Økonometri 1 Forår 2006 Ugeseddel 11

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "Økonometri 1 Forår 2006 Ugeseddel 11"

Transkript

1 Økonometri 1 Forår 2006 Ugeseddel 11 Program for øvelserne: Gruppearbejde og plenumdiskussion Introduktion til SAS øvelser SAS øvelser Øvelsesopgave 5: Paneldata estimation af indkomstligninger på danske registerdata I dette opgavesæt undersøger vi sammenhængen mellem indkomst og alder. Datagrundlaget for øvelsen er et repræsentativt udtræk fra Danmarks Statistiks registerbaserede IDA-database (Den integrerede database for arbejdsmarkedsforskning). IDA dækker hele befolkningen med mulighed for at følge de enkelte personer over tid og rummer en række årlige oplysninger om lønmodtagere og virksomheder. Her vil vi fokusere på oplysninger om personens indkomst og en række demografi -variabler, blandt andet personens alder. Formålet med analysen er at estimere den forventede sammenhæng mellem alder og indkomst over et livsforløb for en kvinde med givne demografiske karakteristika (småbørn, længde af uddannelse og samleverstatus). Sådanne forløb for indkomsten over levetiden ligger til grund for mange makroteorier. Ofte antages, at indkomsten for et individ forløber som en konkav funktion af alderen, der er voksende indtil et vist punkt, age *, hvorefter den aftager. Målet med dette opgavesæt er at efterprøve, om sammenhængen kan genfindes i danske registerdata. Data Fra IDA-stikprøven udvælges et datasæt bestående af 286 kvinder i alderen fra 30 til 59 år. Kvinderne observeres fra 1980 til og med 1994, i alt 15 år. 1 Der er altså tale om et balanceret paneldatasæt med i alt 4290 observationer. Hver observation identificeres med variablen personid, som er et anonymt løbenummer for den enkelte kvinde, og variablen year, som angiver året for observationen. Vi observerer følgende variabler: income age agesq edu kvindens bruttoindkomst (i faste priser) kvindens alder (regnet i år) alderen kvadreret antal års skolegang 1 Antag at oplysningerne vedrører 1. november i året, bortset fra indkomsten som dækker hele året. Danmarks Statistiks IDA tal dækker perioden fra 1980 til 2002.

2 single child06 Lig med 1, hvis kvinden ikke er samlevende, lig med 0 ellers Lig med 1, hvis kvinden har et barn i alderen 0 6 år, lig med 0 ellers. Data ligger som en SAS-datafil INCOMED.SAS7BDAT på øvelseshjemmesiden. Model Vi vil undersøge data på grundlag af en simpel paneldata model: incomeit = β0 + β1ageit + β2agesqit + β3eduit + β4singleit + β5child06 it + ai + uit, i = 1,2,...,286, t = 1,2,...,15. (1) Modellen antages at opfylde betingelserne FE.1-6, se Wooldridge side , hvor a i er en uobserveret individ-specifik effekt, mens fejlleddet u it varierer både over i og t. Bemærk at perioderne er kodet som 1,2,,15, hvor t=1 svarer til 1980, t=2 til 1981, osv. Gruppearbejde og plenumdiskussion: I grupper af 3-4 personer diskuteres flg. spørgsmål. Som sædvanlig vælges talsmænd der rapporterer tilbage i plenum. Diskuter følgende spørgsmål: a. Hvilken sammenhæng er der mellem på den ene side variablen age og på den anden side den fødselsårgang ( kohorte ), som en kvinde tilhører? [Husk at der for hver kvinde er observationer for hvert år fra 1980 til Det kan være en god ide at tegne et diagram med tiden på 1. aksen og alderen på 2. aksen.] b. Antag for et øjeblik, at vi ignorerer panelstrukturen og estimerer modellen i (1) som en OLS regression på det poolede datasæt med det sammensatte fejlled, v it = a i + u it. Hvilke problemer giver det for tolkningen af sammenhængen mellem alder og indkomst, hvis der er korrelation mellem kvinders fødselsårgang og længden af deres uddannelse, edu? Hvis der er korrelation mellem kvindens fødselsårgang og en eller flere variabler, der ikke er medtaget i (1)? Kan du give eksempler på sådanne variabler? SAS-øvelser: Én gruppe vil blive bedt om at lave en kort opsamling (½-1 side) af Spørgsmål 8. Opsamlingen sendes til jeres holdlærer og til

3 1. Indlæs datasættet fra INCOMED i SAS. Dan dernæst et datasæt som kaldes INCOMEDS ved t sortere data, først efter variablen personid og dernæst for hvert individ efter variablen year. Du kan bruge følgende procedure (erstat mylib nedenfor med det libname, hvor datasættet faktisk ligger): proc sort data=mylib.incomed out=incomeds; by personid year; run; Lav en Viewtable på det sorterede datasæt INCOMEDS. Hvilke variabler varierer over individer, men ikke over tid? Er der andre ting at bemærke om datasættet? [Husk at lukke Viewtable bagefter.] 2. Estimér modellen i (1) som en OLS regression på det poolede datasæt bestående af alle kvinder og alle perioder. Hvilken sammenhæng mellem alder og indkomst kan der udledes fra disse estimater? Skitsér sammenhængen i et diagram med alderen på 1. aksen og indkomst på 2. aksen. I hvilken alder finder man den højeste forventede indkomst? (Vil svaret afhænge af værdien af demografi-variablerne?) Hvilke problemer kan det give at tolke figuren som en forventet sammenhæng mellem alder og indkomst for en given kvinde, alt andet lige? 3. Vi ønsker nu at korrigere for at der kan være udeladt tidsinvariante variabler fra modellen. I første omgang vil vi korrigere alle variablerne for deres individ-specifikke gennemsnit. Det kan fx gøres ved hjælp af Proc Means: proc means data=incomeds noprint ; by personid ; output out=inc_mean mean(income age edu child06 single agesq)=/autoname; Der bliver dannet et datasæt INC_MEAN bestående af gennemsnittene. BY sørger for at gennemsnittene beregnes for hver enkelt værdi af personid. NOPRINT sørger for, at der ikke bliver udskrevet en tabel for hvert individ. Optionen AUTONAME tilføjer _mean til variabelnavnet som betegnelse for gennemsnittet. Næste trin er at splejse de beregnede individ-gennemsnit tilbage på det oprindelige datasæt og at beregne afvigelser fra individ-specifikke gennemsnit. [Hint: Du kan bruge MERGE kommandoen fra Ugeseddel 8 med personid som BY-variabel. Tjek ved hjælp af Viewtable, at det splejsede datasæt ser ud som ønsket. Husk at lukke vinduet.] 4. Udfør Within estimation på grundlag af modellen (1) og de transformerede variabler fra spørgsmål 3. [Hint: Brug Proc Reg og sørg for at udelade konstantleddet med en NOINT option.] Hvilken sammenhæng mellem alder og indkomst må man forvente ifølge Within-estimaterne? Tager Within-estimatoren højde for de problemer omkring den poolede OLS estimator, som du påpegede i spørgsmål 2?

