Vurdering af epidemiologiske undersøgelser igen

Størrelse: px
Starte visningen fra side:

Download "Vurdering af epidemiologiske undersøgelser igen"

Transkript

1 Vurdering af epidemiologiske undersøgelser igen kob Grove 13. februar, 2006 Program Confounding og effektmodifikation Hvad er confounding Hvad er effektmodifikation Er der confounding eller effektmodifikation Vurdering af bias 1 Advarsel! Hvad er confounding Denne forelæsning er udarbejdet med en ekstrem grad af dikotomani. Verden er meget mere kompleks, end dette sort-hvide billede måtte antyde. Men det er et godt udgangspunkt til at udvikle intuition... For at kunne sammenligne risikoen i to eksponeringsgrupper, skal de være sammenlignelige mht. alle øvrige årsager til den sygdom, man studerer. Ellers ved vi ikke, hvor meget at den målte risiko, der rent faktisk skyldes eksponeringen, og hvor meget, der skyldes de øvrige faktorer. Det problem kaldes confounding. 2 3 Hvad er confounding En confounder er en faktor, som Ikke er led i årsagskæden fra eksponering til udfald. Er en selvstændig årsag til udfaldet. Er associeret med eksponeringen. Eksponering Confounder Udfald 4 Confounding eksempel Follow-up studie af om arbejdsrelateret eksponering for et kemisk stof øger risikoen for lungecancer. Rygning Lunge Cancer Man ved fra tidligere studier, at rygning er en confounder for associationen mellem det kemiske stof og lungekræft. 5

2 Totalt: Nej Ialt RR = 1,52 (1,33; 1,75) Rygere: Nej Ialt RR = 2,00 (1,53; 2,62) Ikke-rygere: Nej Ialt RR = 2,00 (1,69; 2,37) 6 Værd at uddrage tabellerne: Rygning % Nej % 4k 5 16k 17 Nej 80k 95 80k 83 Ialt 84k k 100 Blandt ikke-exp Rygning Case % Ialt % k 11 Nej k 89 Ialt k 100 Flere ryger blandt de ikke-eksponerede. Det giver ikkesammenlignelige eksponeringsgrupper. Rygning er selvstændig årsag til LC: Der er flere rygere blandt casene. 7 Rygning % Nej % 4k 5 16k 17 Nej 80k 95 80k 83 Ialt 84k k 100 OR = 0,25 (0,24; 0,26) Blandt ikke-exp Rygning Case % Ialt % k 11 Nej k 89 Ialt k 100 RR = 3,20 (2,75; 3,72) Rygning er negativt associeret med eksponeringen og årsag til LC. Med RR = 1,52 undervurderer vi derfor effekten af eksponeringen, der snarere er RR =2. 8 Hvad er effektmodifikation Når der er effektmodifikation/interaktion, går en 3. faktor ind og påvirker effekten af eksponeringen Eksponering Effekt Effektmodifikator Udfald 9 Begrebet effektmodifikation har rod i naturen: Eksempelvis kan patienter med én genotype reagere anderledes på en bestemt medicin, end patienter med en anden genotype. Genotypen modificerer effekten af medicinen. I praksis (efter operationalisering) er graden af effektmodifikation afhængig af hvilket effektmål, vi bruger. Derfor er den korrekte terminologi: effektmålsmodifikation. 10 Stratum 1: Exp\Udf + Total Stratum 2: Exp\Udf + Total RR =2,0 (1,6; 2,6) RD =1,0 pr (0,66; 1,3) pr RR =2,0 (1,8; 2,2) RD =5,0 pr (4,2; 5,8) pr

3 Confounding vs. Effektmodifikation Beslutningstræet: Modificerer F effekten af E på U F er en effektmodifikator. Eksponering E A Hypotetisk sammenhæng Faktor F Udfald U A Nej Er F associeret med E og årsag til U Er E årsag til F Nej F er en confounder. Nej F er ikke interessant i denne sammenhæng. F er en del af årsagskæden fra E til U Hvordan besvares spørgsmålet Modificerer F effekten af E på U Ved baggrundsviden om processen E U. Hvis der er styrke nok, så vedenstatistisk test passende til aktuelle effektmål. Er der statistisk signifikant forskel på effekten i forskellige strata 14 Men der kan være tilfælde, hvor der er gode grunde til at se bort fra en i øvrigt statistisk signifikant forskel. Eksempelvis hvis forskellen er så lille, at den ikke er klinisk relevant. Og der kan være tilfælde, hvor man vil behandle det som effektmodifikation, selvom der ingen statistisk signifikant forskel er, fordi man ved F vitterligt modificerer effekten af E. Eksempelvis at processen fra E til U følger forskellige pathways. 15 Hvad spørgsmålet Er F associeret med E og årsag til U angår, afgør man om F er associeret med E og med U ved viden og erfaring. Hvis der er styrke nok, kan man udføre statistiske tests for associationen. Endelig Er E årsag til F som også besvares udfra kendskab til mekanismerne, dererispil. Hvad årsagssammenhængen angår, må manberopå baggrundsviden eller kunne redegøre for rimeligheden af, at F kan være årsag til U

4 Husk: Bias bias er en systematisk fejl. Kilder til Bias Vi har set confounding kan give bias. Fejl i data, systematiske såvel som usystematiske, kan føre til bias af effektmål. Selektionsproblemer Informationsproblemer Repræsentativitet Måleusikkerhed (kontekstafhængig) Målebias Vurdering af Bias Hvordan vurderer man, størrelse og retning på bias Man kan regne på det (sensitivitets analyse) men det forudsætter, at man i det mindste kan gisne om, hvad der foregår. Lad os betragte et case-control studie: Med sand OR = ad bc Sand fordeling: a b Nej c d 20 Frafald Frafald kan håndteres ved at reducere antallet i kategorierne: s a t b Nej u c v d hvor s, t, u og v ligger mellem 0 og 1. Da fås OR(s, t, u, v) = savd tbuc = sv tu OR. 21 Eksempel 1: Dobbeltskævt bortfald, hvor en v-del af de ikke-eksponerede kontroller falder fra (pga. manglende motivation): a b Nej c v d Bias mod mindre OR. OR(v) =v ad bc = v OR Bemærk at frafald i a er som ovenfor, mens frafaldet fra b eller c, giver bias mod større OR, OR(v) = v 1 22 OR. Eksempel 2: Bortfald associeret med sygdomsstatus alene en t-del af kontrollerne falder fra: a t b Nej c t d OR(t) = t ad t bc = OR Så ingen bias. Det samme gælder, hvis bortfaldet var for cases, eller alene var associeret med eksponering. Bemærk dog, at frafald altid giver anledning til bredere sikkerhedsintervaller. 23

