Økonometri 1. FunktioneI form i den lineære regressionsmodel 19. oktober Dagens program

Størrelse: px
Starte visningen fra side:

Download "Økonometri 1. FunktioneI form i den lineære regressionsmodel 19. oktober Dagens program"

Transkript

1 Dagens program Økonometri 1 FunktioneI form i den lineære regressionsmodel 19. oktober 004 Mere om funktionel form (kap 6.) Log transformation Kvadratisk form Interaktionseffekter Goodness of fit (kap. 6.3) Prediktioner (kap 6.4) Kvalitative variable (kap 7.1) regressionsmodel 1 regressionsmodel Funktionel form Funktionel form: Log-transformation MLR forudsætter, at modellen er lineær i parametrene. Men ikke i variablerne. Funktionel form: Fortolkningsmæssige konsekvenser! Tre vigtige tilfælde: Log-transformation Kvadratiske led Interaktionsled Brugen af log-transformation: Absolutte ændringer i logtransformeret variabel svarer til relative ændringer i den originale variabel. Økonomisk teori ofte udtrykt i afkast-størrelser (% pr. år): BNP vækstrate: Relativ tilvækst i realt BNP fluktuerer nogenlunde konstant omkring et niveau på ca. % pr. år over længere perioder: Tidsrækkemodeller Egenkapitalforrentning ( return on equity, Ex..3,.6,.8): Store virksomheder har (gennemgående) store overskud (målt i kr.), små virksomheder har (gennemgående) små overskud. Mere relevant: Overskud i forhold til størrelsen af den indskudte kapital, en relativ størrelse. Variansen på en størrelse kan afhænge af niveauet: Relativ varians er mere stabil (RoE ex). regressionsmodel 3 regressionsmodel 4 1

2 Funktionel form: Log-transformation (fortsat) Funktionel form: Kvadratiske led Model Afhængig Forklarende Hældning x citet y/ y Elasti- y/ x variabel variabel x Lineær Log-lin Lin-log Log-lineær y Log(y) y Log(y) x x Log(x) Log(x) $ 1 $ 1 y $ 1 /x $ 1 y/x $ 1 x/y $ 1 x $ 1 /y $ 1 Aftagende eller stigende marginaludbytte/-effekt: Fx kvadratisk Engelkurve: Andelen til mad aftagende, men flader ud. y = β + β x + β x + u i 0 1 1i 1i i Multipel regressionsmodel: Men alt andet lige betragtning med omtanke. y ( ˆ β1x1 + ˆ βx1 ) = ˆ β1 + ˆ βx1 x1 x1 Effekt af ændring af afhænger af udgangsværdien af x 1 Evalueres ved relevant værdi, fx. Extrapolation! x 1 x 1 regressionsmodel 5 regressionsmodel 6 Funktionel form: Interaktionsled Goodness-of-fit Marginal effekt af at ændre værdien af en forklarende variabel, x, afhænger af værdien af fx x : Fx kan 1 afkastet af erfaring variere med uddannelse: yi = β0 + β1x1 i + βxi + β3x1 ixi + ui Igen: Multipel regressionsmodel: Men alt andet lige betragtning med omtanke. y ( ˆ β + β + β 1x ˆ 1 x ˆ 3x1x) = ˆ β + ˆ β3x1 x x Evalueringspunktet vælges med omhu. R er et mål for modellens forklaringsgrad. Øges når der tilføjes variabler til modellen (med mindre de er perfekt kollineære med eksisterende regressorer). Uegnet til modelvalg. Høj R er ikke nødvendig for en brugbar model. Korrigeret R, betegnet R, straffer for at selvom større modeller tilpasser data bedre, sker dette ved hjælp af flere forklarende variabler. SSR /( n k 1) R = 1 SST /( n 1) Tæller og nævner korrigeres for frihedsgrader >< R regressionsmodel 7 regressionsmodel 8

3 Goodness-of-fit (fortsat) Goodness-of-fit (fortsat) Hvis en variabel tilføjes til modellen vil R øges hvis og kun hvis variablen har en t-værdi, der (numerisk) overstiger 1. Svarer til at lave et to-sidet signifikanstest med et signifikansniveau over 30 %! R bruges i nogle tilfælde til at sammenligne ikkenestede modeller, hvor den ene model er ikke et specialtilfælde af den anden. Men begrænsninger: Samme venstre-side variabel (samme funktionel form). Hvor mange variabler skal med i modellen? Overvej hvilke variabler der fortolkningsmæssigt giver mening. Ofte flere praktiske mål for samme teoretiske størrelse: Problematisk at inkludere flere mål og så lave alt-andet-lige betragtning. Høj korrelation mellem forklarende variabler giver multikollinearitetsproblem: Svært at skelne effekterne af de enkelte variabler fra hinanden. Har man mulighed for at tilføje variabler, der er ukorrelerede med de allerede inkluderede, vil det entydigt nedbringe residualvariansen og give mere præcise estimater. regressionsmodel 9 regressionsmodel 10 Prediktioner (forudsigelser) Prediktioner (forudsigelser) Punktprediktion fra MLR: Tilpassede værdi: y ˆ = ˆ β0 + ˆ β1x1 + ˆ βx ˆ β x k k MLR.3: For givne værdier af x1, x,..., xk et estimat af: Ey ( x) = ˆ β 0 + ˆ β 1x1 + ˆ β x ˆ β kxk ŷ er en estimator af den sande (men ukendte) middelværdi. For givne værdier af x har 1, x,..., xk prediktionen en standardfejl, der er afledt af standardfejlene på OLS estimaterne ˆ β0, ˆ β ˆ 1,..., βk. Udregning af standardfejl på prediktionen: Metoden beskrevet i Wooldrigde (side 03) Vha. covariansmatricen (prediktionen er en lineære kombination af parametreestimaterne Kan vises at standardfejlen på prediktionen er mindst når x1, x,..., xk sættes lig deres gennemsnit. regressionsmodel 11 regressionsmodel 1 3