4 5. Udfør første-differens (FD) estimation på grundlag af modellen (1). Først skal der dannes førstedifferenser af alle variablerne. Her er et DATA trin som danner første-differenser af indkomsten, Dincome: data income_merge ; set income_merge ; personid_1 = lag(personid) ; income_1 = lag(income) ; IF personid = personid_1 THEN Dincome = income - income_1 ; Hvilken rolle spiller IF-THEN i DATA trinnet? Tjek ved hjælp af Viewtable, at det transformerede datasæt bliver som ønsket. Hvor mange brugbare observationer er der nu? [Husk at lukke vinduet.] Udfør FD-estimationen ved at køre en Proc Reg på første-differenserne. Tage FD-estimatoren højde for de problemer omkring den poolede OLS estimator, som du påpegede i spørgsmål 2? 6. SAS har forskellige indbyggede procedurer til paneldata estimation. Vi vil her introducere proceduren Proc Tscsreg ( time-series cross-section regression ). Proceduren kaldes med følgende kommandoer: proc tscsreg data = incomeds ; id personid year ; model income = age agesq edu child06 single / fixone noint ; ID sætningen fortæller SAS, hvilke variabler der registrerer individets løbenummer (personid) og perioden for observationen (year). Optionen FIXONE betyder at der anvendes Withinestimation (som ofte blot kaldes for fixed effects estimation). Kør Proc Tscsreg med denne option og sammenlign med dine resultater under spørgsmål 4. Bemærk at standardfejlene (og dermed t-værdierne) er forskellige. Det skyldes, at vores direkte beregning under spørgsmål 4 ikke tog højde for den korrektion af frihedsgrader, som er nævnt i Wooldridge på side 487. Proc Tscsreg laver den rigtige korrektion. Hvilke problemer kan der være i at estimere koefficienten β 3 til edu med denne estimator? 7. Alternativt kan man i Proc Tscsreg vælge optionen RANONE, som giver random effects (RE) estimaterne, se Wooldridge, afsnit Sammenlign dine estimater med Within-estimaterne. Tager random effects -estimatoren højde for de problemer omkring den poolede OLS estimator, som du påpegede i spørgsmål 2? 8. Sammenfat dine resultater i form af en kommenteret tabel, Tabellen skal rapportere de estimater af model (1), du har opnået med pooled OLS, Within, FD og RE estimation. Kommenter kort på tabellen. Kommenter også på, hvorledes de forskellige estimatorer forholder sig til hinanden og hvilke(t) sæt af estimater, du vil lægge til grund for din vurdering af den forventede sammenhæng mellem alder og indkomst for en given kvinde, alt andet lige?

5 Hjemmearbejde Lav resten af SAS-øvelserne, hvis dette ikke er nået til øvelserne.

Økonometri 1 Efterår 2006 Ugeseddel 11

Økonometri 1 Efterår 2006 Ugeseddel 11 Økonometri 1 Efterår 2006 Ugeseddel 11 Program for øvelserne: Gruppearbejde og plenumdiskussion Introduktion til SAS øvelser SAS øvelser Øvelsesopgave: Paneldata estimation Sammenhængen mellem alder og

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Gentagne tværsnit og paneldata Kvantitative metoder 2 Gentagne tværsnit og panel data II 9. maj 2007 I dag: To-periode panel data: Følger de samme individer over to perioder (13.3-4) Unobserved effects

Læs mere

Økonometri 1. Gentagne tværsnit (W ): Opsamling. Gentagne tværsnit og paneldata. Gentagne Tværsnit og Paneldata II.

Økonometri 1. Gentagne tværsnit (W ): Opsamling. Gentagne tværsnit og paneldata. Gentagne Tværsnit og Paneldata II. Gentagne tværsnit (W 13.1-): Opsamling. Økonometri 1 Gentagne Tværsnit og Paneldata II Kombinerer tværsnit indsamlet på forskellige tidspunkter. Partial pooling: Tillader koefficienterne til nogle af variablerne

Læs mere

Økonometri 1. Oversigt. Mere om dataproblemer Gentagne tværsnit og panel data I

Økonometri 1. Oversigt. Mere om dataproblemer Gentagne tværsnit og panel data I Oversigt Økonometri 1 Mere om dataproblemer Gentagne tværsnit og panel data I Info om prøveeksamen Mere om proxyvariabler og målefejl fra sidste gang. Selektion og dataproblemer Intro til nyt emne: Observationer

Læs mere

Økonometri 1. Den simple regressionsmodel 11. september Økonometri 1: F2

Økonometri 1. Den simple regressionsmodel 11. september Økonometri 1: F2 Økonometri 1 Den simple regressionsmodel 11. september 2006 Dagens program Den simple regressionsmodel SLR : Én forklarende variabel (Wooldridge kap. 2.1-2.4) Motivation for gennemgangen af SLR Definition

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Kvantitative metoder Heteroskedasticitet 11. april 007 KM: F18 1 Oversigt: Heteroskedasticitet OLS estimation under heteroskedasticitet (W.8.1-): Konsekvenser af heteroskedasticitet for OLS Gyldige test

Læs mere

Økonometri 1. Dagens program. Den multiple regressionsmodel 18. september 2006

Økonometri 1. Dagens program. Den multiple regressionsmodel 18. september 2006 Dagens program Økonometri Den multiple regressionsmodel 8. september 006 Opsamling af statistiske resultater om den simple lineære regressionsmodel (W kap..5). Den multiple lineære regressionsmodel (W

Læs mere

! Proxy variable. ! Målefejl. ! Manglende observationer. ! Dataudvælgelse. ! Ekstreme observationer. ! Eksempel: Lønrelation (på US data)

! Proxy variable. ! Målefejl. ! Manglende observationer. ! Dataudvælgelse. ! Ekstreme observationer. ! Eksempel: Lønrelation (på US data) Dagens program Økonometri 1 Specifikation, og dataproblemer 10. april 003 Emnet for denne forelæsning er specifikation (Wooldridge kap. 9.-9.4)! Proxy variable! Målefejl! Manglende observationer! Dataudvælgelse!

