3. Om skalamønstrene og den indfoldede orden

Størrelse: px
Starte visningen fra side:

Download "3. Om skalamønstrene og den indfoldede orden"

Transkript

1 Dette er den tredje af fem artikler under den fælles overskrift Studier på grundlag af programmet SKALAGENERATOREN (forfatter: Jørgen Erichsen) 3. Om skalamønstrene og den indfoldede orden Lad os begynde dette kapitel med et kort resumé. Vi har set, hvordan det gyldne snit giver anledning til dannelsen af et system af strukturer, der i denne forbindelse kaldes skalaer og hvis udvikling følger Fibonacci-rækken. Vi har videre set, at at ethvert snit giver anledning til dannelsen af et sådant system af skalaer, og at udviklingen i hvert enkelt tilfælde følger en unik talrække, der i denne forbindelse kaldes delingssekvensen. Sammenhængen mellem snit, delingssekvens og skalaer er grafisk anskueliggjort i fig.3.1, idet jeg endnu engang har valgt snittet 7/17 som eksempel: Figur 3.1 Skalaerne er her repræsenteret ved deres indfoldede orden et begreb der blev forklaret i kap.1. Jeg vil nu gennemgå en algoritme, der sætter os i stand til at finde den indfoldede orden for en given skala, når blot vi kender snittet samt antallet af elementer i skalaen. I algoritmen indgår division med rest også kaldet modulodivision. I nogle situationer og ikke mindst i forbindelse med programmering er det ikke kvotienten, men resten vi er interesseret i, og vi foretager da en modulodivision. Handler det f.eks. om at finde resten, når vi dividerer 12 med 7, skrives det således: 12 mod 7 = 5 (udtales 12 modulo 7 er lig med 5 ). Samme rest får vi, når vi dividerer hvert af tallene 5, 19, 26, 33, 40 osv. med 7, og man siger at disse tal er kongruente modulo 7. Betragt nu den følgende tegning, der fremstiller et delingsforløb baseret på snittet 4/7. Den indre kreds af tal angiver den rækkefølge, hvori delingen finder sted, dvs. den indfoldede orden; den ydre kreds af tal er en nummerering af delingerne regnet fra begyndelsen og i modsat retning af urviserens bevægelse: Figur 3.4

2 2 Det vi nu skal lægge mærke til er, at der er en sammenhæng mellem de to rækker af tal. Ganger vi nemlig tallene i den indre kreds med snittet 4/7, vil resten i hvert tilfælde være identisk med det tilsvarende tal i den ydre kreds eller som det udtrykkes i modulo-terminologi: 0 4 mod 7 = mod 7 = mod 7 = mod 7 = mod 7 = mod 7 = mod 7 = 6 Idet vi symbolisererer et tal i den indfoldede orden (den indre kreds af tal) ved bogstavet q og et tal i den numeriske rækkefølge (den ydre kreds af tal) ved bogstavet n, går opgaven imidlertid ud på at besvare spørgsmålet: Hvilken værdi har q på den n te plads? Opgaven kan kun løses ved, at vi afprøver alle potentielle muligheder og stopper op, når vi har fundet den rigtige. I dette tilfælde skal vi for hver af de syv pladser gennemfører alle syv modulodivisioner, frem til det punkt, hvor resten er identisk med nummeret på den pågældende plads. Det giver en masse regnearbejde, men det er ganske uden betydning, når vi tager computeren til hjælp. Formuleret i et simpelt programmeringssprog er fremgangsmåden (algoritmen) denne: FOR n = 0 TO 6 FOR q = 0 TO 6 IF q * 4 MOD 7 = n THEN EXIT FOR NEXT q PRINT q NEXT n Vi har her to løkker, hvor den ene er indesluttet i den anden. Begge løkker er af typen For-Next, dvs. de gennemløber et antal i forvejen fastlagte værdier, her fra 0 til 6. Lad os som eksempel sige, at vi i den yderste løkke er nået frem til 5. plads. Nu afprøves i den inderste løkke hver af de syv værdier som q kan have. Afprøvningen består i at udføre den før omtalt modulodivision. Når den som resultat giver n (udtrykt i kodeordene IF... THEN), har vi fundet den indfoldede orden på den pågældende plads; vi kan nu forlade den inderste løkke (udtrykt i kodeordene EXIT FOR), hvorefter resultet skrives ud (kodeordet PRINT q). Dermed er vi tilbage i den ydre løkke, og den samme procedure gentages med den næste værdi af n. Som slutresultat vil vi på skærmen have stående skalaens indfoldede orden: Ved hjælp af en tredje løkke, som omslutter de to andre, kan vi få programmet til at udskrive den den indfoldede orden for alle snit, hvor nævneren er 7 (altså 1/7, 2/7... 6/7), og ved at indskyde en passende kode på det sted, hvor der skiftes til en ny tæller, kan vi få det hele sat op i form af en matrice, dvs. en opstilling i rækker og kolonner. Tælleren kalder vi som sædvanlig b; linieskiftet er her blot antydet ved sætningen skift til ny linie : FOR b = 1 TO 6 FOR n = 0 TO 6 FOR q = 0 TO 6 IF q * b MOD 7 = n THEN EXIT FOR NEXT q PRINT q NEXT n (skift til ny linie) NEXT b

3 3 På skærmen står der nu: I fig.2.7 blev samtlige delingsforløb, hvor snittet er rationelt, og hvor nævneren er mindre end 13 anskueliggjort grafisk. Den følgende opstilling viser den indfoldede orden for hver af disse delingsforløb: 2-deling deling deling Den indfoldede orden for alle snit fra 1/2 til 11/12 (sml. med fig.2.7) 5-deling deling deling deling deling deling deling deling

