Uafhængighed af hændelser

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "Uafhængighed af hændelser"

Transkript

1 Uafhængighed af hændelser Uafhængighed af to hændelser A og B kaldes uafhængige hændelser hvis P A B P A P B Kaldes også den specielle multiplikationsregel. Så gælder både P A B P A og P B A P B. Bemærk at S og A altid er uafhængige, og det samme for og A. Bemærk: Hvis A og B er disjunkte og uafhængige er enten P A 0 eller P B 0. Bevis: Da P A B P 0måvisåhave 0 P A P B

2 Eksempel Kast med terning, S 1, 2, 3,4,5,6 Lad A 1, 2, 3 og B 2, 4 P A 1/2 P B 1/3 P A B P 2 1/6 Da P A B P A P B er A og B uafhængige. Lad nu C 3, 4, 5, såp C 1/2. Så er B og C også uafhængige (check selv). Men A og C er ikke uafhængige, da P A C P 3 1/6 1/2 1/2 P A P C

3 Mere om uafhængighed Hvis A og B er uafhængige, så er A og B også uafhængige. Bevis: P A B P B A B P B P A B P B P A P B P B 1 P A P B P A, som ønsket. Vi ser altså at A og B uafhængige er ækvivalent med 1. A og B er uafhængige 2. A og B er uafhængige 3. A og B er uafhængige

4 Hvis A og B er uafhængige gælder at P A B 1 P A P B Bevis: P A B P A P B P A B P A P B P A P B 1 1 P A P B P A P B 1 1 P A 1 P B 1 P A P B

5 Uafhængighed af tre hændelser A, B og C kaldes indbyrdes uafhængige hændelser hvis A, B og C er parvis uafhængige, dvs. P A B P A P B P A C P A P C P B C P B P C og der gælder den specielle multiplikationsregel for tre hændelser: P A B C P A P B P C

6 Eksempel: Betragt en roulette med S 1,2,,12. Lad A 1, 2, 3, 4, 5, 6, B 4, 5, 6, 7, 8,9 og C 1, 2, 3, 7, 8, 9, alle med sandsynlighed ½. Så er P A B P A C P B C 1/4, så A, B og C er parvis uafhængige. Men da A B C er den specielle multiplikationsregel ikke opfyldt for de tre hændelser, så A, B og C er ikke indbyrdes uafhængige. Nu definerer vi D 1, 4, 7, 12 med sandsynlighed 1/3. Da A og B er uafhængige, og da 1. A og D er uafhængige, idet P A D 1/6 1/2 1/3 2. B og D er uafhængige, idet P B D 1/6 1/2 1/3 3. Multiplikationsreglen er opfyldt: P A B D 1/12 1/2 1/2 1/3,

7 så er A, B og D indbyrdes uafhængige. Uafhængighed generelt Generelt bruges en rekursiv definition: Tre eller flere hændelser: A 1, A 2,, A k kaldes indbyrdes uafhængige hvis: 1. Alle delsæt af A 1, A 2,,A k bestående af k 1 hændelser er indbyrdes uafhængige. 2. Den specielle multiplikationsregel gælder for de k hændelser gælder: P A 1 A 2 A k P A 1 P A 2 P A k. Bemærk at vi har følgende (har allerede set det for k 2): P A 1 A 2 A k 1 P A 1 P A 2 P A k. Da A 1,A 2,,A k er uafhængige følger det af at

8 P A 1 A 2 A k 1 P A 1 A 2 A k

9 Kombinatorik Produktreglen Et forsøg udføres i k etaper. Ideni te etape er der m i valgmuligheder. Det samlede antal valgmuligheder er så m 1 m 2 m k Eksempel: En Dell PC kan stykkes sammen som følger: 1. Kabinettet kan være sort, hvidt eller gråt (m 1 3) 2. Strømforsyningen kan være på 500 W elle 800 W (m 2 2) 3. Bestykningen med drev kan inkludere CD-Rom, DVD eller begge dele (m 3 3)

10 Det samlede antal forskellige kombinationer er da

11 Tilfældig udtrækning (urnemodellen) En urne som indeholder farvede kugler. En kugle trækkes tilfældigt fra urnen, og farven registreres. Når der trækkes flere kugler kan det enten være: 1. med tilbagelægning: kuglen lægges tilbage før der trækkes igen. 2. uden tilbagelægning: kuglen lægges ikke tilbage før der trækkes igen.

12 Eksempel: En æske med tændstikker skal undersøges. 1. Destruktiv test: det er nødvendigt at stryge tændstikken for at se om den virker. Derfor kræves udtrækning uden tilbagelægning. Eksempel: En kasse med modstande skal undersøges. 1. Ikke-destruktiv test: modstanden måles med et voltmeter, hvorefter modstanden lægges tilbage i kassen, som derefter rystes grundigt. Altså udtrækning med tilbagelægning.

13 Permutationer n fakultet er produket af de n første heltal: n! 1 2 n med konventionen 0! 1 n! antallet af permutationer (rækkefølger) af n objekter. Rekursionsformel: n 1! n 1 n! I R bruges kommandoen: factorial(n

14 Eksempel: En komite består af 5 medlemmer. Komiteen konstituerer sig som følger: 1. Formand (5 muligheder). 2. Næstformand (4 muligheder) 3. Ceremonimester (3 muligheder) 4. Sekretær (2 muligheder) 5. Menigt medlem (1 mulighed) På hvor mange måder kan det ske? Svar: 5! måder. Approximation for n 50: Stirlings formel n! 2 n n e n Eksempel: 5! e

15 Permutation: Antallet af måder der kan vælges k ud af n (uden tilbagelægning): P n,k n n 1 n k 1 n! n k! Eksempel: En komite på 5 skal konstituere sig med formand og næstformand. Antal måder: P 5, ! 5 2! 20

16 Kombinationer Binomialkoefficient: For n k defineres n k n! k! n k! n n 1 n k 1 k! Antallet af måder en k-mængde kan vælges fra en n-mængde. Specialtilfælde: Bemærk: n n k n k n 0 n n n! 0! n! 1 n! n k! k! I R bruges kommandoen: choose n, k. n n 1 k 1 n k!

