REEKSAMEN I EPIDEMIOLOGISKE METODER IT & Sundhed, 2. semester

Størrelse: px
Starte visningen fra side:

Download "REEKSAMEN I EPIDEMIOLOGISKE METODER IT & Sundhed, 2. semester"

Transkript

1 D E T S U N D H E D S V I D E N S K A B E L I G E F A K U L T E T K Ø B E N H A V N S U N I V E R S I T E T B l e g d a m s v e j 3 B K ø b e n h a v n N REEKSAMEN I EPIDEMIOLOGISKE METODER IT & Sundhed, 2. semester August 2011 (4 timer) Eksamensvejledning Der lægges vægt på, at besvarelsen er klart disponeret og sprogligt koncis, og at sprogbrugen er i overensstemmelse med fagets terminologi. Praktiske forhold Læs artiklen grundigt og svar derefter på alle opgaver. Under hver opgave står hvor mange point der maksimalt kan opnås for rigtig besvarelse af opgaven. Der gives i alt maksimum 100 point for tilfredsstillende besvarelse af alle spørgsmål. Eksamenssættet består af i alt 12 spørgsmål. Mobiltelefoner skal være slukkede og lagt væk under eksamen. Artikel Krijthe BP et al. Is Positive Affect Associated With Survival? A Population-based Study of Elderly Persons. American Journal of Epidemiology 2011;173(11): Artiklen er sendt via mail til de studerende 24 timer før eksamensstart.

2 1. Beskriv undersøgelsens eksponering, samt hvorledes den er målt og kategoriseret. Undersøgelsens eksponering er positiv affekt. Positiv affekt blev målt ved hjælp af selvrapportering af humør og følelser i løbet af den seneste uge med den såkaldte CES-D scale. Selvrapporteringen bestod af i alt 20 spørgsmål der hver blev scoret på en pointskala fra 0-3 point. Af de i alt 20 spørgsmål målte 4 positiv affekt. Den samlede positiv affekt score (0-12 point) blev kategoriseret som lav (0-7 point), medium (8-11 point), eller høj (12 point). 2. Beskriv undersøgelsens udfald, samt hvorledes den er målt og kategoriseret. Undersøgelsens udfald er død. Død blev målt gennem kontinuerlig monitorering af kommunale adressefiler og elektroniske rapporteringer fra praktiserende læger. et blev kategoriseret som død eller ikke død. 3. Hvilke(t) epidemiologisk(e) design(s) anvender forfatterne til at belyse associationen mellem eksponeringen og udfaldet? Redegør for dit svar. Forfatterne anvendte et kohortedesign til at belyse sammenhængen mellem positiv affekt og død. Det er et kohortedesign fordi studiet tager udgangspunkt i eksponeringen (3 kategorier af positiv affekt), hvorefter deltagerne følges fremad i tid for udfaldet (død). 4. Hvilken statistisk model anvender forfatterne til at undersøge associationen mellem eksponeringen og udfaldet, og hvilket associationsmål estimeres i denne model? (7 point) Forfatterne anvender en Cox (proportional hazards) model til at undersøge sammenhængen mellem positiv affekt og død. I Cox modellen estimeres hazard ratios (HR) også kaldet incidence rate ratios, som er en approksimation af den relative risiko. 5. Forfatterne rapporterer en statistisk signifikant interaktion mellem positiv affekt og alder i den fuldt justerede model (p=0,02). Beskriv med dine egne ord hvad denne statistisk signifikante interaktion betyder. (7 point) Den statistisk signifikante interaktion betyder at associationen mellem positiv affekt og død med 95% sandsynlighed ikke er den samme i alle de forskellige strata som alder er inddelt i dette studie, efter justering for diverse faktorer. Således har positiv affekt ikke den samme positive effekt på død uanset hvilken alder deltageren har. Enten har vi observeret en sjælden hændelse under nulhypotesen, eller også er nulhypotesen falsk. Traditionelt vælger vi at tolke resultatet som den sidste mulighed.

3 6. Forfatterne skriver at studier som tidligere har undersøgt den studerede association har nået modsatrettede konklusioner, og at dette kan skyldes confounding fra bl.a. sundhedsstatus. Hvordan kan confounding reduceres i henholdsvis design- og analysefasen af et epidemiologisk studie? I designfasen: Randomisering (RCT), matching (case-kontrol og kohorte) I analysefasen: Standardisering, stratificerede analyser, multivariable analyser 7. Confounding fra sundhedsstatus i studier der tidligere har undersøgt den studerede association kan forekomme som følge af umålt confounding eller residual confounding. Beskriv hvad begrebet residual confounding dækker over, og hvordan residual confounding kan være opstået i studier der tidligere har undersøgt den studerede association. Residual confounding dækker over at en faktor er inddelt for groft og at information om faktoren derfor er upræcis. Residual confounding fra sundhedsstatus kan være opstået i tidligere studier hvis sundhedsstatus har været inddelt i for grove kategorier f.eks. syg vs. ikke syg. Dermed fanges nuancerne (f.eks. om sygdommen er kureret eller alvorligheden af sygdommen) ikke. Residual confounding betyder at det ikke er lykkedes at få risikoen for udfaldet til at være konstant indenfor alle strata af determinant og confoundere. 8. Skitsér måden hvorpå information om prævalent sygdom er indhentet i dette studie, og diskutér hvilke ulemper det kan medføre. (10 point) Oplysninger om prævalent sygdom er indhentet via den praktiserende læge og vurderet af to forskere. Ved uenighed brugtes en specialist. Variablen blev kodet med 0 hvis deltageren aldrig havde haft sygdommen, og 1 hvis deltageren havde haft eller havde sygdommen ved baseline. Ulemper: den praktiserende læges journal indeholder ikke nødvendigvis oplysning om alle sygdommene selv om deltageren har dem, mange skifter læge så tidligere sygdom kan være dårligt beskrevet, sværhedsgraden af sygdom overses ved dikotomisering, det er usandsynligt at de forskellige sygdomme påvirker sammenhængen mellem positiv affekt og overlevelse på samme måde, der medtages ikke oplysninger om psykisk sygdom. 9. Hvor stor en andel af deltagerne havde prævalent sygdom ved baseline? Af tabel 2 kan det ses at et sted mellem 512 og i alt 1385 ( ) personer havde prævalent sygdom. De to yderpunkter svarer til at alle som har en eller flere prævalente sygdomme også har den hyppigste prævalente sygdom (512) eller at alle som har en prævalent sygdom har nøjagtig én prævalent sygdom (1385). I procent svarer den nedre grænse til 11,6% og den øvre grænse svarer til 31,4% ((1385/4411)*100).Hvis man summerer procenterne i tabel 2 fås 31,3%. 10. Forfatterne diskuterer om hvorvidt de har overjusteret for happiness. Med dette mener de, om de har justeret for happiness, selvom happiness måske snarere er en inter-mediær faktor end en confounder. Færdiggør nedenstående diagrammer ved at indtegne pilehoveder på alle linjerne. Tegn ét diagram hvor happiness er en confounder, og ét diagram hvor happiness er en inter-mediær faktor. (9 point)