4 4 Sammenligner vi med fig.2.4, er det tydeligt hvordan polygonernes individuelle struktur og indbyrdes symmetri afspejler sig i matricerne. De delinger der bortfalder, fordi tæller og nævner kan forkortes, er markeret ved en prik. Hvad angår den indbyrdes forbindelse mellem rækkerne i den enkelte matrice, så springer det umiddelbart i øjnene, at 1-tallerne danner en diagonal linie ned gennem matricen. Men ser vi nøjere efter, viser det sig, at noget lignende er tilfældet med de øvrige tal; blot er linien her ikke diagonal, men hældningen aftager i takt med at tallet vokser. I den næste opstilling gentages matricen for 11- deling, idet 2-tallerne er fremhævet i opstillingen til venstre, og 3-tallerne er fremhævet i opstillingen til højre: Hvis man forestiller sig at matricen vikles rundt om en cylinder, så vil 1-tallerne danne en skruelinje, som når én gang rundt om cylinderen, 2-tallerne vil danne en skruelinje, som når to gange rundt om cylinderen, 3-tallerne vil danne en skruelinje, som når tre gange rundt om cylinderen og så fremdeles. Hver enkelt række gentages her i et cirkulært periodisk forløb; men man kan også forestille sig, at det samme er tilfældet med kolonnerne nemlig ved at cylinderen forvandles til en torus (en ring). Jeg har skrevet et specielt program, SKALAMATRICER, som grundlæggende er baseret på den algoritme, der er gennemgået ovenfor. Den næste illustration, fig.4.2, viser hvordan brugerfladen ser ud. Figur 3.5

5 5 Øverst til venstre ser vi de samme indtastningsbokse for snittet og for antallet af delinger, som vi kender fra SKALAGENERATOREN. Desuden kan antallet af delinger fastlåses til nævneren. Af praktiske grunde er nævnerens maksimale størrelse sat til 99. Allerede før vi når hertil begynder genereringen af matricen at tage mærkbar tid (det skyldes dog mere opsætningen på skærmen, end det skyldes det egentlige regnearbejde), og desuden vokser matricens udstrækning i både bredde og højde, så det kun er et udsnit ad gangen, der kan ses på skærmen (bemærk rullepanelerne til højre og forneden). Til højre er der tre valg: Vi kan få vist (1) den indfoldede orden, (2) de tilsvarende intervaldifferenser, (3) forkortelsesmønstret. Hvad intervaldifferenser angår, er det let at indse, at der blot skal indskydes en simpel subtraktionsprocedure i programkoden, for at vi kan få disse beregnet og udskrevet. Hvad forkortelsesmønstret betyder, bliver forklaret lidt senere. Uanset hvilken tæller vi har indtastet, vises resultatet for alle tællere mellem 1 og a 1, men vi kan vælge at få fremhævet det indtastede snit. Vi kan også vælge at få fremhævet et bestemt tal i den indfoldede orden i eksemplet er det tallet 2 (fremhævet med rødt) Vælger vi at få vist intervaldifferenserne, får vi dette resultat at se (her er tillige valgt at få fremhævet det indtastede snit, 7/24): Figur 3.6 Vælger vi som den tredje mulighed at få vist forkortelsesmønstret, bliver alle tal erstattet af nuller. Dermed fremkommer et geometrisk mønster, der endnu tydeligere fremhæver de steder, hvor tæller og nævner forkortes. Forkortelsesmønstret, der egentlig mere skal forstås som et matematisk kuriosum, ser i det aktuelle tilfælde sådan ud: Figur 3.7

6 6 Selv om forkortelsesmønstret vel mere må betragtes som et kuriosum, er det ganske fascinerende at følge, hvordan det ændrer sig fra den ene nævner til den anden. I de næste figurer kan vi således følge, hvordan forkortelsesmønsteret udvikler sig mellem nævnerne 23 og 29. I ydertilfældene afslører mønstrets maksimale tæthed, at der er tale om primtal, hvorimod de mere eller mindre gennemhullede mønstre i de mellemliggende tilfælde særdeles tydeligt afslører, hvor tæller og nævner kan forkortes. 24 har som allerede nævnt særlig mange forkortelsesmuligheder, hvorimod 25 kun har en enkelt men jeg vil i øvrigt overlade den aritmetiske tolkning af mønstrene til læseren Man vil også kunne tolke de markerede tal som nodeværdier og de tomme pladser som pauser. Idet det vandrette forløb på sædvanlig vis identificeres med tidsforløbet, kan hele matricen tolkes som et partitur, og måske kan musikeren allerede for sit indre øre høre et rytmisk samspil mellem fra 23 til 29 instrumenter et samspil der strækker sig fra fuldkommen monotoni til de mest komplicerede polyrytmer! I øvrigt minder mønstrene også om de hulkort, der brugtes til Jacquard-vævning (en teknik til vævning af komplicerede mønstre), før denne blev afløst af computerstyret vævning.

4. Snittets kædebrøksfremstilling og dets konvergenter

4. Snittets kædebrøksfremstilling og dets konvergenter Dette er den fjerde af fem artikler under den fælles overskrift Studier på grundlag af programmet SKALAGENERATOREN (forfatter: Jørgen Erichsen) 4. Snittets kædebrøksfremstilling og dets konvergenter Vi

Læs mere

2. Fibonaccirækkens ukendte søskende skaladannelse på grundlag af et vilkårligt snit

2. Fibonaccirækkens ukendte søskende skaladannelse på grundlag af et vilkårligt snit Dette er den anden af fem artikler under den fælles overskrift Matematiske Studier på grundlag af programmet SKALAGENERATOREN (forfatter: Jørgen Erichsen) 2. Fibonaccirækkens ukendte søskende skaladannelse

Læs mere

Periodiske kædebrøker eller talspektre en introduktion til programmet periodisktalspektrum

Periodiske kædebrøker eller talspektre en introduktion til programmet periodisktalspektrum Jørgen Erichsen Periodiske kædebrøker eller talspektre en introduktion til programmet periodisktalspektrum I artikelserien Studier på grundlag af programmet SKALAGENERATOREN kommer jeg bl.a. ind på begrebet

Læs mere

Klasse 1.4 Michael Jokil 03-05-2010

Klasse 1.4 Michael Jokil 03-05-2010 HTX I ROSKILDE Afsluttende opgave Kommunikation og IT Klasse 1.4 Michael Jokil 03-05-2010 Indholdsfortegnelse Indledning... 3 Formål... 3 Planlægning... 4 Kommunikationsplan... 4 Kanylemodellen... 4 Teknisk

Læs mere

Forslag til løsning af Opgaver til afsnittet om de naturlige tal (side 80)

Forslag til løsning af Opgaver til afsnittet om de naturlige tal (side 80) Forslag til løsning af Opgaver til afsnittet om de naturlige tal (side 80) Opgave 1 Vi skal tegne alle de linjestykker, der forbinder vilkårligt valgte punkter blandt de 4 punkter. Gennem forsøg finder