Læs mere

Økonometri 1. Inferens i den lineære regressionsmodel 25. september Økonometri 1: F6 1

Økonometri 1. Inferens i den lineære regressionsmodel 25. september Økonometri 1: F6 1 Økonometri 1 Inferens i den lineære regressionsmodel 25. september 2006 Økonometri 1: F6 1 Oversigt: De næste forelæsninger Statistisk inferens: hvorledes man med udgangspunkt i en statistisk model kan

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Kvantitative metoder 2 Specifikation og dataproblemer 2. maj 2007 KM2: F22 1 Program Specifikation og dataproblemer, fortsat (Wooldridge kap. 9): Betydning af målefejl Dataudvælgelse: Manglende observationer

Læs mere

Rettevejledning til Økonomisk Kandidateksamen 2007II. Kvantitative Metoder 2: Tag-hjem eksamen

Rettevejledning til Økonomisk Kandidateksamen 2007II. Kvantitative Metoder 2: Tag-hjem eksamen Rettevejledning til Økonomisk Kandidateksamen 2007II Kvantitative Metoder 2: Tag-hjem eksamen Der skal for hver studerende foretages en samlet bedømmelse af tag-hjem gruppeopgaven og den individuelle 2-timers

Læs mere

Simpel Lineær Regression

Simpel Lineær Regression Simpel Lineær Regression Mål: Forklare variablen y vha. variablen x. Fx forklare Salg (y) vha. Reklamebudget (x). Vi antager at sammenhængen mellem y og x er beskrevet ved y = β 0 + β 1 x + u. y: Afhængige

Læs mere

Økonometri 1. Inferens i den lineære regressionsmodel 2. oktober Økonometri 1: F8 1

Økonometri 1. Inferens i den lineære regressionsmodel 2. oktober Økonometri 1: F8 1 Økonometri 1 Inferens i den lineære regressionsmodel 2. oktober 2006 Økonometri 1: F8 1 Dagens program Opsamling om asymptotiske egenskaber: Asymptotisk normalitet Asymptotisk efficiens Test af flere lineære

Læs mere

Den samlede model til estimation af lønpræmien er da givet ved:

Den samlede model til estimation af lønpræmien er da givet ved: Lønpræmien Lønpræmien i en branche kan indikere, om konkurrencen er hård eller svag i branchen. Hvis der er svag konkurrence mellem virksomhederne i branchen, vil det ofte give sig udslag i både højere

Læs mere

Basal statistik for lægevidenskabelige forskere, forår 2014 Udleveret 4. marts, afleveres senest ved øvelserne i uge 13 (25.

Basal statistik for lægevidenskabelige forskere, forår 2014 Udleveret 4. marts, afleveres senest ved øvelserne i uge 13 (25. Hjemmeopgave Basal statistik for lægevidenskabelige forskere, forår 2014 Udleveret 4. marts, afleveres senest ved øvelserne i uge 13 (25.-27 marts) Garvey et al. interesserer sig for sammenhængen mellem

Læs mere

Økonometri: Lektion 2 Multipel Lineær Regression 1/27

Økonometri: Lektion 2 Multipel Lineær Regression 1/27 Økonometri: Lektion 2 Multipel Lineær Regression 1/27 Multipel Lineær Regression Sidst så vi på simpel lineær regression, hvor y er forklaret af én variabel. Der er intet, der forhindre os i at have mere

Læs mere

1. Intoduktion. Undervisningsnoter til Øvelse i Paneldata

1. Intoduktion. Undervisningsnoter til Øvelse i Paneldata 1 Intoduktion Før man springer ud i en øvelse om paneldata og panelmodeller, kan det selvfølgelig være rart at have en fornemmelse af, hvorfor de er så vigtige i moderne mikro-økonometri, og hvorfor de

Læs mere

Note om Monte Carlo eksperimenter

Note om Monte Carlo eksperimenter Note om Monte Carlo eksperimenter Mette Ejrnæs og Hans Christian Kongsted Økonomisk Institut, Københavns Universitet 22. februar 2005 Denne note er skrevet til kurset Økonometri 1 på 2. årsprøve af polit-studiet.

Læs mere

Analysestrategi. Lektion 7 slides kompileret 27. oktober 200315:24 p.1/17

Analysestrategi. Lektion 7 slides kompileret 27. oktober 200315:24 p.1/17 nalysestrategi Vælg statistisk model. Estimere parametre i model. fx. lineær regression Udføre modelkontrol beskriver modellen data tilstrækkelig godt og er modellens antagelser opfyldte fx. vha. residualanalyse

Læs mere

Kvantitative Metoder 1 - Forår 2007. Dagens program

Kvantitative Metoder 1 - Forår 2007. Dagens program Dagens program Kapitel 7 Introduktion til statistik Organisering af data Diskrete variabler Kontinuerte variabler Beskrivende statistik Fraktiler Gennemsnit Empirisk varians og spredning Empirisk korrelationkoe

Læs mere

Økonometri 1. Dagens program. Den simple regressionsmodel 15. september 2006

Økonometri 1. Dagens program. Den simple regressionsmodel 15. september 2006 Dagens program Økonometri Den simple regressionsmodel 5. september 006 Den simple lineære regressionsmodel (Wooldridge kap.4-.6) Eksemplet fortsat: Løn og uddannelse på danske data Funktionel form Statistiske

Læs mere

Økonometri Lektion 1 Simpel Lineær Regression 1/31

Økonometri Lektion 1 Simpel Lineær Regression 1/31 Økonometri Lektion 1 Simpel Lineær Regression 1/31 Simpel Lineær Regression Mål: Forklare variablen y vha. variablen x. Fx forklare Salg (y) vha. Reklamebudget (x). Statistisk model: Vi antager at sammenhængen

Læs mere

Introduktion til GLIMMIX

Introduktion til GLIMMIX Introduktion til GLIMMIX Af Jens Dick-Nielsen jens.dick-nielsen@haxholdt-company.com 21.08.2008 Proc GLIMMIX GLIMMIX kan bruges til modeller, hvor de enkelte observationer ikke nødvendigvis er uafhængige.