4 Confounder Inter-mediær faktor Confounder Inter-mediær faktor 11. Forfatterne rapporterer det totale antal dødsfald, det gennemsnitlige antal personår under risiko, og det samlede antal deltagere. Benyt disse oplysninger til at beregne den overordnede incidensrate for udfaldet per 1000 personår under risiko. (9 point) I alt 1287 dødsfald I alt 4411 personer * 7,19 personår under risiko = 31715,1 personår under risiko IR = (1287/31715,1)*1000 = 40,6 dødsfald per 1000 personår under risiko 12. Antag at eksponeringen bliver målt med en vis usikkerhed. Nævn de to typer af informationsproblemer dette kan medføre, hvad disse to typer af informationsproblemer afhænger af, og hvilken indflydelse disse typer af informationsproblemer vil have i dette studie. (10 point)

5 Hvis positiv affekt er målt med lige stor usikkerhed for alle deltagere taler vi om non-differentiel misklassifikation. Non-differentiel misklassifikation vil i dette studie gøre at den gavnlige effekt af positiv affekt på død underestimeres. Hvis positiv affekt er målt med større usikkerhed i nogen eksponeringsgrupper end i andre taler vi om differentiel misklassifikation. Differentiel misklassifikation kan i dette studie vende op og ned på konklusionen alt efter hvor mange der misklassificeres.

ORDINÆR EKSAMEN I EPIDEMIOLOGISKE METODER IT & Sundhed, 2. semester

ORDINÆR EKSAMEN I EPIDEMIOLOGISKE METODER IT & Sundhed, 2. semester D E T S U N D H E D S V I D E N S K A B E L I G E F A K U L T E T K Ø B E N H A V N S U N I V E R S I T E T B l e g d a m s v e j 3 B 2 2 0 0 K ø b e n h a v n N ORDINÆR EKSAMEN I EPIDEMIOLOGISKE METODER

Læs mere

ORDINÆR EKSAMEN I EPIDEMIOLOGISKE METODER IT & Sundhed, 2. semester

ORDINÆR EKSAMEN I EPIDEMIOLOGISKE METODER IT & Sundhed, 2. semester D E T S U N D H E D S V I D E N S K A B E L I G E F A K U L T E T K Ø B E N H A V N S U N I V E R S I T E T B l e g d a m s v e j 3 B 2 2 0 0 K ø b e n h a v n N ORDINÆR EKSAMEN I EPIDEMIOLOGISKE METODER

Læs mere

RE-EKSAMEN I EPIDEMIOLOGISKE METODER IT & Sundhed, 2. semester

RE-EKSAMEN I EPIDEMIOLOGISKE METODER IT & Sundhed, 2. semester D E T S U N D H E D S V I D E N S K A B E L I G E F A K U L T E T K Ø B E N H A V N S U N I V E R S I T E T B l e g d a m s v e j 3 B 2 2 0 0 K ø b e n h a v n N RE-EKSAMEN I EPIDEMIOLOGISKE METODER IT

Læs mere

ORDINÆR EKSAMEN I EPIDEMIOLOGISKE METODER IT & Sundhed, 2. semester

ORDINÆR EKSAMEN I EPIDEMIOLOGISKE METODER IT & Sundhed, 2. semester D E T S U N D H E D S V I D E N S K A B E L I G E F A K U L T E T K Ø B E N H A V N S U N I V E R S I T E T B l e g d a m s v e j 3 B 2200 K ø b e n h a v n N ORDINÆR EKSAMEN I EPIDEMIOLOGISKE METODER

Læs mere

ORDINÆR EKSAMEN I EPIDEMIOLOGISKE METODER IT & Sundhed, 2. semester

ORDINÆR EKSAMEN I EPIDEMIOLOGISKE METODER IT & Sundhed, 2. semester D E T S U N D H E D S V I D E N S K A B E L I G E F A K U L T E T K Ø B E N H A V N S U N I V E R S I T E T B l e g d a m s v e j 3 B 2 2 0 0 K ø b e n h a v n N ORDINÆR EKSAMEN I EPIDEMIOLOGISKE METODER

Læs mere

Confounding. Mads Kamper-Jørgensen, lektor, maka@sund.ku.dk. Afdeling for Social Medicin, Institut for Folkesundhedsvidenskab

Confounding. Mads Kamper-Jørgensen, lektor, maka@sund.ku.dk. Afdeling for Social Medicin, Institut for Folkesundhedsvidenskab Afdeling for Social medicin Confounding Mads Kamper-Jørgensen, lektor, maka@sund.ku.dk Afdeling for Social Medicin, Institut for Folkesundhedsvidenskab It og sundhed l 28. maj 2015 l Dias nummer 1 Sidste

Læs mere

SKRIFTLIG EKSAMEN I BIOSTATISTIK OG EPIDEMIOLOGI Cand.Scient.San, 2. semester 20. februar 2015 (3 timer)

SKRIFTLIG EKSAMEN I BIOSTATISTIK OG EPIDEMIOLOGI Cand.Scient.San, 2. semester 20. februar 2015 (3 timer) D E T S U N D H E D S V I D E N S K A B E L I G E F A K U L T E T K Ø B E N H A V N S U N I V E R S I T E T B l e g d a m s v e j 3 B 2 2 0 0 K ø b e n h a v n N SKRIFTLIG EKSAMEN I BIOSTATISTIK OG EPIDEMIOLOGI

Læs mere

Effektmålsmodifikation

Effektmålsmodifikation Effektmålsmodifikation Mads Kamper-Jørgensen, lektor, maka@sund.ku.dk Afdeling for Social Medicin, Institut for Folkesundhedsvidenskab It og sundhed l 21. april 2015 l Dias nummer 1 Sidste gang Vi snakkede

Læs mere

Vurdering af epidemiologiske undersøgelser igen

Vurdering af epidemiologiske undersøgelser igen Vurdering af epidemiologiske undersøgelser igen kob Grove 13. februar, 2006 Program Confounding og effektmodifikation Hvad er confounding Hvad er effektmodifikation Er der confounding eller effektmodifikation

