Økonometri 1. Inferens i den lineære regressionsmodel 25. september Økonometri 1: F6 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "Økonometri 1. Inferens i den lineære regressionsmodel 25. september Økonometri 1: F6 1"

Transkript

1 Økonometri 1 Inferens i den lineære regressionsmodel 25. september 2006 Økonometri 1: F6 1

2 Oversigt: De næste forelæsninger Statistisk inferens: hvorledes man med udgangspunkt i en statistisk model kan drage konklusioner på grundlag af data, [ ] blandt andet punktestimation og intervalestimation af parametre samt metoder til afprøvning af statistiske hypoteser. (TSØ p. 238) Simulationseksperimenter (Note på hjemmesiden) Ideen med at lave simulationseksperimenter Opbygning af en simulationsalgoritme Eksempel: Den forventede startløn for en økonom Eksempel (ugeseddel 3): Alternativ middelret estimator β Resultater om OLS med endeligt antal observationer (kap. 4): Normalitetsantagelse (MLR.6). Test af en enkelt lineær restriktion på koefficienter i lineær regressionsmodel. Asymptotiske resultater for OLS: n (kap. 5). Test af flere lineære restriktioner (kap. 4.5 og 5.2). Økonometri 1: F6 2

3 Hvorfor simulationseksperimenter? Simulationseksperimenter kaldes også Monte Carlo eksperimenter. De introduceres i Økonometri 1 for at illustrere vigtige statistiske begreber: Middelret estimation, varians, efficiens, Simulationseksperimenter er (stort set) ikke dækket af Wooldridge (men se Table C.1, p.771), så derfor benyttes en note (se hjemmesiden). I noten analyserer vi fordelingen af OLS estimatoren og sammenligner med fordelingen af en alternativ estimator Simulationseksperimenter vil også optræde i øvelserne (ugeseddel 4, 5, 7, 12). Kommer igen i Økonometri 2. Økonometri 1: F6 3

4 Monte Carlo eksperiment: Ideen Simulationer af datasæt fra en fuldt specificeret model: Datagenererende proces (DGP) Eksempel: y = μ + σε, ε iidn... (0,1) i i i Vi kender de "sande parametre" og. Genererer et sæt af fx n=100 observationer fra modellen: y, y,..., y μ Glemmer at vi kender og : Anvend estimator ( regneregel ) til at skønne over μ ud fra et konkret (men kunstigt) sæt af observationer: Fx gennemsnittet: 1 n y = yi n i = 1 2 σ μ 2 σ Økonometri 1: F6 4

5 Monte Carlo eksperimenter: Ideen (fortsat) Kan vi på en nem måde vurdere, om y er en rimelig estimator for μ? Lav en uafhængig trækning af et nyt datasæt, der er genereret af den samme DGP. Lav mange uafhængige trækninger ( replikationer ): j = 1,2,..., M. j Beregn værdien af estimatoren for hvert datasæt: y Se på fordelingen af estimaterne over replikationerne: Beregn fx fordelingens gennemsnit og varians. Parallel til tankeeksperimentet : Vores konkrete faktiske datasæt er blot ét blandt mange potentielle udfald. Økonometri 1: F6 5

6 Monte Carlo eksperimenter: Ideen (fortsat) Formål med Monte Carlo eksperimenter: Efterprøve analytiske resultater: Fx at OLS er middelret under MLR.1-4. Analysere konsekvenserne, hvis antagelserne ikke holder. Sammenligne forskellige estimatorer eller test, hvor det er besværligt/umuligt analytisk. Vurdere hvor mange observationer der skal til, for at man kan bruge asymptotiske resultater i praksis (kap. 5). Økonometri 1: F6 6

7 Monte Carlo eksperimenter: Eksempel DJØFs hjemmeside Vejledende startløn for en privatansat, nyuddannet økonom er kr om måneden (pr. februar 2005). Antag: Startlønninger er uafhængige og normalfordelte. Sand middelværdi i lønfordelingen er kr Sand lønfordeling har standardafvigelse på kr Hermed er lønfordelingen fuldt specificeret. Simulere en situation, hvor der indhentes en tilfældig stikprøve af n=100 startlønninger. Økonometri 1: F6 7

8 Monte Carlo eksperimenter: I praksis Trin 1: Konstruer et kunstigt datasæt: Opstil en model for den datagenererende proces: y i = μ + σεi, εi N(0,1), μ=29,5, σ = 1,5. Generer et antal, fx n = 100, observationer af ε i fra en tilfældighedsgenerator og beregn fra modellen. Proc IML; antalobs = 100; mu = j(antalobs,1,29.5); seedvct = j(antalobs,1,1) ; seedvct = 117*seedvct ; e = normal(seedvct) ; y = mu * e ; quit; y i Økonometri 1: F6 8

9 Monte Carlo eksperimenter: I praksis (fortsat) Trin 2: Ex. sammenligne to estimatorer: Beregn estimaterne: 1. Find gennemsnit af alle observationer: 1 m = y i = 1 i Find gennemsnit af mindste og største observation: 1 m2 = (min i= 1,...,100 y i + max i= 1,...,100 y i ) 2 m1est=sum(y)/antalobs; * estimatet m1 (gennemsnittet); m2est=1/2*(min(y)+max(y)); * estimatet m2 (gns. min og max); Økonometri 1: F6 9

10 Monte Carlo eksperimenter: I praksis (fortsat) Trin 3: Gentag trin 1 og 2: M= replikationer: antalrep = 10000; * antal replikationer i simulationen; m1 = j(antalrep,1,.); * vektorer til at gemme estimaterne i; m2 = j(antalrep,1,.); do j=1 to antalrep; * løkke over simulationer; * her beregnes estimater for hvert datasæt> * estimaterne gemmes for hver replikation ; m1[j,1]=m1est ; * m1 ; m2[j,1]=m2est ; * m2 ; end; Trin 4: Analysér fordelingerne af de to sæt estimater: Histogram Gennemsnit, varians, højere momenter Økonometri 1: F6 10

11 Monte Carlo eksperimenter: Eksempel Brug algoritmen til at analysere m1og m2 som estimatorer for middelværdien i fordelingen af startlønninger. Simulere telefoninterviews med tilfældigt udvalgte, nyuddannede økonomer, som oplyser (?) deres startløn. SAS-programmet MC.sas udfører M= replikationer. Se på n=100, n=50 og n=10. Link til SAS Hjemmeopgave : Brug SAS-programmet MC.sas til at køre et simulationseksperiment, hvor du har n=100, men sætter antallet af replikationer til M= Sammenlign og fortolk dine resultater. Økonometri 1: F6 11

