Log-lineære modeller. Analyse af symmetriske sammenhænge mellem kategoriske variable. Ordinal information ignoreres.

Størrelse: px
Starte visningen fra side:

Download "Log-lineære modeller. Analyse af symmetriske sammenhænge mellem kategoriske variable. Ordinal information ignoreres."

Transkript

1 Log-lineære modeller Analyse af symmetriske sammenhænge mellem kategoriske variable. Ordinal information ignoreres.

2 Kontingenstabel Contingency: mulighed/tilfælde Kontingenstabel: antal observationer (frekvenser) i klasser givet ved krydstabullering af et antal variable. Tovejs tabel (Powers and Xie side 89): holdning/uddannelse Imod sex før ægteskab Sex før ægteskab ok Highschool or less college or above Er der en sammenhæng mellem udd. og holdning?

3 Log-lineær model Antag vi har n personer og to kategoriske variable U og H. Sandsynligheden for at en tilfældig person har holding h og uddannelse u er P U =u, H =h = uh Den forventede frekvens for U=u og H=h er da F uh =n uh

4 Log-lineær model Generelt antager vi at de log forventede frekvenser er givet ved log F uh = U u H UH h uh Som sædvanligt, så er hver kategorisk variabel udstyret med en reference kategori. Parametre der referere til en eller flere reference kategorier er sat lig nul.

5 Uafhængighed Definitionen på at U og H er uafhængige er at P U =u, H =h =P U =u P H =h uh = u h For den log-lineære model betyder det at log F uh = u U h H

6 Pearson χ 2 -test Optil H 0 hypotese, fx uafhængighed. Lad F uh være de forventede frekvenser under H 0 og f uh være de observerede frekvenser. Da er Pearsons χ 2 -test givet ved 2 = uh f uh F uh 2 F uh Jo større χ 2, jo mindre tror vi på H 0. Som sædvanlig afgør P-værdien/signifikanssandsynligheden, hvornår χ 2 er for stor.

7 Modelformel En modelformel er et praktisk alternativ til en matematisk modelformel. Den matematiske formulering log F rc = R r C RC c rc har en ækvivalent modelformel: R + C + R*C Da vi overholder det hierarkiske princip kan vi nøjes med at skrive R*C

8 Modelopbygning Først vælger vi variable af interesse. Dernæst specificerer vi en startmodel, der overholder det hierarkiske princip. Hvis startmodellen indeholder et interaktionsled, hvor alle variable indgår er startmodellen en såkaldt mættet model. Herefter tester vi modelled væk under hensynstagen til det hierarkiske princip. Vi fjerner det led med størst P-værdi over Resultatet kalder vi slutmodellen.

9 Eksempel Analyse af samvariationen af fire kategoriske variable: B: Boligstandard: 0=dårlig, 1=acceptabel, 2=god H: Helbred: 0=godt, 1=dårligt I: Isoleret: 0=ja, 1=nej A: Angst: 0=nej, 1=ja

10 Krydstabel Helbred * Boligstandard * Isoleret * Angst Crosstabulation Count Boligstandard Angst Nej Ja Isoleret Ja Nej Ja Nej Helbred Total Helbred Total Helbred Total Helbred Total Godt Dårligt Godt Dårligt Godt Dårligt Godt Dårligt Under min. standard Min.standard Modrne Total SPSS: analyze descriptive statistics crosstabs. H i row, B i column, I i layer 1 og A i layer 2.

11 Som startmodel bruger vi den mættede model. Matematisk formulering: log F abhi = a A b B h H i I AB ab AH ah AI ai BH bh BI bi HI hi ABI abi ABH abh AHI ahi BHI bhi ABHI abhi Modelformel: ABHI

12 Fortolkning af slutmodel Uafhængighed: Hvis A indgår i modelformlen, men A ikke ingår i andre led (fx A*B, A*H*I, osv), så er A uafhængig. Forklaret sammenhæng: Hvis B og H ikke indgår i samme led, så er sammenhængen mellem B og H forklaret af andre variable. Dvs. slutmodellen må ikke indeholde B*H, B*H*A, B*H*I og A*B*H*I.

13 Fortolkning fortsat... Homogen sammenhæng: Hvis A*H indgår i modellen, men A*H ikke indgår i mere komplicerede led, så er sammenhængen mellem A og H homogen. Dvs. modellen må ikke indeholde A*H*I, A*B*H, A*B*H*I Heterogen sammenhæng: Hvis A*H indgår i modellen som en del af et mere kompliceret led, så er sammenhængen mellem A og H heterogen. Dvs. modellen skal indeholde A*B*I, A*B*H eller A*B*H*I.

14 Grafisk fortolkning 1) Tegn en cirkel for hver variabel 2) Forbind variable der indgår i samme led En isoleret variabel er uafhængig To nabo-variable med fælles nabo har en heterogen sammenhæng. To nabo-variable uden fælles nabo har en homogen sammenhæng. To forbundne ikke-nabo variable har en sammenhæng forklaret af de variable der ligger på stier der forbinder dem.

15 Eksempel Antag at slutmodellen har modelformelen: A*B + B*H*I Fortolkning: Homogen samh. ml. A og B Heterogen samh. ml. B og H, B og I, og H og I Samh. ml A og I forklaret af B Samh. ml. A og H forklaret af B

16 Modelopbygning i SPSS SPSS: Analyze Loglinear Model selection... Placer relevante (kategoriske) variable under 'Factor' og definer 'Range' for hver (trælst...). Under 'Model...' vælg 'Custom' Angiv kun de meste komplicerede interaktioner i jeres startmodel (max 5-vejs interaktion). Resten følger af det hierarkiske princip. Klik 'OK'

17 Step G enerating Class c Deleted Effect G enerating Class c Deleted Effect G enerating Class c Deleted Effect G enerating Class c Deleted Effect G enerating Class c Deleted Effect G enerating Class c Effects Chi-Square df Sig. Iterations B*H*I*A, B*H*I*A 3,546 2,170 1 B*H*I, B*H*A, B*I*A, H*I*A 3,546 2,170 B*H*I,670 2,715 1 B*H*A 4,071 2,131 1 B*I*A 2,323 2,313 1 H*I*A 1,362 1,243 1 B*H*A, B*I*A, H*I*A 4,216 4,378 B*H*A 2,942 2,230 2 B*I*A 2,240 2,326 1 H*I*A 1,782 1,182 1 B*H*A, H*I*A, B*I 6,455 6,374 B*H*A 6,189 2,045 1 H*I*A 2,239 1,135 1 B*I 24,432 2,000 1 B*H*A, B*I, H*I, I*A 8,695 7,275 B*H*A 2,090 2,352 2 B*I 23,327 2,000 1 H*I 44,269 1,000 1 I*A 15,113 1,000 1 B*I, H*I, I*A, B*H, B*A, H*A 10,785 9,291