Læs mere

Studiedesigns: Kohorteundersøgelser

Studiedesigns: Kohorteundersøgelser Studiedesigns: Kohorteundersøgelser Mads Kamper-Jørgensen, lektor, maka@sund.ku.dk Afdeling for Social Medicin, Institut for Folkesundhedsvidenskab It og sundhed l 3. maj 2016 l Dias nummer 1 Sidste gang

Læs mere

Studiedesigns: Kohorteundersøgelser

Studiedesigns: Kohorteundersøgelser Studiedesigns: Kohorteundersøgelser Mads Kamper-Jørgensen, lektor, maka@sund.ku.dk Afdeling for Social Medicin, Institut for Folkesundhedsvidenskab It og sundhed l 28. april 2015 l Dias nummer 1 Sidste

Læs mere

Besvarelse af opgavesættet ved Reeksamen forår 2008

Besvarelse af opgavesættet ved Reeksamen forår 2008 Besvarelse af opgavesættet ved Reeksamen forår 2008 10. marts 2008 1. Angiv formål med undersøgelsen. Beskriv kort hvordan cases og kontroller er udvalgt. Vurder om kontrolgruppen i det aktuelle studie

Læs mere

2. Hvilke(t) epidemiologisk(e) design(s) anvender forfatterne til at belyse problemstillingen? (7 point)

2. Hvilke(t) epidemiologisk(e) design(s) anvender forfatterne til at belyse problemstillingen? (7 point) Eksamensopgave i Epidemiologiske metoder, IT & Sundhed forår 2011 Læs artiklen grundigt og svar derefter på alle spørgsmål. Under hver opgave står hvor mange point der maksimalt kan opnås for opgaven.

Læs mere

Vurdering af epidemiologiske undersøgelser. Epidemiologisk forskning

Vurdering af epidemiologiske undersøgelser. Epidemiologisk forskning Vurdering af epidemiologiske undersøgelser Epidemiologisk forskning Mogens Vestergaard Institut for Epidemiologi og Socialmedicin Aarhus Universitet mv@soci.au.dk At belyse en videnskabelig hypotese ved

Læs mere

Fejlkilder. Ulrik Schiøler Kesmodel. Rikke Guldberg Øjvind Lidegaard

Fejlkilder. Ulrik Schiøler Kesmodel. Rikke Guldberg Øjvind Lidegaard Fejlkilder Ulrik Schiøler Kesmodel Rikke Guldberg Øjvind Lidegaard Fejlkilder 1. Selektionsproblemer 2. Informationsproblemer 3. Confounding Generelle overvejelser I Det estimat for hyppighed, som vi måler

Læs mere

Præcision og effektivitet (efficiency)?

Præcision og effektivitet (efficiency)? Case-kontrol studier PhD kursus i Epidemiologi Københavns Universitet 18 Sep 2012 Søren Friis Center for Kræftforskning, Kræftens Bekæmpelse Valg af design Problemstilling? Validitet? Præcision og effektivitet

Læs mere

Målsætning. Vurdering af epidemiologiske undersøgelser

Målsætning. Vurdering af epidemiologiske undersøgelser Vurdering af epidemiologiske undersøgelser Målsætning Mogens Vestergaard Institut for Epidemiologi og Socialmedicin Aarhus Universitet At belyse en videnskabelig problemstilling ved at indsamle, analysere

Læs mere

Vurdering af epidemiologiske undersøgelser igen

Vurdering af epidemiologiske undersøgelser igen Vurdering af epidemiologiske undersøgelser igen kob Grove 12. september, 2005 Program Confounding og effektmodifikation Hvad er confounding Hvad er effektmodifikation Er der confounding eller effektmodifikation

Læs mere

En teoretisk årsagsmodel: Operationalisering: Vurdering af epidemiologiske undersøgelser. 1. Informationsproblemer Darts et eksempel på målefejl

En teoretisk årsagsmodel: Operationalisering: Vurdering af epidemiologiske undersøgelser. 1. Informationsproblemer Darts et eksempel på målefejl Vurdering af epidemiologiske undersøgelser Jørn Attermann. februar 00 I denne forelæsning vil vi se på fejl, som kan have betydning for fortolkningen af resultater fra epidemiologiske undersøgelser. Traditionelt

Læs mere

Analyse af binære responsvariable

Analyse af binære responsvariable Analyse af binære responsvariable Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet 23. november 2012 Har mænd lettere ved at komme ind på Berkeley? UC Berkeley

Læs mere

Epidemiologiske associationsmål

Epidemiologiske associationsmål Epidemiologiske associationsmål Mads Kamper-Jørgensen, lektor, maka@sund.ku.dk Afdeling for Social Medicin, Institut for Folkesundhedsvidenskab It og sundhed l 16. april 2015 l Dias nummer 1 Sidste gang

Læs mere

Lægevidenskabelig Embedseksamen, 6. semester Forår 2009 Epidemiologi og Biostatistik Rettevejledning

Lægevidenskabelig Embedseksamen, 6. semester Forår 2009 Epidemiologi og Biostatistik Rettevejledning Lægevidenskabelig Embedseksamen, 6. semester Forår 2009 Epidemiologi og Biostatistik Rettevejledning Opgave 1. Angiv studiets formål, design og hvilke associationsmål, der bruges. Beskriv hovedresultaterne

Læs mere

Studiedesigns: Case-kontrolundersøgelser

Studiedesigns: Case-kontrolundersøgelser Studiedesigns: Case-kontrolundersøgelser Mads Kamper-Jørgensen, lektor, maka@sund.ku.dk Afdeling for Social Medicin, Institut for Folkesundhedsvidenskab It og sundhed l 12. maj 2016 l Dias nummer 1 Sidste

Læs mere

Ved undervisningen i epidemiologi/statistik den 8. og 10. november 2011 vil vi lægge hovedvægten på en fælles diskussion af følgende fire artikler:

Ved undervisningen i epidemiologi/statistik den 8. og 10. november 2011 vil vi lægge hovedvægten på en fælles diskussion af følgende fire artikler: Kære MPH-studerende Ved undervisningen i epidemiologi/statistik den 8. og 10. november 2011 vil vi lægge hovedvægten på en fælles diskussion af følgende fire artikler: 1. E.A. Mitchell et al. Ethnic differences

Læs mere

Epidemiologi og Biostatistik Opgaver i Biostatistik Uge 4: 2. marts

Epidemiologi og Biostatistik Opgaver i Biostatistik Uge 4: 2. marts Århus 27. februar 2011 Morten Frydenberg Epidemiologi og Biostatistik Opgaver i Biostatistik Uge 4: 2. marts Epibasic er nu opdateret til version 2.02 (obs. der er ikke ændret ved arket C-risk) Start med