5 Misklassifikation Misklassifikation kan håndteres ved at lade studie enheder vandre fra én kategori til den anden, som illustreret her blot med én flytning: (1 s) a b Nej c + s a d hvor en s-del af de eksponerede cases klassificeres som ikke eksponerede. 24 Eksempel 3: En s-del af de eksponerede registreres, som ikke-eksponerede og t-del af de ikke-eksponerede registreres, som eksponerede Ikke-differentieret misklassifikation (1 s) a + t c (1 s) b + t d Nej (1 t) c + s a (1 t) d + s b Man kan undersøge matematisk, hvordan funktionen OR(s, t) udvikler sig. Her illustreres blot grafisk Eksempel 4: En t-del af de ikke-eksponerede registreres, som eksponerede ikke-differentieret misklassifikation svarende til s =0 a + t c b+ t d Nej (1 t) c (1 t) d OR (Tab.6-3, p105) plottet med CI som funktion af t = s. Bias mod ingen effekt! OR og OR 1 (Tab.6-3, p105) plottet med CI som funktion af t. Bias mod ingen effekt! 28 International Journal of Epidemiology 29

Vurdering af epidemiologiske undersøgelser igen

Vurdering af epidemiologiske undersøgelser igen Vurdering af epidemiologiske undersøgelser igen kob Grove 12. september, 2005 Program Confounding og effektmodifikation Hvad er confounding Hvad er effektmodifikation Er der confounding eller effektmodifikation

Læs mere

En teoretisk årsagsmodel: Operationalisering: Vurdering af epidemiologiske undersøgelser. 1. Informationsproblemer Eksempler på målefejl

En teoretisk årsagsmodel: Operationalisering: Vurdering af epidemiologiske undersøgelser. 1. Informationsproblemer Eksempler på målefejl Vurdering af epidemiologiske undersøgelser Jørn Attermann 6. februar 2006 I denne forelæsning vil vi se på fejl, som kan have betydning for fortolkningen af resultater fra epidemiologiske undersøgelser.

Læs mere

En teoretisk årsagsmodel: Operationalisering: Vurdering af epidemiologiske undersøgelser. 1. Informationsproblemer Darts et eksempel på målefejl

En teoretisk årsagsmodel: Operationalisering: Vurdering af epidemiologiske undersøgelser. 1. Informationsproblemer Darts et eksempel på målefejl Vurdering af epidemiologiske undersøgelser Jørn Attermann. februar 00 I denne forelæsning vil vi se på fejl, som kan have betydning for fortolkningen af resultater fra epidemiologiske undersøgelser. Traditionelt

Læs mere

Måleproblemer. Fejlkilder og tolkningsproblemer. Usikkerhed og bias. Stikprøveusikkerhed. Epidemiologi og Biostatistik (version

Måleproblemer. Fejlkilder og tolkningsproblemer. Usikkerhed og bias. Stikprøveusikkerhed. Epidemiologi og Biostatistik (version Måleproblemer A B Fejlkilder og tolkningsproblemer Svend Juul, 19. september 2007 C D 1 2 Usikkerhed og bias De vigtigste kilder til usikkerhed og bias Præcision, sikkerhed, reproducerbarhed, ryster ikke

Læs mere

Intern validitet: Fejlkilder og tolkningsproblemer i epidemiologiske undersøgelser

Intern validitet: Fejlkilder og tolkningsproblemer i epidemiologiske undersøgelser Intern validitet: Fejlkilder og tolkningsproblemer i epidemiologiske undersøgelser Jørn Attermann 23. september 2009 Vurdering af den interne validitet af en epidemiologisk undersøgelse: Informationsproblemer

Læs mere

Besvarelse af opgavesættet ved Reeksamen forår 2008

Besvarelse af opgavesættet ved Reeksamen forår 2008 Besvarelse af opgavesættet ved Reeksamen forår 2008 10. marts 2008 1. Angiv formål med undersøgelsen. Beskriv kort hvordan cases og kontroller er udvalgt. Vurder om kontrolgruppen i det aktuelle studie

Læs mere

Vurdering af epidemiologiske undersøgelser. Epidemiologisk forskning

Vurdering af epidemiologiske undersøgelser. Epidemiologisk forskning Vurdering af epidemiologiske undersøgelser Epidemiologisk forskning Mogens Vestergaard Institut for Epidemiologi og Socialmedicin Aarhus Universitet mv@soci.au.dk At belyse en videnskabelig hypotese ved

Læs mere

Fejlkilder. Ulrik Schiøler Kesmodel. Rikke Guldberg Øjvind Lidegaard

Fejlkilder. Ulrik Schiøler Kesmodel. Rikke Guldberg Øjvind Lidegaard Fejlkilder Ulrik Schiøler Kesmodel Rikke Guldberg Øjvind Lidegaard Fejlkilder 1. Selektionsproblemer 2. Informationsproblemer 3. Confounding Generelle overvejelser I Det estimat for hyppighed, som vi måler

Læs mere

Målsætning. Vurdering af epidemiologiske undersøgelser

Målsætning. Vurdering af epidemiologiske undersøgelser Vurdering af epidemiologiske undersøgelser Målsætning Mogens Vestergaard Institut for Epidemiologi og Socialmedicin Aarhus Universitet At belyse en videnskabelig problemstilling ved at indsamle, analysere

Læs mere

Effektmålsmodifikation

Effektmålsmodifikation Effektmålsmodifikation Mads Kamper-Jørgensen, lektor, maka@sund.ku.dk Afdeling for Social Medicin, Institut for Folkesundhedsvidenskab It og sundhed l 21. april 2015 l Dias nummer 1 Sidste gang Vi snakkede

Læs mere

REEKSAMEN I EPIDEMIOLOGISKE METODER IT & Sundhed, 2. semester

REEKSAMEN I EPIDEMIOLOGISKE METODER IT & Sundhed, 2. semester D E T S U N D H E D S V I D E N S K A B E L I G E F A K U L T E T K Ø B E N H A V N S U N I V E R S I T E T B l e g d a m s v e j 3 B 2 2 0 0 K ø b e n h a v n N REEKSAMEN I EPIDEMIOLOGISKE METODER IT

Læs mere

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Stratificerede analyser

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Stratificerede analyser Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab Stratificerede analyser Dødsstraf-eksempel Betyder morderens farve noget for risikoen for dødsstraf? 1 Dødsstraf-eksempel: data Variable: Dødsstraf