Læs mere

Økonometri: Lektion 7 Emne: Prædiktionsintervaller, RESET teset, proxy variable og manglende data.

Økonometri: Lektion 7 Emne: Prædiktionsintervaller, RESET teset, proxy variable og manglende data. Økonometri: Lektion 7 Emne: Prædiktionsintervaller, RESET teset, proxy variable og manglende data. 1 / 32 Motivation Eksempel: Savings = β 0 + β 1 Income + u Vi ved allerede, hvordan vi estimerer regresseionlinjen:

Læs mere

Anvendt Statistik Lektion 8. Multipel Lineær Regression

Anvendt Statistik Lektion 8. Multipel Lineær Regression Anvendt Statistik Lektion 8 Multipel Lineær Regression 1 Simpel Lineær Regression (SLR) y Sammenhængen mellem den afhængige variabel (y) og den forklarende variabel (x) beskrives vha. en SLR: ligger ikke

Læs mere

Baggrundsnotat: Søskendes uddannelsesvalg og indkomst

Baggrundsnotat: Søskendes uddannelsesvalg og indkomst 17. december 2013 Baggrundsnotat: Søskendes uddannelsesvalg og indkomst Dette notat redegør for den økonometriske analyse af indkomstforskelle mellem personer med forskellige lange videregående uddannelser

Læs mere

Kunderne betaler højere bankskat

Kunderne betaler højere bankskat N O T A T Kunderne betaler højere bankskat 23. august 2011 Resumé Bankskat og andre afgifter afviger ikke fra andre omkostninger; de lægges typisk oven på prisen på varen. Denne analyse viser, at pålægges

Læs mere

Økonometri 1. Dagens program: Afslutningsforelæsning 23. maj 2007

Økonometri 1. Dagens program: Afslutningsforelæsning 23. maj 2007 Dagens program: Økonometri 1 Afslutningsforelæsning 23. maj 2007 6-trins procedure til IV estimation. Afrunding af IV: Rygning og fødselsvægt. Afrunding og perspektivering af Kvant 2. Opfølgning af introduktionsforelæsningen.

Læs mere

Løsning til eksaminen d. 14. december 2009

Løsning til eksaminen d. 14. december 2009 DTU Informatik 02402 Introduktion til Statistik 200-2-0 LFF/lff Løsning til eksaminen d. 4. december 2009 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition,

Læs mere

Økonometri 1. Dummyvariabler 13. oktober Økonometri 1: F10 1

Økonometri 1. Dummyvariabler 13. oktober Økonometri 1: F10 1 Økonometri 1 Dummyvariabler 13. oktober 2006 Økonometri 1: F10 1 Dagens program Dummyvariabler i den multiple regressionsmodel (Wooldridge kap. 7.3-7.6) Dummy variabler for kvalitative egenskaber med flere

Læs mere

Adgangsgivende eksamen (udeladt kategori: Matematisk student med matematik på niveau A)

Adgangsgivende eksamen (udeladt kategori: Matematisk student med matematik på niveau A) Økonometri 1 Forår 2003 Ugeseddel 13 Program for øvelserne: Gruppearbejde Opsamling af gruppearbejdet og introduktion af SAS SAS-øvelser i computerkælderen Øvelsesopgave 6: Hvem består første årsprøve

Læs mere

Økonometri 1. Prediktion. Dummyvariabler 9. oktober Økonometri 1: F9 1

Økonometri 1. Prediktion. Dummyvariabler 9. oktober Økonometri 1: F9 1 Økonometri 1 Prediktion. Dummyvariabler 9. oktober 2006 Økonometri 1: F9 1 Program frem til efterårsferien Om goodness-of-fit, prediktion og residualer (kap. 6.3-4) Kvalitative egenskaber i den multiple

Læs mere

β = SDD xt SSD t σ 2 s 2 02 = SSD 02 f 02 i=1

β = SDD xt SSD t σ 2 s 2 02 = SSD 02 f 02 i=1 Lineær regression Lad x 1,..., x n være udfald af stokastiske variable X 1,..., X n og betragt modellen M 2 : X i N(α + βt i, σ 2 ) hvor t i, i = 1,..., n, er kendte tal. Konkret analyseres (en del af)

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Kvantitative metoder 2 Den multiple regressionsmodel 5. marts 2007 regressionsmodel 1 Dagens program Emnet for denne forelæsning er stadig den multiple regressionsmodel (Wooldridge kap. 3.4-3.5, E.2) Variansen

Læs mere

Uge 43 I Teoretisk Statistik, 21. oktober Forudsigelser

Uge 43 I Teoretisk Statistik, 21. oktober Forudsigelser Uge 43 I Teoretisk Statistik,. oktober 3 Simpel lineær regressionsanalyse Forudsigelser Fortolkning af regressionsmodellen Ekstreme observationer Transformationer Sammenligning af to regressionslinier

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Kvantitative metoder 2 Inferens i den lineære regressionsmodel 7. marts 2007 regressionsmodel 1 Opgave fra sidst (Gauss-Markov teoremet) Opgave: Vis at hvis M = I X X X X 1 ( ' ) ' er M idempoten dvs der

Læs mere

Wooldridge, kapitel 19: Carrying out an Empirical Project. Information og spørgsmål vedr. eksamen. Økonometri 1: Afslutningsforelæsning 2

Wooldridge, kapitel 19: Carrying out an Empirical Project. Information og spørgsmål vedr. eksamen. Økonometri 1: Afslutningsforelæsning 2 Økonometri 1 Afslutningsforelæsning 19. maj 2003 Økonometri 1: Afslutningsforelæsning 1 Evalueringer Kun 23 har udfyldt evalueringsskemaerne ud af ca. 120 tilmeldte til eksamen Resultatet kan ses på hjemmesiden