12 Monte Carlo eksperimenter: Eksempel (fortsat) Middelværdi og varians af de to estimatorer baseret på M= simulationer har lavest varians m 1 Varians aftager med n n=100 Middelværdi Varians n=50 Middelværdi Varians n=10 Middelværdi Varians 29,499 0, ,499 0, ,498 0,2209 m m ,502 0, ,499 0, ,489 0,4116 Økonometri 1: F6 12

13 Eksempel: En alternativ middelret estimator i en simpel lineær regressionsmodel Model: y = β0 + β1 x+ u, opfylder MLR.1-4 Alternativ estimator: y1 y2 β1 = x x 1 2 Gennemsnit for de observationer, der svarer til de n /2mindste og n /2 største værdier af x Ugeseddel 3: Vis at i β1 er middelret. Ugeseddel 5: Sammenlign V ( β1) med V ( ˆ β1) i et simulationseksperiment Økonometri 1: F6 13

14 Monte Carlo eksperimenter: Afrunding Husk: Resultater og konklusioner fra Monte Carlo eksperimenter afhænger potentielt af de valgte parametre og fordelinger. I praktiske anvendelser må man i hvert enkelt tilfælde godtgøre, at den valgte model har relevans for den problemstilling, man ønsker at belyse. Økonometri 1: F6 14

15 Hypotesetest i den lineære regressionsmodel: Endelige stikprøver (kap. 4) For hypotesetest behøver vi fordelingen af ˆβ. Introducere yderligere antagelse: Normalitet. MLR.6: u er uafhængig af x1, x2,..., xk og normalfordelt 2 med middelværdi nul og varians σ. MLR.1-6 definerer den klassiske lineære model (CLM). Restriktiv antagelse: Argument for: u opsamler alle de mange effekter der er udeladt af modellen: Central grænseværdisætning køres i stilling. Argumenter imod i konkrete problemstillinger: Begrænsede variabler (positive!), andre typer af fordelinger (log-normal, diskrete). Økonometri 1: F6 15

16 Fordeling af OLS estimatoren: Endelig stikprøve Linearitet af ˆβ i u og CLM giver følgende resultat: Theorem 4.1: Under CLM antagelserne og betinget på x1, x2,..., xk hvor Heraf følger: gælder at ˆ β N( β,var( ˆ β )) j j j Var( ˆ β ) = j 2 σ SST 2 j(1 R j) ( ˆ β β ) / standardafv.( ˆ β ) (0,1) j j j N Økonometri 1: F6 16

17 Fordeling af OLS estimatoren: Endelig stikprøve (fortsat) 2 Theorem 4.1 indeholder den ukendte parameter σ, derfor ikke umiddelbart operationel. 2 2 Erstattes σ af σˆ kan man vise at der gælder følgende resultat: Theorem 4.2: Under CLM antagelserne og betinget på x1, x2,..., xk gælder at ( ˆ β ˆ j β j) / standardfejl( β j) tn k 1 hvor k+1 er antal regressorer i modellen inkl. konstantled. t-fordelingen går mod N(0,1) når antallet af frihedsgrader vokser (fin approximation hvis større end 120). Økonometri 1: F6 17

18 Hypotesetest: Restriktion på en enkelt koefficient Betragt en nulhypotese om en regressionskoefficient: H 0 : β j = a, hvor a er en konstant. Under nulhypotesen påstår vi altså en bestemt værdi af en parameter i den sande model. Analogt til at specificere en parameter i DGP en for et Monte Carlo eksperiment. Tænk på nulhypotesen som DGP en for et tankeeksperiment: Givet denne værdi af β j kender vi fordelingen af ˆ β j. Bruge afvigelsen mellem estimatet, ˆ β j og den postulerede værdi, a, til at vurdere gyldigheden af nulhypotesen. Økonometri 1: F6 18

19 Hypotesetest: Restriktion på en enkelt koefficient t-testet for H : β = a er givet ved og er fordelt som under nulhypotesen. Alternativhypotesen: Ensidede alternativer: H1: β j > a eller H1: β j < Tosidet alternativ: H : β a Ex. Afkast af uddannelse: Hypotese om Nulhypotese: 0 j Relevant alternativ: ( ˆ β a) / standardfejl( ˆ β ) j β 1 = 0 tn k 1 1 j β 0? β > 0? 1 1 j β 1 a Økonometri 1: F6 19

20 Hypotesetest: Restriktion på en enkelt koefficient Klassisk teststrategi: Vælg signifikansniveau: Sandsynlighed for at afvise nulhypotesen, givet at den er sand. Typisk vælges 5 %. Vælg alternativhypotese: Bestemmer den kritiske region, givet signifikansniveauet. Beregn teststatistik. Afvis nulhypotesen hvis testet er i den kritiske region. Afvis ellers ikke. Alternativ: Beregn p-værdi: Marginale signifikansniveau som netop ville betyde at nulhypotesen må afvises. Økonometri 1: F6 20

21 Hypotesetest: Restriktion på en enkelt koefficient Typiske eksempler: a=0: Standard signifikanstest. a=1 eller a=-1: Test af homogenitet eller proportionalitet. Konfidensinterval: Givet signifikansniveau,, fx 5 %. Så er 100- α % konfidensintervallet givet ved: [ ˆ β t (1 α/ 2) istandardfejl( ˆ β ), ˆ β + t (1 α/ 2) istandardfejl( ˆ β )] j n k 1 j j n k 1 j Konstrueres intervallet således vil det i 100- % af udfaldene rumme den sande værdi. Nulhypoteser om værdier udenfor vil således blive afvist. Skitsér på tavlen. Eksempel: Lønrelationen. α α Økonometri 1: F6 21

22 Hypotesetest: Eksempel: Lønrelationen Afhængig variabel: log(timeløn) Regressor Model (1) Model (2) uddaar erfaring konstant Antal observationer 2 R 0,0452 (0,0035) _ 4,3500 (0,0420) ,140 0,0485 (0,0032) 0,0139 (0,0010) 4,1051 (0,0424) ,275 Kilde: Output fra SAS-programmet lon_udd2.sas Økonometri 1: F6 22

23 NB er fra denne forelæsning Monte Carlo eksperimenter som en måde at gøre det statistiske tankeeksperiment mere konkret. Resultater fra Monte Carlo eksperimenter afhænger potentielt af de valgte parametre for DGP en. Antal observationer i stikprøven (n) og antal replikationer (gentagelser) i eksperimentet (M). Eksplicit om ingredienser i klassisk teststrategi. Økonometri 1: F6 23