4 Prediktioner (forudsigelser) (fortsat) Prediktioner (forudsigelser) (fortsat) Ofte af interesse at konstruere et konfidensinterval ŷ for en tænkt enhed (husholdning, virksomhed, ) med nogle givne karakteristika: x1, x,..., xk 0 Må også tage højde for variansen af fejlleddet, u Prediktionsfejlen er: eˆ 0 = y yˆ0 = β0 + β1x1 + βx β ˆ kxk + u y0 ˆ ˆ 0 ˆ 0 0 = ( β0 β0) + ( β1 β1) x ( βk βk) xk + u 0 OLS er middelret og Eu ( X ) = 0så Ee ( ˆ0 X ) = 0 0 Prediktionsfejlsvariansen: u ukorreleret med ŷ0 så variansen splitter op i to komponenter: Var( eˆ ) = Var( yˆ ) + Var( u ) = Var( yˆ ) + σ Vil ofte være domineret af σ leddet (især for store n) Prediktion af afledte variabler: Fx Y når vi modellerer y=log(y). Husk at generelt Ef (( y)) fey ( ( )) med mindre f( ) er lineær. For log-transformation: yˆ = exp( ˆ σ / )exp(log y ) regressionsmodel 13 regressionsmodel 14 Kvalitative variabler som forklarende variabler i en lineær regressionsmodel Wooldridge afsnit Kvalitative variabler generelt Dummy variable for kvalitative variable med to kategorier Dummy variable for kvalitative variable med flere end to kategorier Interaktionsled med dummy variable Kvalitative variabler Indtil nu har vi (hovedsagligt) set på kvantitative variabler (løn, priser, forbrug, indkomst).. Men hvad med kvalitative variabler? Kvalitative variabler: Diskrete variabler Eksempler: Køn Kommune Sektor Arbejdstid (ikke arbejde, halvtid, fuld tid) Helbred (dårligt, middel, godt) regressionsmodel 15 regressionsmodel 16 4

5 Kvalitative variabler Kvalitative variabler med to kategorier I nogle tilfælde kan udfaldene af den kvalitative variabel rangordnes. Variablen kaldes så for ordinal Eksempler: arbejdstid og helbred For kvalitative variabler med to kategorier laves ofte en dummy variabel Dummy variabler Diskret variabel Antager kun værdien 0 og 1. Normalt antages værdien 1, når egenskaben er tilstede, f.eks. kvinde=1 når person er kvinde ellers 0 Dummy variable benyttes meget i regressionsmodeller Kategorien hvor Dummy = 0 kaldes reference-kategorien Dummy variable kaldes også for indikator variable og binære variable regressionsmodel 17 regressionsmodel 18 Kvalitative variable med to kategorier Kvalitative variabler med to kategorier Dummy variable kan inkluderes i den multiple regressionsmodel som alm. forklarende variable Eks: lønrelationen log timeloni = β0 + β1uddi + βerfaringi + β3kvindei + εi hvor kvinde er en dummy variabel Lønforskellen mellem mænd og kvinder (med samme uddannelse og erfaring) og når antagelse MLR. 3 er opfyldt E(log( timelon ) udd, erfaring, kvinde = 1) E(log( timelon ) udd, erfaring, kvinde = 0) = β i i 3 Fortolkning af parameteren til dummy variablen: Parameteren til dummy variablen måler forskellen mellem de to kategorier Inkludering af en dummy variabel kan grafisk fortolkes som et skift i konstantleddet..men afkast af de øvrige forklarende variabler er de sammen for de to grupper Hvis den afh. var. er lineær -> parameteren fortolkes som en absolut forskel mellem to kategorier (når man kontrollerer for øvrige forklarende variable) Hvis den afh. var. i log -> parameteren fortolkes som en ca. procentuel forskel mellem to kategorier (når man kontrollerer for øvrige forklarende variable) Vil man have den eksakte procentuelle forskel skal følgende formel anvendes 100*[exp( β ) 1] regressionsmodel 19 regressionsmodel 0 5

6 Kvalitative variabler med to kategorier Evaluering af programmer Valg af referencegruppe: Hvad hvis vi i stedet havde inkluderet en dummy for mand? Man kan blot omparametrisere så får man den samme model (Husk mandi + kvindei = 1 ) Begge variable kan ikke inkluderes (hvis der også er et konstantled i modellen) -> Perfekt multikollinaritet Et meget vigtigt eksempel på dummy variabler er program evaluation Eks: Effekten af jobtræningskurser Simpelt tilfælde: to grupper Treatment (forsøgs-) gruppen: dem som deltager i programmet control (kontrol) gruppen: dem som ikke deltager Parameteren til dummy variablen for treatment gruppen måler effekten af at have deltaget Det er dog meget tit at denne variabel er endogen (pga. den måde økonomiske data fremkommer) regressionsmodel 1 regressionsmodel Næste gang: Husk næste forelæsning er TORSDAG d 1/10 kl i Ho10 Mere om kvalitative variable (kap 7) Husk eksamenstilmelding regressionsmodel 3 6

Økonometri 1. Prediktion. Dummyvariabler 9. oktober Økonometri 1: F9 1

Økonometri 1. Prediktion. Dummyvariabler 9. oktober Økonometri 1: F9 1 Økonometri 1 Prediktion. Dummyvariabler 9. oktober 2006 Økonometri 1: F9 1 Program frem til efterårsferien Om goodness-of-fit, prediktion og residualer (kap. 6.3-4) Kvalitative egenskaber i den multiple

Læs mere

Økonometri 1. Kvalitative variabler. Kvalitative variabler. Dagens program. Kvalitative variable 8. marts 2006

Økonometri 1. Kvalitative variabler. Kvalitative variabler. Dagens program. Kvalitative variable 8. marts 2006 Dagens program Økonometri 1 Kvalitative variable 8. marts 2006 Kvalitative variabler som forklarende variabler i en lineær regressionsmodel (Wooldridge kap. 7.1-7.4) Kvalitative variabler generelt Dummy

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Kvalitative egenskaber og dummyvariabler Kvantitative metoder 2 Dummyvariabler 28. marts 2007 Vi har (hovedsagligt) set på kvantitative variabler (løn, priser, forbrug, indkomst, )... Men hvad med kvalitative

Læs mere

Økonometri 1. Dummyvariabler 13. oktober Økonometri 1: F10 1

Økonometri 1. Dummyvariabler 13. oktober Økonometri 1: F10 1 Økonometri 1 Dummyvariabler 13. oktober 2006 Økonometri 1: F10 1 Dagens program Dummyvariabler i den multiple regressionsmodel (Wooldridge kap. 7.3-7.6) Dummy variabler for kvalitative egenskaber med flere