Læs mere

To samhørende variable

To samhørende variable To samhørende variable Statistik er tal brugt som argumenter. - Leonard Louis Levinsen Antagatviharn observationspar x 1, y 1,, x n,y n. Betragt de to tilsvarende variable x og y. Hvordan måles sammenhængen

Læs mere

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA) Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:

Læs mere

Oversigt. 1 Gennemgående eksempel: Højde og vægt. 2 Korrelation. 3 Regressionsanalyse (kap 11) 4 Mindste kvadraters metode

Oversigt. 1 Gennemgående eksempel: Højde og vægt. 2 Korrelation. 3 Regressionsanalyse (kap 11) 4 Mindste kvadraters metode Kursus 02402 Introduktion til Statistik Forelæsning 11: Kapitel 11: Regressionsanalyse Oversigt 1 Gennemgående eksempel: Højde og vægt 2 Korrelation 3 Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse

Læs mere

Kvantitative Metoder 1 - Forår 2007

Kvantitative Metoder 1 - Forår 2007 Dagens program Estimation: Kapitel 9.1-9.3 Estimation Estimationsfejlen Bias Eksempler Bestemmelse af stikprøvens størrelse Konsistens De nitioner påkonsistens Eksempler på konsistente og middelrette estimatorer

Læs mere

Økonomisk Kandidateksamen 2006II Økonometri 1. Afkastet af uddannelse for britiske tvillingepar

Økonomisk Kandidateksamen 2006II Økonometri 1. Afkastet af uddannelse for britiske tvillingepar Økonomisk Kandidateksamen 2006II Økonometri 1 Afkastet af uddannelse for britiske tvillingepar Praktiske anvisninger til individuel tag-hjem eksamen i Økonometri 1: Start med at sikre dig, at du kan få

Læs mere

Note om Monte Carlo eksperimenter

Note om Monte Carlo eksperimenter Note om Monte Carlo eksperimenter Mette Ejrnæs og Hans Christian Kongsted Økonomisk Institut, Københavns Universitet 9. september 003 Denne note er skrevet til kurset Økonometri på. årsprøve af polit-studiet.

Læs mere

! Variansen på OLS estimatoren. ! Multikollinaritet. ! Variansen i misspecificerede modeller. ! Estimat af variansen på fejlleddet

! Variansen på OLS estimatoren. ! Multikollinaritet. ! Variansen i misspecificerede modeller. ! Estimat af variansen på fejlleddet Dagens program Økonometri Den multiple regressionsmodel 4. februar 003 regressionsmodel Emnet for denne forelæsning er stadig den multiple regressionsmodel (Wooldridge kap. 3.4-3.5)! Opsamling fra sidst

Læs mere

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA) Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:

Læs mere

Forelæsning 11: Kapitel 11: Regressionsanalyse

Forelæsning 11: Kapitel 11: Regressionsanalyse Kursus 02402 Introduktion til Statistik Forelæsning 11: Kapitel 11: Regressionsanalyse Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

! Husk at udfylde spørgeskema 3. ! Lineær sandsynlighedsmodel. ! Eksempel. ! Mere om evaluering og selvselektion

! Husk at udfylde spørgeskema 3. ! Lineær sandsynlighedsmodel. ! Eksempel. ! Mere om evaluering og selvselektion Dagens program Økonometri 1 Dummy variable 4. marts 003 Emnet for denne forelæsning er kvalitative variable i den multiple regressionsmodel (Wooldridge kap. 7.5-7.6+8.1)! Husk at udfylde spørgeskema 3!

Læs mere

Økonometri: Lektion 2 Multipel Lineær Regression 1/33

Økonometri: Lektion 2 Multipel Lineær Regression 1/33 Økonometri: Lektion 2 Multipel Lineær Regression 1/33 Simpel Lineær Regression: Model Sidst så vi på simpel lineære regression. Det er en statisisk model på formen y = β 0 +β 1 x +u, hvor fejlledet u,

Læs mere

Man indlæser en såkaldt frequency-table i SAS ved følgende kommandoer:

Man indlæser en såkaldt frequency-table i SAS ved følgende kommandoer: 1 IHD-Lexis 1.1 Spørgsmål 1 Man indlæser en såkaldt frequency-table i SAS ved følgende kommandoer: data ihdfreq; input eksp alder pyrs cases; lpyrs=log(pyrs); cards; 0 2 346.87 2 0 1 979.34 12 0 0 699.14

Læs mere

Anvendt Statistik Lektion 7. Simpel Lineær Regression

Anvendt Statistik Lektion 7. Simpel Lineær Regression Anvendt Statistik Lektion 7 Simpel Lineær Regression 1 Er der en sammenhæng? Plot af mordraten () mod fattigdomsraten (): Scatterplot Afhænger mordraten af fattigdomsraten? 2 Scatterplot Et scatterplot

Læs mere

Epidemiologi og Biostatistik Opgaver i Biostatistik Uge 10: 13. april

Epidemiologi og Biostatistik Opgaver i Biostatistik Uge 10: 13. april Århus 8. april 2011 Morten Frydenberg Epidemiologi og Biostatistik Opgaver i Biostatistik Uge 10: 13. april Opgave 1 ( gruppe 1: sp 1-4, gruppe 5: sp 5-9 og gruppe 6: 10-14) I denne opgaveser vi på et

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Opgave fra sidst (Gauss-Markov teoremet) Kvantitative metoder Inferens i den lineære regressionsmodel 7. marts 007 Opgave: Vis at hvis M = I X X X X ( ' ) ' er M idempoten dvs der gælder gælder M = M '

Læs mere

Simpel Lineær Regression: Model

Simpel Lineær Regression: Model Simpel Lineær Regression: Model Sidst så vi på simpel lineære regression. Det er en statisisk model på formen y = β 0 + β 1 x + u, hvor fejlledet u, har egenskaben E[u x] = 0. Dette betyder bl.a. E[y x]

Læs mere

Økonometri: Lektion 6 Emne: Heteroskedasticitet

Økonometri: Lektion 6 Emne: Heteroskedasticitet Økonometri: Lektion 6 Emne: Heteroskedasticitet 1 / 32 Konsekvenser af Heteroskedasticitet Antag her (og i resten) at MLR.1 til MLR.4 er opfyldt. Antag MLR.5 ikke er opfyldt, dvs. vi har heteroskedastiske

Læs mere

, i ' 1,...,N ; t ' 1,...,T, - i.i.d.(0,f 2, ), ) ' 0, E(, it. x kjs. œ i,t,s,j,k.