Læs mere

SKRIFTLIG EKSAMEN I BIOSTATISTIK OG EPIDEMIOLOGI Cand.Scient.San, 2. semester 20. februar 2015 (3 timer)

SKRIFTLIG EKSAMEN I BIOSTATISTIK OG EPIDEMIOLOGI Cand.Scient.San, 2. semester 20. februar 2015 (3 timer) D E T S U N D H E D S V I D E N S K A B E L I G E F A K U L T E T K Ø B E N H A V N S U N I V E R S I T E T B l e g d a m s v e j 3 B 2 2 0 0 K ø b e n h a v n N SKRIFTLIG EKSAMEN I BIOSTATISTIK OG EPIDEMIOLOGI

Læs mere

Analyse af binære responsvariable

Analyse af binære responsvariable Analyse af binære responsvariable Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet 23. november 2012 Har mænd lettere ved at komme ind på Berkeley? UC Berkeley

Læs mere

Lægevidenskabelig Embedseksamen, 6. semester Forår 2009 Epidemiologi og Biostatistik Rettevejledning

Lægevidenskabelig Embedseksamen, 6. semester Forår 2009 Epidemiologi og Biostatistik Rettevejledning Lægevidenskabelig Embedseksamen, 6. semester Forår 2009 Epidemiologi og Biostatistik Rettevejledning Opgave 1. Angiv studiets formål, design og hvilke associationsmål, der bruges. Beskriv hovedresultaterne

Læs mere

ORDINÆR EKSAMEN I EPIDEMIOLOGISKE METODER IT & Sundhed, 2. semester

ORDINÆR EKSAMEN I EPIDEMIOLOGISKE METODER IT & Sundhed, 2. semester D E T S U N D H E D S V I D E N S K A B E L I G E F A K U L T E T K Ø B E N H A V N S U N I V E R S I T E T B l e g d a m s v e j 3 B 2 2 0 0 K ø b e n h a v n N ORDINÆR EKSAMEN I EPIDEMIOLOGISKE METODER

Læs mere

Selektionsbias. Mads Kamper-Jørgensen, lektor, maka@sund.ku.dk. Afdeling for Social Medicin, Institut for Folkesundhedsvidenskab

Selektionsbias. Mads Kamper-Jørgensen, lektor, maka@sund.ku.dk. Afdeling for Social Medicin, Institut for Folkesundhedsvidenskab Selektionsbias Mads Kamper-Jørgensen, lektor, maka@sund.ku.dk Afdeling for Social Medicin, Institut for Folkesundhedsvidenskab It og sundhed l 21. maj 2015 l Dias nummer 1 Sidste gang Vi snakkede om Præcision:

Læs mere

Population attributable fraction

Population attributable fraction Population attributable fraction Mads Kamper-Jørgensen, lektor, maka@sund.ku.dk Afdeling for Social Medicin, Institut for Folkesundhedsvidenskab It og sundhed l 2. juni 2015 l Dias nummer 1 Sidste gang

Læs mere

ORDINÆR EKSAMEN I EPIDEMIOLOGISKE METODER IT & Sundhed, 2. semester

ORDINÆR EKSAMEN I EPIDEMIOLOGISKE METODER IT & Sundhed, 2. semester D E T S U N D H E D S V I D E N S K A B E L I G E F A K U L T E T K Ø B E N H A V N S U N I V E R S I T E T B l e g d a m s v e j 3 B 2200 K ø b e n h a v n N ORDINÆR EKSAMEN I EPIDEMIOLOGISKE METODER

Læs mere

Confounding. Mads Kamper-Jørgensen, lektor, maka@sund.ku.dk. Afdeling for Social Medicin, Institut for Folkesundhedsvidenskab

Confounding. Mads Kamper-Jørgensen, lektor, maka@sund.ku.dk. Afdeling for Social Medicin, Institut for Folkesundhedsvidenskab Afdeling for Social medicin Confounding Mads Kamper-Jørgensen, lektor, maka@sund.ku.dk Afdeling for Social Medicin, Institut for Folkesundhedsvidenskab It og sundhed l 28. maj 2015 l Dias nummer 1 Sidste

Læs mere

Epidemiologi og Biostatistik (version 19.09.2008)

Epidemiologi og Biostatistik (version 19.09.2008) En model Fejlkilder og tolkningsproblemer i epidemiologiske undersøgelser Jørn Attermann. september 008 For meningsfuldt at kunne diskutere fejlkilder og fortolkningsproblemer må vi have en model for det,

Læs mere

Eksperimenter. Kim Overvad Afdeling for Epidemiologi Institut for Folkesundhed Aarhus Universitet Marts 2011

Eksperimenter. Kim Overvad Afdeling for Epidemiologi Institut for Folkesundhed Aarhus Universitet Marts 2011 Eksperimenter Kim Overvad Afdeling for Epidemiologi Institut for Folkesundhed Aarhus Universitet Marts 2011 Epidemiologiske studier Observerende studier beskrivende (populationer) regional variation migrations

Læs mere

RE-EKSAMEN I EPIDEMIOLOGISKE METODER IT & Sundhed, 2. semester

RE-EKSAMEN I EPIDEMIOLOGISKE METODER IT & Sundhed, 2. semester D E T S U N D H E D S V I D E N S K A B E L I G E F A K U L T E T K Ø B E N H A V N S U N I V E R S I T E T B l e g d a m s v e j 3 B 2 2 0 0 K ø b e n h a v n N RE-EKSAMEN I EPIDEMIOLOGISKE METODER IT

Læs mere

Noter til SfR checkliste 3 Kohorteundersøgelser

Noter til SfR checkliste 3 Kohorteundersøgelser Noter til SfR checkliste 3 Kohorteundersøgelser Denne checkliste anvendes til undersøgelser som er designet til at besvare spørgsmål af typen hvad er effekten af denne eksponering?. Den relaterer sig til

Læs mere

Mads Kamper-Jørgensen, lektor, maka@sund.ku.dk. Afdeling for Social Medicin, Institut for Folkesundhedsvidenskab

Mads Kamper-Jørgensen, lektor, maka@sund.ku.dk. Afdeling for Social Medicin, Institut for Folkesundhedsvidenskab Informationsbias Mads Kamper-Jørgensen, lektor, maka@sund.ku.dk Afdeling for Social Medicin, Institut for Folkesundhedsvidenskab It og sundhed l 19. maj 2015 l Dias nummer 1 Sidste gang Vi snakkede om