24 Hvad bliver det næste? Fredag: Mere om kapitel 4, starter på kapitel 5 om asymptotiske resultater. Hjemmeopgave på ugeseddel 3: Den alternative estimator Ugeseddel 4: Simulationseksperiment. Økonometri 1: F6 24

Kvantitative metoder 2

Kvantitative metoder 2 Kvantitative metoder 2 Inferens i den lineære regressionsmodel 7. marts 2007 regressionsmodel 1 Opgave fra sidst (Gauss-Markov teoremet) Opgave: Vis at hvis M = I X X X X 1 ( ' ) ' er M idempoten dvs der

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Opgave fra sidst (Gauss-Markov teoremet) Kvantitative metoder Inferens i den lineære regressionsmodel 7. marts 007 Opgave: Vis at hvis M = I X X X X ( ' ) ' er M idempoten dvs der gælder gælder M = M '

Læs mere

Økonometri 1. Inferens i den lineære regressionsmodel 25. september 2006. Oversigt: De næste forelæsninger

Økonometri 1. Inferens i den lineære regressionsmodel 25. september 2006. Oversigt: De næste forelæsninger Oversigt: De næste forelæsninger Økonometri Inferens i den lineære regressionsmodel 5. september 006 Statistisk inferens: hvorledes man med udgangspunkt i en statistisk model kan drage konklusioner på

Læs mere

Note om Monte Carlo eksperimenter

Note om Monte Carlo eksperimenter Note om Monte Carlo eksperimenter Mette Ejrnæs og Hans Christian Kongsted Økonomisk Institut, Københavns Universitet 22. februar 2005 Denne note er skrevet til kurset Økonometri 1 på 2. årsprøve af polit-studiet.

Læs mere

Note om Monte Carlo eksperimenter

Note om Monte Carlo eksperimenter Note om Monte Carlo eksperimenter Mette Ejrnæs og Hans Christian Kongsted Økonomisk Institut, Københavns Universitet 9. september 003 Denne note er skrevet til kurset Økonometri på. årsprøve af polit-studiet.

Læs mere

Økonometri 1. Inferens i den lineære regressionsmodel 2. oktober Økonometri 1: F8 1

Økonometri 1. Inferens i den lineære regressionsmodel 2. oktober Økonometri 1: F8 1 Økonometri 1 Inferens i den lineære regressionsmodel 2. oktober 2006 Økonometri 1: F8 1 Dagens program Opsamling om asymptotiske egenskaber: Asymptotisk normalitet Asymptotisk efficiens Test af flere lineære

Læs mere

Økonometri 1. Den simple regressionsmodel 11. september Økonometri 1: F2

Økonometri 1. Den simple regressionsmodel 11. september Økonometri 1: F2 Økonometri 1 Den simple regressionsmodel 11. september 2006 Dagens program Den simple regressionsmodel SLR : Én forklarende variabel (Wooldridge kap. 2.1-2.4) Motivation for gennemgangen af SLR Definition

Læs mere

Økonometri 1. Dagens program. Den simple regressionsmodel 15. september 2006

Økonometri 1. Dagens program. Den simple regressionsmodel 15. september 2006 Dagens program Økonometri Den simple regressionsmodel 5. september 006 Den simple lineære regressionsmodel (Wooldridge kap.4-.6) Eksemplet fortsat: Løn og uddannelse på danske data Funktionel form Statistiske

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Kvantitative metoder Heteroskedasticitet 11. april 007 KM: F18 1 Oversigt: Heteroskedasticitet OLS estimation under heteroskedasticitet (W.8.1-): Konsekvenser af heteroskedasticitet for OLS Gyldige test

Læs mere

Økonometri 1. Dagens program. Den multiple regressionsmodel 18. september 2006

Økonometri 1. Dagens program. Den multiple regressionsmodel 18. september 2006 Dagens program Økonometri Den multiple regressionsmodel 8. september 006 Opsamling af statistiske resultater om den simple lineære regressionsmodel (W kap..5). Den multiple lineære regressionsmodel (W

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Kvantitative metoder 2 Den multiple regressionsmodel 5. marts 2007 regressionsmodel 1 Dagens program Emnet for denne forelæsning er stadig den multiple regressionsmodel (Wooldridge kap. 3.4-3.5, E.2) Variansen

Læs mere

Økonometri 1. Dummyvariabler 13. oktober Økonometri 1: F10 1

Økonometri 1. Dummyvariabler 13. oktober Økonometri 1: F10 1 Økonometri 1 Dummyvariabler 13. oktober 2006 Økonometri 1: F10 1 Dagens program Dummyvariabler i den multiple regressionsmodel (Wooldridge kap. 7.3-7.6) Dummy variabler for kvalitative egenskaber med flere

Læs mere

Kvantitative Metoder 1 - Forår 2007

Kvantitative Metoder 1 - Forår 2007 Dagens program Kapitel 8.7, 8.8 og 8.10 Momenter af gennemsnit og andele kap. 8.7 Eksempel med simulationer Den centrale grænseværdisætning (Central Limit Theorem) kap. 8.8 Simulationer Normalfordelte

Læs mere

Økonometri 1. Prediktion. Dummyvariabler 9. oktober Økonometri 1: F9 1

Økonometri 1. Prediktion. Dummyvariabler 9. oktober Økonometri 1: F9 1 Økonometri 1 Prediktion. Dummyvariabler 9. oktober 2006 Økonometri 1: F9 1 Program frem til efterårsferien Om goodness-of-fit, prediktion og residualer (kap. 6.3-4) Kvalitative egenskaber i den multiple

Læs mere

! Variansen på OLS estimatoren. ! Multikollinaritet. ! Variansen i misspecificerede modeller. ! Estimat af variansen på fejlleddet

! Variansen på OLS estimatoren. ! Multikollinaritet. ! Variansen i misspecificerede modeller. ! Estimat af variansen på fejlleddet Dagens program Økonometri Den multiple regressionsmodel 4. februar 003 regressionsmodel Emnet for denne forelæsning er stadig den multiple regressionsmodel (Wooldridge kap. 3.4-3.5)! Opsamling fra sidst

Læs mere

Økonometri 1. FunktioneI form i den lineære regressionsmodel 19. oktober Dagens program

Økonometri 1. FunktioneI form i den lineære regressionsmodel 19. oktober Dagens program Dagens program Økonometri 1 FunktioneI form i den lineære regressionsmodel 19. oktober 004 Mere om funktionel form (kap 6.) Log transformation Kvadratisk form Interaktionseffekter Goodness of fit (kap.