17 Eksempel: 5-mandsudvalg blandt 33 studerende kan vælges på , 336 måder

18 Sandsynligheder baseret på kombinatorik Ved urnemodellen med tilfældig udtrækning gælder generelt Antal gunstige udfald P Hændelse Antal mulige udfald Eksempel: Anders og Yrsa ønsker brændende at komme i den komite på 5 som skal vælges blandt 33. Sandsynligheden for at det sker for begge er

19 P Anders og Yrsa sammen

20 Eksempel fra poker: Hvad er sandsynligheden for to par (af forskellig værdi) i en hånd på fem? Svar: P To par (vælg først de to værdier, vælg så de to par ud, og vælg så det sidste kort).

21 Multinomialkoefficienten Lad n n 1 n k (alle heltal), og lad n n 1 n k n! n 1! n k! antallet af måder en n-mængde kan inddeles i k mænger af størrelser n 1,, n k. Eksempel: En klasse på 33 skal deles ind i 6 grupper af størrelse 5, 5, 5, 6, 6 og 6. Kan gøres på ! 5! 5! 5! 6! 6! 6! måder. Bevis for multinomialkoefficienten: n! n n 1 n k n 1! n k!,

22 da begge sider angiver antallet af permutationer af en n-mængde.

23 Bemærk: 1. Når k 2 gælder 2. Når k 3 gælder n mn m n m n! m! n m! n n 1 n 2 n 3 n n1 3. Generelt gælder n n 1 n k n n1 n n 1 n 2 n n 1 n 2 n k

24 Eksempel: Julefrokost på IMADA. 30 deltagere skal deles op i tre hold: skal forberede julefrokosten 2. 8 skal servere maden skal rydde op Antal muligheder for opdelingen i hold er , 493, ,

25 Antag at der er 12 dataloger og 5 mat-øk er. På hvor mange måder kan det ske at alle 10 som rydder op er dataloger, og at alle 5 mat-øk er skal servere? Svar: Blandt de 12 dataloger skal der vælges 10 til oprydning, og efter at de 5 mat-øk er er sat til at servere, skal der vælges 3 blandt de resterende 15 som også skal servere. Antal måder er altså: , Sandsynligheden for at dette sker er 30,

Sandsynlighedsregning og statistik

Sandsynlighedsregning og statistik og statistik Jakob G. Rasmussen, Institut for Matematiske Fag jgr@math.aau.dk Litteratur: Walpole, Myers, Myers & Ye: Probability and Statistics for Engineers and Scientists, Prentice Hall, 8th ed. Slides

Læs mere

Sandsynlighedsregning

Sandsynlighedsregning Sandsynlighedsregning Udfaldsrum og hændelser Udfald e:resultatetafetforsøg. Udfaldsrum S: Mængden af de mulige udfald af forsøget. Hændelse A: En delmængde af udfaldsrummet. Tilfældigt fænomen S e (eks.)

Læs mere

Sandsynligheder. Udfaldsrum Ω = {ω 1,..., ω N } hvor alle udfald er lige sandsynlige, dvs. P (ω i )=1/N for alle i =1,..., N.

Sandsynligheder. Udfaldsrum Ω = {ω 1,..., ω N } hvor alle udfald er lige sandsynlige, dvs. P (ω i )=1/N for alle i =1,..., N. Dagens program Afsnit 1.4-1.6 Kombinatorik - Permutationer - Kombinationer Udtagelse af stikprøver - Population - Med og uden tilbagelægning Eksempler 1 Sandsynligheder Udfaldsrum Ω = {ω 1,..., ω N } hvor

Læs mere

Sandsynlighedsregning

Sandsynlighedsregning Mogens Bladt www2.imm.dtu.dk/courses/02405 14. September, 2007 Betinget sandsynlighed ud fra proportioner Vi husker på definitionen IP(A B) = IP(A B). IP(B) Betragt en befolkning bestående af N personer.

Læs mere

Modul 3: Sandsynlighedsregning

Modul 3: Sandsynlighedsregning Forskningsenheden for Statistik ST01: Elementær Statistik Bent Jørgensen Modul 3: Sandsynlighedsregning 3.1 Sandsynligheder................................... 1 3.2 Tilfældig udtrækning fra en mængde........................

Læs mere

Statistik Lektion 2. Betinget sandsynlighed Bayes regel Diskrete stokastiske variable Middelværdi og varians for diskret SV Binomialfordelingen

Statistik Lektion 2. Betinget sandsynlighed Bayes regel Diskrete stokastiske variable Middelværdi og varians for diskret SV Binomialfordelingen Statistik Lektion etinget sandsynlighed ayes regel Diskrete stokastiske variable Middelværdi og varians for diskret SV inomialfordelingen Repetition Udfaldsrum S Hændelse S Simpel hændelse O i 1, 3 4,

Læs mere

TØ-opgaver til uge 45

TØ-opgaver til uge 45 TØ-opgaver til uge 45 Først laver vi en liste over de ligninger med mere i [IPT], der skal bruges: [1]: Ligning (2.5) på side 4. [2]: Ligning (2.6) på side 5. [3]: Sætning 3.1, ligning (3.3) på side 7.

Læs mere

Sandsynligheder. Mængder Hændelser Sandsynligheder Regler for sandsynligheder

Sandsynligheder. Mængder Hændelser Sandsynligheder Regler for sandsynligheder Sandsynligheder Mængder Hændelser Sandsynligheder Regler for sandsynligheder Sandsynligheder En sandsynlighed er et kvantitativt mål for usikkerhed et mål der udtrykker styrken af vores tro på forekomsten

Læs mere

Sandsynlighed og kombinatorik

Sandsynlighed og kombinatorik Sandsynlighed og kombinatorik Simpel sandsynlighed... 94 Kombinatorik... 95 Sandsynlighed og kombinatorik... 97 Kombinatorik og kugletrækning... 97 Kombinatorik og sandsynlighedsregning Side 93 Sandsynlighedsregning

Læs mere

TØ-opgaver til uge 46

TØ-opgaver til uge 46 TØ-opgaver til uge 46 Først laver vi en liste over de ligninger med mere i [ITP], der skal bruges: [1]: Ligning (2.5) på side 4. [2]: Sætning 3.1, ligning (3.3) på side 7. [3]: Sætning 3.1, ligning (3.4)