, i ' 1,...,N ; t ' 1,...,T, - i.i.d.(0,f 2, ), ) ' 0, E(, it. x kjs. œ i,t,s,j,k. 3 Den model, som vi gennemgående skal arbejde med i øvelsen, er»one-way Error Component«Modellen (1EC) Modellen specificeres på følgende måde: y it ' x it $ % µ i %, it, i ' 1,,N ; t ' 1,,T, hvor y it

Læs mere

Økonometri 1 Efterår 2006 Ugeseddel 9

Økonometri 1 Efterår 2006 Ugeseddel 9 Økonometr 1 Efterår 006 Ugeseddel 9 Program for øvelserne: Opsamlng på Ugeseddel 8 Gruppearbejde SAS øvelser Ugeseddel 9 består at undersøge, om der er heteroskedastctet vores model for væksten og så fald,

Læs mere

Modul 12: Regression og korrelation

Modul 12: Regression og korrelation Forskningsenheden for Statistik ST01: Elementær Statistik Bent Jørgensen Modul 12: Regression og korrelation 12.1 Sammenligning af to regressionslinier........................ 1 12.1.1 Test for ens hældning............................

Læs mere

Statistik i GeoGebra

Statistik i GeoGebra Statistik i GeoGebra Peter Harremoës 13. maj 2015 Jeg vil her beskrive hvordan man kan lave forskellige statistiske analyser ved hjælp af GeoGebra 4.2.60.0. De statistiske analyser svarer til pensum Matematik

Læs mere

Træningsaktiviteter dag 3

Træningsaktiviteter dag 3 Træningsaktiviteter dag 3 I træningsaktiviteterne skal I arbejde videre med Framingham data og risikoen for hjertesygdom. I skal dels lave MH-analyser som vi gjorde i timerne og dels lave en multipel logistisk

Læs mere

Appendiks A Anvendte test statistikker

Appendiks A Anvendte test statistikker Appendiks A Anvendte test statistikker Afhandlingen opdeler testene i henholdsvis parametriske og ikke-parametriske test. De første fire test er parametriske test, mens de ikke-parametriske test udgør

Læs mere

Tema: Kommunal variation i tilkendelse af førtidspension i 2008

Tema: Kommunal variation i tilkendelse af førtidspension i 2008 Tema: Kommunal variation i tilkendelse af førtidspension i 2008 Der er stor variation i, hvor mange førtidspensioner kommunerne har tilkendt i 2008. Nogle kommuner har tilkendt én eller derunder pr. 1.000

Læs mere

Mindste kvadraters tilpasning Prædiktion og residualer Estimation af betinget standardafvigelse Test for uafhængighed Konfidensinterval for hældning

Mindste kvadraters tilpasning Prædiktion og residualer Estimation af betinget standardafvigelse Test for uafhængighed Konfidensinterval for hældning 1 Regressionsproblemet 2 Simpel lineær regression Mindste kvadraters tilpasning Prædiktion og residualer Estimation af betinget standardafvigelse Test for uafhængighed Konfidensinterval for hældning 3

Læs mere

Uddannelses afkast i Danmark

Uddannelses afkast i Danmark Københavns Universitet Økonomisk Institut Uddannelses afkast i Danmark Af: Inger Lise Wolff-Jensen Opponent: Dorte Grinderslev Vejledere: Mette Ejrnæs og Lars Even Rasmussen 1 Indholdfortegnelse 1. Indledning...3

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Kvantitative metoder 2 Specifikation og dataproblemer 30. april 2007 KM2: F21 1 Program for de to næste forelæsninger Emnet er specifikation og dataproblemer (Wooldridge kap. 9) Fejlleddet kan være korreleret

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Program for i dag: Kvantitative metoder Beskrivende statistik og analyse af kvalitatitive data 1. februar 007 Test i multinomialfordelingen: Q-testet (BL.13.1-) Opsamling fra sidste gang To eksempler To-dimensionale

Læs mere

Betydningen af konjunktur og regelændringer for udviklingen i sygedagpengemodtagere

Betydningen af konjunktur og regelændringer for udviklingen i sygedagpengemodtagere DET ØKONOMISKE RÅD S E K R E T A R I A T E T d. 20. maj 2005 SG Betydningen af konjunktur og regelændringer for udviklingen i sygedagpengemodtagere Baggrundsnotat vedr. Dansk Økonomi, forår 2005, kapitel

Læs mere

Estimation af Uddannelsesafkast

Estimation af Uddannelsesafkast Estimation af Uddannelsesafkast Morten Roed Sørensen Vejledere: Mette Ejrnæs og Lars Even Rasmussen Opponent: IngerLise Wolf-Jensen Afleveret: 18.maj 1999 Indhold: 1 Indledning 2 Økonometrisk Metode 3

Læs mere

En Introduktion til SAS. Kapitel 5.

En Introduktion til SAS. Kapitel 5. En Introduktion til SAS. Kapitel 5. Inge Henningsen Afdeling for Statistik og Operationsanalyse Københavns Universitet Marts 2005 6. udgave Kapitel 5 T-test og PROC UNIVARIATE 5.1 Indledning Dette kapitel

Læs mere

Baggrundsnotat: Lærernes gymnasiekarakterer og elevernes eksamensresultater

Baggrundsnotat: Lærernes gymnasiekarakterer og elevernes eksamensresultater 17. december 2013 Baggrundsnotat: Lærernes gymnasiekarakterer og elevernes eksamensresultater Dette notat redegør for den økonometriske analyse af betydningen af grundskolelæreres gennemsnit fra gymnasiet

Læs mere

Faculty of Health Sciences. Logistisk regression: Kvantitative forklarende variable

Faculty of Health Sciences. Logistisk regression: Kvantitative forklarende variable Faculty of Health Sciences Logistisk regression: Kvantitative forklarende variable Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet sr@biostat.ku.dk Sammenhæng

Læs mere

Lagrange multiplier test. Økonometri: Lektion 6 Håndtering ad heteroskedasticitet. Konsekvenser af Heteroskedasticitet

Lagrange multiplier test. Økonometri: Lektion 6 Håndtering ad heteroskedasticitet. Konsekvenser af Heteroskedasticitet Lagrange multiplier test Et alternativ til F -testet af en eller flere parametre. Økonometri: Lektion 6 Håndtering ad heteroskedasticitet Antag vi har model: y = β 0 + β 1 x 2 + + β k x k + u. Vi ønsker

Læs mere

Arbejdsløshed, arbejdsløshedsforsikring og konjunktursvingninger?