Læs mere

VisiRegn: En e-bro mellem regning og algebra

VisiRegn: En e-bro mellem regning og algebra Artikel i Matematik nr. 2 marts 2001 VisiRegn: En e-bro mellem regning og algebra Inge B. Larsen Siden midten af 80 erne har vi i INFA-projektet arbejdet med at udvikle regne(arks)programmer til skolens

Læs mere

Faglige mål: Håndtere simple formler og ligninger, herunder kunne oversætte fra symbolholdigt sprog til naturligt sprog og omvendt. Håndtere simple mo

Faglige mål: Håndtere simple formler og ligninger, herunder kunne oversætte fra symbolholdigt sprog til naturligt sprog og omvendt. Håndtere simple mo C A R S T E N C R A M O N PASCALS TREKANT G Y L D E N D A L Faglige mål: Håndtere simple formler og ligninger, herunder kunne oversætte fra symbolholdigt sprog til naturligt sprog og omvendt. Håndtere

Læs mere

Taldata 1. Chancer gennem eksperimenter

Taldata 1. Chancer gennem eksperimenter Taldata 1. Chancer gennem eksperimenter Indhold 1. Kast med to terninger 2. Et pindediagram 3. Sumtabel 4. Median og kvartiler 5. Et trappediagram 6. Gennemsnit 7. En statistik 8. Anvendelse af edb 9.

Læs mere

Sammenlign og byt. Et eksempel på dokumentering af et program

Sammenlign og byt. Et eksempel på dokumentering af et program Sammenlign og byt Et eksempel på dokumentering af et program Sammenlign og byt Jeg har valgt, som et eksempel, at dokumentere et meget enkelt program som indlæser to tal, sammenligner dem og udskriver

Læs mere

π er irrationel Frank Nasser 10. december 2011

π er irrationel Frank Nasser 10. december 2011 π er irrationel Frank Nasser 10. december 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

Grundliggende regning og talforståelse

Grundliggende regning og talforståelse Grundliggende regning og talforståelse De fire regnearter: Plus, minus, gange og division... 2 10-tals-systemet... 4 Afrunding af tal... 5 Regning med papir og blyant... 6 Store tal... 8 Negative tal...

Læs mere

Affine - et krypteringssystem

Affine - et krypteringssystem Affine - et krypteringssystem Matematik, når det er bedst Det Affine Krypteringssystem (Affine Cipher) Det Affine Krypteringssystem er en symmetrisk monoalfabetisk substitutionskode, der er baseret på

Læs mere

Matricer og lineære ligningssystemer

Matricer og lineære ligningssystemer Matricer og lineære ligningssystemer Grete Ridder Ebbesen Virum Gymnasium Indhold 1 Matricer 11 Grundlæggende begreber 1 Regning med matricer 3 13 Kvadratiske matricer og determinant 9 14 Invers matrix

Læs mere

Introduktion til EXCEL med øvelser

Introduktion til EXCEL med øvelser Side 1 af 10 Introduktion til EXCEL med øvelser Du kender en almindelig regnemaskine, som kan være til stort hjælp, når man skal beregne resultater med store tal. Et regneark er en anden form for regnemaskine,

Læs mere

GUIDE TIL IT-SYSTEMET RAMBØLL RESULTS

GUIDE TIL IT-SYSTEMET RAMBØLL RESULTS GUIDE TIL IT-SYSTEMET RAMBØLL RESULTS Denne guide beskriver de redskaber, skoleledere har mulighed for at benytte i Rambøll Results. På de følgende sider finder du bl.a. svar på disse spørgsmål: Hvordan

Læs mere

Løsning af simple Ligninger

Løsning af simple Ligninger Løsning af simple Ligninger Frank Nasser 19. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk:

Læs mere

Majoritetsproblemet Problem Præcisering af inddata Præcisering af uddata

Majoritetsproblemet Problem Præcisering af inddata Præcisering af uddata Majoritetsproblemet Problem: Til præsidentvalget i Frankrig har cirka 20 millioner vælgere afgivet deres stemme på et antal præsidentkandidater. Afgør om en af kandidaterne har opnået mere end halvdelen

Læs mere

brikkerne til regning & matematik tal og algebra preben bernitt

brikkerne til regning & matematik tal og algebra preben bernitt brikkerne til regning & matematik tal og algebra 2+ preben bernitt brikkerne. Tal og algebra 2+ 1. udgave som E-bog ISBN: 978-87-92488-35-0 2008 by bernitt-matematik.dk Kopiering af denne bog er kun tilladt

Læs mere

Programmering C RTG - 3.3 09-02-2015

Programmering C RTG - 3.3 09-02-2015 Indholdsfortegnelse Formål... 2 Opgave formulering... 2 Krav til dokumentation af programmer... 3 ASCII tabel... 4 Værktøjer... 5 Versioner af ASCII tabel... 6 v1.9... 6 Problemer og mangler... 6 v2.1...

Læs mere

Selv om websites er yderst forskellige i deres fremtræden, så kan de stort set alle sammen passes ind i den skabelon som er illustreret herunder:

Selv om websites er yderst forskellige i deres fremtræden, så kan de stort set alle sammen passes ind i den skabelon som er illustreret herunder: Design en praktisk guide. Et design udtrykker dit websites grafiske udseende, lige fra hvilke skrifttyper der anvendes op til hvor navigationen er placeret og hvilke interaktive elementer der skal benyttes.

