emner og temaer: Side 1 af 5

Undervisningsplan: Matematik Skoleåret 2014/2015 Strib Skole: 5B Ugenumre: Hovedområder: Emner og temaer: Side 1 af 5 Ugenumre: Hovedområder: Emner og temaer: 33 Addition og subtraktion Anvendelse af regningsarter 34 Multiplikation og division Anvendelse af regningsarter 35 Multiplikation med decimaltal Anvendelse af

Læs mere

Emne Tema Materiale r - - - - - aktiviteter

Emne Tema Materiale r - - - - - aktiviteter Fag: Matematik Hold: 24 Lærer: TON Undervisningsmål Læringsmål 9 klasse 32-34 Introforløb: række tests, som viser eleverne faglighed og læringsstil. Faglige aktiviteter Emne Tema Materiale r IT-inddragelse

Læs mere

PAUL SMULDERS Serendipity Yours galleri NB Viborg

PAUL SMULDERS Serendipity Yours galleri NB Viborg Serendipity Yours 28.09-26.10.2013 galleri NB Viborg Paul Smulders har vi kendt og udstillet siden 1998. Og vi glæder os hver gang til at opleve, hvad han har arbejdet med i atelieret. Denne gang er ingen

Læs mere

Geometriske konstruktioner: Ovaler og det gyldne snit

Geometriske konstruktioner: Ovaler og det gyldne snit Matematik Geometriske konstruktioner: Ovaler og det gyldne snit Ole Witt-Hansen, Køge Gymnasium Ovaler og det gyldne snit har fundet anvendelse i arkitektur og udsmykning siden oldtiden. Men hvordan konstruerer

Læs mere

Årsplan for 2.kl i Matematik

Årsplan for 2.kl i Matematik Årsplan for 2.kl i Matematik Vi følger matematiksystemet "Matematrix". Her skal vi i år arbejde med bøgerne 2A og 2B. Eleverne i 2. klasse skal i 2. klasse gennemgå de fire regningsarter. Specielt skal

Læs mere

Lad kendsgerningerne tale

Lad kendsgerningerne tale de på, at det nok snarere var hjernen. Vesalius bog var banebrydende både ved at skabe grundlaget for en videnskabelig og på observation baseret anatomi, og ved at være en uhørt velillustreret lærebog,

Læs mere

Årsplan for matematik

Årsplan for matematik Årsplan for matematik 2016-17 Uge Tema/emne Metode/mål 33 Brøker + talforståelse Matematiske arbejdsmåder(metode) 34 Brøker + procent 35 Excel 35 GeoGebra/Geometri 36 Geometri 37 Emneuge 38 Geometri 39

Læs mere

Kampen om landet og byen

Kampen om landet og byen Mellemøstenhar gennem tiderne påkaldt sig stor opmærksomhed, og regionen er i dag mere end nogensinde genstand for stor international bevågenhed. På mange måder er Palæstina, og i særdeleshed Jerusalem

Læs mere

Øresunds Internationale Skole Engvej 153, 2300 København S. Tlf.: 32598002 www.o-i-s.dk ois@mail.sonofon.dk

Øresunds Internationale Skole Engvej 153, 2300 København S. Tlf.: 32598002 www.o-i-s.dk ois@mail.sonofon.dk Øresunds Internationale Skole Engvej 153, 2300 København S. Tlf.: 32598002 www.o-i-s.dk ois@mail.sonofon.dk Øresunds Internationale Skole læseplan for matematik. Formål for faget matematik Formålet med

Læs mere

Oversigt over Forenklede Fælles Mål i forbindelse med kapitlerne i MULTI. Modellering

Oversigt over Forenklede Fælles Mål i forbindelse med kapitlerne i MULTI. Modellering MULTI 7 Forenklede Fælles Mål Oversigt over Forenklede Fælles Mål i forbindelse med kapitlerne i MULTI Kapitel 1 Læs og skriv matematik Eleven kan kommunikere mundtligt og skriftligt med og om matematik

Læs mere

Fagplan for faget matematik

Fagplan for faget matematik Fagplan for faget matematik Der undervises i matematik på alle klassetrin (0. - 7. klasse). De centrale kundskabs- og færdighedsområder er: I matematik skal de grundlæggende kundskaber og færdigheder i

Læs mere

Hvad er socialkonstruktivisme?

Hvad er socialkonstruktivisme? Hvad er socialkonstruktivisme? Af: Niels Ebdrup, Journalist 26. oktober 2011 kl. 15:42 Det multikulturelle samfund, køn og naturvidenskaben. Konstruktivisme er en videnskabsteori, som har enorm indflydelse

Læs mere

Årsplan 2012/2013. 9. årgang: Matematik. Lyreskovskolen. FORMÅL OG FAGLIGHEDSPLANER - Fælles Mål II 2009

Årsplan 2012/2013. 9. årgang: Matematik. Lyreskovskolen. FORMÅL OG FAGLIGHEDSPLANER - Fælles Mål II 2009 Årsplan 2012/2013 9. årgang: Matematik FORMÅL OG FAGLIGHEDSPLANER - Fælles Mål II 2009 Formålet med undervisningen i matematik er, at eleverne udvikler matematiske r og opnår viden og kunnen således, at

Læs mere

Einsteins store idé. Pædagogisk vejledning http://filmogtv.mitcfu.dk. Tema: Energi Fag: Fysik/kemi Målgruppe: 9.-10. klasse

Einsteins store idé. Pædagogisk vejledning http://filmogtv.mitcfu.dk. Tema: Energi Fag: Fysik/kemi Målgruppe: 9.-10. klasse Tema: Energi Fag: Fysik/kemi Målgruppe: 9.-10. klasse Viasat History, 2010, 119 minutter. Denne dramatiserede fortælling om udviklingen i naturvidenskabelig erkendelse, der førte frem til Einsteins berømte

Læs mere

Bilag 24 - fysik B Fysik B - stx, juni Identitet og formål. 1.1 Identitet

Bilag 24 - fysik B Fysik B - stx, juni Identitet og formål. 1.1 Identitet Bilag 24 - fysik B Fysik B - stx, juni 2008 1. Identitet og formål 1.1 Identitet Det naturvidenskabelige fag fysik omhandler menneskers forsøg på at udvikle generelle beskrivelser, tolkninger og forklaringer

Læs mere

Appendiks 6: Universet som en matematisk struktur

Appendiks 6: Universet som en matematisk struktur Appendiks 6: Universet som en matematisk struktur En matematisk struktur er et meget abstrakt dyr, der kan defineres på følgende måde: En mængde, S, af elementer {s 1, s 2,,s n }, mellem hvilke der findes

Læs mere

Modellering med Målskytten

Modellering med Målskytten Modellering med Målskytten - Et undervisningsforløb i WeDo med udgangspunkt i matematiske emner og kompetencer Af Ralf Jøker Dohn Henrik Dagsberg Målskytten - et modelleringsprojekt i matematik ved hjælp

Læs mere