Læs mere

Økonometri 1. Dagens program. Den simple regressionsmodel 15. september 2006

Økonometri 1. Dagens program. Den simple regressionsmodel 15. september 2006 Dagens program Økonometri Den simple regressionsmodel 5. september 006 Den simple lineære regressionsmodel (Wooldridge kap.4-.6) Eksemplet fortsat: Løn og uddannelse på danske data Funktionel form Statistiske

Læs mere

Økonometri 1. Interne evalueringer af forelæsninger. Kvalitative variabler. Dagens program. Dummyvariabler 21. oktober 2004

Økonometri 1. Interne evalueringer af forelæsninger. Kvalitative variabler. Dagens program. Dummyvariabler 21. oktober 2004 Dagens program Økonometri 1 Dummyvariabler 21. oktober 2004 Emnet for denne forelæsning er kvalitative egenskaber i den multiple regressionsmodel (Wooldridge kap. 7.1-7.6) Kvalitative variabler generelt

Læs mere

Økonometri 1. Inferens i den lineære regressionsmodel 2. oktober Økonometri 1: F8 1

Økonometri 1. Inferens i den lineære regressionsmodel 2. oktober Økonometri 1: F8 1 Økonometri 1 Inferens i den lineære regressionsmodel 2. oktober 2006 Økonometri 1: F8 1 Dagens program Opsamling om asymptotiske egenskaber: Asymptotisk normalitet Asymptotisk efficiens Test af flere lineære

Læs mere

Økonometri 1. Den simple regressionsmodel 11. september Økonometri 1: F2

Økonometri 1. Den simple regressionsmodel 11. september Økonometri 1: F2 Økonometri 1 Den simple regressionsmodel 11. september 2006 Dagens program Den simple regressionsmodel SLR : Én forklarende variabel (Wooldridge kap. 2.1-2.4) Motivation for gennemgangen af SLR Definition

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Kvantitative metoder 2 Specifikation og dataproblemer 30. april 2007 KM2: F21 1 Program for de to næste forelæsninger Emnet er specifikation og dataproblemer (Wooldridge kap. 9) Fejlleddet kan være korreleret

Læs mere

! Husk at udfylde spørgeskema 3. ! Lineær sandsynlighedsmodel. ! Eksempel. ! Mere om evaluering og selvselektion

! Husk at udfylde spørgeskema 3. ! Lineær sandsynlighedsmodel. ! Eksempel. ! Mere om evaluering og selvselektion Dagens program Økonometri 1 Dummy variable 4. marts 003 Emnet for denne forelæsning er kvalitative variable i den multiple regressionsmodel (Wooldridge kap. 7.5-7.6+8.1)! Husk at udfylde spørgeskema 3!

Læs mere

Økonometri 1. Dagens program. Den multiple regressionsmodel 18. september 2006

Økonometri 1. Dagens program. Den multiple regressionsmodel 18. september 2006 Dagens program Økonometri Den multiple regressionsmodel 8. september 006 Opsamling af statistiske resultater om den simple lineære regressionsmodel (W kap..5). Den multiple lineære regressionsmodel (W

Læs mere

! Variansen på OLS estimatoren. ! Multikollinaritet. ! Variansen i misspecificerede modeller. ! Estimat af variansen på fejlleddet

! Variansen på OLS estimatoren. ! Multikollinaritet. ! Variansen i misspecificerede modeller. ! Estimat af variansen på fejlleddet Dagens program Økonometri Den multiple regressionsmodel 4. februar 003 regressionsmodel Emnet for denne forelæsning er stadig den multiple regressionsmodel (Wooldridge kap. 3.4-3.5)! Opsamling fra sidst

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Kvantitative metoder 2 Den multiple regressionsmodel 5. marts 2007 regressionsmodel 1 Dagens program Emnet for denne forelæsning er stadig den multiple regressionsmodel (Wooldridge kap. 3.4-3.5, E.2) Variansen

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Kvantitative metoder Heteroskedasticitet 11. april 007 KM: F18 1 Oversigt: Heteroskedasticitet OLS estimation under heteroskedasticitet (W.8.1-): Konsekvenser af heteroskedasticitet for OLS Gyldige test

Læs mere

Økonometri: Lektion 2 Multipel Lineær Regression 1/27

Økonometri: Lektion 2 Multipel Lineær Regression 1/27 Økonometri: Lektion 2 Multipel Lineær Regression 1/27 Multipel Lineær Regression Sidst så vi på simpel lineær regression, hvor y er forklaret af én variabel. Der er intet, der forhindre os i at have mere

Læs mere

! Proxy variable. ! Målefejl. ! Manglende observationer. ! Dataudvælgelse. ! Ekstreme observationer. ! Eksempel: Lønrelation (på US data)

! Proxy variable. ! Målefejl. ! Manglende observationer. ! Dataudvælgelse. ! Ekstreme observationer. ! Eksempel: Lønrelation (på US data) Dagens program Økonometri 1 Specifikation, og dataproblemer 10. april 003 Emnet for denne forelæsning er specifikation (Wooldridge kap. 9.-9.4)! Proxy variable! Målefejl! Manglende observationer! Dataudvælgelse!

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Kvantitative metoder 2 Inferens i den lineære regressionsmodel 7. marts 2007 regressionsmodel 1 Opgave fra sidst (Gauss-Markov teoremet) Opgave: Vis at hvis M = I X X X X 1 ( ' ) ' er M idempoten dvs der

Læs mere

Økonometri 1. Inferens i den lineære regressionsmodel 25. september Økonometri 1: F6 1

Økonometri 1. Inferens i den lineære regressionsmodel 25. september Økonometri 1: F6 1 Økonometri 1 Inferens i den lineære regressionsmodel 25. september 2006 Økonometri 1: F6 1 Oversigt: De næste forelæsninger Statistisk inferens: hvorledes man med udgangspunkt i en statistisk model kan

Læs mere

Simpel Lineær Regression: Model

Simpel Lineær Regression: Model Simpel Lineær Regression: Model Sidst så vi på simpel lineære regression. Det er en statisisk model på formen y = β 0 + β 1 x + u, hvor fejlledet u, har egenskaben E[u x] = 0. Dette betyder bl.a. E[y x]

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Kvantitative metoder 2 Specifikation og dataproblemer 2. maj 2007 KM2: F22 1 Program Specifikation og dataproblemer, fortsat (Wooldridge kap. 9): Betydning af målefejl Dataudvælgelse: Manglende observationer