Læs mere

Landmålingens fejlteori - Sandsynlighedsregning - Lektion 1

Landmålingens fejlteori - Sandsynlighedsregning - Lektion 1 Landmålingens fejlteori Sandsynlighedsregning Lektion 1 - kkb@math.aau.dk http://people.math.aau.dk/ kkb/undervisning/lf10 Institut for Matematiske Fag Aalborg Universitet 23. april 2009 1/28 Landmålingens

Læs mere

Lad os som eksempel se på samtidigt kast med en terning og en mønt:

Lad os som eksempel se på samtidigt kast med en terning og en mønt: SANDSYNLIGHEDSREGNING Stokastisk eksperiment Et stokastisk eksperiment er et eksperiment, hvor vi fornuftigvis ikke på forhånd kan have en formodning om resultatet af eksperimentet Til gengæld kan vi prøve

Læs mere

Skriftlig Eksamen Diskret Matematik (DM528)

Skriftlig Eksamen Diskret Matematik (DM528) Skriftlig Eksamen Diskret Matematik (DM528) Institut for Matematik & Datalogi Syddansk Universitet Tirsdag den 20 Januar 2009, kl. 9 13 Alle sædvanlige hjælpemidler (lærebøger, notater etc.) samt brug

Læs mere

Kombinatorik. Eksempel 2: En mand har 7 par bukser og 10 skjorter. Skal han både vælge en skjorte og et par bukser, så har han 10. 7=70 mulige valg.

Kombinatorik. Eksempel 2: En mand har 7 par bukser og 10 skjorter. Skal han både vælge en skjorte og et par bukser, så har han 10. 7=70 mulige valg. Noter til Biomat, 005. Kombinatorik. - eller kunsten at tælle. Alle tal i kombinatorik-afsnittet er hele og ikke-negative. Additionsprincippet enten - eller : Antag vi enten skal lave et valg med m muligheder

Læs mere

Binomialfordelingen. Binomialfordelingen. Binomialfordelingen

Binomialfordelingen. Binomialfordelingen. Binomialfordelingen Statistik og Sandsynlighedsregning 1 MS kapitel 3 Susanne Ditlevsen Institut for Matematiske Fag Email: susanne@math.ku.dk http://math.ku.dk/ susanne Definition 3.2.1 Lad X 1, X 2,..., X n være uafhængige

Læs mere

Kombinatorik og Sandsynlighedsregning

Kombinatorik og Sandsynlighedsregning Kombinatorik Teori del 1 Kombinatorik er en metode til at tælle muligheder på. Man kan f.eks. inden for valg til en bestyrelse eller et fodboldhold, kodning af en lås, valg af pinkode eller telefonnummer,

Læs mere

Kursusindhold: X i : tilfældig værdi af ite eksperiment. Antag X i kun antager værdierne 1, 2,..., M.

Kursusindhold: X i : tilfældig værdi af ite eksperiment. Antag X i kun antager værdierne 1, 2,..., M. Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 9, 2015 Sandsynlighedsregning og lagerstyring Normalfordelingen

Læs mere

Produkt og marked - matematiske og statistiske metoder

Produkt og marked - matematiske og statistiske metoder Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 11, 2016 1/22 Kursusindhold: Sandsynlighedsregning og lagerstyring

Læs mere

Tip til 1. runde af Georg Mohr-Konkurrencen Kombinatorik

Tip til 1. runde af Georg Mohr-Konkurrencen Kombinatorik Tip til 1. runde af - Kombinatorik, Kirsten Rosenkilde. Tip til 1. runde af Kombinatorik Her er nogle centrale principper om og strategier for hvordan man tæller et antal kombinationer på en smart måde,

Læs mere

Nanostatistik: Stokastisk variabel

Nanostatistik: Stokastisk variabel Nanostatistik: Stokastisk variabel JLJ Nanostatistik: Stokastisk variabel p. 1/34 Repetition Ω: udfaldsrummet: alle de mulige udfald af et experiment P(A): ss for hændelsen A = frekvens i uafhængige gentagelser

Læs mere

Skriftlig Eksamen Kombinatorik, sandsynlighed og randomiserede algoritmer (DM528)

Skriftlig Eksamen Kombinatorik, sandsynlighed og randomiserede algoritmer (DM528) Skriftlig Eksamen Kombinatorik, sandsynlighed og randomiserede algoritmer (DM58) Institut for Matematik & Datalogi Syddansk Universitet Torsdag den 7 Januar 010, kl. 9 13 Alle sædvanlige hjælpemidler (lærebøger,

Læs mere

SANDSYNLIGHEDSREGNING Hvad er sandsynlighed for noget? Umiddelbart kan vi inddele sandsynlighed i tre former.

SANDSYNLIGHEDSREGNING Hvad er sandsynlighed for noget? Umiddelbart kan vi inddele sandsynlighed i tre former. SANDSYNLIGHEDSREGNING Hvad er sandsynlighed for noget? Umiddelbart kan vi inddele sandsynlighed i tre former. Statistisk sandsynlighed Her finder man sandsynligheden for en hændelse ved at kigge på en

Læs mere

Sandsynlighedsregning 3. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 3. forelæsning Bo Friis Nielsen Sandsynlighedsregning 3. forelæsning Bo Friis Nielsen Anvendt Matematik og Computer Science Danmarks Tekniske Universitet 28 Kgs. Lyngby Danmark Email: bfni@dtu.dk Dagens emner Stokastiske variable: udfald

Læs mere

Spilstrategier. 1 Vindermængde og tabermængde

Spilstrategier. 1 Vindermængde og tabermængde Spilstrategier De spiltyper vi skal se på her, er primært spil af følgende type: Spil der spilles af to spillere A og B som skiftes til at trække, A starter, og hvis man ikke kan trække har man tabt. Der

Læs mere

Nanostatistik: sandsynligheder Kursushjemmeside: http://www.imf.au.dk/ kurser/nanostatistik/

Nanostatistik: sandsynligheder Kursushjemmeside: http://www.imf.au.dk/ kurser/nanostatistik/ Nanostatistik: sandsynligheder Kursushjemmeside: http://www.imf.au.dk/ kurser/nanostatistik/ JLJ Nanostatistik: sandsynlighederkursushjemmeside:http://www.imf.au.dk/kurser/nanostatistik/ p. 1/16 Højder

Læs mere

Nanostatistik: Stokastisk variabel

Nanostatistik: Stokastisk variabel Nanostatistik: Stokastisk variabel JLJ Nanostatistik: Stokastisk variabel p. 1/29 Repetition Ω: udfaldsrummet: alle de mulige udfald af et experiment P(A): ss for hændelsen A = frekvens i uafhængige gentagelser

Læs mere

Et udtryk på formena n kaldes en potens med grundtal a og eksponent n. Vi vil kun betragte potenser hvor grundtallet er positivt, altså a>0.