18 Deleted Effect Generating Class c Deleted Effect Generating Class c Deleted Effect Generating Class c Deleted Effect Generating Class c B*I*A, H*I*A 4,216 4,378 B*H*A 2,942 2,230 2 B*I*A 2,240 2,326 1 H*I*A 1,782 1,182 1 B*H*A, H*I*A, B*I 6,455 6,374 B*H*A 6,189 2,045 1 H*I*A 2,239 1,135 1 B*I 24,432 2,000 1 B*H*A, B*I, H*I, I*A 8,695 7,275 B*H*A 2,090 2,352 2 B*I 23,327 2,000 1 H*I 44,269 1,000 1 I*A 15,113 1,000 1 B*I, H*I, I*A, B*H, B*A, H*A 10,785 9,291 B*I 25,843 2,000 1 H*I 45,283 1,000 2 I*A 15,675 1,000 2 B*H 27,422 2,000 2 B*A 27,132 2,000 2 H*A 31,167 1,000 2 B*I, H*I, I*A, B*H, B*A, H*A 10,785 9,291 a. For 'Deleted Effect', this is the change in the Chi-Square after the effect is deleted from the model. b. At each step, the effect with the largest significance level for the Likelihood Ratio Change is deleted

19 Slutmodel: B*I + H*I + I*A + B*H + B*A + H*A Alle to-vejs interaktioner er med, men ingen trevejs interaktioner. Dvs. mellem alle par af variable er der en homogen sammenhæng. Slutmodellen matematisk formuleret: log F abhi = a A b B h H i I AB ab AH ah AI ai BH bh BI HI bi hi

20 Parameter estimater + model kontrol SPSS: Analyze Loglinear General Under 'Model' vælg 'Custom' og specificer slutmodellen i fandt med 'Model selection' Under 'Options' vælge 'Estimates' Alle parametre der refererer til en eller flere reference kategorier er sat til nul. Som standard er sidste kategori reference. Dvs da B=2 er reference. ABH 020 =0 Under 'Options' vælge de to plot for 'Adjusted residuals'

21 Parameter Estimates c,d Parameter Constant [A =,00] [A = 1,00] [B =,00] [B = 1,00] [B = 2,00] [H =,00] [H = 1,00] [I =,00] [I = 1,00] [B =,00] * [A =,00] [B =,00] * [A = 1,00] [B = 1,00] * [A =,00] [B = 1,00] * [A = 1,00] [B = 2,00] * [A =,00] [B = 2,00] * [A = 1,00] [H =,00] * [A =,00] [H =,00] * [A = 1,00] [H = 1,00] * [A =,00] [H = 1,00] * [A = 1,00] [I =,00] * [A =,00] [I =,00] * [A = 1,00] [I = 1,00] * [A =,00] [I = 1,00] * [A = 1,00] [B =,00] * [H =,00] [B =,00] * [H = 1,00] [B = 1,00] * [H =,00] [B = 1,00] * [H = 1,00] [B = 2,00] * [H =,00] [B = 2,00] * [H = 1,00] [B =,00] * [I =,00] [B =,00] * [I = 1,00] [B = 1,00] * [I =,00] [B = 1,00] * [I = 1,00] [B = 2,00] * [I =,00] [B = 2,00] * [I = 1,00] 95% Confidence Interval Estimate Std. Error Z Sig. Lower Bound Upper Bound 5,802 a 1,403,057 24,541,000 1,291 1,515-1,853,124-14,992,000-2,096-1,611-1,338,100-13,343,000-1,535-1,142 -,326,074-4,417,000 -,471 -,181-2,819,149-18,941,000-3,111-2,527 -,387,133-2,913,004 -,647 -,126 -,513,108-4,726,000 -,725 -,300,473,079 6,001,000,318,627 -,773,161-4,792,000-1,090 -,457 -,411,114-3,619,000 -,633 -,188 -,462,095-4,858,000 -,648 -,276,811,226 3,586,000,368 1,255,960,183 5,247,000,602 1,319 Hvad er den forventede frekvens for kombinationen A=0, B=1, H=0, I=1?

22 Forventede vs observede frekvenser Ideelt: Expected Counts Observed Counts

23 Residualer: Q-Q plot 'Adjusted Residuals' bør være normalfordelte. I såfald vil prikkerne ligge usystematisk omkring en ret linie.

Logistisk Regression - fortsat

Logistisk Regression - fortsat Logistisk Regression - fortsat Likelihood Ratio test Generel hypotese test Modelanalyse Indtil nu har vi set på to slags modeller: 1) Generelle Lineære Modeller Kvantitav afhængig variabel. Kvantitative

Læs mere

Chi-i-anden Test. Repetition Goodness of Fit Uafhængighed i Kontingenstabeller

Chi-i-anden Test. Repetition Goodness of Fit Uafhængighed i Kontingenstabeller Chi-i-anden Test Repetition Goodness of Fit Uafhængighed i Kontingenstabeller Chi-i-anden Test Chi-i-anden test omhandler data, der har form af antal eller frekvenser. Antag, at n observationer kan inddeles

Læs mere

Opsamling Modeltyper: Tabelanalyse Logistisk regression Generaliserede lineære modeller Log-lineære modeller

Opsamling Modeltyper: Tabelanalyse Logistisk regression Generaliserede lineære modeller Log-lineære modeller Opsamling Modeltyper: Tabelanalyse Logistisk regression Binær respons og kategorisk eller kontinuerte forklarende variable. Generaliserede lineære modeller Normalfordelt respons og kategoriske forklarende

Læs mere

Anvendt Statistik Lektion 6. Kontingenstabeller χ 2 -test [ki-i-anden-test]

Anvendt Statistik Lektion 6. Kontingenstabeller χ 2 -test [ki-i-anden-test] Anvendt Statistik Lektion 6 Kontingenstabeller χ 2 -test [ki-i-anden-test] 1 Kontingenstabel Formål: Illustrere/finde sammenhænge mellem to kategoriske variable Opbygning: En celle for hver kombination

Læs mere

Anvendt Statistik Lektion 6. Kontingenstabeller χ 2- test [ki-i-anden-test]