Læs mere

Epidemiologiske hyppighedsmål

Epidemiologiske hyppighedsmål Epidemiologiske hyppighedsmål Mads Kamper-Jørgensen, lektor, maka@sund.ku.dk Afdeling for Social Medicin, Institut for Folkesundhedsvidenskab It og sundhed l 14. april 2015 l Dias nummer 1 Sidste gang

Læs mere

Sommereksamen 2015. Bacheloruddannelsen i Medicin/Medicin med industriel specialisering

Sommereksamen 2015. Bacheloruddannelsen i Medicin/Medicin med industriel specialisering Sommereksamen 2015 Titel på kursus: Uddannelse: Semester: Statistik og evidensbaseret medicin Bacheloruddannelsen i Medicin/Medicin med industriel specialisering 2. semester Eksamensdato: 16-06-2015 Tid:

Læs mere

Epidemiologisk evidens og opsummering

Epidemiologisk evidens og opsummering Epidemiologisk evidens og opsummering Mads Kamper-Jørgensen, lektor, maka@sund.ku.dk Afdeling for Social Medicin, Institut for Folkesundhedsvidenskab It og sundhed l 12. juni 2014 l Dias nummer 1 Sidste

Læs mere

Sommereksamen Bacheloruddannelsen i Medicin/Medicin med industriel specialisering

Sommereksamen Bacheloruddannelsen i Medicin/Medicin med industriel specialisering Sommereksamen 2016 Titel på kursus: Uddannelse: Semester: Statistik og evidensbaseret medicin Bacheloruddannelsen i Medicin/Medicin med industriel specialisering 2. semester Eksamensdato: 13-06-2016 Tid:

Læs mere

Noter til SfR checkliste 3 Kohorteundersøgelser

Noter til SfR checkliste 3 Kohorteundersøgelser Noter til SfR checkliste 3 Kohorteundersøgelser Denne checkliste anvendes til undersøgelser som er designet til at besvare spørgsmål af typen hvad er effekten af denne eksponering?. Den relaterer sig til

Læs mere

Intern validitet: Fejlkilder og tolkningsproblemer i epidemiologiske undersøgelser

Intern validitet: Fejlkilder og tolkningsproblemer i epidemiologiske undersøgelser Intern validitet: Fejlkilder og tolkningsproblemer i epidemiologiske undersøgelser Jørn Attermann 23. september 2009 Vurdering af den interne validitet af en epidemiologisk undersøgelse: Informationsproblemer

Læs mere

En teoretisk årsagsmodel: Operationalisering: Vurdering af epidemiologiske undersøgelser. 1. Informationsproblemer Eksempler på målefejl

En teoretisk årsagsmodel: Operationalisering: Vurdering af epidemiologiske undersøgelser. 1. Informationsproblemer Eksempler på målefejl Vurdering af epidemiologiske undersøgelser Jørn Attermann 6. februar 2006 I denne forelæsning vil vi se på fejl, som kan have betydning for fortolkningen af resultater fra epidemiologiske undersøgelser.

Læs mere

Mads Kamper-Jørgensen, lektor, maka@sund.ku.dk. Afdeling for Social Medicin, Institut for Folkesundhedsvidenskab

Mads Kamper-Jørgensen, lektor, maka@sund.ku.dk. Afdeling for Social Medicin, Institut for Folkesundhedsvidenskab Informationsbias Mads Kamper-Jørgensen, lektor, maka@sund.ku.dk Afdeling for Social Medicin, Institut for Folkesundhedsvidenskab It og sundhed l 19. maj 2015 l Dias nummer 1 Sidste gang Vi snakkede om

Læs mere

Sammenhængsanalyser. Et eksempel: Sammenhæng mellem rygevaner som 45-årig og selvvurderet helbred som 51 blandt mænd fra Københavns amt.

Sammenhængsanalyser. Et eksempel: Sammenhæng mellem rygevaner som 45-årig og selvvurderet helbred som 51 blandt mænd fra Københavns amt. Sammenhængsanalyser Et eksempel: Sammenhæng mellem rygevaner som 45-årig og selvvurderet helbred som 51 blandt mænd fra Københavns amt. rygevaner som 45 årig * helbred som 51 årig Crosstabulation rygevaner

Læs mere

Epidemiologiske associationsmål

Epidemiologiske associationsmål Epidemiologiske associationsmål Mads Kamper-Jørgensen, lektor, maka@sund.ku.dk Afdeling for Social Medicin, Institut for Folkesundhedsvidenskab It og sundhed l 21. april 2016 l Dias nummer 1 Sidste gang

Læs mere

Måleproblemer. Fejlkilder og tolkningsproblemer. Usikkerhed og bias. Stikprøveusikkerhed. Epidemiologi og Biostatistik (version

Måleproblemer. Fejlkilder og tolkningsproblemer. Usikkerhed og bias. Stikprøveusikkerhed. Epidemiologi og Biostatistik (version Måleproblemer A B Fejlkilder og tolkningsproblemer Svend Juul, 19. september 2007 C D 1 2 Usikkerhed og bias De vigtigste kilder til usikkerhed og bias Præcision, sikkerhed, reproducerbarhed, ryster ikke

Læs mere

Epidemiologiske mål Studiedesign

Epidemiologiske mål Studiedesign Epidemiologiske mål Studiedesign Svend Juul Pludselig uventet spædbarnsdød Sudden Infant Death Syndrome, SIDS Uventet dødsfald hos et rask spædbarn. Obduktion o.a. giver ingen forklaring. Hyppigheden -doblet

Læs mere

SYGEHUSBASERET OVERLEVELSE FOR UDVALGTE KRÆFTSYGDOMME 1995-2006

SYGEHUSBASERET OVERLEVELSE FOR UDVALGTE KRÆFTSYGDOMME 1995-2006 SYGEHUSBASERET OVERLEVELSE FOR UDVALGTE KRÆFTSYGDOMME 1995-2006 Nye tal fra Sundhedsstyrelsen 2008 : 6 Redaktion Sundhedsstyrelsen Sundhedsdokumentation Islands Brygge 67 2300 København S. Telefon: 7222

Læs mere

Anvendt Statistik Lektion 6. Kontingenstabeller χ 2 -test [ki-i-anden-test]

Anvendt Statistik Lektion 6. Kontingenstabeller χ 2 -test [ki-i-anden-test] Anvendt Statistik Lektion 6 Kontingenstabeller χ 2 -test [ki-i-anden-test] 1 Kontingenstabel Formål: Illustrere/finde sammenhænge mellem to kategoriske variable Opbygning: En celle for hver kombination