Et udtryk på formena n kaldes en potens med grundtal a og eksponent n. Vi vil kun betragte potenser hvor grundtallet er positivt, altså a>0. Konkrete funktioner Potenser Som udgangspunkt er brugen af potenser blot en forkortelse for at gange et tal med sig selv et antal gange. Hvis a Rskriver vi a 2 for a a a 3 for a a a a 4 for a a a a (1).

Læs mere

Aarhus Universitet 5. februar Meddelelse 2

Aarhus Universitet 5. februar Meddelelse 2 fdeling for Teoretisk Statistik IOSTTISTIK Institut for Matematiske Fag Preben læsild arhus Universitet 5. februar 2003 Meddelelse 2 Forelæsningerne i uge 6 (3-7.2) Ved forelæsningen den 4.2 gav Frank

Læs mere

Dagens program. Afsnit 1.1-1.3 Eksperimenter med usikkerhed Sandsynlighedsmodel - Udfaldsrum - Hændelser - Sandsynligheder Eksempler

Dagens program. Afsnit 1.1-1.3 Eksperimenter med usikkerhed Sandsynlighedsmodel - Udfaldsrum - Hændelser - Sandsynligheder Eksempler Dagens program Afsnit 1.1-1.3 Eksperimenter med usikkerhed Sandsynlighedsmodel - Udfaldsrum - Hændelser - Sandsynligheder Eksempler 1 Sandsynlighedsmodel Kvantitative Metoder 1 - Efterår 2006 Eksperiment

Læs mere

10.1 Et lykkehjul består af 24 lige store felter med numre fra 1 til 24.

10.1 Et lykkehjul består af 24 lige store felter med numre fra 1 til 24. 10. 10.1 Et lykkehjul består af 24 lige store felter med numre fra 1 til 24. Bestem udfaldsrummet for lykkehjulet. 10.2 En tegnestift Du putter en tegnestift i et raflebæger, ryster det godt og smider

Læs mere

Sandsynlighedregning

Sandsynlighedregning MOGENS ODDERSHEDE LARSEN Sandsynlighedregning + = - P(A B) P(A) P(B) P(A B). 1. udgave 2016 FORORD Dette notat giver en kort gennemgang af de grundlæggende begreber i sandsynlighedsregning. Det forudsættes,

Læs mere

Hvad skal vi lave i dag?

Hvad skal vi lave i dag? p. 1/1 Hvad skal vi lave i dag? Repeterer lidt om diskrete sv. Standardfordelinger (binomial, Poisson, geometrisk) Stokastiske vektorer Diskrete stokastiske vektorer p. 2/1 Repetition Heltallige sv er

Læs mere

{ } { } {( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )}

{ } { } {( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )} Stokastisk eksperiment Et stokastisk eksperiment er et eksperiment, hvor vi fornuftigvis ikke på forhånd kan have en formodning om resultatet af eksperimentet. Til gengæld kan vi prøve at sige noget om,

Læs mere

Noget om en symmetrisk random walks tilbagevenden til udgangspunktet

Noget om en symmetrisk random walks tilbagevenden til udgangspunktet Random Walk-kursus 2014 Jørgen Larsen 14. oktober 2014 Noget om en symmetrisk random walks tilbagevenden til udgangspunktet Dette notat giver et bevis for at en symmetrisk random walk på Z eller Z 2 og

Læs mere

Benyttede bøger: Statistisk fysik 1, uredigerede noter, Per Hedegård, 2007.

Benyttede bøger: Statistisk fysik 1, uredigerede noter, Per Hedegård, 2007. Formelsamling Noter til Fysik 3 You can know the name of a bird in all the languages of the world, but when you re finished, you ll know absolutely nothing whatever about the bird... So let s look at the

Læs mere

SANDSYNLIGHED FACIT SIDE 154-155

SANDSYNLIGHED FACIT SIDE 154-155 SIDE 154-155 Opgave 1 A. Data (x) h(x) f(x) 2 1 0,042 3 3 0,125 4 6 0,25 5 3 0,125 6 4 0,16 7 1 0,042 8 2 0,0833 9 1 0,042 10 2 0,0833 11 1 0,042 B. C. Diagrammet (et søjlediagram) er lavet ud fra hyppigheden,

Læs mere

2011.09.20 lth@campus.dk

2011.09.20 lth@campus.dk 2011.09.20 lth@campus.dk Intro Læseplan Beskrivende Statistik Sandsynligheder Ordet kommer fra Latin.: statisticum (statsrådgiver) Italiensk.: statistica (statsmand / politiker) Hvorfor statistik? Træk

Læs mere

En Introduktion til Sandsynlighedsregning

En Introduktion til Sandsynlighedsregning En Introduktion til Sandsynlighedsregning 9. Udgave Michael Sørensen 11. juli 2008 0 Forord Til 2. udgave Disse forelæsningsnoter trækker i betydelig grad på noter udarbejdet af en række kolleger. Det

Læs mere

DM72 Diskret matematik med anvendelser

DM72 Diskret matematik med anvendelser DM72 Diskret matematik med anvendelser En hurtig gennemgang af de vigtigste resultater. (Dvs. ikke alle resultater). Logik Åbne udsagn 2 + 3 = 5 Prædikater og kvantorer P (x) := x er et primtal x N : n

Læs mere

Sandsynlighedsregning

Sandsynlighedsregning Mogens Bladt www2.imm.dtu.dk/courses/02405 7. September, 2007 Hvad er sandsynlighedsregning? Formel matematisk måde til at håndtere tilfældigheder. Dybest set en formalisering af udregninger med proportioner.