Anvendt Statistik Lektion 6. Kontingenstabeller χ 2- test [ki-i-anden-test] Anvendt Statistik Lektion 6 Kontingenstabeller χ 2- test [ki-i-anden-test] Kontingenstabel Formål: Illustrere/finde sammenhænge mellem to kategoriske variable Opbygning: En celle for hver kombination af

Læs mere

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA) Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:

Læs mere

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA) Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:

Læs mere

Ikke-parametriske tests

Ikke-parametriske tests Ikke-parametriske tests 2 Dagens menu t testen Hvordan var det nu lige det var? Wilcoxson Mann Whitney U Kruskall Wallis Friedman Kendalls og Spearmans correlation 3 t-testen Patient Drug Placebo difference

Læs mere

Analysestrategi. Lektion 7 slides kompileret 27. oktober 200315:24 p.1/17

Analysestrategi. Lektion 7 slides kompileret 27. oktober 200315:24 p.1/17 nalysestrategi Vælg statistisk model. Estimere parametre i model. fx. lineær regression Udføre modelkontrol beskriver modellen data tilstrækkelig godt og er modellens antagelser opfyldte fx. vha. residualanalyse

Læs mere

Statistik II Lektion 3. Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable

Statistik II Lektion 3. Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable Statistik II Lektion 3 Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable Setup: To binære variable X og Y. Statistisk model: Konsekvens: Logistisk regression: 2 binære var. e e X Y P

Læs mere

Program dag 2 (11. april 2011)

Program dag 2 (11. april 2011) Program dag 2 (11. april 2011) Dag 2: 1) Hvordan kan man bearbejde data; 2) Undersøgelse af datamaterialet; 3) Forskellige typer statistik; 4) Indledende dataundersøgelser; 5) Hvad kan man sige om sammenhænge;

Læs mere

Statikstik II 2. Lektion. Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression

Statikstik II 2. Lektion. Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression Statikstik II 2. Lektion Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression Sandsynlighedsregningsrepetition Antag at Svar kan være Ja og Nej. Sandsynligheden for at Svar Ja skrives

Læs mere

Logistisk regression

Logistisk regression Logistisk regression Test af antagelsen om lineære effekter Modelkonstruktion og modelsøgning Hvilke variable og hvilke interaktioner skal inkluderes i regressionsmodellerne? 1 Logistiske regressionsmodeller

Læs mere

Statistikøvelse Kandidatstudiet i Folkesundhedsvidenskab 28. September 2004

Statistikøvelse Kandidatstudiet i Folkesundhedsvidenskab 28. September 2004 Statistikøvelse Kandidatstudiet i Folkesundhedsvidenskab 28. September 2004 Formål med Øvelsen: Formålet med øvelsen er at analysere om risikoen for død er forbundet med to forskellige vacciner BCG (mod

Læs mere

Økonometri: Lektion 5. Multipel Lineær Regression: Interaktion, log-transformerede data, kategoriske forklarende variable, modelkontrol

Økonometri: Lektion 5. Multipel Lineær Regression: Interaktion, log-transformerede data, kategoriske forklarende variable, modelkontrol Økonometri: Lektion 5 Multipel Lineær Regression: Interaktion, log-transformerede data, kategoriske forklarende variable, modelkontrol 1 / 35 Veksekvirkning: Motivation Vi har set på modeller som Price

Læs mere

Eksamen ved. Københavns Universitet i. Kvantitative forskningsmetoder. Det Samfundsvidenskabelige Fakultet

Eksamen ved. Københavns Universitet i. Kvantitative forskningsmetoder. Det Samfundsvidenskabelige Fakultet Eksamen ved Københavns Universitet i Kvantitative forskningsmetoder Det Samfundsvidenskabelige Fakultet 14. december 2011 Eksamensnummer: 5 14. december 2011 Side 1 af 6 1) Af boxplottet kan man aflæse,

Læs mere

To-sidet variansanalyse

To-sidet variansanalyse Program 1. To-sidet variansanalyse 2. Hierarkisk princip 3. Tre (og flere) sidet variansanalyse 4. Variansanalyse med blocking 5. Flersidet variansanalyse med tilfældige faktorer 6. En oversigtsslide til

Læs mere

Anvendt Statistik Lektion 8. Multipel Lineær Regression

Anvendt Statistik Lektion 8. Multipel Lineær Regression Anvendt Statistik Lektion 8 Multipel Lineær Regression 1 Simpel Lineær Regression (SLR) y Sammenhængen mellem den afhængige variabel (y) og den forklarende variabel (x) beskrives vha. en SLR: ligger ikke

Læs mere

Morten Frydenberg 26. april 2004

Morten Frydenberg 26. april 2004 Introduktion til Logistisk Regression Morten Frydenberg, Inst. f. Biostatistik RESUME: 2 2. gang: 2002 Institut for Biostatistik, Århus Universitet MPH. studieår Specialmodul 4 Cand. San. uddannelsen.

Læs mere

Statistik II 1. Lektion. Sandsynlighedsregning Analyse af kontingenstabeller

Statistik II 1. Lektion. Sandsynlighedsregning Analyse af kontingenstabeller Statistik II 1. Lektion Sandsynlighedsregning Analyse af kontingenstabeller Kursusbeskrivelse Omfang 5 kursusgange (forelæsning + opgaveregning) 5 kursusgange (mini-projekt) Emner Analyse af kontingenstabeller

Læs mere

Lineær regression. Simpel regression. Model. ofte bruges følgende notation:

Lineær regression. Simpel regression. Model. ofte bruges følgende notation: Lineær regression Simpel regression Model Y i X i i ofte bruges følgende notation: Y i 0 1 X 1i i n i 1 i 0 Findes der en linie, der passer bedst? Metode - Generel! least squares (mindste kvadrater) til

Læs mere

Konfidensintervaller og Hypotesetest

Konfidensintervaller og Hypotesetest Konfidensintervaller og Hypotesetest Konfidensinterval for andele χ -fordelingen og konfidensinterval for variansen Hypoteseteori Hypotesetest af middelværdi, varians og andele Repetition fra sidst: Konfidensintervaller

Læs mere

Statistik II 4. Lektion. Logistisk regression

Statistik II 4. Lektion. Logistisk regression Statistik II 4. Lektion Logistisk regression Logistisk regression: Motivation Generelt setup: Dikotom(binær) afhængig variabel Kontinuerte og kategoriske forklarende variable (som i lineær reg.) Eksempel:

Læs mere

Program. Logistisk regression. Eksempel: pesticider og møl. Odds og odds-ratios (igen)

Program. Logistisk regression. Eksempel: pesticider og møl. Odds og odds-ratios (igen) Faculty of Life Sciences Program Logistisk regression Claus Ekstrøm E-mail: ekstrom@life.ku.dk Odds og odds-ratios igen Logistisk regression Estimation og inferens Modelkontrol Slide 2 Statistisk Dataanalyse

Læs mere

Vi vil analysere effekten af rygning og alkohol på chancen for at blive gravid ved at benytte forskellige Cox regressions modeller.