Læs mere

CENTER FOR KLINISKE RETNINGSLINJER

CENTER FOR KLINISKE RETNINGSLINJER BILAG 5 - CLEARINGHOUSE Bilag 5. SfR Checkliste kilde 18. SfR Checkliste 3: Kohorteundersøgelser Forfatter, titel: Deuling J, Smit M, Maass A, Van den Heuvel A, Nieuwland W, Zijlstra F, Gelder I. The Value

Læs mere

ORDINÆR EKSAMEN I EPIDEMIOLOGISKE METODER IT & Sundhed, 2. semester

ORDINÆR EKSAMEN I EPIDEMIOLOGISKE METODER IT & Sundhed, 2. semester D E T S U N D H E D S V I D E N S K A B E L I G E F A K U L T E T K Ø B E N H A V N S U N I V E R S I T E T B l e g d a m s v e j 3 B 2 2 0 0 K ø b e n h a v n N ORDINÆR EKSAMEN I EPIDEMIOLOGISKE METODER

Læs mere

ORDINÆR EKSAMEN I EPIDEMIOLOGISKE METODER IT & Sundhed, 2. semester

ORDINÆR EKSAMEN I EPIDEMIOLOGISKE METODER IT & Sundhed, 2. semester D E T S U N D H E D S V I D E N S K A B E L I G E F A K U L T E T K Ø B E N H A V N S U N I V E R S I T E T B l e g d a m s v e j 3 B 2 2 0 0 K ø b e n h a v n N ORDINÆR EKSAMEN I EPIDEMIOLOGISKE METODER

Læs mere

Fejlkilder. Kim Overvad Afdeling for Epidemiologi Institut for Folkesundhed Aarhus Universitet Marts 2011

Fejlkilder. Kim Overvad Afdeling for Epidemiologi Institut for Folkesundhed Aarhus Universitet Marts 2011 Fejlkilder Kim Overvad Afdeling for Epidemiologi Institut for Folkesundhed Aarhus Universitet Marts 2011 Læringsmål Tilfældig variation Selektionsproblemer Informationsproblemer Confounding Effekt modifikation

Læs mere

EPIDEMIOLOGI MODUL 7. April Søren Friis Institut for Epidemiologisk Kræftforskning Kræftens Bekæmpelse DAGENS PROGRAM

EPIDEMIOLOGI MODUL 7. April Søren Friis Institut for Epidemiologisk Kræftforskning Kræftens Bekæmpelse DAGENS PROGRAM EPIDEMIOLOGI MODUL 7 April 2007 Søren Friis Institut for Epidemiologisk Kræftforskning Kræftens Bekæmpelse DAGENS PROGRAM Selektionsbias et par udvalgte emner Confounding by indication Immortal time bias

Læs mere

Tillæg til studieordningen for bacheloruddannelsen i Sundhedsteknologi

Tillæg til studieordningen for bacheloruddannelsen i Sundhedsteknologi Tillæg til studieordningen for bacheloruddannelsen i Sundhedsteknologi Universitet 2012 1 Tillæg til studieordningen for bacheloruddannelsen i Sundhedsteknologi marts 2012. Modulerne beskrevet i tillægget,

Læs mere

Vurdering af det Randomiserede kliniske forsøg RCT

Vurdering af det Randomiserede kliniske forsøg RCT Vurdering af det Randomiserede kliniske forsøg RCT Evidensbaseret Praksis DF Region Nord Marts 2011 Jane Andreasen, udviklingsterapeut og forskningsansvarlig, MLP. Ergoterapi- og fysioterapiafdelingen,

Læs mere

Hyppigheds- og associationsmål. Kim Overvad Afdeling for Epidemiologi Institut for Folkesundhed Aarhus Universitet Februar 2011

Hyppigheds- og associationsmål. Kim Overvad Afdeling for Epidemiologi Institut for Folkesundhed Aarhus Universitet Februar 2011 Hyppigheds- og associationsmål Kim Overvad Afdeling for Epidemiologi Institut for Folkesundhed Aarhus Universitet Februar 2011 Læringsmål Incidens Incidens rate Incidens proportion Prævalens proportion

Læs mere

MPH Introduktionsmodul: Epidemiologi og Biostatistik 23.09.2003

MPH Introduktionsmodul: Epidemiologi og Biostatistik 23.09.2003 Opgave 1 (mandag) Figuren nedenfor viser tilfælde af mononukleose i en lille population bestående af 20 personer. Start og slut på en sygdoms periode er angivet med. 20 15 person number 10 5 1 July 1970

Læs mere

2. Hvilke(t) epidemiologisk(e) design(s) anvender forfatterne til at belyse problemstillingen? (7 point)

2. Hvilke(t) epidemiologisk(e) design(s) anvender forfatterne til at belyse problemstillingen? (7 point) Eksamensopgave i Epidemiologiske metoder, IT & Sundhed forår 2011 Læs artiklen grundigt og svar derefter på alle spørgsmål. Under hver opgave står hvor mange point der maksimalt kan opnås for opgaven.

Læs mere

Epidemiologi. Hvad er det? Øjvind Lidegaard og Ulrik Kesmodel

Epidemiologi. Hvad er det? Øjvind Lidegaard og Ulrik Kesmodel Epidemiologi. Hvad er det? Øjvind Lidegaard og Ulrik Kesmodel Rigshospitalet Århus Sygehus Epidemiologi. Hvad er det? Definition Læren om sygdommes udbredelse og årsager Indhold To hovedopgaver: Deskriptiv

Læs mere

Epidemiologiske associationsmål

Epidemiologiske associationsmål Epidemiologiske associationsmål Mads Kamper-Jørgensen, lektor, maka@sund.ku.dk Afdeling for Social Medicin, Institut for Folkesundhedsvidenskab It og sundhed l 21. april 2016 l Dias nummer 1 Sidste gang

Læs mere

Udarbejdelse af kliniske retningslinjer: Systematisk og kritisk læsning

Udarbejdelse af kliniske retningslinjer: Systematisk og kritisk læsning Udarbejdelse af kliniske retningslinjer: Systematisk og kritisk læsning Anden del: systematisk og kritisk læsning DMCG-PAL, 8. april 2010 Annette de Thurah Sygeplejerske, MPH, ph.d. Århus Universitetshospital

Læs mere

Studiedesigns: Kohorteundersøgelser

Studiedesigns: Kohorteundersøgelser Studiedesigns: Kohorteundersøgelser Mads Kamper-Jørgensen, lektor, maka@sund.ku.dk Afdeling for Social Medicin, Institut for Folkesundhedsvidenskab It og sundhed l 3. maj 2016 l Dias nummer 1 Sidste gang

