Klassifikation. Kapitel 5

Størrelse: px
Starte visningen fra side:

Download "Klassifikation. Kapitel 5"

Transkript

1 Kapitel 5 Klassifikation Klassifikation er en speciel afart af det problem, der generelt kaldes prediktion. Man har to stokastiske variable X og Y på et fælles baggrundsrum (Ω,F, P) med værdier i henholdsvis (X,E) og (Y,K). Udfordringen er at lave en afbildningφ :X Y sådan at φ(x) er noget man med rimelighed kan kalde en prediktion af Y på baggrund af observationen X. Det specielle ved klassifikation ligger i atyher er en endelig mængde. Man skal tænke påysom en række labels, hvor man på baggrund af en observations features X klistrer netop én label på. Det oplagte eksempel på klassifikation er medicinsk, hvor man foretager et antal mere eller mindre grundige undersøgelser af en patient, og derefter klistrer en af de to labels syg eller rask på vedkommende. Men der er mange andre eksempler: en palæontolog kan finde en kranie, og på baggrund af visse fysiske karakteristika ved kraniet kan han forsøge at påklistre det en Homo sapiens-label eller en Homo neanderthalensis-label. En botaniker kan måle kronbladenes længde og bredde på en iris-blomst og derefter henføre blomsten til en af de tre arter Iris setosa, Iris versicolor eller Iris virginica. En postarbejder kan studere en specielt ulæselig krusedulle på en kuvert, og forsøge at omsætte den til et af cifrene 0-9. Når nu Y er endelig, er det naturligt at lade K = P(Y). Et minimalt krav til klassifikationsafbildningen (eller klassifikatoren) φ : X Y er at den er E K målelig. Men der skulle jo også helst stilles nogle kriterier op, der sikrer at klassifikatoren rammer nogenlunde rigtigt. 95

2 96 Kapitel 5. Klassifikation 5.1 Optimale klassifikatorer En oplagt måde at vurdere kvaliteten af en klassifikatorφ på, er at ved hjælp af sandsynligheden for at den giver en korrekt klassificering, P(φ(X) = Y). Jo større denne sandsynlighed er, jo bedre er klassifikatoren. Vi vil i det følgende vise at der findes klassifikatorer der er optimale, i den forstand at de giver den størst mulige sandsynlighed for korrekt klassificering. Før vi går i gang, kan vi bemærke at sandsynligheden for korrekt klassificering ikke er det eneste mulige succeskriterium, og i visse sammenhænge vil man foretrække andre kvalitetsmål. Hvis klassifikationen drejer sig om syg eller rask er det ofte en meget alvorlig fejl at overse et sygt menneske (en såkaldt falsk negativ), mens det er til at leve med at lidt for mange mennesker bliver kaldt syge skønt de egentlig ikke er det (falsk positive). I disse tilfælde vil man foretrække klassifikatorer der har meget få falsk negative, om end man jo stadig vil søge at få så få falsk positive som muligt (den klassifikationsregel, der siger at alle er syge, uanset deres features, har med sikkerhed ingen falsk negative, men den er næppe meget bevendt i praksis... ). Hvis man kan blive enig med sig selv om hvor meget falsk negative klassifikationer skal veje i forhold til falsk positive, så kan man opstille et andet optimalitetsproblem for klassifikatorer, end det vi vil løse. De estimatorer, vi producerer, vil næppe være den optimale løsning til disse vægtede problemer. Ladνvære den marginale fordeling af X og lad ( ˆP x ) x X være den betingede fordeling af Y givet X. Sæt π(y x)= ˆP x ({y}). (5.1) For hvert fast y er x π(y x) ene-målelig afbildning, og da der kun er endeligt mange y er bliver (x, y) π(y x) automatisk E P(Y)-målelig. Vi vil gøre udstrakt brug afπ( ) i det følgende. Men bemærk at den manglende entydighed af den betingede fordeling gør at π( )-funktionen heller ikke er entydigt bestemt. Hvis vi lader ( P x ) x X være en anden version af den betingede fordeling, så ved vi at E={x X ˆP x = P x } harν-mål 1. Og vi ser let at hvis π(y x) erπ-funktionen hørende til ( P x ) x X så gælder der at x E, π(y x)= π(y x) (5.2) Såπog π er i det store og hele ens.