Læs mere

Euklids algoritme og kædebrøker

Euklids algoritme og kædebrøker Euklids algoritme og kædebrøker Michael Knudsen I denne note vil vi med Z, Q og R betegne mængden af henholdsvis de hele, de rationale og de reelle tal. Altså er { m } Z = {..., 2,, 0,, 2,...} og Q = n

Læs mere

OVERGANGS- OG OPBYGNINGSEFFEKTER

OVERGANGS- OG OPBYGNINGSEFFEKTER OVERGANGS- OG OPBYGNINGSEFFEKTER Kan PowerPoint ikke animere, kan programmet i stedet lave overgangs- og opbygningseffekter. Ikke mindst opbygningseffekter giver rige muligheder, for at lave særdeles avancerede

Læs mere

Manual til hjemmeside i Typo3

Manual til hjemmeside i Typo3 Manual til hjemmeside i Typo3 Gode tips og genvejstaster Ét linieskift Ctrl + A Ctrl + C Ctrl + X Ctrl + V shift + enter (tasten du normalt bruger til linieskift) Markér alt Kopier Klip Sæt ind Oprettelse

Læs mere

Opgave 1 Regning med rest

Opgave 1 Regning med rest Den digitale signatur - anvendt talteori og kryptologi Opgave 1 Regning med rest Den positive rest, man får, når et helt tal a divideres med et naturligt tal n, betegnes rest(a,n ) Hvis r = rest(a,n) kan

Læs mere

Mat C HF basisforløb-intro side 1. Kapitel 1. Fortegnsregler og udregningsrækkefølger

Mat C HF basisforløb-intro side 1. Kapitel 1. Fortegnsregler og udregningsrækkefølger Mat C HF basisforløb-intro side 1 Kapitel 1 Fortegnsregler og udregningsrækkefølger Mat C HF basisforløb-intro side 2 1. Fortegn. 1.Fortegnsregler og udregningsrækkefølger - En introduktion med opgaver

Læs mere

ESLC prøveredskaber: Vejledning for elever (DK)

ESLC prøveredskaber: Vejledning for elever (DK) ESLC prøveredskaber: Vejledning for elever (DK) Indholdsfortegnelse 1 INDLEDNING 3 2 PRØVERNE 3 2.1 Log in 3 2.2 Lydtjek til lytteprøven 5 2.3 Under prøven 5 3 Prøvens opgaver 7 3.1 Lytteopgaver 7 3.2

Læs mere

Algebra - Teori og problemløsning

Algebra - Teori og problemløsning Algebra - Teori og problemløsning, januar 05, Kirsten Rosenkilde. Algebra - Teori og problemløsning Kapitel -3 giver en grundlæggende introduktion til at omskrive udtryk, faktorisere og løse ligningssystemer.

Læs mere

Udlejningssystemet sættes op, således at det passer med den normale forretningsgang i virksomheden.

Udlejningssystemet sættes op, således at det passer med den normale forretningsgang i virksomheden. Udlejningssystemet sættes op, således at det passer med den normale forretningsgang i virksomheden. F.eks. ved biludlejning, betaler man leje og depositum, inden man får lov at tage bilen med sig. Anderledes

Læs mere

1 monotoni & funktionsanalyse

1 monotoni & funktionsanalyse 1 monotoni & funktionsanalyse I dag har vi grafregnere (TI89+) og programmer på computer (ex.vis Derive og Graph), hvorfor det ikke er så svært at se hvordan grafen for en matematisk funktion opfører sig

Læs mere

Kursusbeskrivelse. Forarbejde. Oprettelse af en Access-database

Kursusbeskrivelse. Forarbejde. Oprettelse af en Access-database Kursusbeskrivelse Oprettelse af en Access-database Som eksempel på en Access-database oprettes en simpelt system til administration af kurser. Access-databasen skal indeholde: et instruktørkartotek et

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af sider Danmarks Tekniske Universitet Skriftlig prøve, den. maj 00. Kursusnavn Algoritmer og datastrukturer Kursus nr. 06. Tilladte hjælpemidler: Alle hjælpemidler. Vægtning af opgaverne: Opgave

Læs mere

Hunden kan sige et nyt tal (legen kan selvfølgelig udvides til former) hver dag, men kun det tal.

Hunden kan sige et nyt tal (legen kan selvfølgelig udvides til former) hver dag, men kun det tal. 4. oktober 9.00-15.00 Tårnby Faglig læsning Program Præsentation Hunden - en aktivitet til at vågne op på Oplæg om begrebsdannelse Aktiviteter hvor kroppen er medspiller Matematikkens særlige sprog Aktiviteter

Læs mere

Kapitel 2 Tal og variable

Kapitel 2 Tal og variable Tal og variable Uden tal ingen matematik - matematik handler om tal og anvendelse af tal. Matematik beskæftiger sig ikke udelukkende med konkrete problemer fra andre fag, og de konkrete tal fra andre fagområder

Læs mere

Vinderseminar 2007. Diskret matematik. Kirsten Rosenkilde. 1. Diskret matematik.

Vinderseminar 2007. Diskret matematik. Kirsten Rosenkilde. 1. Diskret matematik. Vinderseminar 2007. Diskret matematik. Kirsten Rosenkilde. 1 1 Paritet Diskret matematik. I mange matematikopgaver er det en god ide at se på paritet dvs. hvornår en bestemt størrelse er henholdsvis lige

Læs mere

Opstilling af festsange med overskrift og vers.

Opstilling af festsange med overskrift og vers. Side 1 af 12 Opstilling af festsange med overskrift og vers. Spalter 1. Skriv overskrift og vers på normal måde. Lad os sige, at der er 7 vers, hvor de 6 skal stå i 2 spalter. Det sidste skal stå alene

Læs mere

Definition : Et træ er en sammenhængende ikke-orienteret graf uden simple kredse. Sætning : En ikke-orienteret graf er et træ hvis og kun hvis der er

Definition : Et træ er en sammenhængende ikke-orienteret graf uden simple kredse. Sætning : En ikke-orienteret graf er et træ hvis og kun hvis der er Definition : Et træ er en sammenhængende ikke-orienteret graf uden simple kredse. Sætning : En ikke-orienteret graf er et træ hvis og kun hvis der er en unik simpel vej mellem ethvert par af punkter i

Læs mere

Kryptologi og RSA. Jonas Lindstrøm Jensen (jonas@imf.au.dk)

Kryptologi og RSA. Jonas Lindstrøm Jensen (jonas@imf.au.dk) Kryptologi og RSA Jonas Lindstrøm Jensen (jonas@imf.au.dk) 1 Introduktion Der har formodentlig eksisteret kryptologi lige så længe, som vi har haft et sprog. Ønsket om at kunne sende beskeder, som uvedkommende

Læs mere

APPENDIX A INTRODUKTION TIL DERIVE

APPENDIX A INTRODUKTION TIL DERIVE APPENDIX A INTRODUKTION TIL DERIVE z x y z=exp( x^2 0.5y^2) CAS er en fællesbetegnelse for matematikprogrammer, som foruden numeriske beregninger også kan regne med symboler og formler. Det betyder: Computer

Læs mere

Tråden kan med lidt god vilje ses som et S (rødt) - og på den anden tegning et Z (rødt)

Tråden kan med lidt god vilje ses som et S (rødt) - og på den anden tegning et Z (rødt) Der findes nogle få, fundamentale regler, som jeg vil prøve at redegøre for. Som regel består den af en plade (af meget varierende størrelse, men den for mig bedste størrelse er ca. 5 x 5 cm). Den kan

Læs mere

Introduktion til differentialregning 1. Jens Siegstad og Annegrethe Bak

Introduktion til differentialregning 1. Jens Siegstad og Annegrethe Bak Introduktion til differentialregning 1 Jens Siegstad og Annegrete Bak 16. juli 2008 1 Indledning I denne note vil vi kort introduktion til differentilregning, idet vi skal bruge teorien i et emne, Matematisk

Læs mere

Sådan gør du i GeoGebra.