Vi vil analysere effekten af rygning og alkohol på chancen for at blive gravid ved at benytte forskellige Cox regressions modeller. Løsning til øvelse i TTP dag 3 Denne øvelse omhandler tid til graviditet. Et studie vedrørende tid til graviditet (Time To Pregnancy = TTP) inkluderede 423 par i alderen 20-35 år. Parrene blev fulgt i

Læs mere

Statistik Lektion 16 Multipel Lineær Regression

Statistik Lektion 16 Multipel Lineær Regression Statistik Lektion 6 Multipel Lineær Regression Trin i opbygningen af en statistisk model Repetition af MLR fra sidst Modelkontrol Prædiktion Kategoriske forklarende variable og MLR Opbygning af statistisk

Læs mere

Kausalitet. Introduktion til samfundsvidenskabelig metode. Samfundsvidenskabelig metode. Hvad er metode? Hvad er kausalitet.

Kausalitet. Introduktion til samfundsvidenskabelig metode. Samfundsvidenskabelig metode. Hvad er metode? Hvad er kausalitet. Introduktion til samfundsvidenskabelig metode Samfundsvidenskabelig metode IT-Universitetet September 2007 Mikkel Leihardt Hvad er metode? Metode er regler og retningslinjer for, hvordan vi undersøger

Læs mere

Eksamen i statistik 2010 Kandidatuddannelsen i folkesundhedsvidenskab

Eksamen i statistik 2010 Kandidatuddannelsen i folkesundhedsvidenskab D E T S U N D H E D S V I D E N S K A B E L I G E F A K U L T E T K Ø B E N H A V N S U N I V E R S I T E T Eksamen i statistik 2010 Kandidatuddannelsen i folkesundhedsvidenskab Eksamensnummer: 16, 23

Læs mere

Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression

Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression Logistisk Regression Repetition Fortolkning af odds Test i logistisk regression Logistisk Regression: Definitioner For en binær (0/) variabel Y antager vi P(Y)p P(Y0)-p Eksempel: Bil til arbejde vs alder

Læs mere

Sammenhængsanalyser. Et eksempel: Sammenhæng mellem rygevaner som 45-årig og selvvurderet helbred som 51 blandt mænd fra Københavns amt.

Sammenhængsanalyser. Et eksempel: Sammenhæng mellem rygevaner som 45-årig og selvvurderet helbred som 51 blandt mænd fra Københavns amt. Sammenhængsanalyser Et eksempel: Sammenhæng mellem rygevaner som 45-årig og selvvurderet helbred som 51 blandt mænd fra Københavns amt. rygevaner som 45 årig * helbred som 51 årig Crosstabulation rygevaner

Læs mere

Anvendt Statistik Lektion 5. Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele

Anvendt Statistik Lektion 5. Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele Anvendt Statistik Lektion 5 Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele Motiverende eksempel Antal minutter brugt på rengøring/madlavning: Rengøring/Madlavning

Læs mere

Ikke-parametriske metoder. Repetition Wilcoxon Signed-Rank Test Kruskal-Wallis Test Friedman Test Chi-i-anden Test

Ikke-parametriske metoder. Repetition Wilcoxon Signed-Rank Test Kruskal-Wallis Test Friedman Test Chi-i-anden Test Ikkeparametriske metoder Repetition Wilcoxon SignedRank Test KruskalWallis Test Friedman Test Chiianden Test Run Test Er sekvensen opstået tilfældigt? PPPKKKPPPKKKPPKKKPPP Et run er en sekvens af ens elementer,

Læs mere

Statistik og skalavalidering. Opgave 1

Statistik og skalavalidering. Opgave 1 Statistik og skalavalidering Opgave 1 Opgavens formål: Denne opgave har, ligesom det vil være tilfældet for de fleste andre øvelsesopgaver på dette kursus, flere forskellige formål. For det første et praktisk/teknisk

Læs mere

Dagens Emner. Likelihood teori. Lineær regression (intro) p. 1/22

Dagens Emner. Likelihood teori. Lineær regression (intro) p. 1/22 Dagens Emner Likelihood teori Lineær regression (intro) p. 1/22 Likelihood-metoden M : X i N(µ,σ 2 ) hvor µ og σ 2 er ukendte Vi har, at L(µ,σ 2 ) = ( 1 2πσ 2)n/2 e 1 2σ 2 P n (x i µ) 2 er tætheden som

Læs mere

Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression

Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression Logistisk Regression Repetition Fortolkning af odds Test i logistisk regression Logisitks Regression: Repetition Y {0,} binær afhængig variabel X skala forklarende variabel π P( Y X x) Odds(Y X x) π /(-π

Læs mere

MPH specialmodul i epidemiologi og biostatistik. SAS. Introduktion til SAS. Eksempel: Blodtryk og fedme

MPH specialmodul i epidemiologi og biostatistik. SAS. Introduktion til SAS. Eksempel: Blodtryk og fedme MPH specialmodul i epidemiologi og biostatistik. SAS Introduktion til SAS. Display manager (programmering) Vinduer: program editor (med syntaks-check) log output reproducerbart (program teksten kan gemmes

Læs mere

Program. 1. Flersidet variansanalyse 1/11

Program. 1. Flersidet variansanalyse 1/11 Program 1. Flersidet variansanalyse 1/11 To-sidet variansanalyse Eksempel: (opgave 14.2 side 587) vitamin indhold i frossen juice målt for ialt 9 kombinationer af mærke (Rich food, Sealed-sweet, Minute

Læs mere

Dagens Emner. Likelihood-metoden. MLE - fortsat MLE. Likelihood teori. Lineær regression (intro) Vi har, at

Dagens Emner. Likelihood-metoden. MLE - fortsat MLE. Likelihood teori. Lineær regression (intro) Vi har, at Likelihood teori Lineær regression (intro) Dagens Emner Likelihood-metoden M : X i N(µ,σ 2 ) hvor µ og σ 2 er ukendte Vi har, at L(µ,σ 2 1 ) = ( 2πσ 2)n/2 e 1 2 P n (xi µ)2 er tætheden som funktion af

Læs mere

Tænk på a og b som to n 1 matricer. a 1 a 2 a n. For hvert i = 1,..., n har vi y i = x i β + u i.