Arbejdsløshed, arbejdsløshedsforsikring og konjunktursvingninger? Arbejdsløshed, arbejdsløshedsforsikring og konjunktursvingninger? Mette Ejrnæs og Stefan Hochguertel EPRN konference 19. juni 2015 19. juni 2015 1 / 25 Motivation I Danmark har vi en arbejdsløshedsforsikringsordning

Læs mere

Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved

Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved Matematisk Modellering 1 (reeksamen) Side 1 Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved { 1 hvis x {1, 2, 3}, p X (x) = 3 0 ellers,

Læs mere

Økonometri: Lektion 6 Emne: Heteroskedasticitet

Økonometri: Lektion 6 Emne: Heteroskedasticitet Økonometri: Lektion 6 Emne: Heteroskedasticitet 1 / 34 Lagrange multiplier test Et alternativ til F -testet af en eller flere parametre. Antag vi har model: Vi ønsker at teste hypotesen y = β 0 + β 1 x

Læs mere

Det kunne godt se ud til at ikke-rygere er ældre. Spredningen ser ud til at være nogenlunde ens i de to grupper.

Det kunne godt se ud til at ikke-rygere er ældre. Spredningen ser ud til at være nogenlunde ens i de to grupper. 1. Indlæs data. * HUSK at angive din egen placering af filen; data framing; infile '/home/sro00/mph2016/framing.txt' firstobs=2; input id sex age frw sbp sbp10 dbp chol cig chd yrschd death yrsdth cause;

Læs mere

ØVELSER Statistik, Logistikøkonom Lektion 8 og 9: Simpel og multipel lineær regression

ØVELSER Statistik, Logistikøkonom Lektion 8 og 9: Simpel og multipel lineær regression ! ØVELSER Statistik, Logistikøkonom Lektion 8 og 9: Simpel og multipel lineær regression Eksempel 1 AT OPSTILLE EN SIMPEL LINEÆR REGRESSIONSMODEL - GENNEMGÅS AF JAKOB Et stort lager måler løbende sine

Læs mere

Køber gifte kvinder flere aktier?

Køber gifte kvinder flere aktier? Køber gifte kvinder flere aktier? Baggrund og resumé Finansrådet undersøger i denne analyse, hvordan ændringer i ægteskabsstatus påvirker kvinders og mænds deltagelse på aktiemarkedet og deres risikovillighed.

Læs mere

ØVELSER Statistik, Logistikøkonom Lektion 8 og 9: Simpel og multipel lineær regression

ØVELSER Statistik, Logistikøkonom Lektion 8 og 9: Simpel og multipel lineær regression ! ØVELSER Statistik, Logistikøkonom Lektion 8 og 9: Simpel og multipel lineær regression Eksempel 1 AT OPSTILLE EN SIMPEL LINEÆR REGRESSIONSMODEL - GENNEMGÅS AF JAKOB Et stort lager måler løbende sine

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Kvantitative metoder 2 Beskrivende statistik og analyse af kvalitatitive data 12. februar 2007 Kvantitative metoder 2: F3 1 Program for i dag: Test i multinomialfordelingen: Q-testet (BL.13.1-2) Opsamling

Læs mere

Multipel regression. M variable En afhængig (Y) M-1 m uafhængige / forklarende / prædikterende (X 1 til X m ) Model

Multipel regression. M variable En afhængig (Y) M-1 m uafhængige / forklarende / prædikterende (X 1 til X m ) Model Multipel regression M variable En afhængig (Y) M-1 m uafhængige / forklarende / prædikterende (X 1 til X m ) Model Y j 1 X 1j 2 X 2j... m X mj j eller m Y j 0 i 1 i X ij j BEMÆRK! j svarer til individ

Læs mere

Appendiks Økonometrisk teori... II

Appendiks Økonometrisk teori... II Appendiks Økonometrisk teori... II De klassiske SLR-antagelser... II Hypotesetest... VII Regressioner... VIII Inflation:... VIII Test for SLR antagelser... IX Reset-test... IX Plots... X Breusch-Pagan

Læs mere

Basal statistik for sundhedsvidenskabelige forskere, efterår 2015 Udleveret 29. september, afleveres senest ved øvelserne i uge 44 (27.-30.

Basal statistik for sundhedsvidenskabelige forskere, efterår 2015 Udleveret 29. september, afleveres senest ved øvelserne i uge 44 (27.-30. Hjemmeopgave Basal statistik for sundhedsvidenskabelige forskere, efterår 2015 Udleveret 29. september, afleveres senest ved øvelserne i uge 44 (27.-30. oktober) En undersøgelse blandt fødende kvinder

Læs mere

MLR antagelserne. Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som

MLR antagelserne. Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som MLR antagelserne Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som y = β 0 + β 1 x 1 + β 2 x 2 + + β k x k + u, hvor β 0, β 1, β 2,...,β k er ukendte parametere,

Læs mere

BILAG 2 METODE OG FORSK- NINGSDESIGN

BILAG 2 METODE OG FORSK- NINGSDESIGN Til Undervisningsministeriet Dokumenttype Bilag Dato Marts 2014 BILAG 2 METODE OG FORSK- NINGSDESIGN BILAG 2 METODE OG FORSKNINGSDESIGN INDHOLD 1. Design- og metodebilag 1 1.1 Forskningsdesign 1 1.2 Analysemetoder

Læs mere

Statistik FSV 4. semester 2014 Øvelser Uge 2: 11. februar

Statistik FSV 4. semester 2014 Øvelser Uge 2: 11. februar Århus 6. februar 2014 Morten Frydenberg Statistik FSV 4. semester 2014 Øvelser Uge 2: 11. februar Til disse øvelser har I brug for fishoil1.dta, der indeholder data fra det fiskeolie forsøg vi så på ved

Læs mere

Tænk på a og b som to n 1 matricer. a 1 a 2 a n. For hvert i = 1,..., n har vi y i = x i β + u i.