Læs mere

Epidemiologisk evidens og opsummering

Epidemiologisk evidens og opsummering Epidemiologisk evidens og opsummering Mads Kamper-Jørgensen, lektor, maka@sund.ku.dk Afdeling for Social Medicin, Institut for Folkesundhedsvidenskab It og sundhed l 12. juni 2014 l Dias nummer 1 Sidste

Læs mere

9. Chi-i-anden test, case-control data, logistisk regression.

9. Chi-i-anden test, case-control data, logistisk regression. Biostatistik - Cand.Scient.San. 2. semester Karl Bang Christensen Biostatististisk afdeling, KU kach@biostat.ku.dk, 35327491 9. Chi-i-anden test, case-control data, logistisk regression. http://biostat.ku.dk/~kach/css2014/

Læs mere

Studiedesigns: Case-kontrolundersøgelser

Studiedesigns: Case-kontrolundersøgelser Studiedesigns: Case-kontrolundersøgelser Mads Kamper-Jørgensen, lektor, maka@sund.ku.dk Afdeling for Social Medicin, Institut for Folkesundhedsvidenskab It og sundhed l 12. maj 2016 l Dias nummer 1 Sidste

Læs mere

Tillæg til Studieordning for Folkesundhedsvidenskab

Tillæg til Studieordning for Folkesundhedsvidenskab Tillæg til Studieordning for Folkesundhedsvidenskab Det Sundhedsvidenskabelige Fakultet Aalborg Universitet 2015 Tillæg til studieordningen for kandidatuddannelsen i Folkesundhedsvidenskab - 2013 Modulerne

Læs mere

Årsager. Øjvind Lidegaard, RH Rikke Guldberg, Skejby Ulrik Kesmodel, Herlev

Årsager. Øjvind Lidegaard, RH Rikke Guldberg, Skejby Ulrik Kesmodel, Herlev Årsager Øjvind Lidegaard, RH Rikke Guldberg, Skejby Ulrik Kesmodel, Herlev Årsager Hvad er en årsag? Flere typer af årsager Hvad kendetegner en årsag? Hvorfor er årsager interessante? Identifikation af

Læs mere

Eks. 1: Kontinuert variabel som i princippet kan måles med uendelig præcision. tid, vægt,

Eks. 1: Kontinuert variabel som i princippet kan måles med uendelig præcision. tid, vægt, Statistik noter Indhold Datatyper... 2 Middelværdi og standardafvigelse... 2 Normalfordelingen og en stikprøve... 2 prædiktionsinteval... 3 Beregne andel mellem 2 værdier, eller over og unden en værdi

Læs mere

Præcision og effektivitet (efficiency)?

Præcision og effektivitet (efficiency)? Case-kontrol studier PhD kursus i Epidemiologi Københavns Universitet 18 Sep 2012 Søren Friis Center for Kræftforskning, Kræftens Bekæmpelse Valg af design Problemstilling? Validitet? Præcision og effektivitet

Læs mere

Studiedesigns: Alternative designs

Studiedesigns: Alternative designs Studiedesigns: Alternative designs Mads Kamper-Jørgensen, lektor, maka@sund.ku.dk Afdeling for Social Medicin, Institut for Folkesundhedsvidenskab It og sundhed l 20. maj 2014 l Dias nummer 1 Sidste gang

Læs mere

Ved undervisningen i epidemiologi/statistik den 8. og 10. november 2011 vil vi lægge hovedvægten på en fælles diskussion af følgende fire artikler:

Ved undervisningen i epidemiologi/statistik den 8. og 10. november 2011 vil vi lægge hovedvægten på en fælles diskussion af følgende fire artikler: Kære MPH-studerende Ved undervisningen i epidemiologi/statistik den 8. og 10. november 2011 vil vi lægge hovedvægten på en fælles diskussion af følgende fire artikler: 1. E.A. Mitchell et al. Ethnic differences

Læs mere

Studiedesigns: Kohorteundersøgelser

Studiedesigns: Kohorteundersøgelser Studiedesigns: Kohorteundersøgelser Mads Kamper-Jørgensen, lektor, maka@sund.ku.dk Afdeling for Social Medicin, Institut for Folkesundhedsvidenskab It og sundhed l 28. april 2015 l Dias nummer 1 Sidste

Læs mere

Hvorfor er forskning væsentlig? Øjvind Lidegaard, RH Rikke Guldberg, Skejby Ulrik Kesmodel, Herlev

Hvorfor er forskning væsentlig? Øjvind Lidegaard, RH Rikke Guldberg, Skejby Ulrik Kesmodel, Herlev Hvorfor er forskning væsentlig? Øjvind Lidegaard, RH Rikke Guldberg, Skejby Ulrik Kesmodel, Herlev Hvorfor er forskning væsentlig? Nødvendig for at forstå sygdom Forudsætning for mere rationel diagnostik

Læs mere

Epidemiologiske associationsmål

Epidemiologiske associationsmål Epidemiologiske associationsmål Mads Kamper-Jørgensen, lektor, maka@sund.ku.dk Afdeling for Social Medicin, Institut for Folkesundhedsvidenskab It og sundhed l 16. april 2015 l Dias nummer 1 Sidste gang

Læs mere

Epidemiologiske mål Studiedesign

Epidemiologiske mål Studiedesign Epidemiologiske mål Studiedesign Svend Juul Pludselig uventet spædbarnsdød Sudden Infant Death Syndrome, SIDS Uventet dødsfald hos et rask spædbarn. Obduktion o.a. giver ingen forklaring. Hyppigheden -doblet

Læs mere

Kursus i Epidemiologi og Biostatistik. Epidemiologiske mål. Studiedesign. Svend Juul

Kursus i Epidemiologi og Biostatistik. Epidemiologiske mål. Studiedesign. Svend Juul Kursus i Epidemiologi og Biostatistik Epidemiologiske mål Studiedesign Svend Juul 1 Pludselig uventet spædbarnsdød (vuggedød, Sudden Infant Death Syndrome, SIDS) Uventet dødsfald hos et rask spædbarn (8

Læs mere

Magnetfelter og børnekræft - er der en sammenhæng?