Læs mere

Forslag til løsning af Opgaver til sandsynlighedsregning (side 434)

Forslag til løsning af Opgaver til sandsynlighedsregning (side 434) Forslag til løsning af Opgaver til sandsynlighedsregning (side 434) Opgave Vi kan selv vælge, om vi vil arbejde med ordnet eller uordnet udtagelse, hvis vi blot sikrer, at vi er konsekvente i vores valg,

Læs mere

Sandsynlighedsregning & Statistik

Sandsynlighedsregning & Statistik Jørgen Larsen Sandsynlighedsregning & Statistik for matematikstuderende 2006 Indhold Forord 5 Del I Sandsynlighedsregning 7 Indledning 9 Endelige udfaldsrum. Grundlæggende definitioner.....................

Læs mere

P (n): rekursiv beregning af f n kræver f n beregninger af f 1. P (n) er sand for alle n 2.

P (n): rekursiv beregning af f n kræver f n beregninger af f 1. P (n) er sand for alle n 2. P (n): rekursiv beregning af f n kræver f n beregninger af f 1. P (n) er sand for alle n 2. Bevis ved stærk induktion. Basisskridt: P (2) er sand og P (3) er sand. Induktionsskridt: Lad k 2 og antag P

Læs mere

Sandsynlighedsregning

Sandsynlighedsregning Mogens Bladt www2.imm.dtu.dk/courses/02405 21. September, 2007 Lidt om binomialkoefficienter n størrelsen af en mængde/population. Vi ønsker at udtage en sub population af størrelse r. To sub populationer

Læs mere

Spilstrategier. Indhold. Georg Mohr-Konkurrencen. 1 Vindermængde og tabermængde 2. 2 Kopier modpartens træk 4

Spilstrategier. Indhold. Georg Mohr-Konkurrencen. 1 Vindermængde og tabermængde 2. 2 Kopier modpartens træk 4 Indhold 1 Vindermængde og tabermængde 2 2 Kopier modpartens træk 4 3 Udnyt modpartens træk 5 4 Strategityveri 6 5 Løsningsskitser 7 Spilstrategier De spiltyper vi skal se på her, er primært spil af følgende

Læs mere

Kvantitative Metoder 1 - Forår Dagens program

Kvantitative Metoder 1 - Forår Dagens program Dagens program Kapitel 8.1-8.3 Tilfældig stikprøve (Random Sampling) Likelihood Eksempler på likelihood funktioner Sufficiente statistikker Eksempler på sufficiente statistikker 1 Tilfældig stikprøve Kvantitative

Læs mere

Sandsynlighed og kombinatorik

Sandsynlighed og kombinatorik Sandsynlighed og kombinatorik Indholdsfortegnelse... 1 Simpel sandsynlighed... 2 Kombinatorik... 4 Sandsynlighed ved hjælp af kombinatorik... 7 Udregningsark... 8 side 1 Simpel sandsynlighed 1: Du kaster

Læs mere

Modul 2: Sandsynlighedsmodeller og diskrete stokastiske variable

Modul 2: Sandsynlighedsmodeller og diskrete stokastiske variable Forskningsenheden for Statistik ST501: Science Statistik Bent Jørgensen Modul 2: Sandsynlighedsmodeller og diskrete stokastiske variable 2.1 Sandsynlighedsbegrebet............................... 1 2.1.1

Læs mere

Kombinatorik. M-serien består af disse arbejdskort: M1 Formler til kombinatorik M2 Pascals trekant M3 Binomialformlen

Kombinatorik. M-serien består af disse arbejdskort: M1 Formler til kombinatorik M2 Pascals trekant M3 Binomialformlen 1 Statistik og sandsynlighedsregning er et relativt nyt emne i folkeskolens matematikundervisning. Ja, det er for den sags skyld et relativt nyt emne også i fagmatematikken og i anvendelser af matematik.

Læs mere

Elementær sandsynlighedsregning

Elementær sandsynlighedsregning Elementær sandsynlighedsregning Sandsynlighedsbegrebet Et udfaldsrum S er mængden af alle de mulige udfald af et eksperiment. En hændelse A er en delmængde af udfaldsrummet S. Den hændelse, der ikke indeholder

Læs mere

Sandsynlighedsregning

Sandsynlighedsregning Sandsynlighedsregning En note om sandsynlighedsregning. Den er tænkt som supplement til Vejen til Matematik B2. Henrik S. Hansen, Sct. Knud Version 2.0 Indhold Indledning... 1 Sandsynlighedsregning...

Læs mere

Elementær sandsynlighedsregning

Elementær sandsynlighedsregning Elementær sandsynlighedsregning Sandsynlighedsbegrebet Et udfaldsrum S er mængden af alle de mulige udfald af et eksperiment. En hændelse A er en delmængde af udfaldsrummet S. Et sandsynlighedsmål er en

Læs mere

Kirchberger s sætning om separation af to mængder Maria Larissa Ziino

Kirchberger s sætning om separation af to mængder Maria Larissa Ziino 12 Formidlingsaktivitet Kirchberger s sætning om separation af to mængder Maria Larissa Ziino I denne artikel fremføres to sætninger af henholdsvis den østrigske matematiker Eduard Helly og den tyske matematiker

Læs mere

Sandsynlighedsregning 1. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 1. forelæsning Bo Friis Nielsen Sandsynlighedsregning 1. forelæsning Bo Friis Nielsen Anvendt Matematik og Computer Science Danmarks Tekniske Universitet 2800 Kgs. Lyngby Danmark Email: bfni@dtu.dk Hvad er sandsynlighedsregning? Formel/matematisk

Læs mere

Øvelse 2. SPSS og sandsynlighedsregning

Øvelse 2. SPSS og sandsynlighedsregning Øvelse 2 SPSS og sandsynlighedsregning Der er flere forskellige formål med opgaverne i denne øvelse. Det væsentligste formål er at arbejde lidt med sandsynlighedsregningen, binomialfordelingen og de store

Læs mere

Skriftlig Eksamen Algoritmer og sandsynlighed (DM538)

Skriftlig Eksamen Algoritmer og sandsynlighed (DM538) Skriftlig Eksamen Algoritmer og sandsynlighed (DM538) Institut for Matematik & Datalogi Syddansk Universitet Fredag den 9 Januar 2015, kl. 10 14 Alle sædvanlige hjælpemidler(lærebøger, notater etc.) samt

Læs mere

Binomialfordelingen. X ~ bin(n,p): X = antal "succeser" i n uafhængige forsøg, der alle har samme sandsynlighed p for at ende med succes.