Tænk på a og b som to n 1 matricer. a 1 a 2 a n. For hvert i = 1,..., n har vi y i = x i β + u i. Repetition af vektor-regning Økonometri: Lektion 3 Matrix-formulering Fordelingsantagelse Hypotesetest Antag vi har to n-dimensionelle (søjle)vektorer a 1 b 1 a 2 a =. og b = b 2. a n b n Tænk på a og

Læs mere

Dagens Temaer. Test for lineær regression. Test for lineær regression - via proc glm. k normalfordelte obs. rækker i proc glm. p. 1/??

Dagens Temaer. Test for lineær regression. Test for lineær regression - via proc glm. k normalfordelte obs. rækker i proc glm. p. 1/?? Dagens Temaer k normalfordelte obs. rækker i proc glm. Test for lineær regression Test for lineær regression - via proc glm p. 1/?? Proc glm Vi indlæser data i datasættet stress, der har to variable: areal,

Læs mere

Statistik Lektion 4. Variansanalyse Modelkontrol

Statistik Lektion 4. Variansanalyse Modelkontrol Statistik Lektion 4 Variansanalyse Modelkontrol Eksempel Spørgsmål: Er der sammenhæng mellem udetemperaturen og forbruget af gas? Y : Forbrug af gas (gas) X : Udetemperatur (temp) Scatterplot SPSS: Estimerede

Læs mere

Opgaver til ZAR II. Afdeling for Anvendt Matematik og Statistik Michael Sørensen Oktober Opgave 1

Opgaver til ZAR II. Afdeling for Anvendt Matematik og Statistik Michael Sørensen Oktober Opgave 1 Københavns Universitet Afdeling for Anvendt Matematik og Statistik Statistik for biokemikere Inge Henningsen Michael Sørensen Oktober 2003 Opgaver til ZAR II Opgave 1 Et datasæt består af 20 observationer.

Læs mere

- Medlemsundersøgelse, Danske Fysioterapeuter, Juni 2010. Danske Fysioterapeuter. Kvalitet i træning

- Medlemsundersøgelse, Danske Fysioterapeuter, Juni 2010. Danske Fysioterapeuter. Kvalitet i træning Danske Fysioterapeuter Kvalitet i træning Undersøgelse blandt Danske Fysioterapeuters paneldeltagere 2010 Udarbejdet af Scharling Research for Danske Fysioterapeuter juni 2010 Scharling.dk Side 1 af 84

Læs mere

Reeksamen i Statistik for Biokemikere 6. april 2009

Reeksamen i Statistik for Biokemikere 6. april 2009 Københavns Universitet Det Naturvidenskabelige Fakultet Reeksamen i Statistik for Biokemikere 6. april 2009 Alle hjælpemidler er tilladt, og besvarelsen må gerne skrives med blyant. Opgavesættet er på

Læs mere

Statistik Lektion 1. Introduktion Grundlæggende statistiske begreber Deskriptiv statistik

Statistik Lektion 1. Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Statistik Lektion 1 Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Introduktion Kursusholder: Kasper K. Berthelsen Opbygning: Kurset består af 5 blokke En blok består af: To normale

Læs mere

Normalfordelingen. Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: 1 2πσ

Normalfordelingen. Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: 1 2πσ Normalfordelingen Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: f(x) = ( ) 1 exp (x µ)2 2πσ 2 σ 2 Frekvensen af observationer i intervallet

Læs mere

Anvendt Statistik Lektion 7. Simpel Lineær Regression

Anvendt Statistik Lektion 7. Simpel Lineær Regression Anvendt Statistik Lektion 7 Simpel Lineær Regression 1 Er der en sammenhæng? Plot af mordraten () mod fattigdomsraten (): Scatterplot Afhænger mordraten af fattigdomsraten? 2 Scatterplot Et scatterplot

Læs mere

Betinget fordeling Uafhængighed. Beregning af forventet tabel Chi-kvadrat teststatistik Chi-kvadrat test. Chi-kvadratfordelingen Agresti - Summary

Betinget fordeling Uafhængighed. Beregning af forventet tabel Chi-kvadrat teststatistik Chi-kvadrat test. Chi-kvadratfordelingen Agresti - Summary 1 Kontingenstabeller Betinget fordeling Uafhængighed 2 Chi-kvadrat test for uafhængighed Beregning af forventet tabel Chi-kvadrat teststatistik Chi-kvadrat test. Chi-kvadratfordelingen Agresti - Summary

Læs mere

Logistisk regression. Basal Statistik for medicinske PhD-studerende November 2008

Logistisk regression. Basal Statistik for medicinske PhD-studerende November 2008 Logistisk regression Basal Statistik for medicinske PhD-studerende November 2008 Bendix Carstensen Steno Diabetes Center, Gentofte & Biostatististisk afdeling, Københavns Universitet bxc@steno.dk www.biostat.ku.dk/~bxc

Læs mere

Epidemiologi og Biostatistik

Epidemiologi og Biostatistik Kapitel 1, Kliniske målinger Epidemiologi og Biostatistik Introduktion til skilder (varianskomponenter) måleusikkerhed sammenligning af målemetoder Mogens Erlandsen, Institut for Biostatistik Uge, torsdag

Læs mere

Løsning til eksaminen d. 14. december 2009

Løsning til eksaminen d. 14. december 2009 DTU Informatik 02402 Introduktion til Statistik 200-2-0 LFF/lff Løsning til eksaminen d. 4. december 2009 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition,

Læs mere

Maple-oversigt til matematik B-niveau: Rungsted Gymnasium Definer en funktion og funktionsværdier. Tegn grafen for en funktion.