Sådan gør du i GeoGebra. Sådan gør du i GeoGebra. Det første vi skal prøve er at tegne matematiske figurer. Tegne: Lad os tegne en trekant. Klik på trekant knappen Klik på punktet ved (1,1), (4,1) (4,5) og til sidst igen på (1,1)

Læs mere

Oprids over grundforløbet i matematik

Oprids over grundforløbet i matematik Oprids over grundforløbet i matematik Dette oprids er tænkt som en meget kort gennemgang af de vigtigste hovedpointer vi har gennemgået i grundforløbet i matematik. Det er en kombination af at repetere

Læs mere

Instruktion til banelægning i Condes til træningsløb

Instruktion til banelægning i Condes til træningsløb Instruktion til banelægning i Condes til træningsløb Har du ikke Condes 9 på din computer kan det hentes på www.condes.dk RSOK s login oplysninger findes her (kræver login til klubbens hjemmeside, har

Læs mere

Matematik. 1 Matematiske symboler. Hayati Balo,AAMS. August, 2014

Matematik. 1 Matematiske symboler. Hayati Balo,AAMS. August, 2014 Matematik Hayati Balo,AAMS August, 2014 1 Matematiske symboler For at udtrykke de verbale udsagn matematisk korrekt, så det bliver lettere og hurtigere at skrive, indføres en række matematiske symboler.

Læs mere

Matematisk modellering og numeriske metoder. Lektion 16

Matematisk modellering og numeriske metoder. Lektion 16 Matematisk modellering og numeriske metoder Lektion 16 Morten Grud Rasmussen 6. november, 2013 1 Interpolation [Bogens afsnit 19.3 side 805] 1.1 Interpolationspolynomier Enhver kontinuert funktion f på

Læs mere

Introduktion til Calc Open Office med øvelser

Introduktion til Calc Open Office med øvelser Side 1 af 8 Introduktion til Calc Open Office med øvelser Introduktion til Calc Open Office... 2 Indtastning i celler... 2 Formler... 3 Decimaler... 4 Skrifttype... 5 Skrifteffekter... 6 Justering... 6

Læs mere

Det nye husdyrgodkendelse.dk Sagsbehandlermodulet Fra ansøgning til godkendelse V. 1.0 28/4 2011

Det nye husdyrgodkendelse.dk Sagsbehandlermodulet Fra ansøgning til godkendelse V. 1.0 28/4 2011 2. Sådan kommer du fra ansøgning til godkendelse Før du kan komme i gang med at arbejde på en miljøgodkendelse, skal du have åbnet den tilhørende ansøgning. Det gør du enten ved at indtaste skemanummer

Læs mere

Spilstrategier. 1 Vindermængde og tabermængde

Spilstrategier. 1 Vindermængde og tabermængde Spilstrategier De spiltyper vi skal se på her, er primært spil af følgende type: Spil der spilles af to spillere A og B som skiftes til at trække, A starter, og hvis man ikke kan trække har man tabt. Der

Læs mere

IZAK9 lærervejledning

IZAK9 lærervejledning IZAK9 lærervejledning Immersive learning by Copyright Qubizm Ltd. 2014 1 Indholdsfortegnelse Introduktion... 3 Øvelser og organisering... 3 Hvordan er opgaverne udformet?... 4 Opgaveguide Videofilm på

Læs mere

Trekanter. Frank Villa. 8. november 2012

Trekanter. Frank Villa. 8. november 2012 Trekanter Frank Villa 8. november 2012 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser for brug her. Indhold 1 Introduktion 1 1.1

Læs mere

Vi skal således finde en metode til:

Vi skal således finde en metode til: Vi skal således finde en metode til: 1. At anvende maskinen som målemaskine til at finde det forudbestemte startpunkt. 2. At finde programmeringskoordinatsystemets afstand til startpunktet. 3. At indføre

Læs mere

Hvordan finder du de bedste højttalere?

Hvordan finder du de bedste højttalere? Hvordan finder du de bedste højttalere? Højttalerens verden er fyldt med tal, men du kan undvære de fleste af dem. Du behøver ikke, at sætte dig ind i det tekniske Den gode nyhed er, at det at købe højttalere

Læs mere

Faglige delmål og slutmål i faget Matematik. Trin 1

Faglige delmål og slutmål i faget Matematik. Trin 1 Faglige delmål og slutmål i faget Matematik. Trin 1 Faglige delmål for matematik i 1. og 2. klasse. Undervisningen skal lede frem mod, at eleverne efter 2. klasse har tilegnet sig kundskaber og færdigheder,

Læs mere

Introduktion til MatLab Matematisk Modellering af Dynamiske Modeller ved Kasper Bjering Jensen, RUC, februar 2010

Introduktion til MatLab Matematisk Modellering af Dynamiske Modeller ved Kasper Bjering Jensen, RUC, februar 2010 Introduktion til MatLab Matematisk Modellering af Dynamiske Modeller ved Kasper Bjering Jensen, RUC, februar 2010 Computere er uvurderlige redskaber for personer der ønsker at arbejde med matematiske modeller

Læs mere

5. Vælg den udgave du ønsker, og skriv det antal du ønsker at købe i rubrikken efter antal og

5. Vælg den udgave du ønsker, og skriv det antal du ønsker at købe i rubrikken efter antal og s. 1 / 9 1. www.nodebasen.dk 2. Find den node, du gerne vil købe ved at trykke dig ind på en kategori i venstre kolonne: 3. Tryk på titlen eller tryk på under den sang du ønsker 4. Nu kommer du ind på