Binomialfordelingen. X ~ bin(n,p): X = antal succeser i n uafhængige forsøg, der alle har samme sandsynlighed p for at ende med succes. Uge 9 Teoretisk Statistik 23. februar 24 1. Binomialfordelingen 2. Den hypergeometriske fordeling 3. Poissonfordelingen 4. Den negative binomialfordeling 5. Gammafordelingen Binomialfordelingen X ~ bin(n,p):

Læs mere

Skriftlig Eksamen ST501: Science Statistik Tirsdag den 8. juni 2010 kl

Skriftlig Eksamen ST501: Science Statistik Tirsdag den 8. juni 2010 kl Skriftlig Eksamen ST501: Science Statistik Tirsdag den 8. juni 2010 kl. 9.00 12.00 IMADA Syddansk Universitet Alle skriftlige hjælpemidler samt brug af lommeregner er tilladt. Opgavesættet består af 5

Læs mere

En Introduktion til Sandsynlighedsregning

En Introduktion til Sandsynlighedsregning En Introduktion til Sandsynlighedsregning 4. Udgave Michael Sørensen 26. juni 2003 0 Forord Til 2. udgave Disse forelæsningsnoter trækker i betydelig grad på noter udarbejdet af en række kolleger. Det

Læs mere

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Statistisk Model

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Statistisk Model Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab Statistisk Model Indhold Binomialfordeling Sandsynlighedsfunktion Middelværdi og spredning 1 Aalen: Innføring i statistik med medisinske eksempler

Læs mere

Statistik Lektion 2. Uafhængighed Stokastiske Variable Sandsynlighedsfordeling Middelværdi og Varians for Stok. Var.

Statistik Lektion 2. Uafhængighed Stokastiske Variable Sandsynlighedsfordeling Middelværdi og Varians for Stok. Var. Statistik Lektion Uafhængighed Stokastiske Variable Sandsynlighedsfordeling Middelværdi og Varians for Stok. Var. Repetition Stikprøve Stikprøvestørrelse n Stikprøvemiddelværdi Stikprøvevarians s Population

Læs mere

Billedbehandling og mønstergenkendelse: Lidt elementær statistik (version 1)

Billedbehandling og mønstergenkendelse: Lidt elementær statistik (version 1) ; C ED 6 > Billedbehandling og mønstergenkendelse Lidt elementær statistik (version 1) Klaus Hansen 24 september 2003 1 Elementære empiriske mål Hvis vi har observationer kan vi udregne gennemsnit og varians

Læs mere

Sandsynlighedsregning & Statistik

Sandsynlighedsregning & Statistik Sandsynlighedsregning & Statistik for matematikstuderende Jørgen Larsen 2006 Roskilde Universitet Teksten er sat med skriften Kp-Fonts ved hjælp af KOMA- Script og LATEX. Tegningerne er fremstillet med

Læs mere

2. Ved et roulettespil kan man vinde 0,10,100, 500 og 1000 kr. Sandsynligheden for gevinsterne ses af følgende skema:

2. Ved et roulettespil kan man vinde 0,10,100, 500 og 1000 kr. Sandsynligheden for gevinsterne ses af følgende skema: Der er hjælp til opgaver med # og facit på side 6 1. Et eksperiment kan beskrives med følgende skema: u 1 2 3 4 5 P(u) 0,3 0,2 0,1 0,2 x Bestem x og sandsynligheden for at udfaldet er et lige tal.. 2.

Læs mere

Statistik. Hjemmeside: kkb. Statistik - lektion 1 p.1/22

Statistik. Hjemmeside:  kkb. Statistik - lektion 1 p.1/22 Statistik Kursets omfang: 2 ECTS Inklusiv mini-projekt! Bog: Complete Business Statistics, AD Aczel & J. Sounderpandian Software: SPSS eller Excel?? Forelæser: Kasper K. Berthelsen E-mail: kkb@math.aau.dk

Læs mere

Diskrete fordelinger. Fire vigtige diskrete fordelinger: 1. Uniform fordeling (diskret) 2. Binomial fordeling. 3. Hyper-geometrisk fordeling

Diskrete fordelinger. Fire vigtige diskrete fordelinger: 1. Uniform fordeling (diskret) 2. Binomial fordeling. 3. Hyper-geometrisk fordeling Disrete fordelinger Fire vigtige disrete fordelinger: 1. Uniform fordeling (disret) 2. Binomial fordeling 3. Hyper-geometris fordeling 4. Poisson fordeling 1 Uniform fordeling Definition Esperiment med

Læs mere

Om begrebet relation

Om begrebet relation Om begrebet relation Henrik Stetkær 11. oktober 2005 Vi vil i denne note diskutere det matematiske begreb en relation, herunder specielt ækvivalensrelationer. 1 Det abstrakte begreb en relation Som ordet

Læs mere

Sandsynlighedsregning 1. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 1. forelæsning Bo Friis Nielsen Sandsynlighedsregning 1. forelæsning Bo Friis Nielsen Anvendt Matematik og Computer Science Danmarks Tekniske Universitet 2800 Kgs. Lyngby Danmark Email: bfni@dtu.dk Hvad er sandsynlighedsregning? Formel/matematisk

Læs mere

Monotoniforhold Der gælder følgende sætninger om en differentiabel funktions monotoniforhold:

Monotoniforhold Der gælder følgende sætninger om en differentiabel funktions monotoniforhold: Side 21 Oversigt over undervisningen i matematik - 2x 05/06 Der undervises efter: Claus Jessen, Peter Møller og Flemming Mørk : Tal, Geometri og funktioner. Gyldendal 1997 Claus Jessen, Peter Møller og

Læs mere

Anvendt Statistik Lektion 2. Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger

Anvendt Statistik Lektion 2. Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger Anvendt Statistik Lektion 2 Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger Sandsynlighed: Opvarmning Udfald Resultatet af et eksperiment kaldes et udfald. Eksempler:

Læs mere

Sandsynlighedregning

Sandsynlighedregning MOGENS ODDERSHEDE LARSEN Sandsynlighedregning + = - P(A B) = P(A) + P(B) P(A B). 1. udgave 2007 FORORD Dette notat giver en kort gennemgang af de grundlæggende begreber i sandsynlighedsregning. Det forudsættes,

Læs mere

Sammenhængsanalyser. Et eksempel: Sammenhæng mellem rygevaner som 45-årig og selvvurderet helbred som 51 blandt mænd fra Københavns amt.