3 5.1. Optimale klassifikatorer 97 Definition 5.1 Vi indfører Bayes sandsynligheden som κ= maxπ(y x) dν(x) En Bayes regel er en målelig klassifikator φ : X Y, der opfylder at P(φ(X)=Y)=κ. I andre fremstillinger af klassifikationsteori fokuserer man ofte på 1 κ, der kaldes Bayes risikoen. Men i den måde vi stiller regningerne op på, er detκder dukker naturligt op. Vi bemærker atκikke afhænger af valget af betinget fordeling. Ved at bruge (5.2) ser vi nemlig at x E maxπ(y x)=max π(y x) og daν(e)=1 vil de to maxima have sammeν-integral. Betydningen afκer næppe umiddelbar, men hvis φ : X Y er en målelig klassifikator, ser vi at π(φ(x) x) maxπ(y x) og derfor er P(φ(X)=Y)= ˆP x ({φ(x)}) dν(x)= π(φ(x) x) dν(x) maxπ(y, x) dν(x). Vi ser derfor atκer en øvre grænse for hvor god en klassifikator kan blive, og at en eventuel Bayes regel er en optimal klassifikator. Det er faktisk nemt nok at se hvad der skal til for at en klassifikatorφ kan være en Bayes regel - den skal opfylde at π(φ(x) x)=maxπ(y x) ν-næsten sikkert (5.3) Det vil sige atφ(x) skal vælges som det y, der maksimererπ(y x) - hvis dette y er entydigt. Menπ(y x) har ikke altid et entydigt maksimum, og derfor kræver det en vis omtanke at gøre rede for vi kan vælge mellem de forskellige maksimumspunkter på en måde, så vi ikke ødelægger målelighedsbetingelsen.

4 98 Kapitel 5. Klassifikation Lemma 5.2 Der findes en Bayes regel. BEVIS: Vi kan uden indskrænkning antage atyer totalt ordnet - om ikke andet kan vi lade som omy={1, 2,...,k}. Sæt φ B (x)=min { π(y x)=max z Y π(z x)} (5.4) Vi tilordner altså til x et y, der maksimerer z π(z x). I det omfang der er valgmuligheder, løser vi flertydigheden ved at vælge det lavestey-element, der gør hvad det skal. Det er klart at π(φ B (x) x)=maxπ(y x) for alle x X så (5.3) er så rigeligt opfyldt. Vi skal derfor blot redegøre for atφ B er målelig. Sæt { } A(y)= x X π(y x)=maxπ(z x) z Y Da x π(y x) og x max z Y π(z x) ere-målelige, er A(y) E. Da φ 1 B ({y})=a(y)\ A(z) z<y ser vi atφ 1 B ({y}) Efor alle y. Og dermed erφ B målelig. Flertydigheden af en Bayes regel er lidt af en fiktion - i praksis har man ikke meget valgmulighed. Det er klart at på B y, y ={x X π(y x)=π(y x)} kan man ikke brugeπ-funktionen til at skelne mellem y og y. Men sædvanligvis vil man have at ν = 0 (5.5) y y B y, y hvilket betyder at valgfriheden er reduceret til en nulmængde. Tilsvarende vil den valgfrihed, der ligger i at skifte hele den betingede fordeling ud med en anden version, højst føre til ændring den eksplicitte Bayes regel fra (5.4) på en nulmængde.