Magnetfelter og børnekræft - er der en sammenhæng? NOTAT NP92-961b JKJ/BT-DGR 4. december 1997 Magnetfelter og børnekræft - er der en sammenhæng? Revideret januar 1993 NOTAT NP92-961b 2 1. Om børnekræft I perioden fra 1945 og frem til i dag har udviklingen

Læs mere

Design af et kohorte studie

Design af et kohorte studie EPIDEMIOLOGI KOHORTE STUDIER II Marts 2007 Søren Friis Institut for Epidemiologisk Kræftforskning Kræftens Bekæmpelse Design af et kohorte studie Problemstilling defineres Vigtige overvejelser inden videre

Læs mere

Introduktion til epidemiologi

Introduktion til epidemiologi Introduktion til epidemiologi Mads Kamper-Jørgensen, lektor, maka@sund.ku.dk Afdeling for Social Medicin, Institut for Folkesundhedsvidenskab, Københavns Universitet It og sundhed l 9. april 2015 l Dias

Læs mere

Epidemiologisk design I. Eksperimentelle undersøgelser. Epidemiologisk design II. Randomiserede undersøgelser. Randomisering I.

Epidemiologisk design I. Eksperimentelle undersøgelser. Epidemiologisk design II. Randomiserede undersøgelser. Randomisering I. Eksperimentelle undersøgelser Epidemiologisk design I Observerende undersøgelser beskrivende: Undersøgelsesenheden er populationer regional variation migrationsundersøgelser korrelationsundersøgelser tidsrækker

Læs mere

Sammenhængsanalyser. Et eksempel: Sammenhæng mellem rygevaner som 45-årig og selvvurderet helbred som 51 blandt mænd fra Københavns amt.

Sammenhængsanalyser. Et eksempel: Sammenhæng mellem rygevaner som 45-årig og selvvurderet helbred som 51 blandt mænd fra Københavns amt. Sammenhængsanalyser Et eksempel: Sammenhæng mellem rygevaner som 45-årig og selvvurderet helbred som 51 blandt mænd fra Københavns amt. rygevaner som 45 årig * helbred som 51 årig Crosstabulation rygevaner

Læs mere

02402 Løsning til testquiz02402f (Test VI)

02402 Løsning til testquiz02402f (Test VI) 02402 Løsning til testquiz02402f (Test VI) Spørgsmål 4. En ejendomsmægler ønsker at undersøge om hans kunder får mindre end hvad de har forlangt, når de sælger deres bolig. Han har regisreret følgende:

Læs mere

Sommereksamen 2015. Bacheloruddannelsen i Medicin/Medicin med industriel specialisering

Sommereksamen 2015. Bacheloruddannelsen i Medicin/Medicin med industriel specialisering Sommereksamen 2015 Titel på kursus: Uddannelse: Semester: Statistik og evidensbaseret medicin Bacheloruddannelsen i Medicin/Medicin med industriel specialisering 2. semester Eksamensdato: 16-06-2015 Tid:

Læs mere

Epidemiologi og Biostatistik

Epidemiologi og Biostatistik Kapitel 1, Kliniske målinger Epidemiologi og Biostatistik Introduktion til skilder (varianskomponenter) måleusikkerhed sammenligning af målemetoder Mogens Erlandsen, Institut for Biostatistik Uge, torsdag

Læs mere

Kursus i Epidemiologi og Biostatistik, forår 2003. Epidemiologiske mål. Studiedesign. Svend Juul, 3.2.2003. manan.dk

Kursus i Epidemiologi og Biostatistik, forår 2003. Epidemiologiske mål. Studiedesign. Svend Juul, 3.2.2003. manan.dk Kursus i Epidemiologi og Biostatistik, forår 2003. Epidemiologiske mål Studiedesign Svend Juul, 3.2.2003 1 Pludselig uventet spædbarnsdød (vuggedød, Sudden Infant Death Syndrome, SIDS) Uventet dødsfald

Læs mere

Epidemiologi Mål for association

Epidemiologi Mål for association Epidemiologi Mål for association Carsten Bogh Juhl, fysioterapeut, MPH, Marianne Lindahl, fysioterapeut, MPH, Fysioterapeutuddannelsen CVU Syd, Næstved Juhl CB, Lindahl M, (2005, 25. februar) 2. udg. revideret

Læs mere

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Uafhængighedstestet

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Uafhængighedstestet Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab Uafhængighedstestet Eksempel: Bissau data Data kommer fra Guinea-Bissau i Vestafrika: 5273 børn blev undersøgt da de var yngre end 7 mdr og blev

Læs mere

Resumé: En statistisk analyse resulterer ofte i : Et estimat θˆmed en tilhørende se

Resumé: En statistisk analyse resulterer ofte i : Et estimat θˆmed en tilhørende se Epidemiologi og biostatistik. Uge, torsdag 5. februar 00 Morten Frydenberg, Institut for Biostatistik. Type og type fejl Statistisk styrke Nogle speciale metoder: Normalfordelte data : t-test eksakte sikkerhedsintervaller

Læs mere

4. september 2003. π B = Lungefunktions data fra tirsdags Gennemsnit l/min

4. september 2003. π B = Lungefunktions data fra tirsdags Gennemsnit l/min Epidemiologi og biostatistik Uge, torsdag 28. august 2003 Morten Frydenberg, Institut for Biostatistik. og hoste estimation sikkerhedsintervaller antagelr Normalfordelingen Prædiktion Statistisk test (udfra

Læs mere

Social ulighed i kræftbehandling og kræftsygepleje. FSK Landskursus 2012, 9.11. november, Munkebjerg Hotel i Vejle.

Social ulighed i kræftbehandling og kræftsygepleje. FSK Landskursus 2012, 9.11. november, Munkebjerg Hotel i Vejle. Social ulighed i kræftbehandling og kræftsygepleje FSK Landskursus 2012, 9.11. november, Munkebjerg Hotel i Vejle Jes Søgaard KORA Risiko for kræft blandt personer efter social position i Danmark Hvordan

Læs mere

Evaluering af optagelsesprocedurer ved Det Sundhedsvidenskabelige Fakultet, Syddansk Universitet

Evaluering af optagelsesprocedurer ved Det Sundhedsvidenskabelige Fakultet, Syddansk Universitet Evaluering af optagelsesprocedurer ved Det Sundhedsvidenskabelige Fakultet, Syddansk Universitet 1. Nuværende optagelsesprocedure I 2002 startede Det Sundhedsvidenskabelige Fakultet efter forudgående aftale