Sammenhængsanalyser. Et eksempel: Sammenhæng mellem rygevaner som 45-årig og selvvurderet helbred som 51 blandt mænd fra Københavns amt. Sammenhængsanalyser Et eksempel: Sammenhæng mellem rygevaner som 45-årig og selvvurderet helbred som 51 blandt mænd fra Københavns amt. rygevaner som 45 årig * helbred som 51 årig Crosstabulation rygevaner

Læs mere

Kønsproportion og familiemønstre.

Kønsproportion og familiemønstre. Københavns Universitet Afdeling for Anvendt Matematik og Statistik Projektopgave forår 2005 Kønsproportion og familiemønstre. Matematik 2SS Inge Henningsen februar 2005 Indledning I denne opgave undersøges,

Læs mere

Spil & Sandsynlighed. Preben Blæsild

Spil & Sandsynlighed. Preben Blæsild Spil & Sandsynlighed Preben Blæsild (1,1) (1,2) (1,3) (1,4) (1,5) (1,6) (2,1) (2,2) (2,3) (2,4) (2,5) (2,6) (3,1) (3,2) (3,3) (3,4) (3,5) (3,6) (4,1) (4,2) (4,3) (4,4) (4,5) (4,6) (5,1) (5,2) (5,3) (5,4)

Læs mere

Simulering af stokastiske fænomener med Excel

Simulering af stokastiske fænomener med Excel Simulering af stokastiske fænomener med Excel John Andersen, Læreruddannelsen i Aarhus, VIA Det kan være en ret krævende læreproces at udvikle fornemmelse for mange begreber fra sandsynlighedsregningen

Læs mere

Statistik Lektion 1. Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Sandsynlighedsregning

Statistik Lektion 1. Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Sandsynlighedsregning Statistik Lektion 1 Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Sandsynlighedsregning Introduktion Kasper K. Berthelsen, Inst f. Matematiske Fag Omfang: 8 Kursusgang I fremtiden

Læs mere

Deskriptorspil. Navn Klasse Dato Statistik og sandsynlighed

Deskriptorspil. Navn Klasse Dato Statistik og sandsynlighed 9.0 Deskriptorspil Klip de 6 brikker ud, og del dem ligeligt. Læg kortene foran jer i en bunke med bagsiden opad. Tag hver det øverste kort fra bunken. Den ældste begynder med at vælge kategori fx typetal.

Læs mere

Nogle grundlæggende begreber

Nogle grundlæggende begreber BE2-kursus 2010 Jørgen Larsen 5. februar 2010 Nogle grundlæggende begreber Lidt simpel mængdelære Mængder består af elementer; mængden bestående af ingen elementer er, den tomme mængde. At x er element

Læs mere

KOMBINATORIK. Øvelse 1. Kan du finde en forklaring på Leibniz problem?

KOMBINATORIK. Øvelse 1. Kan du finde en forklaring på Leibniz problem? KOMBINATORIK Dette er et supplerende kapitel til lærebogen stokastik 1.-10. klasse. Bogen kan læses uden reference til indholdet i dette kapitel, men da man sommetider baserer arbejdet med sandsynlighedsregning

Læs mere

STATISTIKNOTER Simple binomialfordelingsmodeller

STATISTIKNOTER Simple binomialfordelingsmodeller STATISTIKNOTER Simple binomialfordelingsmodeller Jørgen Larsen IMFUFA Roskilde Universitetscenter Februar 1999 IMFUFA, Roskilde Universitetscenter, Postboks 260, DK-4000 Roskilde. Jørgen Larsen: STATISTIKNOTER:

Læs mere

Plan. Markovkæder Matematisk modelling af kølængde, yatzy, smittespredning og partikelbevægelser. Materiale mm.

Plan. Markovkæder Matematisk modelling af kølængde, yatzy, smittespredning og partikelbevægelser. Materiale mm. Institut for Matematiske Fag Plan Markovkæder Matematisk modelling af kølængde, yatzy, smittespredning og partikelbevægelser Helle Sørensen Eftermiddagen vil være bygget om 3 4 eksempler: A. B. Random

Læs mere

MASO Uge 5. Topologi i euklidiske rum. Jesper Michael Møller. Uge 5. Formålet med MASO. Department of Mathematics University of Copenhagen

MASO Uge 5. Topologi i euklidiske rum. Jesper Michael Møller. Uge 5. Formålet med MASO. Department of Mathematics University of Copenhagen MASO Uge 5 Topologi i euklidiske rum Jesper Michael Møller Department of Mathematics University of Copenhagen Uge 5 Formålet med MASO Oversigt Åbne og afsluttede mængder Det indre, det ydre, afslutningen,

Læs mere

Normalfordelingen og Stikprøvefordelinger

Normalfordelingen og Stikprøvefordelinger Normalfordelingen og Stikprøvefordelinger Normalfordelingen Standard Normal Fordelingen Sandsynligheder for Normalfordelingen Transformation af Normalfordelte Stok.Var. Stikprøver og Stikprøvefordelinger

Læs mere

Kvantitative Metoder 1 - Forår 2007

Kvantitative Metoder 1 - Forår 2007 Dagens program Kapitel 8.7, 8.8 og 8.10 Momenter af gennemsnit og andele kap. 8.7 Eksempel med simulationer Den centrale grænseværdisætning (Central Limit Theorem) kap. 8.8 Simulationer Normalfordelte

Læs mere

Gamle eksamensopgaver. Diskret Matematik med Anvendelser (DM72) & Diskrete Strukturer (DM504)

Gamle eksamensopgaver. Diskret Matematik med Anvendelser (DM72) & Diskrete Strukturer (DM504) Gamle eksamensopgaver Diskret Matematik med Anvendelser (DM72) & Diskrete Strukturer (DM54) Institut for Matematik & Datalogi Syddansk Universitet, Odense Alle sædvanlige hjælpemidler (lærebøger, notater