Læs mere

Vejledende besvarelser til opgaver i kapitel 14

Vejledende besvarelser til opgaver i kapitel 14 Vejledende besvarelser til opgaver i kapitel 14 Opgave 1 a) Det første trin i opstillingen af en hypotesetest er at formulere to hypoteser, hvoraf den ene støtter den teori vi vil teste, mens den anden

Læs mere

Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup)

Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup) Kursus 02402 Introduktion til Statistik Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske

Læs mere

Ensidet eller tosidet alternativ. Hypoteser. tosidet alternativ. nul hypotese testes mod en alternativ hypotese

Ensidet eller tosidet alternativ. Hypoteser. tosidet alternativ. nul hypotese testes mod en alternativ hypotese Kursus 02402 Introduktion til Statistik Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6 Per Bruun Brockhoff DTU Compute, Statistik Bygning 305/324 Danmarks Tekniske Universitet

Læs mere

Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19

Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19 Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19 For test med signifikansniveau α: p < α forkast H 0 2/19 p-værdi Betragt tilfældet med test for H 0 : µ = µ 0 (σ kendt). Idé: jo større

Læs mere

Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo

Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet Sandsynlighedsregning og lagerstyring Normalfordelingen og Monte

Læs mere

Produkt og marked - matematiske og statistiske metoder

Produkt og marked - matematiske og statistiske metoder Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 19, 2016 1/26 Kursusindhold: Sandsynlighedsregning og lagerstyring

Læs mere

Økonometri 1. Oversigt. Mere om dataproblemer Gentagne tværsnit og panel data I

Økonometri 1. Oversigt. Mere om dataproblemer Gentagne tværsnit og panel data I Oversigt Økonometri 1 Mere om dataproblemer Gentagne tværsnit og panel data I Info om prøveeksamen Mere om proxyvariabler og målefejl fra sidste gang. Selektion og dataproblemer Intro til nyt emne: Observationer

Læs mere

Normalfordelingen. Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: 1 2πσ

Normalfordelingen. Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: 1 2πσ Normalfordelingen Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: f(x) = ( ) 1 exp (x µ)2 2πσ 2 σ 2 Frekvensen af observationer i intervallet

Læs mere

Anvendt Statistik Lektion 4. Hypotesetest generelt Test for middelværdi Test for andele

Anvendt Statistik Lektion 4. Hypotesetest generelt Test for middelværdi Test for andele Anvendt Statistik Lektion 4 Hypotesetest generelt Test for middelværdi Test for andele Hypoteser og Test Hypotese I statistik er en hypotese en påstand om en populationsparameter. Typisk en påstand om

Læs mere

Økonometri 1. Inferens i den lineære regressionsmodel 29. september Økonometri 1: F7 1

Økonometri 1. Inferens i den lineære regressionsmodel 29. september Økonometri 1: F7 1 Økoometri 1 Iferes i de lieære regressiosmodel 9. september 006 Økoometri 1: F7 1 Dages program Opsamlig af hemmeopgave om Mote Carlo eksperimeter Mere om hypotesetest: Ekelt lieær restriktio på koefficieter

Læs mere

Hypotesetest. Altså vores formodning eller påstand om tingens tilstand. Alternativ hypotese (hvis vores påstand er forkert) H a : 0

Hypotesetest. Altså vores formodning eller påstand om tingens tilstand. Alternativ hypotese (hvis vores påstand er forkert) H a : 0 Hypotesetest Hypotesetest generelt Ingredienserne i en hypotesetest: Statistisk model, f.eks. X 1,,X n uafhængige fra bestemt fordeling. Parameter med estimat. Nulhypotese, f.eks. at antager en bestemt

Læs mere

Tema. Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse.

Tema. Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. Tema Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. (Fx. x. µ) Hypotese og test. Teststørrelse. (Fx. H 0 : µ = µ 0 ) konfidensintervaller

Læs mere

Note om Monte Carlo metoden

Note om Monte Carlo metoden Note om Monte Carlo metoden Kasper K. Berthelsen Version 1.2 25. marts 2014 1 Introduktion Betegnelsen Monte Carlo dækker over en lang række metoder. Fælles for disse metoder er, at de anvendes til at

Læs mere

men nu er Z N((µ 1 µ 0 ) n/σ, 1)!! Forkaster hvis X 191 eller X 209 eller

men nu er Z N((µ 1 µ 0 ) n/σ, 1)!! Forkaster hvis X 191 eller X 209 eller Type I og type II fejl Type I fejl: forkast når hypotese sand. α = signifikansniveau= P(type I fejl) Program (8.15-10): Hvis vi forkaster når Z < 2.58 eller Z > 2.58 er α = P(Z < 2.58) + P(Z > 2.58) =

Læs mere

Økonometri 1. Kvalitative variabler. Kvalitative variabler. Dagens program. Kvalitative variable 8. marts 2006

Økonometri 1. Kvalitative variabler. Kvalitative variabler. Dagens program. Kvalitative variable 8. marts 2006 Dagens program Økonometri 1 Kvalitative variable 8. marts 2006 Kvalitative variabler som forklarende variabler i en lineær regressionsmodel (Wooldridge kap. 7.1-7.4) Kvalitative variabler generelt Dummy

Læs mere

Module 4: Ensidig variansanalyse

Module 4: Ensidig variansanalyse Module 4: Ensidig variansanalyse 4.1 Analyse af én stikprøve................. 1 4.1.1 Estimation.................... 3 4.1.2 Modelkontrol................... 4 4.1.3 Hypotesetest................... 6 4.2

Læs mere

Anvendt Statistik Lektion 5. Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele

Anvendt Statistik Lektion 5. Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele Anvendt Statistik Lektion 5 Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele Motiverende eksempel Antal minutter brugt på rengøring/madlavning: Rengøring/Madlavning

Læs mere

Hvis α vælges meget lavt, bliver β meget stor. Typisk vælges α = 0.01 eller 0.05

Hvis α vælges meget lavt, bliver β meget stor. Typisk vælges α = 0.01 eller 0.05 Statistik 7. gang 9. HYPOTESE TEST Hypotesetest ved 6 trins raket! : Trin : Formuler hypotese Spørgsmål der ønskes testet vha. data H : Nul hypotese Formuleres som en ligheds hændelse H eller H A : Alternativ

Læs mere

Program: 1. Repetition: fordeling af observatorer X, S 2 og t. 2. Konfidens-intervaller, hypotese test, type I og type II fejl, styrke.