Læs mere

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Uafhængighedstestet

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Uafhængighedstestet Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab Uafhængighedstestet Eksempel: Bissau data Data kommer fra Guinea-Bissau i Vestafrika: 5273 børn blev undersøgt da de var yngre end 7 mdr og blev

Læs mere

Kursus i Epidemiologi og Biostatistik. Epidemiologiske mål. Studiedesign. Svend Juul

Kursus i Epidemiologi og Biostatistik. Epidemiologiske mål. Studiedesign. Svend Juul Kursus i Epidemiologi og Biostatistik Epidemiologiske mål Studiedesign Svend Juul 1 Pludselig uventet spædbarnsdød (vuggedød, Sudden Infant Death Syndrome, SIDS) Uventet dødsfald hos et rask spædbarn (8

Læs mere

Selektionsbias. Mads Kamper-Jørgensen, lektor, maka@sund.ku.dk. Afdeling for Social Medicin, Institut for Folkesundhedsvidenskab

Selektionsbias. Mads Kamper-Jørgensen, lektor, maka@sund.ku.dk. Afdeling for Social Medicin, Institut for Folkesundhedsvidenskab Selektionsbias Mads Kamper-Jørgensen, lektor, maka@sund.ku.dk Afdeling for Social Medicin, Institut for Folkesundhedsvidenskab It og sundhed l 21. maj 2015 l Dias nummer 1 Sidste gang Vi snakkede om Præcision:

Læs mere

Anvendt Statistik Lektion 6. Kontingenstabeller χ 2- test [ki-i-anden-test]

Anvendt Statistik Lektion 6. Kontingenstabeller χ 2- test [ki-i-anden-test] Anvendt Statistik Lektion 6 Kontingenstabeller χ 2- test [ki-i-anden-test] Kontingenstabel Formål: Illustrere/finde sammenhænge mellem to kategoriske variable Opbygning: En celle for hver kombination af

Læs mere

Eks. 1: Kontinuert variabel som i princippet kan måles med uendelig præcision. tid, vægt,

Eks. 1: Kontinuert variabel som i princippet kan måles med uendelig præcision. tid, vægt, Statistik noter Indhold Datatyper... 2 Middelværdi og standardafvigelse... 2 Normalfordelingen og en stikprøve... 2 prædiktionsinteval... 3 Beregne andel mellem 2 værdier, eller over og unden en værdi

Læs mere

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Stratificerede analyser

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Stratificerede analyser Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab Stratificerede analyser Dødsstraf-eksempel Betyder morderens farve noget for risikoen for dødsstraf? 1 Dødsstraf-eksempel: data Variable: Dødsstraf

Læs mere

Hypotesetest. Altså vores formodning eller påstand om tingens tilstand. Alternativ hypotese (hvis vores påstand er forkert) H a : 0

Hypotesetest. Altså vores formodning eller påstand om tingens tilstand. Alternativ hypotese (hvis vores påstand er forkert) H a : 0 Hypotesetest Hypotesetest generelt Ingredienserne i en hypotesetest: Statistisk model, f.eks. X 1,,X n uafhængige fra bestemt fordeling. Parameter med estimat. Nulhypotese, f.eks. at antager en bestemt

Læs mere

a) Har måleresultaterne for de 2 laboranter samme varians? b) Tyder resultaterne på, at nogen af laboranterne måler med en systematisk fejl?

a) Har måleresultaterne for de 2 laboranter samme varians? b) Tyder resultaterne på, at nogen af laboranterne måler med en systematisk fejl? Module 6: Exercises 6.1 To laboranter....................... 2 6.2 Nicotamid i piller..................... 3 6.3 Karakterer......................... 5 6.4 Blodtryk hos kvinder................... 6 6.5

Læs mere

Sommereksamen Kandidatuddannelsen i Medicin med industriel specialisering. Eksamensdato: Tid: Vigtige oplysninger:

Sommereksamen Kandidatuddannelsen i Medicin med industriel specialisering. Eksamensdato: Tid: Vigtige oplysninger: Sommereksamen 2016 Titel på kursus: Uddannelse: Semester: Kandidatuddannelsen i Medicin med industriel specialisering 8. semester Eksamensdato: 13-06-2016 Tid: 09.00 11.00 Bedømmelsesform Bestået/ikke

Læs mere

Statistikøvelse Kandidatstudiet i Folkesundhedsvidenskab 28. September 2004

Statistikøvelse Kandidatstudiet i Folkesundhedsvidenskab 28. September 2004 Statistikøvelse Kandidatstudiet i Folkesundhedsvidenskab 28. September 2004 Formål med Øvelsen: Formålet med øvelsen er at analysere om risikoen for død er forbundet med to forskellige vacciner BCG (mod

Læs mere

Kritisk læsning af kohorte studie Oversat efter: Critical Appraisal skills Programme (CASP) Making sense of evidence

Kritisk læsning af kohorte studie Oversat efter: Critical Appraisal skills Programme (CASP) Making sense of evidence Kritisk læsning af kohorte studie Oversat efter: Critical Appraisal skills Programme (CASP) Making sense of evidence Public Health Resource Unit 2002 http://www.phru.nhs.uk/casp/critical_appraisal_tools.htm

Læs mere

Hyppigheds- og associationsmål. Kim Overvad Afdeling for Epidemiologi Institut for Folkesundhed Aarhus Universitet Februar 2011

Hyppigheds- og associationsmål. Kim Overvad Afdeling for Epidemiologi Institut for Folkesundhed Aarhus Universitet Februar 2011 Hyppigheds- og associationsmål Kim Overvad Afdeling for Epidemiologi Institut for Folkesundhed Aarhus Universitet Februar 2011 Læringsmål Incidens Incidens rate Incidens proportion Prævalens proportion

Læs mere

Population attributable fraction

Population attributable fraction Population attributable fraction Mads Kamper-Jørgensen, lektor, maka@sund.ku.dk Afdeling for Social Medicin, Institut for Folkesundhedsvidenskab It og sundhed l 2. juni 2015 l Dias nummer 1 Sidste gang

Læs mere

MPH Introduktionsmodul: Epidemiologi og Biostatistik 23.09.2003

MPH Introduktionsmodul: Epidemiologi og Biostatistik 23.09.2003 Opgave 1 (mandag) Figuren nedenfor viser tilfælde af mononukleose i en lille population bestående af 20 personer. Start og slut på en sygdoms periode er angivet med. 20 15 person number 10 5 1 July 1970

Læs mere

Epidemiologisk design I. Eksperimentelle undersøgelser. Epidemiologisk design II. Randomiserede undersøgelser. Randomisering I.