Maple-oversigt til matematik B-niveau: Rungsted Gymnasium Definer en funktion og funktionsværdier. Tegn grafen for en funktion. Maple-oversigt til matematik B-niveau: Rungsted Gymnasium 2011 Definer en funktion og funktionsværdier (1.1) 32 (1.2) (1.3) Tegn grafen for en funktion (2.1) 250 200 150 100 50 0 5 10 8 6 4 2 0 1 2 0 y

Læs mere

Stikprøver og stikprøve fordelinger. Stikprøver Estimatorer og estimater Stikprøve fordelinger Egenskaber ved estimatorer Frihedsgrader

Stikprøver og stikprøve fordelinger. Stikprøver Estimatorer og estimater Stikprøve fordelinger Egenskaber ved estimatorer Frihedsgrader Stikprøver og stikprøve fordelinger Stikprøver Estimatorer og estimater Stikprøve fordelinger Egenskaber ved estimatorer Frihedsgrader Statistik Statistisk Inferens: Prediktere og forekaste værdier af

Læs mere

Eksamen i statistik 2009-studieordning

Eksamen i statistik 2009-studieordning Kandidatuddannelsen i Folkesundhedsvidenskab Det sundhedsvidenskabelige fakultet Københavns Universitet 21.12.2010 Eksamen i statistik 2009-studieordning Underviser Svend Kreiner Udarbejdet af eksamens

Læs mere

Normalfordelingen og Stikprøvefordelinger

Normalfordelingen og Stikprøvefordelinger Normalfordelingen og Stikprøvefordelinger Normalfordelingen Standard Normal Fordelingen Sandsynligheder for Normalfordelingen Transformation af Normalfordelte Stok.Var. Stikprøver og Stikprøvefordelinger

Læs mere

2 Epidemiologi og biostatistik. Uge 5, mandag 26. september 2005 Michael Væth, Institut for Biostatistik

2 Epidemiologi og biostatistik. Uge 5, mandag 26. september 2005 Michael Væth, Institut for Biostatistik ... september 1 Epidemiologi og biostatistik. Uge, mandag. september Michael Væth, Institut for Biostatistik. Ikke parametrisk statistiske test : Analyse af overlevelsesdata (ventetidsdata) Censurering

Læs mere

Øvelser i epidemiologi og biostatistik, 12. april 2010 Ebeltoft-projektet: Analyse af alkoholrelaterede data mm. Eksempel på besvarelse

Øvelser i epidemiologi og biostatistik, 12. april 2010 Ebeltoft-projektet: Analyse af alkoholrelaterede data mm. Eksempel på besvarelse Øvelser i epidemiologi og biostatistik, 12. april 21 Ebeltoft-projektet: Analyse af alkoholrelaterede data mm. Eksempel på besvarelse 1. Belys ud fra data ved 5 års follow-up den fordom, at der er flere

Læs mere

Normalfordelingen. Statistik og Sandsynlighedsregning 2

Normalfordelingen. Statistik og Sandsynlighedsregning 2 Normalfordelingen Statistik og Sandsynlighedsregning 2 Repetition og eksamen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange variable, blandt andet tilfældige fejl på

Læs mere

Hypoteser om mere end to stikprøver ANOVA. k stikprøver: (ikke ordinale eller højere) gælder også for k 2! : i j

Hypoteser om mere end to stikprøver ANOVA. k stikprøver: (ikke ordinale eller højere) gælder også for k 2! : i j Hypoteser om mere end to stikprøver ANOVA k stikprøver: (ikke ordinale eller højere) H 0 : 1 2... k gælder også for k 2! H 0ij : i j H 0ij : i j simpelt forslag: k k 1 2 t-tests: i j DUER IKKE! Bonferroni!!

Læs mere

Tema. Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse.

Tema. Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. Tema Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. (Fx. x. µ) Hypotese og test. Teststørrelse. (Fx. H 0 : µ = µ 0 ) konfidensintervaller

Læs mere

To-sidet varians analyse

To-sidet varians analyse To-sidet varians analyse Repetition En-sidet ANOVA Parvise sammenligninger, Tukey s test Model begrebet To-sidet ANOVA Tre-sidet ANOVA Blok design SPSS ANOVA - definition ANOVA (ANalysis Of VAriance),

Læs mere

Økonometri Lektion 1 Simpel Lineær Regression 1/31

Økonometri Lektion 1 Simpel Lineær Regression 1/31 Økonometri Lektion 1 Simpel Lineær Regression 1/31 Simpel Lineær Regression Mål: Forklare variablen y vha. variablen x. Fx forklare Salg (y) vha. Reklamebudget (x). Statistisk model: Vi antager at sammenhængen

Læs mere

En Introduktion til SAS. Kapitel 5.

En Introduktion til SAS. Kapitel 5. En Introduktion til SAS. Kapitel 5. Inge Henningsen Afdeling for Statistik og Operationsanalyse Københavns Universitet Marts 2005 6. udgave Kapitel 5 T-test og PROC UNIVARIATE 5.1 Indledning Dette kapitel

Læs mere

Introduktion til SPSS

Introduktion til SPSS Introduktion til SPSS Øvelserne på dette statistikkursus skal gennemføres ved hjælp af det såkaldte SPSS program. Det er erfaringsmæssigt sådan, at man i forbindelse af øvelserne på statistikkurser bruger

Læs mere

Regneregler for middelværdier M(X+Y) = M X +M Y. Spredning varians og standardafvigelse. 1 n VAR(X) Y = a + bx VAR(Y) = VAR(a+bX) = b²var(x)

Regneregler for middelværdier M(X+Y) = M X +M Y. Spredning varians og standardafvigelse. 1 n VAR(X) Y = a + bx VAR(Y) = VAR(a+bX) = b²var(x) Formelsamlingen 1 Regneregler for middelværdier M(a + bx) a + bm X M(X+Y) M X +M Y Spredning varians og standardafvigelse VAR(X) 1 n n i1 ( X i - M x ) 2 Y a + bx VAR(Y) VAR(a+bX) b²var(x) 2 Kovariansen

Læs mere

9. Chi-i-anden test, case-control data, logistisk regression.

9. Chi-i-anden test, case-control data, logistisk regression. Biostatistik - Cand.Scient.San. 2. semester Karl Bang Christensen Biostatististisk afdeling, KU kach@biostat.ku.dk, 35327491 9. Chi-i-anden test, case-control data, logistisk regression. http://biostat.ku.dk/~kach/css2014/

Læs mere

Eksamen i Statistik og skalavalidering

Eksamen i Statistik og skalavalidering Eksamen i Statistik og skalavalidering 2009-studieordning Til aflevering d. 22. december 2010 Efterårssemestret 2010, Kandidatuddannelsen i Folkesundhedsvidenskab Opgaven er udarbejdet af: Eksamensnummer

Læs mere

Faculty of Health Sciences. Logistisk regression: Kvantitative forklarende variable

Faculty of Health Sciences. Logistisk regression: Kvantitative forklarende variable Faculty of Health Sciences Logistisk regression: Kvantitative forklarende variable Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet sr@biostat.ku.dk Sammenhæng

Læs mere

Simpel og multipel logistisk regression

Simpel og multipel logistisk regression Faculty of Health Sciences Logistisk regression Simpel og multipel logistisk regression 16. Maj 2012 Analyse af en binær responsvariabel. syg/rask, død/levende, ja/nej... Ud fra en eller flere forklarende