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Opgave fra sidst (Gauss-Markov teoremet) Kvantitative metoder Inferens i den lineære regressionsmodel 7. marts 007 Opgave: Vis at hvis M = I X X X X ( ' ) ' er M idempoten dvs der gælder gælder M = M '

Læs mere

Økonometri: Lektion 2 Multipel Lineær Regression 1/33

Økonometri: Lektion 2 Multipel Lineær Regression 1/33 Økonometri: Lektion 2 Multipel Lineær Regression 1/33 Simpel Lineær Regression: Model Sidst så vi på simpel lineære regression. Det er en statisisk model på formen y = β 0 +β 1 x +u, hvor fejlledet u,

Læs mere

Økonometri 1. Definition og motivation. Definition og motivation. Dagens program. Den multiple regressionsmodel 15. februar 2006

Økonometri 1. Definition og motivation. Definition og motivation. Dagens program. Den multiple regressionsmodel 15. februar 2006 Dages program Økoometri De multiple regressiosmodel 5. februar 006 Emet for dee forelæsig er de multiple regressiosmodel (Wooldridge kap 3.-3.3+appedix E.-E.) Defiitio og motivatio Fortolkig af parametree

Læs mere

Anvendt Statistik Lektion 8. Multipel Lineær Regression

Anvendt Statistik Lektion 8. Multipel Lineær Regression Anvendt Statistik Lektion 8 Multipel Lineær Regression 1 Simpel Lineær Regression (SLR) y Sammenhængen mellem den afhængige variabel (y) og den forklarende variabel (x) beskrives vha. en SLR: ligger ikke

Læs mere

Statistik Lektion 4. Variansanalyse Modelkontrol

Statistik Lektion 4. Variansanalyse Modelkontrol Statistik Lektion 4 Variansanalyse Modelkontrol Eksempel Spørgsmål: Er der sammenhæng mellem udetemperaturen og forbruget af gas? Y : Forbrug af gas (gas) X : Udetemperatur (temp) Scatterplot SPSS: Estimerede

Læs mere

Økonometri Lektion 1 Simpel Lineær Regression 1/31

Økonometri Lektion 1 Simpel Lineær Regression 1/31 Økonometri Lektion 1 Simpel Lineær Regression 1/31 Simpel Lineær Regression Mål: Forklare variablen y vha. variablen x. Fx forklare Salg (y) vha. Reklamebudget (x). Statistisk model: Vi antager at sammenhængen

Læs mere

Uge 43 I Teoretisk Statistik, 21. oktober Forudsigelser

Uge 43 I Teoretisk Statistik, 21. oktober Forudsigelser Uge 43 I Teoretisk Statistik,. oktober 3 Simpel lineær regressionsanalyse Forudsigelser Fortolkning af regressionsmodellen Ekstreme observationer Transformationer Sammenligning af to regressionslinier

Læs mere

Økonometri 1. Oversigt. Mere om dataproblemer Gentagne tværsnit og panel data I

Økonometri 1. Oversigt. Mere om dataproblemer Gentagne tværsnit og panel data I Oversigt Økonometri 1 Mere om dataproblemer Gentagne tværsnit og panel data I Info om prøveeksamen Mere om proxyvariabler og målefejl fra sidste gang. Selektion og dataproblemer Intro til nyt emne: Observationer

Læs mere

Økonometri: Lektion 6 Emne: Heteroskedasticitet

Økonometri: Lektion 6 Emne: Heteroskedasticitet Økonometri: Lektion 6 Emne: Heteroskedasticitet 1 / 32 Konsekvenser af Heteroskedasticitet Antag her (og i resten) at MLR.1 til MLR.4 er opfyldt. Antag MLR.5 ikke er opfyldt, dvs. vi har heteroskedastiske

Læs mere

Oversigt. 1 Gennemgående eksempel: Højde og vægt. 2 Korrelation. 3 Regressionsanalyse (kap 11) 4 Mindste kvadraters metode

Oversigt. 1 Gennemgående eksempel: Højde og vægt. 2 Korrelation. 3 Regressionsanalyse (kap 11) 4 Mindste kvadraters metode Kursus 02402 Introduktion til Statistik Forelæsning 11: Kapitel 11: Regressionsanalyse Oversigt 1 Gennemgående eksempel: Højde og vægt 2 Korrelation 3 Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse

Læs mere

Simpel Lineær Regression

Simpel Lineær Regression Simpel Lineær Regression Mål: Forklare variablen y vha. variablen x. Fx forklare Salg (y) vha. Reklamebudget (x). Vi antager at sammenhængen mellem y og x er beskrevet ved y = β 0 + β 1 x + u. y: Afhængige

Læs mere

Tænk på a og b som to n 1 matricer. a 1 a 2 a n. For hvert i = 1,..., n har vi y i = x i β + u i.

Tænk på a og b som to n 1 matricer. a 1 a 2 a n. For hvert i = 1,..., n har vi y i = x i β + u i. Repetition af vektor-regning Økonometri: Lektion 3 Matrix-formulering Fordelingsantagelse Hypotesetest Antag vi har to n-dimensionelle (søjle)vektorer a 1 b 1 a 2 a =. og b = b 2. a n b n Tænk på a og

Læs mere

Wooldridge, kapitel 19: Carrying out an Empirical Project. Information og spørgsmål vedr. eksamen. Økonometri 1: Afslutningsforelæsning 2

Wooldridge, kapitel 19: Carrying out an Empirical Project. Information og spørgsmål vedr. eksamen. Økonometri 1: Afslutningsforelæsning 2 Økonometri 1 Afslutningsforelæsning 19. maj 2003 Økonometri 1: Afslutningsforelæsning 1 Evalueringer Kun 23 har udfyldt evalueringsskemaerne ud af ca. 120 tilmeldte til eksamen Resultatet kan ses på hjemmesiden

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Dages program Kvatitative metoder De multiple regressiosmodel 6. februar 007 Emet for dee forelæsig er de multiple regressiosmodel (Wooldridge kap 3.- 3.+appedix E.) Defiitio og motivatio Fortolkig af

Læs mere

Multipel Lineær Regression

Multipel Lineær Regression Multipel Lineær Regression Trin i opbygningen af en statistisk model Repetition af MLR fra sidst Modelkontrol Prædiktion Kategoriske forklarende variable og MLR Opbygning af statistisk model Specificer

Læs mere

Lagrange multiplier test. Økonometri: Lektion 6 Håndtering ad heteroskedasticitet. Konsekvenser af Heteroskedasticitet

Lagrange multiplier test. Økonometri: Lektion 6 Håndtering ad heteroskedasticitet. Konsekvenser af Heteroskedasticitet Lagrange multiplier test Et alternativ til F -testet af en eller flere parametre. Økonometri: Lektion 6 Håndtering ad heteroskedasticitet Antag vi har model: y = β 0 + β 1 x 2 + + β k x k + u. Vi ønsker

Læs mere

Statistik Lektion 16 Multipel Lineær Regression

Statistik Lektion 16 Multipel Lineær Regression Statistik Lektion 6 Multipel Lineær Regression Trin i opbygningen af en statistisk model Repetition af MLR fra sidst Modelkontrol Prædiktion Kategoriske forklarende variable og MLR Opbygning af statistisk

Læs mere

Økonometri 1. Gentagne tværsnit (W ): Opsamling. Gentagne tværsnit og paneldata. Gentagne Tværsnit og Paneldata II.