Program: 1. Repetition: fordeling af observatorer X, S 2 og t. 2. Konfidens-intervaller, hypotese test, type I og type II fejl, styrke. Program: 1. Repetition: fordeling af observatorer X, S 2 og t. 2. Konfidens-intervaller, hypotese test, type I og type II fejl, styrke. 1/23 Opsummering af fordelinger X 1. Kendt σ: Z = X µ σ/ n N(0,1)

Læs mere

Forelæsning 11: Kapitel 11: Regressionsanalyse

Forelæsning 11: Kapitel 11: Regressionsanalyse Kursus 02402 Introduktion til Statistik Forelæsning 11: Kapitel 11: Regressionsanalyse Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

3.600 kg og den gennemsnitlige fødselsvægt kg i stikprøven.

3.600 kg og den gennemsnitlige fødselsvægt kg i stikprøven. PhD-kursus i Basal Biostatistik, efterår 2006 Dag 1, onsdag den 6. september 2006 Eksempel: Sammenhæng mellem moderens alder og fødselsvægt I dag: Introduktion til statistik gennem analyse af en stikprøve

Læs mere

Tema. Dagens tema: Indfør centrale statistiske begreber.

Tema. Dagens tema: Indfør centrale statistiske begreber. Tema Dagens tema: Indfør centrale statistiske begreber. Model og modelkontrol Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. konfidensintervaller Vi tager udgangspunkt i Ex. 3.1 i

Læs mere

Kvantitative Metoder 1 - Efterår Dagens program

Kvantitative Metoder 1 - Efterår Dagens program Dagens program Estimation: Kapitel 9.7-9.10 Estimationsmetoder kap 9.10 Momentestimation Maximum likelihood estimation Test Hypoteser kap. 10.1 Testprocedure kap 10.2 Teststørrelsen Testsandsynlighed 1

Læs mere

MLR antagelserne. Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som

MLR antagelserne. Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som MLR antagelserne Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som y = β 0 + β 1 x 1 + β 2 x 2 + + β k x k + u, hvor β 0, β 1, β 2,...,β k er ukendte parametere,

Læs mere

Anvendt Statistik Lektion 5. Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele

Anvendt Statistik Lektion 5. Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele Anvendt Statistik Lektion 5 Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele Motiverende eksempel Antal minutter brugt på rengøring/madlavning: Rengøring/Madlavning

Læs mere

Oversigt. 1 Gennemgående eksempel: Højde og vægt. 2 Korrelation. 3 Regressionsanalyse (kap 11) 4 Mindste kvadraters metode

Oversigt. 1 Gennemgående eksempel: Højde og vægt. 2 Korrelation. 3 Regressionsanalyse (kap 11) 4 Mindste kvadraters metode Kursus 02402 Introduktion til Statistik Forelæsning 11: Kapitel 11: Regressionsanalyse Oversigt 1 Gennemgående eksempel: Højde og vægt 2 Korrelation 3 Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse

Læs mere

! Proxy variable. ! Målefejl. ! Manglende observationer. ! Dataudvælgelse. ! Ekstreme observationer. ! Eksempel: Lønrelation (på US data)

! Proxy variable. ! Målefejl. ! Manglende observationer. ! Dataudvælgelse. ! Ekstreme observationer. ! Eksempel: Lønrelation (på US data) Dagens program Økonometri 1 Specifikation, og dataproblemer 10. april 003 Emnet for denne forelæsning er specifikation (Wooldridge kap. 9.-9.4)! Proxy variable! Målefejl! Manglende observationer! Dataudvælgelse!

Læs mere

Anvendt Statistik Lektion 8. Multipel Lineær Regression

Anvendt Statistik Lektion 8. Multipel Lineær Regression Anvendt Statistik Lektion 8 Multipel Lineær Regression 1 Simpel Lineær Regression (SLR) y Sammenhængen mellem den afhængige variabel (y) og den forklarende variabel (x) beskrives vha. en SLR: ligger ikke

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Kvantitative metoder 2 Specifikation og dataproblemer 2. maj 2007 KM2: F22 1 Program Specifikation og dataproblemer, fortsat (Wooldridge kap. 9): Betydning af målefejl Dataudvælgelse: Manglende observationer

Læs mere

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA) Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:

Læs mere

Praktiske ting og sager: Forelæsninger tirsdag og torsdag kl i Kirkesalen, Studiestræde 38 Øvelser

Praktiske ting og sager: Forelæsninger tirsdag og torsdag kl i Kirkesalen, Studiestræde 38 Øvelser Uge 36 Velkommen tilbage Praktiske ting og sager: Forelæsninger tirsdag og torsdag kl. -2 i Kirkesalen, Studiestræde 38 Øvelser Hold -4 og 6: mandag og onsdag kl. 8-; start 3. september Hold 5: tirsdag

Læs mere

Tænk på a og b som to n 1 matricer. a 1 a 2 a n. For hvert i = 1,..., n har vi y i = x i β + u i.

Tænk på a og b som to n 1 matricer. a 1 a 2 a n. For hvert i = 1,..., n har vi y i = x i β + u i. Repetition af vektor-regning Økonometri: Lektion 3 Matrix-formulering Fordelingsantagelse Hypotesetest Antag vi har to n-dimensionelle (søjle)vektorer a 1 b 1 a 2 a =. og b = b 2. a n b n Tænk på a og

Læs mere

Wooldridge, kapitel 19: Carrying out an Empirical Project. Information og spørgsmål vedr. eksamen. Økonometri 1: Afslutningsforelæsning 2

Wooldridge, kapitel 19: Carrying out an Empirical Project. Information og spørgsmål vedr. eksamen. Økonometri 1: Afslutningsforelæsning 2 Økonometri 1 Afslutningsforelæsning 19. maj 2003 Økonometri 1: Afslutningsforelæsning 1 Evalueringer Kun 23 har udfyldt evalueringsskemaerne ud af ca. 120 tilmeldte til eksamen Resultatet kan ses på hjemmesiden

Læs mere

Oversigt over emner. Punktestimatorer: Centralitet(bias) og efficiens

Oversigt over emner. Punktestimatorer: Centralitet(bias) og efficiens Oversigt Oversigt over emner 1 Punkt- og intervalestimation Punktestimatorer: Centralitet(bias) og efficiens 2 Konfidensinterval Konfidensinterval for andel Konfidensinterval - normalfordelt stikprøve

Læs mere

Uge 43 I Teoretisk Statistik, 21. oktober Forudsigelser

Uge 43 I Teoretisk Statistik, 21. oktober Forudsigelser Uge 43 I Teoretisk Statistik,. oktober 3 Simpel lineær regressionsanalyse Forudsigelser Fortolkning af regressionsmodellen Ekstreme observationer Transformationer Sammenligning af to regressionslinier