Læs mere

Statistik og Sandsynlighedsregning 2. Repetition og eksamen. Overheads til forelæsninger, mandag 7. uge

Statistik og Sandsynlighedsregning 2. Repetition og eksamen. Overheads til forelæsninger, mandag 7. uge Statistik og Sandsynlighedsregning 2 Repetition og eksamen Overheads til forelæsninger, mandag 7. uge 1 Normalfordelingen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange

Læs mere

Multipel regression. M variable En afhængig (Y) M-1 m uafhængige / forklarende / prædikterende (X 1 til X m ) Model

Multipel regression. M variable En afhængig (Y) M-1 m uafhængige / forklarende / prædikterende (X 1 til X m ) Model Multipel regression M variable En afhængig (Y) M-1 m uafhængige / forklarende / prædikterende (X 1 til X m ) Model Y j 1 X 1j 2 X 2j... m X mj j eller m Y j 0 i 1 i X ij j BEMÆRK! j svarer til individ

Læs mere

K.U. 29-03-2006 Metode Skriveøvelse 1 Af Marie Hammer og Steffen Tiedemann Christensen. Indholdsfortegnelse... 1. Opgave 1... 2. Opgave 2...

K.U. 29-03-2006 Metode Skriveøvelse 1 Af Marie Hammer og Steffen Tiedemann Christensen. Indholdsfortegnelse... 1. Opgave 1... 2. Opgave 2... Indholdsfortegnelse Indholdsfortegnelse... 1 Opgave 1... 2 Opgave 2... 2 Forforståelse:...2 Deskriptiv statistik:...3 Overvejelser:...12 Opgave 3... 13 Opgave 4... 15 Opgave 5... 16 Opgave 6... 17 Konklusion:...20

Læs mere

Program. t-test Hypoteser, teststørrelser og p-værdier. Hormonkonc.: statistisk model og konfidensinterval. Hormonkoncentration: data

Program. t-test Hypoteser, teststørrelser og p-værdier. Hormonkonc.: statistisk model og konfidensinterval. Hormonkoncentration: data Faculty of Life Sciences Program t-test Hypoteser, teststørrelser og p-værdier Claus Ekstrøm E-mail: ekstrom@life.ku.dk Resumé og hængepartier fra sidst. Eksempel: effekt af foder på hormonkoncentration

Læs mere

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Stratificerede analyser

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Stratificerede analyser Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab Stratificerede analyser Dødsstraf-eksempel Betyder morderens farve noget for risikoen for dødsstraf? 1 Dødsstraf-eksempel: data Variable: Dødsstraf

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Program for i dag: Kvantitative metoder Beskrivende statistik og analyse af kvalitatitive data 1. februar 007 Test i multinomialfordelingen: Q-testet (BL.13.1-) Opsamling fra sidste gang To eksempler To-dimensionale

Læs mere

Epidemiologi og Biostatistik Opgaver i Biostatistik Uge 10: 13. april

Epidemiologi og Biostatistik Opgaver i Biostatistik Uge 10: 13. april Århus 8. april 2011 Morten Frydenberg Epidemiologi og Biostatistik Opgaver i Biostatistik Uge 10: 13. april Opgave 1 ( gruppe 1: sp 1-4, gruppe 5: sp 5-9 og gruppe 6: 10-14) I denne opgaveser vi på et

Læs mere

Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Afdeling for Biostatistik. Eksempel: Systolisk blodtryk

Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Afdeling for Biostatistik. Eksempel: Systolisk blodtryk Eksempel: Systolisk blodtryk Udgangspunkt: Vi ønsker at prædiktere det systoliske blodtryk hos en gruppe af personer. Epidemiologi og biostatistik. Uge, torsdag. Erik Parner, Afdeling for Biostatistik.

Læs mere

Reminder: Hypotesetest for én parameter. Økonometri: Lektion 4. F -test Justeret R 2 Aymptotiske resultater. En god model

Reminder: Hypotesetest for én parameter. Økonometri: Lektion 4. F -test Justeret R 2 Aymptotiske resultater. En god model Reminder: Hypotesetest for én parameter Antag vi har model Økonometri: Lektion 4 F -test Justeret R 2 Aymptotiske resultater y = β 0 + β 1 x 2 + β 2 x 2 + + β k x k + u. Vi ønsker at teste hypotesen H

Læs mere

MLR antagelserne. Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som

MLR antagelserne. Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som MLR antagelserne Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som y = β 0 + β 1 x 1 + β 2 x 2 + + β k x k + u, hvor β 0, β 1, β 2,...,β k er ukendte parametere,

Læs mere

Demo af PROC GLIMMIX: Analyse af gentagne observationer

Demo af PROC GLIMMIX: Analyse af gentagne observationer Demo af PROC GLIMMIX: Analyse af gentagne observationer Kristina Birch, seniorkonsulent, PS Banking Agenda Uafhængige vs. afhængige observationer Analyse af uafhængige vs. afhængige observationer Lille

Læs mere

Følgende tabel (fra Fisher) giver forøgelsen af sovetiden i timer fra et eksperiment med 10 patienter vedrørende 2 sovemidler A og B.

Følgende tabel (fra Fisher) giver forøgelsen af sovetiden i timer fra et eksperiment med 10 patienter vedrørende 2 sovemidler A og B. Modul 7: Exercises 7.1 Sovemidler......................... 1 7.2 Egetræer.......................... 2 7.3 Stofs trækstyrke..................... 3 7.4 Laboranters titreringsusikkerhed............ 5 7.5

Læs mere

Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved

Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved Matematisk Modellering 1 (reeksamen) Side 1 Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved { 1 hvis x {1, 2, 3}, p X (x) = 3 0 ellers,

Læs mere

Oversigt. 1 Gennemgående eksempel: Højde og vægt. 2 Korrelation. 3 Regressionsanalyse (kap 11) 4 Mindste kvadraters metode

Oversigt. 1 Gennemgående eksempel: Højde og vægt. 2 Korrelation. 3 Regressionsanalyse (kap 11) 4 Mindste kvadraters metode Kursus 02402 Introduktion til Statistik Forelæsning 11: Kapitel 11: Regressionsanalyse Oversigt 1 Gennemgående eksempel: Højde og vægt 2 Korrelation 3 Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse

Læs mere

3. SPSS Output. Descriptives. [DataSet1] C:\Users\Thomas\Desktop\Eservice_i_produktgruppen_Bekldning.sav

3. SPSS Output. Descriptives. [DataSet1] C:\Users\Thomas\Desktop\Eservice_i_produktgruppen_Bekldning.sav 3. SPSS Output DESCRIPTIVES VARIABLES=DEM DEM5 DEM10 DEM11 /STATISTICS=MEAN STDDEV MIN MAX. Descriptives [DataSet1] C:\Users\Thomas\Desktop\Eservice_i_produktgruppen_Bekldning.sav Descriptive Statistics