Læs mere

Measuring ability and aptitude. Forberedelsesguide

Measuring ability and aptitude. Forberedelsesguide Forberedelsesguide Indhold Måling af evner, intelligens Generel introduktion Test 1 Test 2 Test 3 Test 4: Test 5: Ræsonnement Opfattelseshastighed Talhastighed -nøjagtighed Sproglig forståelse Spatial

Læs mere

Talrækker. Aktivitet Emne Klassetrin Side

Talrækker. Aktivitet Emne Klassetrin Side VisiRegn ideer 3 Talrækker Inge B. Larsen ibl@dpu.dk INFA juli 2001 Indhold: Aktivitet Emne Klassetrin Side Vejledning til Talrækker 2-4 Elevaktiviteter til Talrækker 3.1 Talrækker (1) M-Æ 5-9 3.2 Hanoi-spillet

Læs mere

Talregning. Aktivitet Emne Klassetrin Side. Indledning til VisiRegn ideer 1-7 2 Oversigt over VisiRegn ideer 1-7 3

Talregning. Aktivitet Emne Klassetrin Side. Indledning til VisiRegn ideer 1-7 2 Oversigt over VisiRegn ideer 1-7 3 VisiRegn ideer 1 Talregning Inge B. Larsen ibl@dpu.dk INFA juli 2001 Indhold: Aktivitet Emne Klassetrin Side Indledning til VisiRegn ideer 1-7 2 Oversigt over VisiRegn ideer 1-7 3 Vejledning til Talregning

Læs mere

i x-aksens retning, så fås ). Forskriften for g fås altså ved i forskriften for f at udskifte alle forekomster af x med x x 0

i x-aksens retning, så fås ). Forskriften for g fås altså ved i forskriften for f at udskifte alle forekomster af x med x x 0 BAndengradspolynomier Et polynomium er en funktion på formen f ( ) = an + an + a+ a, hvor ai R kaldes polynomiets koefficienter. Graden af et polynomium er lig med den højeste potens af, for hvilket den

Læs mere

Wordart Side 1 af 16

Wordart Side 1 af 16 Side 1 af 16 Side 2 af 16 WordArt er et system, hvor man kan lave mange spændende tekster. Billederne på side 1 er lavet med dette system. I det følgende vil du få mulighed for at lære dette system nærmere

Læs mere

Sammensætning af regnearterne

Sammensætning af regnearterne Sammensætning af regnearterne Plus, minus, gange og division... 19 Negative tal... 0 Parenteser og brøkstreger... Potenser og rødder... 4 Sammensætning af regnearterne Side 18 Plus, minus, gange og division

Læs mere

KOMMUNIKATION/ IT C. Titel: Grafisk design Navn: Mark B, Thomas L og Maria S Klasse: 1.4g Dato: 8/12 2006 Sidetal:

KOMMUNIKATION/ IT C. Titel: Grafisk design Navn: Mark B, Thomas L og Maria S Klasse: 1.4g Dato: 8/12 2006 Sidetal: Titel: Grafisk design Navn: Mark B, Thomas L og Maria S Klasse: 1.4g Dato: 8/12 2006 Sidetal: 1 Indholdsfortegnelse: Farvelære s. 2 - farvens fysik s. 2 Øjet s. 2 - farvesyn s. 3 - nethinden s. 3 - efterbilleder

Læs mere

Projekt 10.16: Matematik og demokrati Mandatfordelinger ved sidste kommunalvalg

Projekt 10.16: Matematik og demokrati Mandatfordelinger ved sidste kommunalvalg Projekt 10.16: Matematik og demokrati Mandatfordelinger ved sidste kommunalvalg Introduktion: Vi vil nu se på et konkret eksempel på hvordan man i praksis fordeler mandaterne i et repræsentativt demokrati,

Læs mere

Hvis der ikke er strøm på datboksen i dette tidsrum, vil aflæsningerne blive fremsendt til telelink når der igen tændes for strømmen.

Hvis der ikke er strøm på datboksen i dette tidsrum, vil aflæsningerne blive fremsendt til telelink når der igen tændes for strømmen. Guide til telelink Hvad er telelink Telelink er en database hvor alle aflæsninger på automaterne bliver fremsendt til fra spillestedets datboks(e). Aflæsningerne bliver fremsendt hver nat mellem kl. 00.00

Læs mere

Matematik opgave Projekt afkodning Zehra, Pernille og Remuss

Matematik opgave Projekt afkodning Zehra, Pernille og Remuss Matematik opgave Projekt afkodning Zehra, Pernille og Remuss Opgave A Sæt de overstående symboler ind i en matematisk sammenhæng der gør dem forståelige. Det kan være som en sætning eller med tal og bogstaver

Læs mere

LÆRINGSMÅL PÅ NIF MATEMATIK 2014-15

LÆRINGSMÅL PÅ NIF MATEMATIK 2014-15 LÆRINGSMÅL PÅ NIF MATEMATIK 2014-15 Mål for undervisningen i Matematik på NIF Følgende er baseret på de grønlandske læringsmål, tilføjelser fra de danske læringsmål står med rød skrift. Læringsmål Yngstetrin

Læs mere

ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER

ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER INDHOLDSFORTEGNELSE 0. FORMELSAMLING TIL FORMLER OG LIGNINGER... 2 Tal, regneoperationer og ligninger... 2 Isolere en ubekendt... 3 Hvis x står i første brilleglas...

Læs mere

ALMINDELIGT ANVENDTE FUNKTIONER

ALMINDELIGT ANVENDTE FUNKTIONER ALMINDELIGT ANVENDTE FUNKTIONER I dette kapitel gennemgås de almindelige regnefunktioner, samt en række af de mest nødvendige redigerings- og formateringsfunktioner. De øvrige redigerings- og formateringsfunktioner

Læs mere

3D-grafik Karsten Juul

3D-grafik Karsten Juul 3D-grafik 2005 Karsten Juul Når der i disse noter står at du skal få tegnet en figur, så er det meningen at du skal få tegnet den ved at taste tildelinger i Mathcad-dokumentet RumFig2 Det er selvfølgelig

Læs mere

Vejledning til brug af Foreningsportalen

Vejledning til brug af Foreningsportalen Børne- og Kulturforvaltningen Kultur- og Fritidsafdelingen Vejledning til brug af Foreningsportalen Foreningsportalen kan benyttes af både borgere og foreninger til søgning af foreningsoplysninger. Som

Læs mere

18 Multivejstræer og B-træer.

18 Multivejstræer og B-træer. 18 Multivejstræer og B-træer. Multivejs søgetræer. Søgning i multivejssøgetræer. Pragmatisk lagring af data i multivejstræer. B-træer. Indsættelse i B-træer. Eksempel på indsættelse i B-træ. Facts om B-træer.