Læs mere

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA) Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:

Læs mere

Løsning eksamen d. 15. december 2008

Løsning eksamen d. 15. december 2008 Informatik - DTU 02402 Introduktion til Statistik 2010-2-01 LFF/lff Løsning eksamen d. 15. december 2008 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition, 7th

Læs mere

Konfidensintervaller og Hypotesetest

Konfidensintervaller og Hypotesetest Konfidensintervaller og Hypotesetest Konfidensinterval for andele χ -fordelingen og konfidensinterval for variansen Hypoteseteori Hypotesetest af middelværdi, varians og andele Repetition fra sidst: Konfidensintervaller

Læs mere

Agenda Sandsynlighedsregning. Regneregler (kap. 3-4) Fordelinger og genkendelse af fordelinger (kap. 3-5) Simultane, marginale og betingede

Agenda Sandsynlighedsregning. Regneregler (kap. 3-4) Fordelinger og genkendelse af fordelinger (kap. 3-5) Simultane, marginale og betingede Agenda Sandsynlighedsregning. Regneregler (kap. 3-4) Fordelinger og genkendelse af fordelinger (kap. 3-5) Simultane, marginale og betingede fordelinger (kap. 4) Middelværdi og varians (kap. 3-4) Fordelingsresultater

Læs mere

Mindste kvadraters tilpasning Prædiktion og residualer Estimation af betinget standardafvigelse Test for uafhængighed Konfidensinterval for hældning

Mindste kvadraters tilpasning Prædiktion og residualer Estimation af betinget standardafvigelse Test for uafhængighed Konfidensinterval for hældning 1 Regressionsproblemet 2 Simpel lineær regression Mindste kvadraters tilpasning Prædiktion og residualer Estimation af betinget standardafvigelse Test for uafhængighed Konfidensinterval for hældning 3

Læs mere

Hvad skal vi lave? Nulhypotese - alternativ. Teststatistik. Signifikansniveau

Hvad skal vi lave? Nulhypotese - alternativ. Teststatistik. Signifikansniveau Hvad skal vi lave? 1 Statistisk inferens: Hypotese og test Nulhypotese - alternativ. Teststatistik P-værdi Signifikansniveau 2 t-test for middelværdi Tosidet t-test for middelværdi Ensidet t-test for middelværdi

Læs mere

Økonometri: Lektion 4. Multipel Lineær Regression: F -test, justeret R 2 og aymptotiske resultater

Økonometri: Lektion 4. Multipel Lineær Regression: F -test, justeret R 2 og aymptotiske resultater Økonometri: Lektion 4 Multipel Lineær Regression: F -test, justeret R 2 og aymptotiske resultater 1 / 35 Hypotesetest for én parameter Antag vi har model y = β 0 + β 1 x 2 + β 2 x 2 + + β k x k + u. Vi

Læs mere

Oversigt. Kursus Introduktion til Statistik. Forelæsning 9: Inferens for andele (kapitel 10) Per Bruun Brockhoff

Oversigt. Kursus Introduktion til Statistik. Forelæsning 9: Inferens for andele (kapitel 10) Per Bruun Brockhoff Kursus 02402 Introduktion til Statistik Forelæsning 9: Inferens for andele (kapitel 10) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Kvantitative metoder 2 Specifikation og dataproblemer 30. april 2007 KM2: F21 1 Program for de to næste forelæsninger Emnet er specifikation og dataproblemer (Wooldridge kap. 9) Fejlleddet kan være korreleret

Læs mere

Eksamen i Statistik for biokemikere. Blok

Eksamen i Statistik for biokemikere. Blok Eksamen i Statistik for biokemikere. Blok 2 2007. Vejledende besvarelse 22-01-2007, Niels Richard Hansen Bemærkning: Flere steder er der givet en argumentation (f.eks. baseret på konfidensintervaller)

Læs mere

Kursus 02402 Introduktion til Statistik. Forelæsning 7: Kapitel 7 og 8: Statistik for to gennemsnit, (7.7-7.8,8.1-8.5) Per Bruun Brockhoff

Kursus 02402 Introduktion til Statistik. Forelæsning 7: Kapitel 7 og 8: Statistik for to gennemsnit, (7.7-7.8,8.1-8.5) Per Bruun Brockhoff Kursus 02402 Introduktion til Statistik Forelæsning 7: Kapitel 7 og 8: Statistik for to gennemsnit, (7.7-7.8,8.1-8.5) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks

Læs mere

1 Hb SS Hb Sβ Hb SC = , (s = )

1 Hb SS Hb Sβ Hb SC = , (s = ) PhD-kursus i Basal Biostatistik, efterår 2006 Dag 6, onsdag den 11. oktober 2006 Eksempel 9.1: Hæmoglobin-niveau og seglcellesygdom Data: Hæmoglobin-niveau (g/dl) for 41 patienter med en af tre typer seglcellesygdom.

Læs mere

Forelæsning 9: Inferens for andele (kapitel 10)

Forelæsning 9: Inferens for andele (kapitel 10) Kursus 02402 Introduktion til Statistik Forelæsning 9: Inferens for andele (kapitel 10) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Program for i dag: Kvantitative metoder Beskrivende statistik og analyse af kvalitatitive data 1. februar 007 Test i multinomialfordelingen: Q-testet (BL.13.1-) Opsamling fra sidste gang To eksempler To-dimensionale

Læs mere

Dagens Emner. Likelihood-metoden. MLE - fortsat MLE. Likelihood teori. Lineær regression (intro) Vi har, at

Dagens Emner. Likelihood-metoden. MLE - fortsat MLE. Likelihood teori. Lineær regression (intro) Vi har, at Likelihood teori Lineær regression (intro) Dagens Emner Likelihood-metoden M : X i N(µ,σ 2 ) hvor µ og σ 2 er ukendte Vi har, at L(µ,σ 2 1 ) = ( 2πσ 2)n/2 e 1 2 P n (xi µ)2 er tætheden som funktion af

Læs mere

Kvantitative Metoder 1 - Forår 2007

Kvantitative Metoder 1 - Forår 2007 Dagens program Estimation: Kapitel 9.1-9.3 Estimation Estimationsfejlen Bias Eksempler Bestemmelse af stikprøvens størrelse Konsistens De nitioner påkonsistens Eksempler på konsistente og middelrette estimatorer

Læs mere

Økonometri: Lektion 2 Multipel Lineær Regression 1/27

Økonometri: Lektion 2 Multipel Lineær Regression 1/27 Økonometri: Lektion 2 Multipel Lineær Regression 1/27 Multipel Lineær Regression Sidst så vi på simpel lineær regression, hvor y er forklaret af én variabel. Der er intet, der forhindre os i at have mere

Læs mere

Kvantitative Metoder 1 - Forår 2007. Dagens program

Kvantitative Metoder 1 - Forår 2007. Dagens program Dagens program Hypoteser: kap: 10.1-10.2 Eksempler på Maximum likelihood analyser kap 9.10 Test Hypoteser kap. 10.1 Testprocedure kap 10.2 Teststørrelsen Testsandsynlighed 1 Estimationsmetoder Kvantitative

Læs mere

Teoretisk Statistik, 9 marts nb. Det forventes ikke, at alt materialet dækkes d. 9. marts.