Læs mere

Epidemiologi og Biostatistik Opgaver i Biostatistik Uge 10: 13. april

Epidemiologi og Biostatistik Opgaver i Biostatistik Uge 10: 13. april Århus 8. april 2011 Morten Frydenberg Epidemiologi og Biostatistik Opgaver i Biostatistik Uge 10: 13. april Opgave 1 ( gruppe 1: sp 1-4, gruppe 5: sp 5-9 og gruppe 6: 10-14) I denne opgaveser vi på et

Læs mere

Epidemiologiprojekt. Ann-Louise, Jennifer, Matilda og Elif 408

Epidemiologiprojekt. Ann-Louise, Jennifer, Matilda og Elif 408 + Epidemiologiprojekt Ann-Louise, Jennifer, Matilda og Elif 408 + Problemformulering Er der nogen sammenhæng mellem alkohol og rygning under graviditet og spædbarnsdødelighed samt alkohol og rygning under

Læs mere

Studiedesign. Rikke Guldberg Ulrik Schiøler Kesmodel Øjvind Lidegaard

Studiedesign. Rikke Guldberg Ulrik Schiøler Kesmodel Øjvind Lidegaard Studiedesign Rikke Guldberg Ulrik Schiøler Kesmodel Øjvind Lidegaard Studiedesign Økologiske studier Tværsnitsstudier Case-kontrolstudier Kohortestudier Randomiserede studier Hvorfor er det vigtigt at

Læs mere

Metode 31-03-2010. Artikeludvælgelse 4 trins metode

Metode 31-03-2010. Artikeludvælgelse 4 trins metode Occupational COPD - Correlations between Chronic Obstructive Pulmonary Disease and various types of physical and chemical exposures at work A scientific reference document on behalf of The Danish Working

Læs mere

Statistik FSV 4. semester 2014 Øvelser Uge 2: 11. februar

Statistik FSV 4. semester 2014 Øvelser Uge 2: 11. februar Århus 6. februar 2014 Morten Frydenberg Statistik FSV 4. semester 2014 Øvelser Uge 2: 11. februar Til disse øvelser har I brug for fishoil1.dta, der indeholder data fra det fiskeolie forsøg vi så på ved

Læs mere

Hver sjette er blevet mobbet på arbejdet

Hver sjette er blevet mobbet på arbejdet 5. marts 2015 Hver sjette er blevet mobbet på arbejdet FOA gennemførte i januar 2015 en undersøgelse, der viste, at hver sjette FOA-medlem inden for de seneste 12 måneder har været udsat for mobning, mens

Læs mere

Luftvejssymptomer og inflammatoriske reaktioner i relation til arbejde med fisk og jomfruhummer Thorshavn 30.4.2004

Luftvejssymptomer og inflammatoriske reaktioner i relation til arbejde med fisk og jomfruhummer Thorshavn 30.4.2004 Luftvejssymptomer og inflammatoriske reaktioner i relation til arbejde med fisk og jomfruhummer Thorshavn 30.4.2004 Øyvind Omland, Sven Viskum, Jakob Bønløkke, Torben Sigsgaard Institut for Miljø-& Arbejdsmedicin,

Læs mere

SO Dalton, BL Frederiksen, E Jakobsen, M Steding-Jessen, K Østerlind, J Schüz, M Osler, Johansen C.

SO Dalton, BL Frederiksen, E Jakobsen, M Steding-Jessen, K Østerlind, J Schüz, M Osler, Johansen C. Social position, lungekræft stadie og tid mellem henvisning og diagnose i Danmark, 2001-2008 1 SO Dalton, BL Frederiksen, E Jakobsen, M Steding-Jessen, K Østerlind, J Schüz, M Osler, Johansen C. Institut

Læs mere

CENTER FOR KLINISKE RETNINGSLINJER - CLEARINGHOUSE

CENTER FOR KLINISKE RETNINGSLINJER - CLEARINGHOUSE Bilag 8: Checkliste Estey SfR Checkliste 2: Randomiserede kontrollerede undersøgelser Forfatter, titel: Estey, William: Subjective Effects og Dry versus Humidified Low Flow Oxygen Tidsskrift, år: Respiratory

Læs mere

Hypoteser om sygdomsårsager og behandlingseffekter. Evidens

Hypoteser om sygdomsårsager og behandlingseffekter. Evidens Kursus i Epidemiologi og Biostatistik, efterår 2005 Hypoteser om sygdomsårsager og behandlingseffekter. Evidens Anne Vingård Olesen, 29.09.2005 Institut for Folkesundhed Afdeling for Epidemiologi Genstandsgrænser

Læs mere

Kritisk læsning af kohorte studie Oversat efter: Critical Appraisal skills Programme (CASP) Making sense of evidence

Kritisk læsning af kohorte studie Oversat efter: Critical Appraisal skills Programme (CASP) Making sense of evidence Kritisk læsning af kohorte studie Oversat efter: Critical Appraisal skills Programme (CASP) Making sense of evidence Public Health Resource Unit 2002 http://www.phru.nhs.uk/casp/critical_appraisal_tools.htm

Læs mere

12. september Epidemiologi og biostatistik. Forelæsning 4 Uge 3, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Regressionsanalyse

12. september Epidemiologi og biostatistik. Forelæsning 4 Uge 3, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Regressionsanalyse . september 5 Epidemiologi og biostatistik. Forelæsning Uge, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Lineær regressionsanalyse - Simpel lineær regression - Multipel lineær regression

Læs mere

2 -test. Fordelingen er særdeles kompleks at beskrive med matematiske formler. 2 -test blev opfundet af Pearson omkring år 1900.

2 -test. Fordelingen er særdeles kompleks at beskrive med matematiske formler. 2 -test blev opfundet af Pearson omkring år 1900. 2 -fordeling og 2 -test Generelt om 2 -fordelingen 2 -fordelingen er en kontinuert fordeling, modsat binomialfordelingen som er en diskret fordeling. Fordelingen er særdeles kompleks at beskrive med matematiske

Læs mere

En intro til radiologisk statistik

En intro til radiologisk statistik En intro til radiologisk statistik Erik Morre Pedersen Hypoteser og testning Statistisk signifikans 2 x 2 tabellen og lidt om ROC Inter- og intraobserver statistik Styrkeberegning Konklusion Litteratur

Læs mere

Morten Frydenberg Biostatistik version dato:

Morten Frydenberg Biostatistik version dato: Tye og Tye 2 fejl Statistisk styrke Biostatistik uge 2 mandag Morten Frydenberg, Afdeling for Biostatistik Styrkeovervejelser i lanlægning af et studie Logistisk regression Præterm fødsel, rygning, alder,