Læs mere

5: Trigonometri Den del af matematik, der beskæftiger sig med figurer og deres egenskaber, kaldes for geometri. Selve

5: Trigonometri Den del af matematik, der beskæftiger sig med figurer og deres egenskaber, kaldes for geometri. Selve 5: Trigonometri Den del af matematik, der beskæftiger sig med figurer og deres egenskaber, kaldes for geometri. Selve ordet geometri er græsk og betyder jord(=geo)måling(=metri). Interessen for figurer

Læs mere

Symbolsprog og Variabelsammenhænge

Symbolsprog og Variabelsammenhænge Indledning til Symbolsprog og Variabelsammenhænge for Gymnasiet og Hf 1000 kr 500 0 0 5 10 15 timer 2005 Karsten Juul Brugsanvisning Du skal se i de fuldt optrukne rammer for at finde: Regler for løsning

Læs mere

Tal og algebra. I hvilke situationer kan det være motiverende at gengive et talmønster som et geometrisk mønster?

Tal og algebra. I hvilke situationer kan det være motiverende at gengive et talmønster som et geometrisk mønster? Oplæg I hvilke situationer kan det være motiverende at gengive et talmønster som et geometrisk mønster? Hvordan ser I mulighederne i at stimulere elevernes tænkning og udvikle deres arbejdsmåde, når de

Læs mere

Vejledning til opdatering på hjemmesiden www.ifskjoldsaeby.dk

Vejledning til opdatering på hjemmesiden www.ifskjoldsaeby.dk Vejledning til opdatering på hjemmesiden www.ifskjoldsaeby.dk Du logger på fra forsiden. Når du har indtastet brugernavn og password, vil der i højre side fremkomme en menu med punkterne: Redigér denne

Læs mere

I denne manual kan du finde en hurtig introduktion til hvordan du:

I denne manual kan du finde en hurtig introduktion til hvordan du: VORES NORDSJÆLLAND HURTIGT I GANG MANUAL 01: Bruger HVAD INDEHOLDER DENNE MANUAL? I denne manual kan du finde en hurtig introduktion til hvordan du: 1. Finder Vores Nordsjælland hjemmesiden 2. Opretter

Læs mere

NIMAND A/S SINCE 1987

NIMAND A/S SINCE 1987 Control Master M 700 / 3100 spiritus kontrol- & doserings system Bruger- & programmerings manual Aflæsning af salg pr. prop med servicenøgle (kan ikke 0-stilles) Denne aflæsning benyttes kun hvis man ønsker

Læs mere

matematik Demo excel trin 2 bernitt-matematik.dk 1 excel 2 2007 by bernitt-matematik.dk

matematik Demo excel trin 2 bernitt-matematik.dk 1 excel 2 2007 by bernitt-matematik.dk matematik excel trin 2 bernitt-matematik.dk 1 excel 2 2007 by bernitt-matematik.dk matematik excel 2 1. udgave som E-bog 2007 by bernitt-matematik.dk Kopiering af denne bog er kun tilladt efter aftale

Læs mere

De fire elementers kostbare spejl

De fire elementers kostbare spejl Projekt.6 Lineær algebra moderne og klassisk kinesisk De fire elementers kostbare spejl "Som bekendt anses matematikken for at være en meget vigtig videnskab. Denne bog om matematik vil derfor være af

Læs mere

How to do in rows and columns 8

How to do in rows and columns 8 INTRODUKTION TIL REGNEARK Denne artikel handler generelt om, hvad regneark egentlig er, og hvordan det bruges på et principielt plan. Indholdet bør derfor kunne anvendes uden hensyn til, hvilken version

Læs mere

Python 3 kursus lektion 1:

Python 3 kursus lektion 1: Python 3 kursus lektion 1: Her laves et nyt program Her køre programmet! Her skrives koden: Gem (CTRL-s) Tryk F5 (for at køre) www.madsmatik.dk d.14-01-2016 1/5 At skrive til skærmen: Hello World Man kan

Læs mere

Hjemmesiden er opdelt i et sidehoved, en sidefod og mellem disse 3 kolonner: venstre, midterste og højre. Højre kolonne vises dog kun på forsiden.

Hjemmesiden er opdelt i et sidehoved, en sidefod og mellem disse 3 kolonner: venstre, midterste og højre. Højre kolonne vises dog kun på forsiden. Hjemmesiden er opdelt i et sidehoved, en sidefod og mellem disse 3 kolonner: venstre, midterste og højre. Højre kolonne vises dog kun på forsiden. VENSTRE kolonne indeholder flere elementer (se illustration

Læs mere

Tegneserien - Kom godt i gang. Mikro Værkstedet A/S

Tegneserien - Kom godt i gang. Mikro Værkstedet A/S Tegneserien - Kom godt i gang Mikro Værkstedet A/S Tegneserien - Kom godt i gang Mikro Værkstedet A/S Revision 1.14, 15. maj 2007 Indholdsfortegnelse 1. Forord... 1 2. Kom godt i gang... 3 2.1. Opstart

Læs mere

På opdagelse i Mandelbrot-fraktalen En introduktion til programmet Mandelbrot

På opdagelse i Mandelbrot-fraktalen En introduktion til programmet Mandelbrot Jørgen Erichsen På opdagelse i Mandelbrot-fraktalen En introduktion til programmet Mandelbrot Hvad er en fraktal? Noget forenklet kan man sige, at en fraktal er en geometrisk figur, der udmærker sig ved

Læs mere

En multiplikationstabel for ulige tal

En multiplikationstabel for ulige tal En multiplikationstabel for ulige tal Poul Rose, Vordingborg En multiplikationstabel for ulige tal lyder måske ikke som det mest spændende, men når det som her krydres med dels et historisk tilbageblik

Læs mere

3 Algebra. Faglige mål. Variable og brøker. Den distributive lov. Potenser og rødder

3 Algebra. Faglige mål. Variable og brøker. Den distributive lov. Potenser og rødder 3 Algebra Faglige mål Kapitlet Algebra tager udgangspunkt i følgende faglige mål: Variable og brøker: kende enkle algebraiske udtryk med brøker og kunne behandle disse ved at finde fællesnævner. Den distributive

Læs mere

Rapporter / Udskrifter

Rapporter / Udskrifter Rapporter / Udskrifter Fra CompuClock kan der udskrives et meget stort antal oplysninger og kunsten består tit i at begrænse sig for ikke at drukne i papir. All udskrivning foregår under menuen Udskrifter.