Tænk på a og b som to n 1 matricer. a 1 a 2 a n. For hvert i = 1,..., n har vi y i = x i β + u i. Repetition af vektor-regning Økonometri: Lektion 3 Matrix-formulering Fordelingsantagelse Hypotesetest Antag vi har to n-dimensionelle (søjle)vektorer a 1 b 1 a 2 a =. og b = b 2. a n b n Tænk på a og

Læs mere

Klar sammenhæng mellem børns og forældres livsindkomst

Klar sammenhæng mellem børns og forældres livsindkomst Klar sammenhæng mellem børns og forældres livsindkomst Der er stor forskel på størrelsen af den livsindkomst, som 3-årige danskere kan se frem til, og livsindkomsten hænger nøje sammen med forældrenes

Læs mere

Baggrundsnotat: Undervisningstimer på universitetet

Baggrundsnotat: Undervisningstimer på universitetet 17. december 2013 Baggrundsnotat: Undervisningstimer på universitetet Dette notat redegør for den økonometriske analyse af sammenhængen mellem undervisningstid og indkomst i afsnit 5.3 i Analyserapport

Læs mere

Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup)

Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup) Kursus 02402 Introduktion til Statistik Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske

Læs mere

Lineær regression. Simpel regression. Model. ofte bruges følgende notation:

Lineær regression. Simpel regression. Model. ofte bruges følgende notation: Lineær regression Simpel regression Model Y i X i i ofte bruges følgende notation: Y i 0 1 X 1i i n i 1 i 0 Findes der en linie, der passer bedst? Metode - Generel! least squares (mindste kvadrater) til

Læs mere

Dansk Erhvervs gymnasieeffekt - sådan gør vi

Dansk Erhvervs gymnasieeffekt - sådan gør vi Dansk Erhvervs gymnasieeffekt - sådan gør vi FORMÅL Formålet har været at undersøge, hvor dygtige de enkelte gymnasier er til at løfte elevernes faglige niveau. Dette kan man ikke undersøge blot ved at

Læs mere

Løsning til opgave i logistisk regression

Løsning til opgave i logistisk regression Løsning til øvelser i logistisk regression, november 2008 1 Løsning til opgave i logistisk regression 1. Først indlæses data, og vi kan lige sørge for at danne en dummy-variable for cml, som indikator

Læs mere

Effekten af indvandring på indfødte danskeres løn og beskæftigelse

Effekten af indvandring på indfødte danskeres løn og beskæftigelse d. 22.05.2017 Brian Krogh Graversen (DØRS) Effekten af indvandring på indfødte danskeres løn og beskæftigelse I kapitlet Udenlandsk arbejdskraft i Dansk Økonomi, forår 2017 analyseres det, hvordan indvandringen

Læs mere

Introduktion til SPSS

Introduktion til SPSS Introduktion til SPSS Øvelserne på dette statistikkursus skal gennemføres ved hjælp af det såkaldte SPSS program. Det er erfaringsmæssigt sådan, at man i forbindelse af øvelserne på statistikkurser bruger

Læs mere

Kursus i varians- og regressionsanalyse Data med detektionsgrænse. Birthe Lykke Thomsen H. Lundbeck A/S

Kursus i varians- og regressionsanalyse Data med detektionsgrænse. Birthe Lykke Thomsen H. Lundbeck A/S Kursus i varians- og regressionsanalyse Data med detektionsgrænse Birthe Lykke Thomsen H. Lundbeck A/S 1 Data med detektionsgrænse Venstrecensurering: Baggrundsstøj eller begrænsning i måleudstyrets følsomhed

Læs mere

MPH specialmodul Epidemiologi og Biostatistik

MPH specialmodul Epidemiologi og Biostatistik MPH specialmodul Epidemiologi og Biostatistik Kvantitative udfaldsvariable 23. maj 2011 www.biostat.ku.dk/~sr/mphspec11 Susanne Rosthøj (Per Kragh Andersen) 1 Kapitelhenvisninger Andersen & Skovgaard:

Læs mere

Økonometri 1. FunktioneI form i den lineære regressionsmodel 19. oktober Dagens program

Økonometri 1. FunktioneI form i den lineære regressionsmodel 19. oktober Dagens program Dagens program Økonometri 1 FunktioneI form i den lineære regressionsmodel 19. oktober 004 Mere om funktionel form (kap 6.) Log transformation Kvadratisk form Interaktionseffekter Goodness of fit (kap.

Læs mere

Normalfordelingen og Stikprøvefordelinger

Normalfordelingen og Stikprøvefordelinger Normalfordelingen og Stikprøvefordelinger Normalfordelingen Standard Normal Fordelingen Sandsynligheder for Normalfordelingen Transformation af Normalfordelte Stok.Var. Stikprøver og Stikprøvefordelinger

Læs mere

Økonometri: Lektion 4. Multipel Lineær Regression: F -test, justeret R 2 og aymptotiske resultater

Økonometri: Lektion 4. Multipel Lineær Regression: F -test, justeret R 2 og aymptotiske resultater Økonometri: Lektion 4 Multipel Lineær Regression: F -test, justeret R 2 og aymptotiske resultater 1 / 35 Hypotesetest for én parameter Antag vi har model y = β 0 + β 1 x 2 + β 2 x 2 + + β k x k + u. Vi

Læs mere

Stikprøver og stikprøve fordelinger. Stikprøver Estimatorer og estimater Stikprøve fordelinger Egenskaber ved estimatorer Frihedsgrader

Stikprøver og stikprøve fordelinger. Stikprøver Estimatorer og estimater Stikprøve fordelinger Egenskaber ved estimatorer Frihedsgrader Stikprøver og stikprøve fordelinger Stikprøver Estimatorer og estimater Stikprøve fordelinger Egenskaber ved estimatorer Frihedsgrader Statistik Statistisk Inferens: Prediktere og forekaste værdier af

Læs mere