Epidemiologisk design I. Eksperimentelle undersøgelser. Epidemiologisk design II. Randomiserede undersøgelser. Randomisering I. Eksperimentelle undersøgelser Epidemiologisk design I Observerende undersøgelser beskrivende: Undersøgelsesenheden er populationer regional variation migrationsundersøgelser korrelationsundersøgelser tidsrækker

Læs mere

Epidemiologiske metoder

Epidemiologiske metoder Bacheloruddannelsen i IT og Sundhed Københavns Universitet Epidemiologiske metoder 2. semester Forårssemesteret 2014 Kursusleder Mads Kamper-Jørgensen, lektor, Afdeling for Social Medicin, Institut for

Læs mere

Morten Frydenberg Biostatistik version dato:

Morten Frydenberg Biostatistik version dato: Caerphilly studiet Design og Data Biostatistik uge 14 mandag Morten Frydenberg, Afdeling for Biostatistik Poisson regression En primær tidsakse og ikke stykkevise konstante rater Cox proportional hazard

Læs mere

Fejlkilder. Kim Overvad Afdeling for Epidemiologi Institut for Folkesundhed Aarhus Universitet Marts 2011

Fejlkilder. Kim Overvad Afdeling for Epidemiologi Institut for Folkesundhed Aarhus Universitet Marts 2011 Fejlkilder Kim Overvad Afdeling for Epidemiologi Institut for Folkesundhed Aarhus Universitet Marts 2011 Læringsmål Tilfældig variation Selektionsproblemer Informationsproblemer Confounding Effekt modifikation

Læs mere

Værktøjshjælp for TI-Nspire CAS Struktur for appendiks:

Værktøjshjælp for TI-Nspire CAS Struktur for appendiks: Værktøjshjælp for TI-Nspire CAS Struktur for appendiks: Til hvert af de gennemgåede værktøjer findes der 5 afsnit. De enkelte afsnit kan læses uafhængigt af hinanden. Der forudsættes et elementært kendskab

Læs mere

Epidemiologi. Hvad er det? Øjvind Lidegaard og Ulrik Kesmodel

Epidemiologi. Hvad er det? Øjvind Lidegaard og Ulrik Kesmodel Epidemiologi. Hvad er det? Øjvind Lidegaard og Ulrik Kesmodel Rigshospitalet Århus Sygehus Epidemiologi. Hvad er det? Definition Læren om sygdommes udbredelse og årsager Indhold To hovedopgaver: Deskriptiv

Læs mere

Eksperimenter. Kim Overvad Afdeling for Epidemiologi Institut for Folkesundhed Aarhus Universitet Marts 2011

Eksperimenter. Kim Overvad Afdeling for Epidemiologi Institut for Folkesundhed Aarhus Universitet Marts 2011 Eksperimenter Kim Overvad Afdeling for Epidemiologi Institut for Folkesundhed Aarhus Universitet Marts 2011 Epidemiologiske studier Observerende studier beskrivende (populationer) regional variation migrations

Læs mere

Surveyundersøgelse af danske kiropraktorpatienter

Surveyundersøgelse af danske kiropraktorpatienter Surveyundersøgelse af danske kiropraktorpatienter Foto: Uffe Johansen Dansk Kiropraktor Forening København 2013 Indhold 1 Baggrund for undersøgelsen.. 2 2 Indkomstniveau. 3 Kiropraktorpatienters årlige

Læs mere

9. Chi-i-anden test, case-control data, logistisk regression.

9. Chi-i-anden test, case-control data, logistisk regression. Biostatistik - Cand.Scient.San. 2. semester Karl Bang Christensen Biostatististisk afdeling, KU kach@biostat.ku.dk, 35327491 9. Chi-i-anden test, case-control data, logistisk regression. http://biostat.ku.dk/~kach/css2014/

Læs mere

Udarbejdelse af kliniske retningslinjer: Systematisk og kritisk læsning

Udarbejdelse af kliniske retningslinjer: Systematisk og kritisk læsning Udarbejdelse af kliniske retningslinjer: Systematisk og kritisk læsning Anden del: systematisk og kritisk læsning DMCG-PAL, 8. april 2010 Annette de Thurah Sygeplejerske, MPH, ph.d. Århus Universitetshospital

Læs mere

Virksomhedens salgspipeline. Business Danmark november 2009 BD272

Virksomhedens salgspipeline. Business Danmark november 2009 BD272 Virksomhedens salgspipeline Business Danmark november 2009 BD272 Indholdsfortegnelse Indledning... 2 Rapportens opbygning... 2 Hovedkonklusioner... 3 Metode og validitet... 3 Salgs- og marketingafdelingernes

Læs mere

8.2 Statistiske analyse af hver enkelt indikator

8.2 Statistiske analyse af hver enkelt indikator 8.2 Statistiske analyse af hver enkelt indikator Basale ideer De avancerede statistiske metoder, som anvendes i denne rapport, fokuserer primært på vurdering af eventuel geografisk heterogenitet på regions-,

Læs mere

Generelt er korrelationen mellem elevens samlede vurdering i forsøg 1 og forsøg 2 på 0,79.

Generelt er korrelationen mellem elevens samlede vurdering i forsøg 1 og forsøg 2 på 0,79. Olof Palmes Allé 38 8200 Aarhus N Tlf.nr.: 35 87 88 89 E-mail: stil@stil.dk www.stil.dk CVR-nr.: 13223459 Undersøgelse af de nationale tests reliabilitet 26.02.2016 Sammenfatning I efteråret 2014 blev

Læs mere

AMU-kurser løfter ufaglærtes løn med kr. året efter

AMU-kurser løfter ufaglærtes løn med kr. året efter AMU-kurser løfter ufaglærtes løn med 10.000 kr. året efter Blandt ufaglærte, der deltog i 2010, giver AMU-deltagelse en positiv estimeret effekt på lønindkomsten i 2011 på godt 10.000 kr. og på 9.000 kr.