Læs mere

Numerisk differentiation og integration med Python

Numerisk differentiation og integration med Python Numerisk differentiation og integration med Python En uformel prototype til en tutorial, Karl Bjarnason, maj 2010 Vi vil gerne lave et program som numerisk integrerer og differentierer funktionen f(x)=x

Læs mere

Differential- regning

Differential- regning Differential- regning del f(5) () f f () f ( ) I 5 () 006 Karsten Juul Indhold 6 Kontinuert funktion 7 Monotoniforhold7 8 Lokale ekstrema44 9 Grænseværdi5 Differentialregning del udgave 006 006 Karsten

Læs mere

P2-projektforslag Kombinatorik: grafteori og optimering.

P2-projektforslag Kombinatorik: grafteori og optimering. P2-projektforslag Kombinatorik: grafteori og optimering. Vejledere: Leif K. Jørgensen, Diego Ruano 1. februar 2013 1 Indledning Temaet for projekter på 2. semester af matematik-studiet og matematikøkonomi-studiet

Læs mere

Quick guide til Condes 8.

Quick guide til Condes 8. Quick guide til Condes 8. Quick guide til Condes 8.... 1 Starte Condes:... 2 Opret poster.... 6 Opdatere post detaljer:... 7 Finjustere postcirklen.... 8 Flytte postnummer... 9 Sætte poster sammen til

Læs mere

a) Oprettelse af brugerkoder, brugernavne og brugerrettigheder. 2. Vent til velkomsthilsenen erstattes af meddelelsen Kodeindtastning.

a) Oprettelse af brugerkoder, brugernavne og brugerrettigheder. 2. Vent til velkomsthilsenen erstattes af meddelelsen Kodeindtastning. Administratorvejledning for den elektroniske lås SELO-B Al programmering skal ske med lågen åben Den fabriksindsstillede administratorkode 1 2 3 4 5 6 7, skal straks ændres. a) Oprettelse af brugerkoder,

Læs mere

Differential- regning

Differential- regning Differential- regning del () f () m l () 6 Karsten Juul Indhold Tretrinsreglen 59 Formler for differentialkvotienter64 Regneregler for differentialkvotienter67 Differentialkvotient af sammensat funktion7

Læs mere

Guide til at tage. Little Bridge. i brug via LMS en. Learning Management System

Guide til at tage. Little Bridge. i brug via LMS en. Learning Management System Guide til at tage Little Bridge i brug via LMS en Learning Management System 1 Indholdsfortegnelse Din aktivitetsmail... 3 Log på LMS... 6 Gennemgang af LMS... 7 Fanebladet Schools... 7 Fanebladet School

Læs mere

BEGREBER I DANTEK... 2 LOG IND PÅ DANTEK WEBBOOKING... 3 SØGNING... 5 SØGERESULTATET... 8 LÅN FRA UDLÅNSSAMLINGEN... 11

BEGREBER I DANTEK... 2 LOG IND PÅ DANTEK WEBBOOKING... 3 SØGNING... 5 SØGERESULTATET... 8 LÅN FRA UDLÅNSSAMLINGEN... 11 BEGREBER I DANTEK... 2 SAMLINGER... 2 Informationssamlingen... 2 Udlånssamlingen (sætsamlingen)... 2 BOOKING... 2 RESERVERING... 2 LOG IND PÅ DANTEK WEBBOOKING... 3 SØGNING... 5 SIMPEL SØGNING... 5 AVANCERET

Læs mere

Matematik i 5. klasse

Matematik i 5. klasse Matematik i 5. klasse Igen i år benytter vi os af Faktor i femte. Systemet indeholder en grundbog, hvortil der er supplerende materiale i form af kopiark, som er tilpasset de gennemgåede emner. Grundbogen

Læs mere

Broer, skak og netværk Carsten Thomassen: Naturens Verden 10, 1992, s. 388-393.

Broer, skak og netværk Carsten Thomassen: Naturens Verden 10, 1992, s. 388-393. Broer, skak og netværk Side 1 af 6 Broer, skak og netværk Carsten Thomassen: Naturens Verden 10, 1992, s. 388-393. Eksempler på praktiske anvendelser af matematik og nogle uløste problemer Indledning Figur

Læs mere

Fraktaler. Mandelbrots Mængde. Foredragsnoter. Af Jonas Lindstrøm Jensen. Institut For Matematiske Fag Århus Universitet

Fraktaler. Mandelbrots Mængde. Foredragsnoter. Af Jonas Lindstrøm Jensen. Institut For Matematiske Fag Århus Universitet Fraktaler Mandelbrots Mængde Foredragsnoter Af Jonas Lindstrøm Jensen Institut For Matematiske Fag Århus Universitet Indhold Indhold 1 1 Komplekse tal 3 1.1 Definition.......................................

Læs mere

sådan gør du... [meld dig ledig]

sådan gør du... [meld dig ledig] [jobsøgende] sådan gør du... [meld dig ledig] på dagpenge Meld dig ledig på Jobnet - Dagpenge Når du skal melde dig ledig, går du ind på forsiden af Jobnet.dk. Her er der to muligheder 1. Er du allerede

Læs mere

Sproget Rascal (v. 2)

Sproget Rascal (v. 2) Sproget Rascal (v. 2) Til brug i K1 på kurset Oversættere Opdateret 29/11 2004 Abstract Rascal er et simpelt Pascal-lignende imperativt sprog. Dette dokument beskriver uformelt Rascals syntaks og semantik

Læs mere