Økonometri 1. Gentagne tværsnit (W ): Opsamling. Gentagne tværsnit og paneldata. Gentagne Tværsnit og Paneldata II. Gentagne tværsnit (W 13.1-): Opsamling. Økonometri 1 Gentagne Tværsnit og Paneldata II Kombinerer tværsnit indsamlet på forskellige tidspunkter. Partial pooling: Tillader koefficienterne til nogle af variablerne

Læs mere

MLR antagelserne. Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som

MLR antagelserne. Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som MLR antagelserne Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som y = β 0 + β 1 x 1 + β 2 x 2 + + β k x k + u, hvor β 0, β 1, β 2,...,β k er ukendte parametere,

Læs mere

Modul 6: Regression og kalibrering

Modul 6: Regression og kalibrering Forskningsenheden for Statistik ST501: Science Statistik Bent Jørgensen Modul 6: Regression og kalibrering 6.1 Årsag og virkning................................... 1 6.2 Kovarians og korrelation...............................

Læs mere

Økonometri: Lektion 5. Multipel Lineær Regression: Interaktion, log-transformerede data, kategoriske forklarende variable, modelkontrol

Økonometri: Lektion 5. Multipel Lineær Regression: Interaktion, log-transformerede data, kategoriske forklarende variable, modelkontrol Økonometri: Lektion 5 Multipel Lineær Regression: Interaktion, log-transformerede data, kategoriske forklarende variable, modelkontrol 1 / 35 Veksekvirkning: Motivation Vi har set på modeller som Price

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Program for dag: Kvanttatve metoder Opsamlng vedr. nferens uden MLR.5: Beregnng af robuste standardfejl og kovarans under heteroskedastctet (W8.) W.6: Flere emner en multpel regressonsmodel Inferens den

Læs mere

Tema. Dagens tema: Indfør centrale statistiske begreber.

Tema. Dagens tema: Indfør centrale statistiske begreber. Tema Dagens tema: Indfør centrale statistiske begreber. Model og modelkontrol Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. konfidensintervaller Vi tager udgangspunkt i Ex. 3.1 i

Læs mere

Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Institut for Biostatistik. Regressionsanalyse

Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Institut for Biostatistik. Regressionsanalyse Epidemiologi og biostatistik. Uge, torsdag. Erik Parner, Institut for Biostatistik. Lineær regressionsanalyse - Simpel lineær regression - Multipel lineær regression Regressionsanalyse Regressionsanalyser

Læs mere

Center for Statistik. Multipel regression med laggede responser som forklarende variable

Center for Statistik. Multipel regression med laggede responser som forklarende variable Center for Statistik Handelshøjskolen i København MPAS Tue Tjur November 2006 Multipel regression med laggede responser som forklarende variable Ved en tidsrække forstås i almindelighed et datasæt, der

Læs mere

Kvantitative Metoder 1 - Forår Dagens program

Kvantitative Metoder 1 - Forår Dagens program Dagens program Kontinuerte fordelinger Simultane fordelinger Kovarians og korrelation Uafhængighed Betingede fordelinger - Middelværdi og varians - Sammenhæng med uafhængighed 1 Figur 1: En tæthedsfunktion

Læs mere

Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19

Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19 Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19 For test med signifikansniveau α: p < α forkast H 0 2/19 p-værdi Betragt tilfældet med test for H 0 : µ = µ 0 (σ kendt). Idé: jo større

Læs mere

12. september Epidemiologi og biostatistik. Forelæsning 4 Uge 3, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Regressionsanalyse

12. september Epidemiologi og biostatistik. Forelæsning 4 Uge 3, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Regressionsanalyse . september 5 Epidemiologi og biostatistik. Forelæsning Uge, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Lineær regressionsanalyse - Simpel lineær regression - Multipel lineær regression

Læs mere

Økonometri: Lektion 7 Emne: Prædiktionsintervaller, RESET teset, proxy variable og manglende data.

Økonometri: Lektion 7 Emne: Prædiktionsintervaller, RESET teset, proxy variable og manglende data. Økonometri: Lektion 7 Emne: Prædiktionsintervaller, RESET teset, proxy variable og manglende data. 1 / 32 Motivation Eksempel: Savings = β 0 + β 1 Income + u Vi ved allerede, hvordan vi estimerer regresseionlinjen:

Læs mere

Anvendt Statistik Lektion 7. Simpel Lineær Regression

Anvendt Statistik Lektion 7. Simpel Lineær Regression Anvendt Statistik Lektion 7 Simpel Lineær Regression 1 Er der en sammenhæng? Plot af mordraten () mod fattigdomsraten (): Scatterplot Afhænger mordraten af fattigdomsraten? 2 Scatterplot Et scatterplot

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Gentagne tværsnit og paneldata Kvantitative metoder 2 Gentagne tværsnit og panel data II 9. maj 2007 I dag: To-periode panel data: Følger de samme individer over to perioder (13.3-4) Unobserved effects

Læs mere

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA) Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:

Læs mere

Økonometri lektion 5 Multipel Lineær Regression. Inferens Modelkontrol Prædiktion

Økonometri lektion 5 Multipel Lineær Regression. Inferens Modelkontrol Prædiktion Økonometri lektion 5 Multipel Lineær Regression Inferens Modelkontrol Prædiktion Multipel Lineær Regression Data: Sæt af oservationer (x i, x i,, x ki, y i, i,,n y i er den afhængige variael x i, x i,,

Læs mere

Module 3: Statistiske modeller

Module 3: Statistiske modeller Department of Statistics ST502: Statistisk modellering Pia Veldt Larsen Module 3: Statistiske modeller 31 ANOVA 1 32 Variabelselektion 4 321 Multipel determinationskoefficient 5 322 Variabelselektion med

Læs mere

For nemheds skyld: m = 2, dvs. interesseret i fordeling af X 1 og X 2. Nemt at generalisere til vilkårligt m.