Læs mere

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Uafhængighedstestet

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Uafhængighedstestet Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab Uafhængighedstestet Eksempel: Bissau data Data kommer fra Guinea-Bissau i Vestafrika: 5273 børn blev undersøgt da de var yngre end 7 mdr og blev

Læs mere

Hvordan finder man en god skala vha. Raschmetoden? Svend Kreiner & Tine Nielsen

Hvordan finder man en god skala vha. Raschmetoden? Svend Kreiner & Tine Nielsen Hvordan finder man en god skala vha. Raschmetoden? Svend Kreiner & Tine Nielsen 1 Svaret: Man spørger en, der har forstand på det, som man gerne vil måle 2 Eksempel: Spiritualitet Peter A., Peter G. &

Læs mere

Program. Forsøgsplanlægning og tosidet variansanalyse. Eksempel: fuldstændigt randomiseret forsøg. Forsøgstyper

Program. Forsøgsplanlægning og tosidet variansanalyse. Eksempel: fuldstændigt randomiseret forsøg. Forsøgstyper Program Forsøgsplanlægning og tosidet variansanalyse Helle Sørensen E-mail: helle@math.ku.dk I formiddag: Forsøgstyper og forsøgsplanlægning Analyse af data fra fuldstændigt randomiseret blokforsøg: tosidet

Læs mere

Vejledende besvarelse af hjemmeopgave i Basal statistik for lægevidenskabelige forskere, forår 2013

Vejledende besvarelse af hjemmeopgave i Basal statistik for lægevidenskabelige forskere, forår 2013 Vejledende besvarelse af hjemmeopgave i Basal statistik for lægevidenskabelige forskere, forår 2013 I forbindelse med reagensglasbehandling blev 100 par randomiseret til to forskellige former for hormonstimulation.

Læs mere

2 Logaritme- og eksponentialfunktion 6

2 Logaritme- og eksponentialfunktion 6 Indhold 1 Kontingenstabeller 2 1.1 Krydstabeller....................................... 2 1.2 Forventede under nulhypotesen............................. 4 1.3 Ki-kvadrat test......................................

Læs mere

Logistisk regression. Logistisk regression. Probit model Fortolkning udfra latent variabel. Odds/Odds ratio

Logistisk regression. Logistisk regression. Probit model Fortolkning udfra latent variabel. Odds/Odds ratio Logstsk regresson Logstsk regresson Odds/Odds rato Probt model Fortolknng udfra latent varabel En varabel Y parameter p P( Y 1 Bernoull/bnomal fordelngen 1 1 p. er Bernoull- fordelt med sandsynlgheds hvs

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Kvantitative metoder 2 Beskrivende statistik og analyse af kvalitatitive data 12. februar 2007 Kvantitative metoder 2: F3 1 Program for i dag: Test i multinomialfordelingen: Q-testet (BL.13.1-2) Opsamling

Læs mere

Statistik Lektion 17 Multipel Lineær Regression

Statistik Lektion 17 Multipel Lineær Regression Statistik Lektion 7 Multipel Lineær Regression Polynomiel regression Ikke-lineære modeller og transformation Multi-kolinearitet Auto-korrelation og Durbin-Watson test Multipel lineær regression x,x,,x

Læs mere

Statistik & Skalavalidering

Statistik & Skalavalidering å Statistik & Skalavalidering Synopsis til mundtlig eksamen d. 24. januar 2011 K ø b e n h a v n s U n i v e r s i t e t K a n d i d a t u d d a n n e l s e n i F o l k e s u n d h e d s v i d e n s k

Læs mere

12. september Epidemiologi og biostatistik. Forelæsning 4 Uge 3, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Regressionsanalyse

12. september Epidemiologi og biostatistik. Forelæsning 4 Uge 3, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Regressionsanalyse . september 5 Epidemiologi og biostatistik. Forelæsning Uge, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Lineær regressionsanalyse - Simpel lineær regression - Multipel lineær regression

Læs mere

Synopsis til eksamen i Statistik

Synopsis til eksamen i Statistik Synopsis til eksamen i Statistik Kandidatuddannelsen i Folkesundhedsvidenskab Københavns Universitet december 2010 Eksamensnummer: 12 Antal anslag: 23.839 (svarende til 9,9 normalsider) - 1 - Indholdsfortegnelse

Læs mere

Module 3: Statistiske modeller

Module 3: Statistiske modeller Department of Statistics ST502: Statistisk modellering Pia Veldt Larsen Module 3: Statistiske modeller 31 ANOVA 1 32 Variabelselektion 4 321 Multipel determinationskoefficient 5 322 Variabelselektion med

Læs mere

24. februar Analyse af overlevelsesdata (ventetidsdata) Ikke parametrisk statistiske test : Det statistiske modelbegreb Modelselektion

24. februar Analyse af overlevelsesdata (ventetidsdata) Ikke parametrisk statistiske test : Det statistiske modelbegreb Modelselektion . februar 00 Ikke parametrisk statistiske test : Ideen bag Epidemiologi og biostatistik. Uge, mandag. februar 00 Morten Frydenberg, Institut for Biostatistik. To grupper: Mann-Whitney / Wilcoxon testet

Læs mere

Statistik FSV 4. semester 2014 Øvelser Uge 2: 11. februar

Statistik FSV 4. semester 2014 Øvelser Uge 2: 11. februar Århus 6. februar 2014 Morten Frydenberg Statistik FSV 4. semester 2014 Øvelser Uge 2: 11. februar Til disse øvelser har I brug for fishoil1.dta, der indeholder data fra det fiskeolie forsøg vi så på ved

Læs mere

Reeksamen i Statistik for biokemikere. Blok 3 2007.

Reeksamen i Statistik for biokemikere. Blok 3 2007. Københavns Universitet Det Naturvidenskabelige Fakultet Reeksamen i Statistik for biokemikere. Blok 3 2007. Opgave 1. 3 timers skriftlig prøve. Alle hjælpemidler - også blyant - er tilladt. Opgavesættet

Læs mere

Statistiske principper

Statistiske principper Statistiske principper 1) Likelihood princippet - Maximum likelihood estimater - Likelihood ratio tests - Deviance 2) Modelbegrebet - Modelkontrol 3) Sufficient datareduktion 4) Likelihood inferens i praksis

Læs mere