Teoretisk Statistik, 9 marts nb. Det forventes ikke, at alt materialet dækkes d. 9. marts. Teoretisk Statistik, 9 marts 2005 Empiriske analoger (Kap. 3.7) Normalfordelingen (Kap. 3.12) Opsamling på Kap. 3 nb. Det forventes ikke, at alt materialet dækkes d. 9. marts. 1 Empiriske analoger Betragt

Læs mere

Statistik vejledende læreplan og læringsmål, foråret 2015 SmartLearning

Statistik vejledende læreplan og læringsmål, foråret 2015 SmartLearning Side 1 af 6 Statistik vejledende læreplan og læringsmål, foråret 2015 SmartLearning Litteratur: Kenneth Hansen & Charlotte Koldsø: Statistik I økonomisk perspektiv, Hans Reitzels Forlag 2012, 2. udgave,

Læs mere

Reminder: Hypotesetest for én parameter. Økonometri: Lektion 4. F -test Justeret R 2 Aymptotiske resultater. En god model

Reminder: Hypotesetest for én parameter. Økonometri: Lektion 4. F -test Justeret R 2 Aymptotiske resultater. En god model Reminder: Hypotesetest for én parameter Antag vi har model Økonometri: Lektion 4 F -test Justeret R 2 Aymptotiske resultater y = β 0 + β 1 x 2 + β 2 x 2 + + β k x k + u. Vi ønsker at teste hypotesen H

Læs mere

Statistik II 1. Lektion. Sandsynlighedsregning Analyse af kontingenstabeller

Statistik II 1. Lektion. Sandsynlighedsregning Analyse af kontingenstabeller Statistik II 1. Lektion Sandsynlighedsregning Analyse af kontingenstabeller Kursusbeskrivelse Omfang 5 kursusgange (forelæsning + opgaveregning) 5 kursusgange (mini-projekt) Emner Analyse af kontingenstabeller

Læs mere

Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression

Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression Logistisk Regression Repetition Fortolkning af odds Test i logistisk regression Logisitks Regression: Repetition Y {0,} binær afhængig variabel X skala forklarende variabel π P( Y X x) Odds(Y X x) π /(-π

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Kvantitative metoder 2 Beskrivende statistik og analyse af kvalitatitive data 12. februar 2007 Kvantitative metoder 2: F3 1 Program for i dag: Test i multinomialfordelingen: Q-testet (BL.13.1-2) Opsamling

Læs mere

Estimation og usikkerhed

Estimation og usikkerhed Estimation og usikkerhed = estimat af en eller anden ukendt størrelse, τ. ypiske ukendte størrelser Sandsynligheder eoretisk middelværdi eoretisk varians Parametre i statistiske modeller 1 Krav til gode

Læs mere

Økonometri: Lektion 6 Emne: Heteroskedasticitet

Økonometri: Lektion 6 Emne: Heteroskedasticitet Økonometri: Lektion 6 Emne: Heteroskedasticitet 1 / 32 Konsekvenser af Heteroskedasticitet Antag her (og i resten) at MLR.1 til MLR.4 er opfyldt. Antag MLR.5 ikke er opfyldt, dvs. vi har heteroskedastiske

Læs mere

Stikprøver og stikprøve fordelinger. Stikprøver Estimatorer og estimater Stikprøve fordelinger Egenskaber ved estimatorer Frihedsgrader

Stikprøver og stikprøve fordelinger. Stikprøver Estimatorer og estimater Stikprøve fordelinger Egenskaber ved estimatorer Frihedsgrader Stikprøver og stikprøve fordelinger Stikprøver Estimatorer og estimater Stikprøve fordelinger Egenskaber ved estimatorer Frihedsgrader Statistik Statistisk Inferens: Prediktere og forekaste værdier af

Læs mere

Normalfordelingen og Stikprøvefordelinger

Normalfordelingen og Stikprøvefordelinger Normalfordelingen og Stikprøvefordelinger Normalfordelingen Standard Normal Fordelingen Sandsynligheder for Normalfordelingen Transformation af Normalfordelte Stok.Var. Stikprøver og Stikprøvefordelinger

Læs mere

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Estimation

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Estimation Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab Estimation Eksempel: Bissau data Data kommer fra Guinea-Bissau i Vestafrika: 5273 børn blev undersøgt da de var yngre end 7 mdr og blev herefter

Læs mere

Økonometri 1. Dagens program: Afslutningsforelæsning 23. maj 2007

Økonometri 1. Dagens program: Afslutningsforelæsning 23. maj 2007 Dagens program: Økonometri 1 Afslutningsforelæsning 23. maj 2007 6-trins procedure til IV estimation. Afrunding af IV: Rygning og fødselsvægt. Afrunding og perspektivering af Kvant 2. Opfølgning af introduktionsforelæsningen.

Læs mere

Rettevejledning til Økonomisk Kandidateksamen 2004I, Økonometri 1

Rettevejledning til Økonomisk Kandidateksamen 2004I, Økonometri 1 Rettevejledning til Økonomisk Kandidateksamen 004I, Økonometri Vurderingsgrundlaget er selve opgavebesvarelsen og bilaget. Programmer og data som er afleveret på diskette/cd bedømmes som sådan ikke, men

Læs mere

Økonometri lektion 5 Multipel Lineær Regression. Inferens Modelkontrol Prædiktion

Økonometri lektion 5 Multipel Lineær Regression. Inferens Modelkontrol Prædiktion Økonometri lektion 5 Multipel Lineær Regression Inferens Modelkontrol Prædiktion Multipel Lineær Regression Data: Sæt af oservationer (x i, x i,, x ki, y i, i,,n y i er den afhængige variael x i, x i,,