For nemheds skyld: m = 2, dvs. interesseret i fordeling af X 1 og X 2. Nemt at generalisere til vilkårligt m. 1 Uge 11 Teoretisk Statistik 8. marts 2004 Kapitel 3: Fordeling af en stokastisk variabel, X Kapitel 4: Fordeling af flere stokastiske variable, X 1,,X m (på en gang). NB: X 1,,X m kan være gentagne observationer

Læs mere

Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Afdeling for Biostatistik. Eksempel: Systolisk blodtryk

Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Afdeling for Biostatistik. Eksempel: Systolisk blodtryk Eksempel: Systolisk blodtryk Udgangspunkt: Vi ønsker at prædiktere det systoliske blodtryk hos en gruppe af personer. Epidemiologi og biostatistik. Uge, torsdag. Erik Parner, Afdeling for Biostatistik.

Læs mere

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA) Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:

Læs mere

1. Intoduktion. Undervisningsnoter til Øvelse i Paneldata

1. Intoduktion. Undervisningsnoter til Øvelse i Paneldata 1 Intoduktion Før man springer ud i en øvelse om paneldata og panelmodeller, kan det selvfølgelig være rart at have en fornemmelse af, hvorfor de er så vigtige i moderne mikro-økonometri, og hvorfor de

Læs mere

Modul 11: Simpel lineær regression

Modul 11: Simpel lineær regression Forskningsenheden for Statistik ST01: Elementær Statistik Bent Jørgensen Modul 11: Simpel lineær regression 11.1 Regression uden gentagelser............................. 1 11.1.1 Oversigt....................................

Læs mere

Perspektiver i Matematik-Økonomi: Linær regression

Perspektiver i Matematik-Økonomi: Linær regression Perspektiver i Matematik-Økonomi: Linær regression Jens Ledet Jensen H2.21, email: jlj@imf.au.dk Perspektiver i Matematik-Økonomi: Linær regression p. 1/34 Program for i dag 1. Indledning: sammenhæng mellem

Læs mere

Reminder: Hypotesetest for én parameter. Økonometri: Lektion 4. F -test Justeret R 2 Aymptotiske resultater. En god model

Reminder: Hypotesetest for én parameter. Økonometri: Lektion 4. F -test Justeret R 2 Aymptotiske resultater. En god model Reminder: Hypotesetest for én parameter Antag vi har model Økonometri: Lektion 4 F -test Justeret R 2 Aymptotiske resultater y = β 0 + β 1 x 2 + β 2 x 2 + + β k x k + u. Vi ønsker at teste hypotesen H

Læs mere

Økonometri: Lektion 4. Multipel Lineær Regression: F -test, justeret R 2 og aymptotiske resultater

Økonometri: Lektion 4. Multipel Lineær Regression: F -test, justeret R 2 og aymptotiske resultater Økonometri: Lektion 4 Multipel Lineær Regression: F -test, justeret R 2 og aymptotiske resultater 1 / 35 Hypotesetest for én parameter Antag vi har model y = β 0 + β 1 x 2 + β 2 x 2 + + β k x k + u. Vi

Læs mere

Statikstik II 2. Lektion. Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression

Statikstik II 2. Lektion. Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression Statikstik II 2. Lektion Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression Sandsynlighedsregningsrepetition Antag at Svar kan være Ja og Nej. Sandsynligheden for at Svar Ja skrives

Læs mere

Økonometri 1. Dagens program: Afslutningsforelæsning 23. maj 2007

Økonometri 1. Dagens program: Afslutningsforelæsning 23. maj 2007 Dagens program: Økonometri 1 Afslutningsforelæsning 23. maj 2007 6-trins procedure til IV estimation. Afrunding af IV: Rygning og fødselsvægt. Afrunding og perspektivering af Kvant 2. Opfølgning af introduktionsforelæsningen.

Læs mere

Lineær regression: lidt mere tekniske betragtninger om R 2 og et godt alternativ

Lineær regression: lidt mere tekniske betragtninger om R 2 og et godt alternativ Lineær regression: lidt mere tekniske betragtninger om R 2 og et godt alternativ Per Bruun Brockhoff, DTU Compute, Claus Thorn Ekstrøm, KU Biostatistik, Ernst Hansen, KU Matematik January 17, 2017 Abstract

Læs mere

Elementær sandsynlighedsregning

Elementær sandsynlighedsregning Elementær sandsynlighedsregning Sandsynlighedsbegrebet Et udfaldsrum S er mængden af alle de mulige udfald af et eksperiment. En hændelse A er en delmængde af udfaldsrummet S. Den hændelse, der ikke indeholder

Læs mere

Program. 1. Varianskomponent-modeller (Random Effects) 2. Transformation af data. 1/12

Program. 1. Varianskomponent-modeller (Random Effects) 2. Transformation af data. 1/12 Program 1. Varianskomponent-modeller (Random Effects) 2. Transformation af data. 1/12 Dæktyper og brændstofforbrug Data fra opgave 10.43, side 360: cars 1 2 3 4 5... radial 4.2 4.7 6.6 7.0 6.7... belt

Læs mere

Økonomisk Kandidateksamen 2004II Økonometri 1. Læsefærdigheder hos skoleelever i Danmark

Økonomisk Kandidateksamen 2004II Økonometri 1. Læsefærdigheder hos skoleelever i Danmark Økonomisk Kandidateksamen 2004II Økonometri 1 Læsefærdigheder hos skoleelever i Danmark Praktiske anvisninger til individuel tag-hjem eksamen i Økonometri 1: Start med at sikre dig at du kan få adgang

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Program for dag: Kvanttatve metoder Den smple regressonsmodel 9. februar 007 Regressonsmodel med en forklarende varabel (W..3-5) Varansanalyse og goodness of ft Enheder og funktonel form af varabler modellen

Læs mere

Teoretisk Statistik, 9 marts nb. Det forventes ikke, at alt materialet dækkes d. 9. marts.