Læs mere

Bilag 2: Undersøgelse af de nationale tests reliabilitet. Sammenfatning

Bilag 2: Undersøgelse af de nationale tests reliabilitet. Sammenfatning Bilag 2: Undersøgelse af de nationale tests reliabilitet Sammenfatning I efteråret 2014 blev der i alt gennemført ca. 485.000 frivillige nationale tests. 296.000 deltog i de frivillige test, heraf deltog

Læs mere

Vurdering af det Randomiserede kliniske forsøg RCT

Vurdering af det Randomiserede kliniske forsøg RCT Vurdering af det Randomiserede kliniske forsøg RCT Evidensbaseret Praksis DF Region Nord Marts 2011 Jane Andreasen, udviklingsterapeut og forskningsansvarlig, MLP. Ergoterapi- og fysioterapiafdelingen,

Læs mere

SLUTEVALUERING AF UNDERVISNINGS- FORLØB E14

SLUTEVALUERING AF UNDERVISNINGS- FORLØB E14 Bliv opdateret VIA University College SLUTEVALUERING AF UNDERVISNINGS- FORLØB E14 MFØ/MM-UDDANNELSEN Udarbejdet af Mette Blach (MEBG) Bliv opdateret VIA University College INDHOLD 1 FORMÅL OG KONSEKVENS

Læs mere

EPIDEMIOLOGI MODUL 7. April Søren Friis Institut for Epidemiologisk Kræftforskning Kræftens Bekæmpelse DAGENS PROGRAM

EPIDEMIOLOGI MODUL 7. April Søren Friis Institut for Epidemiologisk Kræftforskning Kræftens Bekæmpelse DAGENS PROGRAM EPIDEMIOLOGI MODUL 7 April 2007 Søren Friis Institut for Epidemiologisk Kræftforskning Kræftens Bekæmpelse DAGENS PROGRAM Selektionsbias et par udvalgte emner Confounding by indication Immortal time bias

Læs mere

Handicaprevisionen (HR) forklaret

Handicaprevisionen (HR) forklaret Handicaprevisionen (HR) forklaret HR udføres årligt i januar måned for spillere i handicapgruppe 1-5 *, og bliver automatisk udregnet af det administrationssystem som golfklubben benytter. Resultatet af

Læs mere

Projektopgave Observationer af stjerneskælv

Projektopgave Observationer af stjerneskælv Projektopgave Observationer af stjerneskælv Af: Mathias Brønd Christensen (20073504), Kristian Jerslev (20072494), Kristian Mads Egeris Nielsen (20072868) Indhold Formål...3 Teori...3 Hvorfor opstår der

Læs mere

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Introduktion

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Introduktion Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab Introduktion 1 Formelt Lærere: Esben Budtz-Jørgensen Jørgen Holm Petersen Øvelseslærere: Berivan+Kathrine, Amalie+Annabell Databehandling: SPSS

Læs mere

Metode 31-03-2010. Artikeludvælgelse 4 trins metode

Metode 31-03-2010. Artikeludvælgelse 4 trins metode Occupational COPD - Correlations between Chronic Obstructive Pulmonary Disease and various types of physical and chemical exposures at work A scientific reference document on behalf of The Danish Working

Læs mere

8.2 Statistiske analyse af hver enkelt indikator

8.2 Statistiske analyse af hver enkelt indikator 8.2 Statistiske analyse af hver enkelt indikator Basale ideer De avancerede statistiske metoder, som anvendes i denne rapport, fokuserer primært på vurdering af eventuel geografisk heterogenitet på regions-,

Læs mere

CENTER FOR KLINISKE RETNINGSLINJER - CLEARINGHOUSE

CENTER FOR KLINISKE RETNINGSLINJER - CLEARINGHOUSE Bilag 3: Inkluderede studier De inkluderede studiers evidensniveau og styrke er vurderet udfra det klassiske medicinske evidenshierarki. Publikation Evidensniveau Evidensstyrke Metaanalyse, systematisk

Læs mere

Logistisk regression

Logistisk regression Logistisk regression http://biostat.ku.dk/ kach/css2 Thomas A Gerds & Karl B Christensen 1 / 18 Logistisk regression I dag 1 Binær outcome variable død : i live syg : rask gravid : ikke gravid etc 1 prædiktor

Læs mere

Matematik A. Studentereksamen. Digital eksamensopgave med adgang til internettet

Matematik A. Studentereksamen. Digital eksamensopgave med adgang til internettet Matematik A Studentereksamen Digital eksamensopgave med adgang til internettet frs111-matn/a-405011 Tirsdag den 4. maj 011 kl. 09.00-14.00 Opgavesættet er delt i to dele. Delprøve 1: timer med autoriseret

Læs mere

Kan analyser af surveydata sige noget om årsagssammenhænge? Eksempler fra arbejdsmiljøforskningen

Kan analyser af surveydata sige noget om årsagssammenhænge? Eksempler fra arbejdsmiljøforskningen Kan analyser af surveydata sige noget om årsagssammenhænge? Eksempler fra arbejdsmiljøforskningen Hermann Burr * BAuA, Fagområde 3, Arbejde og Sundhed burr.hermann@baua.bund.de Sandsynliggørelse af årsagssammenhænge

Læs mere

Introduktion til epidemiologi

Introduktion til epidemiologi Introduktion til epidemiologi Mads Kamper-Jørgensen, lektor, maka@sund.ku.dk Afdeling for Social Medicin, Institut for Folkesundhedsvidenskab, Københavns Universitet It og sundhed l 9. april 2015 l Dias

Læs mere

Resultater vedrørende risikofaktorer for hjertekarsygdom og dødelighed i relation til social ulighed - 15 års opfølgning i Sundhedsprojekt Ebeltoft

Resultater vedrørende risikofaktorer for hjertekarsygdom og dødelighed i relation til social ulighed - 15 års opfølgning i Sundhedsprojekt Ebeltoft Resultater vedrørende risikofaktorer for hjertekarsygdom og dødelighed i relation til social ulighed - 15 års opfølgning i Sundhedsprojekt Ebeltoft Fordeling af risikofaktorer i data fra 15-års-opfølgningen

Læs mere

Faculty of Health Sciences. Miscellaneous: Styrkeberegninger Overlevelsesanalyse Analyse af matchede studier

Faculty of Health Sciences. Miscellaneous: Styrkeberegninger Overlevelsesanalyse Analyse af matchede studier Faculty of Health Sciences Miscellaneous: Styrkeberegninger Overlevelsesanalyse Analyse af matchede studier Forsøgsplanlægning Sammenligning af to grupper : Hvor mange personer skal vi bruge? Det kommer

Læs mere

Eksamen i statistik 2010 Kandidatuddannelsen i folkesundhedsvidenskab

Eksamen i statistik 2010 Kandidatuddannelsen i folkesundhedsvidenskab D E T S U N D H E D S V I D E N S K A B E L I G E F A K U L T E T K Ø B E N H A V N S U N I V E R S I T E T Eksamen i statistik 2010 Kandidatuddannelsen i folkesundhedsvidenskab Eksamensnummer: 16, 23

Læs mere

Effekt på overlevelsen efter implementering af et CT-baseret opfølgningsprogram for lungecancer. Niels-Chr. G. Hansen