Læs mere

8.2 Statistiske analyse af hver enkelt indikator

8.2 Statistiske analyse af hver enkelt indikator 8.2 Statistiske analyse af hver enkelt indikator Basale ideer De avancerede statistiske metoder, som anvendes i denne rapport, fokuserer primært på vurdering af eventuel geografisk heterogenitet på regions-,

Læs mere

Landmålingens fejlteori - Sandsynlighedsregning - Lektion 1

Landmålingens fejlteori - Sandsynlighedsregning - Lektion 1 Landmålingens fejlteori Sandsynlighedsregning Lektion 1 - kkb@math.aau.dk http://people.math.aau.dk/ kkb/undervisning/lf10 Institut for Matematiske Fag Aalborg Universitet 23. april 2009 1/28 Landmålingens

Læs mere

Korrelation Pearson korrelationen

Korrelation Pearson korrelationen -9- Eidemiologi og biostatistik. Forelæsning Uge, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Korrelation Kliniske målinger - Kliniske målinger og variationskilder - Estimation af størrelsen

Læs mere

Morten Frydenberg 26. april 2004

Morten Frydenberg 26. april 2004 Introduktion til Logistisk Regression Morten Frydenberg, Inst. f. Biostatistik RESUME: 2 2. gang: 2002 Institut for Biostatistik, Århus Universitet MPH. studieår Specialmodul 4 Cand. San. uddannelsen.

Læs mere

Hyppighed Risikofaktorer Behandlingseffekt Prognose

Hyppighed Risikofaktorer Behandlingseffekt Prognose Hvad laver kliniske epidemiologer? Fastlæggelse af: Hyppighed Risikofaktorer Behandlingseffekt Prognose for klinisk definerede patientgrupper (fx. cancer, diabetes, lungebetændelse, ) Epidemiologiske begreber

Læs mere

Når patienten fejler andet end kræft hvad betyder det for prognosen?

Når patienten fejler andet end kræft hvad betyder det for prognosen? Når patienten fejler andet end kræft hvad betyder det for prognosen? Mette Nørgaard, Klinisk Epidemiologisk Afdeling Aarhus Universitetshospital Danmark E-mail: m.noergaard@rn.dk Case En 58 årig mand kommer

Læs mere

MATEMATIK A-NIVEAU. Anders Jørgensen & Mark Kddafi. Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012

MATEMATIK A-NIVEAU. Anders Jørgensen & Mark Kddafi. Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 Kapitel 4 Statistik & sandsynlighedsregning 2016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver

Læs mere

Epidemiologi og Biostatistik

Epidemiologi og Biostatistik Epidemiologi og Biostatistik Kliniske målinger (Kapitel. +.1 + 11.-11 + 1.1-) Introduktion til skilder (varianskomponenter) måleusikkerhed sammenligning af målemetoder Mogens Erlandsen, Institut for Biostatistik

Læs mere

En intro til radiologisk statistik. Erik Morre Pedersen

En intro til radiologisk statistik. Erik Morre Pedersen En intro til radiologisk statistik Erik Morre Pedersen Hypoteser og testning Statistisk signifikans 2 x 2 tabellen og lidt om ROC Inter- og intraobserver statistik Styrkeberegning Konklusion Litteratur

Læs mere

Interviewereffekter på spørgsmål om sort arbejde. Rockwool Fondens Forskningsenhed Oktober 2008

Interviewereffekter på spørgsmål om sort arbejde. Rockwool Fondens Forskningsenhed Oktober 2008 Interviewereffekter på spørgsmål om sort arbejde Rockwool Fondens Forskningsenhed Oktober 2008 Tak til Rockwool Fondens Forskningsenhed Danmarks Statistiks Interviewservice, specielt til Isak Isaksen,

Læs mere

Confounding og stratificeret analyse

Confounding og stratificeret analyse Faculty of Health Sciences Confounding og stratificeret analyse Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet sr@biostat.ku.dk Kursets form Seks fredage

Læs mere

Komorbiditet og kræftoverlevelse: En litteraturgennemgang

Komorbiditet og kræftoverlevelse: En litteraturgennemgang Komorbiditet og kræftoverlevelse: En litteraturgennemgang Mette Søgaard, Klinisk Epidemiologisk Afdeling Aarhus Universitetshospital Danmark E-mail: mette.soegaard@ki.au.dk 65+ årige runder 1 million i

Læs mere

1. februar Lungefunktions data fra tirsdags Gennemsnit l/min

1. februar Lungefunktions data fra tirsdags Gennemsnit l/min Epidemiologi og biostatistik Uge, torsdag 3. februar 005 Morten Frydenberg, Afdeling for Biostatistik. og hoste estimation sikkerhedsintervaller antagelr Normalfordelingen Prædiktion Statistisk test (ud

Læs mere

Fejlkilder i epidemiologiske undersøgelser

Fejlkilder i epidemiologiske undersøgelser Fejlkilder i epidemiologiske undersøgelser April 2004 Søren Friis Nøjagtigheden (eng: accuracy) af et givent punktestimat afhænger af graden af tilfældig og systematisk variation i målingen af effekten

Læs mere

Mål. Kritisk vurdering af litteraturen. Vurdering af evidensen. Typer af fejlkilder. Fire muligheder. Fejlkilder og studie størrelse

Mål. Kritisk vurdering af litteraturen. Vurdering af evidensen. Typer af fejlkilder. Fire muligheder. Fejlkilder og studie størrelse Mål Kritisk vurdering af litteraturen Andreas H. Lundh nfektionsmedicinsk Afdeling, Hvidovre Hospital Anders W. Jørgensen Øre-Næse-Halsafdeling H, Aarhus Universitets Hospital - kunne skelne mellem systematiske

Læs mere

CENTER FOR KLINISKE RETNINGSLINJER CLEARINGHOUSE

CENTER FOR KLINISKE RETNINGSLINJER CLEARINGHOUSE Kursus for bedømmere af kliniske retningslinjer ECTS: Kurset er postgraduat og ækvivalerer 5 ECTS point ved bestået eksamen. Der udstedes eksamensbevis. Formål: Kurset giver kompetence til at fungere som

Læs mere

PRÆDIKTORER FOR SYGEMELDING I GRAVIDITETEN

PRÆDIKTORER FOR SYGEMELDING I GRAVIDITETEN PRÆDIKTORER FOR SYGEMELDING I GRAVIDITETEN INTRODUKTION Siden 1981 har det i Danmark været muligt at fraværsmeldes inden den lovmæssige ret til orlov 4-8 uger før fødsel ved en sygeligt forløbende graviditet

Læs mere