Læs mere

Simulering af stokastiske fænomener med Excel

Simulering af stokastiske fænomener med Excel Simulering af stokastiske fænomener med Excel John Andersen, Læreruddannelsen i Aarhus, VIA Det kan være en ret krævende læreproces at udvikle fornemmelse for mange begreber fra sandsynlighedsregningen

Læs mere

Kvantitative Metoder 1 - Forår 2007

Kvantitative Metoder 1 - Forår 2007 Dagens program Kapitel 4: Diskrete fordelinger Hypergeometrisk fordeling, Afsnit 4.3 Multinomial fordeling, Afsnit 4.8 Geometrisk fordeling og Negativ binomialfordeling (Inverse Sampling), Afsnit 4.4 Approksimation

Læs mere

OPGAVER 3.g SANDSYNLIGHEDSREGNING KOMBINATORIK STATISTIK KOMPLEKSE TAL. x-klasserne Gammel Hellerup Gymnasium

OPGAVER 3.g SANDSYNLIGHEDSREGNING KOMBINATORIK STATISTIK KOMPLEKSE TAL. x-klasserne Gammel Hellerup Gymnasium OPGAVER 3.g SANDSYNLIGHEDSREGNING KOMBINATORIK STATISTIK KOMPLEKSE TAL x-klasserne Gammel Hellerup Gymnasium Indholdsfortegnelse SANDSYNLIGHEDSREGNING... 3 KOMBINATORIK... 4 STATISTIK... 30 KOMPLEKSE TAL...

Læs mere

Generalforsamling i Aarhus 1900 Volleyball referat Torsdag d. 19. februar 2015 kl. 1900 I kantinen på Svømmestadion

Generalforsamling i Aarhus 1900 Volleyball referat Torsdag d. 19. februar 2015 kl. 1900 I kantinen på Svømmestadion GeneralforsamlingiAarhus1900Volleyball referat Torsdagd.19.februar2015 kl.1900 IkantinenpåSvømmestadion Dagsorden: 1.Valgafdirigent. KasperPedersen 2.Valgafreferent. DorteToft NB:Dagsordenenerblevetrettidigtsendtud,regnskabeterikke.

Læs mere

Nanostatistik: Opgaver

Nanostatistik: Opgaver Nanostatistik: Opgaver Jens Ledet Jensen, 19/01/05 Opgaver 1 Opgaver fra Indblik i Statistik 5 Eksamensopgaver fra tidligere år 11 i ii NANOSTATISTIK: OPGAVER Opgaver Opgave 1 God opgaveskik: Når I regner

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj-juni, 17/18

Læs mere

Dagens program. Afsnit Diskrete stokastiske variable Sandsynlighedsfunktioner Simultane fordelinger Betingede sandsynligheder

Dagens program. Afsnit Diskrete stokastiske variable Sandsynlighedsfunktioner Simultane fordelinger Betingede sandsynligheder Dagens program Afsnit 2.1-2.3 Diskrete stokastiske variable Sandsynlighedsfunktioner Simultane fordelinger Betingede sandsynligheder 1 Stokastiske variable (diskrete) Et eksperiment med usikkerhed beskrives

Læs mere

Indholdsfortegnelse. LUDUS WebDokumentArkiv Installationsvejledning

Indholdsfortegnelse. LUDUS WebDokumentArkiv Installationsvejledning Indholdsfortegnelse 1. Forhold der skal være på plads... 2 1.1 Adaptive Server Anywhere... 2 1.2 LUDUS Web DokumentArkiv Installations parametre... 2 2. Installation... 3 2.1 Installationsoplysninger...

Læs mere

Invarianter og kombinatoriske beviser

Invarianter og kombinatoriske beviser Invarianter og kombinatoriske beviser Anders Nedergaard Jensen Institut for Matematik, Aarhus Universitet Matematiklærerdag, Aarhus, 24. Marts 2017 En invariant er en værdi/udsagn der forbliver konstant

Læs mere

Teoretisk Statistik, 13 april, 2005

Teoretisk Statistik, 13 april, 2005 Poissonprocessen Teoretisk Statistik, 13 april, 2005 Setup og antagelser Fordelingen af X(t) og et eksempel Ventetider i poissonprocessen Fordeling af ventetiden T 1 til første ankomst Fortolkning af λ

Læs mere

Sandsynlighedsregning

Sandsynlighedsregning Mogens Bladt www2.imm.dtu.dk/courses/02405 12. Oktober, 2007 Kontinuerte fordelinger Vi har hidtil set på fordelinger af stokastiske variable der højst kan antage tælleligt mange værdier (diskrete stokastiske

Læs mere

9 Statistik og sandsynlighed

9 Statistik og sandsynlighed 9 Statistik og sandsynlighed Faglige mål Kapitlet Statistik og sandsynlighed tager udgangspunkt i følgende faglige mål: Enkeltobservationer: kunne skabe overblik over statistisk materiale og anvende udvalgte

Læs mere

Iteration af et endomorft kryptosystem. Substitutions-permutations-net (SPN) og inversion. Eksklusiv disjunktion og dens egenskaber

Iteration af et endomorft kryptosystem. Substitutions-permutations-net (SPN) og inversion. Eksklusiv disjunktion og dens egenskaber Produktsystemer, substitutions-permutations-net samt lineær og differentiel kryptoanalyse Kryptologi, fredag den 10. februar 2006 Nils Andersen (Stinson 3., afsnit 2.7 3.4 samt side 95) Produkt af kryptosystemer

Læs mere

Affine transformationer/afbildninger

Affine transformationer/afbildninger Affine transformationer. Jens-Søren Kjær Andersen, marts 2011 1 Affine transformationer/afbildninger Følgende afbildninger (+ sammensætninger af disse) af planen ind i sig selv kaldes affine: 1) parallelforskydning

Læs mere

Vedtægter for Melby-Områdets Grundejerforening

Vedtægter for Melby-Områdets Grundejerforening Vedtægter for Melby-Områdets Grundejerforening 2008 Hjemmeside: www.melby-grund.dk Kontakt: mail@melby-grund.dk 1 Foreningens navn Foreningens navn er Melby Områdets Grundejerforening Dens hjemsted er

Læs mere