Læs mere

Multipel Lineær Regression

Multipel Lineær Regression Multipel Lineær Regression Trin i opbygningen af en statistisk model Repetition af MLR fra sidst Modelkontrol Prædiktion Kategoriske forklarende variable og MLR Opbygning af statistisk model Specificer

Læs mere

Appendiks Økonometrisk teori... II

Appendiks Økonometrisk teori... II Appendiks Økonometrisk teori... II De klassiske SLR-antagelser... II Hypotesetest... VII Regressioner... VIII Inflation:... VIII Test for SLR antagelser... IX Reset-test... IX Plots... X Breusch-Pagan

Læs mere

Kapitel 12 Variansanalyse

Kapitel 12 Variansanalyse Kapitel 12 Variansanalyse Peter Tibert Stoltze stat@peterstoltzedk Elementær statistik F2011 Version 7 april 2011 1 / 43 Indledning Sammenligning af middelværdien i to grupper indenfor en stikprøve kan

Læs mere

Økonometri Lektion 1 Simpel Lineær Regression 1/31

Økonometri Lektion 1 Simpel Lineær Regression 1/31 Økonometri Lektion 1 Simpel Lineær Regression 1/31 Simpel Lineær Regression Mål: Forklare variablen y vha. variablen x. Fx forklare Salg (y) vha. Reklamebudget (x). Statistisk model: Vi antager at sammenhængen

Læs mere

Anvendt Statistik Lektion 7. Simpel Lineær Regression

Anvendt Statistik Lektion 7. Simpel Lineær Regression Anvendt Statistik Lektion 7 Simpel Lineær Regression 1 Er der en sammenhæng? Plot af mordraten () mod fattigdomsraten (): Scatterplot Afhænger mordraten af fattigdomsraten? 2 Scatterplot Et scatterplot

Læs mere

Statistiske principper

Statistiske principper Statistiske principper 1) Likelihood princippet - Maximum likelihood estimater - Likelihood ratio tests - Deviance 2) Modelbegrebet - Modelkontrol 3) Sufficient datareduktion 4) Likelihood inferens i praksis

Læs mere

Module 12: Mere om variansanalyse

Module 12: Mere om variansanalyse Module 12: Mere om variansanalyse 12.1 Parreded observationer.................. 1 12.2 Faktor med 2 niveauer (0-1 variabel)......... 3 12.3 Tosidig variansanalyse med tilfældig virkning..... 9 12.3.1 Uafhængighedsbetragtninger..........

Læs mere

! Husk at udfylde spørgeskema 3. ! Lineær sandsynlighedsmodel. ! Eksempel. ! Mere om evaluering og selvselektion

! Husk at udfylde spørgeskema 3. ! Lineær sandsynlighedsmodel. ! Eksempel. ! Mere om evaluering og selvselektion Dagens program Økonometri 1 Dummy variable 4. marts 003 Emnet for denne forelæsning er kvalitative variable i den multiple regressionsmodel (Wooldridge kap. 7.5-7.6+8.1)! Husk at udfylde spørgeskema 3!

Læs mere

Modul 11: Simpel lineær regression

Modul 11: Simpel lineær regression Forskningsenheden for Statistik ST01: Elementær Statistik Bent Jørgensen Modul 11: Simpel lineær regression 11.1 Regression uden gentagelser............................. 1 11.1.1 Oversigt....................................

Læs mere

Regneregler for middelværdier M(X+Y) = M X +M Y. Spredning varians og standardafvigelse. 1 n VAR(X) Y = a + bx VAR(Y) = VAR(a+bX) = b²var(x)

Regneregler for middelværdier M(X+Y) = M X +M Y. Spredning varians og standardafvigelse. 1 n VAR(X) Y = a + bx VAR(Y) = VAR(a+bX) = b²var(x) Formelsamlingen 1 Regneregler for middelværdier M(a + bx) a + bm X M(X+Y) M X +M Y Spredning varians og standardafvigelse VAR(X) 1 n n i1 ( X i - M x ) 2 Y a + bx VAR(Y) VAR(a+bX) b²var(x) 2 Kovariansen

Læs mere

Løsninger til kapitel 14

Løsninger til kapitel 14 Opgave 14.1 a) Linjetilpasningsplottet bliver: Løsninger til kapitel 14 Idet datapunkterne ligger tæt på og jævnt fordelt omkring den rette linje, så ser det ud til, at der med rimelighed er tale om en

Læs mere

Kapitel 12 Variansanalyse

Kapitel 12 Variansanalyse Kapitel 12 Variansanalyse Peter Tibert Stoltze stat@peterstoltzedk Elementær statistik F2011 Version 7 april 2011 1 Indledning 2 Ensidet variansanalyse 3 Blokforsøg 4 Vekselvirkning 1 Indledning 2 Ensidet

Læs mere

Statistik og Sandsynlighedsregning 2. Repetition og eksamen. Overheads til forelæsninger, mandag 7. uge

Statistik og Sandsynlighedsregning 2. Repetition og eksamen. Overheads til forelæsninger, mandag 7. uge Statistik og Sandsynlighedsregning 2 Repetition og eksamen Overheads til forelæsninger, mandag 7. uge 1 Normalfordelingen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange

Læs mere

Besvarelser til øvelsesopgaver i uge 6

Besvarelser til øvelsesopgaver i uge 6 Besvarelser til øvelsesopgaver i uge 6 Opgave 7.46, side 228 (7ed 7.28, side 244 og 6ed: 7.28, side 240) Vi tænker os, at vi har data for emissionen {x 1, x 2,..., x n }, når det pågældende device er monteret.

Læs mere

Estimation og konfidensintervaller

Estimation og konfidensintervaller Statistik og Sandsynlighedsregning STAT kapitel 4.4 Susanne Ditlevsen Institut for Matematiske Fag Email: susanne@math.ku.dk http://math.ku.dk/ susanne Estimation og konfidensintervaller Antag X Bin(n,

Læs mere

Statistik II 4. Lektion. Logistisk regression

Statistik II 4. Lektion. Logistisk regression Statistik II 4. Lektion Logistisk regression Logistisk regression: Motivation Generelt setup: Dikotom(binær) afhængig variabel Kontinuerte og kategoriske forklarende variable (som i lineær reg.) Eksempel:

Læs mere

Økonometri 1 Forår 2006 Ugeseddel 11

Økonometri 1 Forår 2006 Ugeseddel 11 Økonometri 1 Forår 2006 Ugeseddel 11 Program for øvelserne: Gruppearbejde og plenumdiskussion Introduktion til SAS øvelser SAS øvelser Øvelsesopgave 5: Paneldata estimation af indkomstligninger på danske

Læs mere