Effekt på overlevelsen efter implementering af et CT-baseret opfølgningsprogram for lungecancer. Niels-Chr. G. Hansen Effekt på overlevelsen efter implementering af et CT-baseret opfølgningsprogram for lungecancer Niels-Chr. G. Hansen Årligt antal nye tilfælde af lungekræft i Danmark 5000 4000 Antal 3000 2000 1000 0 1940

Læs mere

CENTER FOR KLINISKE RETNINGSLINJER - CLEARINGHOUSE

CENTER FOR KLINISKE RETNINGSLINJER - CLEARINGHOUSE Bilag 5: Checkliste Andres et.al. SfR Checkliste 2: Randomiserede kontrollerede undersøgelser Forfatter, titel: Andres D et al.: Randomized double-blind trial of the effects of humidified compared with

Læs mere

STOFMISBRUGERE I DANMARK 1996-2005

STOFMISBRUGERE I DANMARK 1996-2005 STOFMISBRUGERE I DANMARK 1996-2005 Nye tal fra Sundhedsstyrelsen 2006 : 23 Redaktion: Sundhedsstyrelsen Sundhedsstatistik Islands Brygge 67 2300 København S. Telefon: 7222 7400 Telefax: 7222 7404 E-mail:

Læs mere

To spørgsmål: Hvilken betydning har de manglende svar på items for målingen af spiritualitet?

To spørgsmål: Hvilken betydning har de manglende svar på items for målingen af spiritualitet? Om manglende responser i surveys: Spiritualitetsskalaen Svend Kreiner To spørgsmål: Hvilken betydning har de manglende svar på items for målingen af spiritualitet? Hvilken betydning har de manglende svar

Læs mere

Studiedesign. Rikke Guldberg Ulrik Schiøler Kesmodel Øjvind Lidegaard

Studiedesign. Rikke Guldberg Ulrik Schiøler Kesmodel Øjvind Lidegaard Studiedesign Rikke Guldberg Ulrik Schiøler Kesmodel Øjvind Lidegaard Studiedesign Økologiske studier Tværsnitsstudier Case-kontrolstudier Kohortestudier Randomiserede studier Hvorfor er det vigtigt at

Læs mere

UNDERVISNINGSEFFEKT-MODELLEN 2006 METODE OG RESULTATER

UNDERVISNINGSEFFEKT-MODELLEN 2006 METODE OG RESULTATER UNDERVISNINGSEFFEKT-MODELLEN 2006 METODE OG RESULTATER Undervisningseffekten udregnes som forskellen mellem den forventede og den faktiske karakter i 9. klasses afgangsprøve. Undervisningseffekten udregnes

Læs mere

- Panelundersøgelse, Folkeskolen, september 2014

- Panelundersøgelse, Folkeskolen, september 2014 Svar på spørgsmål om understøttende undervisning og bevægelse, der indgik i Scharling-undersøgelse i Folkeskolens lærerpanel september 2014 Spm. 1: Har du fået mere bevægelse ind i din undervisning i fagene,

Læs mere

Vejledende eksamensopgaver vedr. hypotesetest (stx B og stx A)

Vejledende eksamensopgaver vedr. hypotesetest (stx B og stx A) Vejledende eksamensopgaver vedr. hypotesetest (stx B og stx A) Opgave 1 I nedenstående tabel ses resultaterne af samtlige hjerteklapoperationer i 007-08 ved Odense Universitetshospital (OUH) sammenlignet

Læs mere

To grundlæggende kategorier af sygdomsmål: EPIDEMIOLOGISKE MÅL OG DESIGN-OPTIONER. prævalens og incidens

To grundlæggende kategorier af sygdomsmål: EPIDEMIOLOGISKE MÅL OG DESIGN-OPTIONER. prævalens og incidens EPIDEMIOLOGISKE MÅL OG DESIGN-OPTIONER Hyppighedsmål Prævalens Incidens Kumuleret incidensproportion Incidens rate Associationsmål Relativ Risiko Risiko Differens To grundlæggende kategorier af sygdomsmål:

Læs mere

Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved

Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved Matematisk Modellering 1 (reeksamen) Side 1 Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved { 1 hvis x {1, 2, 3}, p X (x) = 3 0 ellers,

Læs mere

4. september 2003. π B = Lungefunktions data fra tirsdags Gennemsnit l/min

4. september 2003. π B = Lungefunktions data fra tirsdags Gennemsnit l/min Epidemiologi og biostatistik Uge, torsdag 28. august 2003 Morten Frydenberg, Institut for Biostatistik. og hoste estimation sikkerhedsintervaller antagelr Normalfordelingen Prædiktion Statistisk test (udfra

Læs mere

Epidemiologiske metoder

Epidemiologiske metoder Bacheloruddannelsen i IT og Sundhed Københavns Universitet Epidemiologiske metoder 2. semester Forårssemesteret 2016 Kursusleder Mads Kamper-Jørgensen, lektor, Afdeling for Social Medicin, Institut for

Læs mere

Midtvejsevaluering af målopfyldelsen i 2020- strategien

Midtvejsevaluering af målopfyldelsen i 2020- strategien 9. marts 2015 Midtvejsevaluering af målopfyldelsen i 2020- strategien J.nr. 20140039222 Ifølge den politiske aftale En strategi for arbejdsmiljøindsatsen frem til 2020 skal der i 2014 og 2017 i samarbejde

Læs mere

! Proxy variable. ! Målefejl. ! Manglende observationer. ! Dataudvælgelse. ! Ekstreme observationer. ! Eksempel: Lønrelation (på US data)

! Proxy variable. ! Målefejl. ! Manglende observationer. ! Dataudvælgelse. ! Ekstreme observationer. ! Eksempel: Lønrelation (på US data) Dagens program Økonometri 1 Specifikation, og dataproblemer 10. april 003 Emnet for denne forelæsning er specifikation (Wooldridge kap. 9.-9.4)! Proxy variable! Målefejl! Manglende observationer! Dataudvælgelse!

Læs mere

Test for strukturelle ændringer i investeringsadfærden

Test for strukturelle ændringer i investeringsadfærden d. 6.10.2016 De Økonomiske Råds Sekretariat Test for strukturelle ændringer i investeringsadfærden Dette notat redegør for de stabilitetstest af forskellige tidsserier vedrørende investeringsadfærden i

Læs mere

Indvandrere og efterkommere i foreninger er frivillige i samme grad som danskere

Indvandrere og efterkommere i foreninger er frivillige i samme grad som danskere Indvandrere og efterkommere i foreninger er frivillige i samme grad som danskere Bilag I afrapportering af signifikanstest i tabeller i artikel er der benyttet følgende illustration af signifikans: * p

Læs mere