Teoretisk Statistik, 9 marts nb. Det forventes ikke, at alt materialet dækkes d. 9. marts. Teoretisk Statistik, 9 marts 2005 Empiriske analoger (Kap. 3.7) Normalfordelingen (Kap. 3.12) Opsamling på Kap. 3 nb. Det forventes ikke, at alt materialet dækkes d. 9. marts. 1 Empiriske analoger Betragt

Læs mere

1 Multipel lineær regression

1 Multipel lineær regression Indhold 1 Multipel lineær regression 2 1.1 Regression med 2 eksponeringsvariable......................... 2 1.2 Fortolkning og estimation................................ 3 1.3 AnovaTabel og multipel R

Læs mere

Institut for Matematiske Fag Aalborg Universitet Specielt: Var(aX) = a 2 VarX 1/40. Lad X α, X β og X γ være stokastiske variable (vinkelmålinger) med

Institut for Matematiske Fag Aalborg Universitet Specielt: Var(aX) = a 2 VarX 1/40. Lad X α, X β og X γ være stokastiske variable (vinkelmålinger) med Repetition: Varians af linear kombination Landmålingens fejlteori Lektion 5 Fejlforplantning - rw@math.aau.dk Antag X 1, X,..., X n er uafhængige stokastiske variable, og Y er en linearkombination af X

Læs mere

Fagplan for statistik, efteråret 2015

Fagplan for statistik, efteråret 2015 Side 1 af 7 M Fagplan for statistik, efteråret 20 Litteratur Kenneth Hansen & Charlotte Koldsø (HK): Statistik I økonomisk perspektiv, Hans Reitzels Forlag 2012, 2. udgave, ISBN 9788741256047 HypoStat

Læs mere

1 Multipel lineær regression

1 Multipel lineær regression 1 Multipel lineær regression Regression med 2 eksponeringsvariable Fortolkning og estimation AnovaTabel og multipel R 2 Ensidet variansanalyse: Dummy kodning Kovariansanalyse og effektmodifikation Tosidet

Læs mere

Epidemiologi og Biostatistik Opgaver i Biostatistik Uge 10: 13. april

Epidemiologi og Biostatistik Opgaver i Biostatistik Uge 10: 13. april Århus 8. april 2011 Morten Frydenberg Epidemiologi og Biostatistik Opgaver i Biostatistik Uge 10: 13. april Opgave 1 ( gruppe 1: sp 1-4, gruppe 5: sp 5-9 og gruppe 6: 10-14) I denne opgaveser vi på et

Læs mere

Statistik II 1. Lektion. Sandsynlighedsregning Analyse af kontingenstabeller

Statistik II 1. Lektion. Sandsynlighedsregning Analyse af kontingenstabeller Statistik II 1. Lektion Sandsynlighedsregning Analyse af kontingenstabeller Kursusbeskrivelse Omfang 5 kursusgange (forelæsning + opgaveregning) 5 kursusgange (mini-projekt) Emner Analyse af kontingenstabeller

Læs mere

Økonometri 1. Inferens i den lineære regressionsmodel 25. september 2006. Oversigt: De næste forelæsninger

Økonometri 1. Inferens i den lineære regressionsmodel 25. september 2006. Oversigt: De næste forelæsninger Oversigt: De næste forelæsninger Økonometri Inferens i den lineære regressionsmodel 5. september 006 Statistisk inferens: hvorledes man med udgangspunkt i en statistisk model kan drage konklusioner på

Læs mere

Statistik vejledende læreplan og læringsmål, foråret 2015 SmartLearning

Statistik vejledende læreplan og læringsmål, foråret 2015 SmartLearning Side 1 af 6 Statistik vejledende læreplan og læringsmål, foråret 2015 SmartLearning Litteratur: Kenneth Hansen & Charlotte Koldsø: Statistik I økonomisk perspektiv, Hans Reitzels Forlag 2012, 2. udgave,

Læs mere

5. Dynamiske Modeller

5. Dynamiske Modeller 5. En af styrkerne ved paneldata er, som det også blev diskuteret i afsnit 1, at det er muligt både at beskrive de statistiske processer på både langt og kort sigt ved at udnytte både tværsnits- og panelegenskaberne

Læs mere

Statistik II 4. Lektion. Logistisk regression

Statistik II 4. Lektion. Logistisk regression Statistik II 4. Lektion Logistisk regression Logistisk regression: Motivation Generelt setup: Dikotom(binær) afhængig variabel Kontinuerte og kategoriske forklarende variable (som i lineær reg.) Eksempel:

Læs mere

Appendiks Økonometrisk teori... II

Appendiks Økonometrisk teori... II Appendiks Økonometrisk teori... II De klassiske SLR-antagelser... II Hypotesetest... VII Regressioner... VIII Inflation:... VIII Test for SLR antagelser... IX Reset-test... IX Plots... X Breusch-Pagan

Læs mere

Betingede sandsynligheder Aase D. Madsen

Betingede sandsynligheder Aase D. Madsen 1 Uge 12 Teoretisk Statistik 15. marts 2004 1. Betingede sandsynligheder Definition Loven om den totale sandsynlighed Bayes formel 2. Betinget middelværdi og varians 3. Kovarians og korrelationskoefficient

Læs mere

Økonometri 1. Inferens i den lineære regressionsmodel 29. september Økonometri 1: F7 1

Økonometri 1. Inferens i den lineære regressionsmodel 29. september Økonometri 1: F7 1 Økoometri 1 Iferes i de lieære regressiosmodel 9. september 006 Økoometri 1: F7 1 Dages program Opsamlig af hemmeopgave om Mote Carlo eksperimeter Mere om hypotesetest: Ekelt lieær restriktio på koefficieter

Læs mere

Rettevejledning til Økonomisk Kandidateksamen 2004I, Økonometri 1

Rettevejledning til Økonomisk Kandidateksamen 2004I, Økonometri 1 Rettevejledning til Økonomisk Kandidateksamen 004I, Økonometri Vurderingsgrundlaget er selve opgavebesvarelsen og bilaget. Programmer og data som er afleveret på diskette/cd bedømmes som sådan ikke, men

Læs mere

Kvantitative Metoder 1 - Forår Dagens program

Kvantitative Metoder 1 - Forår Dagens program Dagens program Kontinuerte fordelinger Ventetider i en Poissonproces Beskrivelse af kontinuerte fordelinger: - Median og kvartiler - Middelværdi - Varians Simultane fordelinger 1 Ventetider i en Poissonproces

Læs mere

Statistiske modeller

Statistiske modeller Statistiske modeller Statistisk model Datamatrice Variabelmatrice Hændelse Sandsynligheder Data Statistiske modeller indeholder: Variable Hændelser defineret ved mulige variabel værdier Sandsynligheder

Læs mere

Anvendt Statistik Lektion 5. Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele

Anvendt Statistik Lektion 5. Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele Anvendt Statistik Lektion 5 Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele Motiverende eksempel Antal minutter brugt på rengøring/madlavning: Rengøring/Madlavning

Læs mere

Rettevejledning til Økonomisk Kandidateksamen 2007II. Kvantitative Metoder 2: Tag-hjem eksamen

Rettevejledning til Økonomisk Kandidateksamen 2007II. Kvantitative Metoder 2: Tag-hjem eksamen Rettevejledning til Økonomisk Kandidateksamen 2007II Kvantitative Metoder 2: Tag-hjem eksamen Der skal for hver studerende foretages en samlet bedømmelse af tag-hjem gruppeopgaven og den individuelle 2-timers

Læs mere

Kvantitative Metoder 1 - Efterår Dagens program

Kvantitative Metoder 1 - Efterår Dagens program Dagens program Afsnit 6.1. Ligefordelinger, fra sidst Den standardiserede normalfordeling Normalfordelingen Beskrivelse af normalfordelinger: - Tæthed og fordelingsfunktion - Middelværdi, varians og fraktiler

Læs mere

Praktiske ting og sager: Forelæsninger tirsdag og torsdag kl i Kirkesalen, Studiestræde 38 Øvelser

Praktiske ting og sager: Forelæsninger tirsdag og torsdag kl i Kirkesalen, Studiestræde 38 Øvelser Uge 36 Velkommen tilbage Praktiske ting og sager: Forelæsninger tirsdag og torsdag kl. -2 i Kirkesalen, Studiestræde 38 Øvelser Hold -4 og 6: mandag og onsdag kl. 8-; start 3. september Hold 5: tirsdag

Læs mere

Kvantitative Metoder 1 - Forår Dagens program

Kvantitative Metoder 1 - Forår Dagens program Dagens program Afsnit 6.1 Den standardiserede normalfordeling Normalfordelingen Beskrivelse af normalfordelinger: - Tæthed og fordelingsfunktion - Middelværdi, varians og fraktiler Lineære transformationer

Læs mere

Kvantitative Metoder 1 - Forår 2007

Kvantitative Metoder 1 - Forår 2007 Dagens program Kapitel 8.7, 8.8 og 8.10 Momenter af gennemsnit og andele kap. 8.7 Eksempel med simulationer Den centrale grænseværdisætning (Central Limit Theorem) kap. 8.8 Simulationer Normalfordelte

Læs mere

Velkommen til kurset. Teoretisk Statistik. Lærer: Niels-Erik Jensen

Velkommen til kurset. Teoretisk Statistik. Lærer: Niels-Erik Jensen 1 Velkommen til kurset Teoretisk Statistik Lærer: Niels-Erik Jensen Plan for i dag: 1. Eks: Er euro'en skæv? 4. Praktiske informationer 2. Eks: Regressionsmodel (kap. 1) 5. Lidt om kursets indhold 3. Hvad

Læs mere

Normalfordelingen. Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: 1 2πσ

Normalfordelingen. Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: 1 2πσ Normalfordelingen Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: f(x) = ( ) 1 exp (x µ)2 2πσ 2 σ 2 Frekvensen af observationer i intervallet

Læs mere

Elementær sandsynlighedsregning

Elementær sandsynlighedsregning Elementær sandsynlighedsregning Sandsynlighedsbegrebet Et udfaldsrum S er mængden af alle de mulige udfald af et eksperiment. En hændelse A er en delmængde af udfaldsrummet S. Et sandsynlighedsmål er en

Læs mere

Poul Thyregod, introslide.tex Specialkursus vid.stat. foraar Lad θ = θ(β) R k for β B R m med m k

Poul Thyregod, introslide.tex Specialkursus vid.stat. foraar Lad θ = θ(β) R k for β B R m med m k Dagens program: Likelihoodfunktion, begreber : Mandag den 4. februar Den generelle lineære model score-funktion: første afledede af log-likelihood har middelværdien nul observeret information: anden afledede

Læs mere

Landmålingens fejlteori - Lektion 2. Sandsynlighedsintervaller Estimation af µ Konfidensinterval for µ. Definition: Normalfordelingen

Landmålingens fejlteori - Lektion 2. Sandsynlighedsintervaller Estimation af µ Konfidensinterval for µ. Definition: Normalfordelingen Landmålingens fejlteori Lektion Sandsynlighedsintervaller Estimation af µ Konfidensinterval for µ - rw@math.aau.dk Institut for Matematiske Fag Aalborg Universitet En stokastisk variabel er en variabel,

Læs mere

SAS-øvelse: Vi starter ud med model et hvor x=(kvotient, eksald, halvaar, kvinde, MatB,, Gif).

SAS-øvelse: Vi starter ud med model et hvor x=(kvotient, eksald, halvaar, kvinde, MatB,, Gif). Vi vil formulere en model for et kvalitativ variabel y i med to udfald, at bestå og ikke at bestå første årsprøve. Derefter modeller vi respons-sandsynligheden: Specifikation af sandsynligheden for at

Læs mere

Agenda Sandsynlighedsregning. Regneregler (kap. 3-4) Fordelinger og genkendelse af fordelinger (kap. 3-5) Simultane, marginale og betingede

Agenda Sandsynlighedsregning. Regneregler (kap. 3-4) Fordelinger og genkendelse af fordelinger (kap. 3-5) Simultane, marginale og betingede Agenda Sandsynlighedsregning. Regneregler (kap. 3-4) Fordelinger og genkendelse af fordelinger (kap. 3-5) Simultane, marginale og betingede fordelinger (kap. 4) Middelværdi og varians (kap. 3-4) Fordelingsresultater

Læs mere

Økonometri 1 Efterår 2006 Ugeseddel 11

Økonometri 1 Efterår 2006 Ugeseddel 11 Økonometri 1 Efterår 2006 Ugeseddel 11 Program for øvelserne: Gruppearbejde og plenumdiskussion Introduktion til SAS øvelser SAS øvelser Øvelsesopgave: Paneldata estimation Sammenhængen mellem alder og

Læs mere