5 5.1. Optimale klassifikatorer 99 Eksempel 5.3 Lad os se hvordan en Bayes regel ser ud i tilfældet med to klasser og en logistisk regressionsmodel for de betingede fordelinger. Hvis de to klasser kaldes 1 og 2 og hvis X har værdier irantager vi altså at P(Y= 1 X=x)= eα+β x 1+e α+β x, P(Y= 2 X=x)= 1 1+eα+β x. Nævneren er den samme i de to sandsynligheder, så vi behøver kun at sammenligne tællerne. Så den eksplicitte Bayes regel fra (5.4) bliver 1 hvis α+βx 0 φ B (t)= 2 hvisα+βx<0. Hvisβ>0kan vi istedet skrive φ B (t)= 1 hvis x α/β 2 hvis x< α/β, så klassifikatoren skærer simpelthen X-aksen over i et givet snitpunkt, og klassificerer X-værdier på den ene side af snitpunktet som hørende til én klasse, og X-værdier på den anden side af snitpunktet som hørende til den anden klasse. I det omfang der er valgmuligheder for konstruktion af Bayes regel ligger de på { α/β} hvisβ 0 {x R α+βx=0}= hvisβ=0,α 0 R hvisα=β=0. Hvisβ 0 (hvilket vi sædvanligvis går ud fra) og hvisνhar tæthed med hensyn til Lebesguemålet, er der i praksis ingen valgfrihed. Situationen er en lidt anden hvis β=0, men i så fald er X og Y stokastisk uafhængige, og i den situation giver det jo ikke meget mening at forsøge at prediktere Y ud fra X. Hvis X har værdier ir k, er de betingede klassesandsynligheder P(Y= 1 X=x)= eα+βt x 1+e α+βt x, P(Y= 2 X=x)= 1 1+e α+βt x. hvorβ R k. Derfor bliver den eksplicitte Bayes regel fra (5.4) 1 hvis α+β T x 0 φ B (t)= 2 hvisα+β T x<0.

6 100 Kapitel 5. Klassifikation Medmindreβ=0 deler denne klassifikatorr k op ved hjælp af en hyperplan: alt hvad der ligger på den ene side af hyperplanen klassificeres i én klasse, alt hvad der ligger på den anden side af hyperplanen klassificeres i den anden klasse. En nyttig hybrid mellem én og flere dimensioner kan opnås ved at indlejre en étdimensional variabel X i to dimensioner som X = (X, X 2 ). En logistisk regressionsmodel ud fra X fører til Bayes reglen 1 hvis α+β 1 x+β 2 x 2 0 φ B (t)= 2 hvisα+β 1 x+β 2 x 2 < 0 Disse områder i R kan stadigt være to intervaller, der er ubegrænsede til hver sin side. Men for rigtige valg af parametre vil det ene område være et begrænset interval, og det andet område vil være en forening af to ubegrænsede intervaller. Mere komplicerede opdelingsområder kan naturligvis opnås ved at benytte X = (X, X 2,..., X m ) for et passende højt m, kombineret med en logistisk regressionsmodel ir m. Endnu nyttigere kan denne indlejringsteknik være i højere dimensioner. En todimensional X-variabel (X 1, X 2 ) kan indlejres ir 5 som X = (X 1, X 2, X1 2, X 1X 2, X2 2 ). Kombineret med en logistisk regressionsmodel ir 5 giver det mulighed for at alle keglesnitsmængder (udfyldte ellipser, hyperbler og parabler) kan optræde som der 2 -områder, der knyttes til én klasse. 5.2 Estimation og klassifikation Brug af en Bayes regel er ikke muligt i praksis, for det kræver kendskab til den underliggende fordeling af (X, Y) i form af de betingede fordelinger af Y givet X. I praksis har man ikke dette kendskab - men man kan ofte estimere sig frem til noget, der er næsten lige så godt. Lad os sige at vi har en statistisk model for (X, Y), hvor den simultane fordeling er parametriseret ved (α,β). Vi antager atαkun indgår i den marginale fordeling af X mensβkun indgår i den betingede fordeling af Y givet X. Vi skriver P α,β (X A, Y B)= π β (y x) dν α (x). A y B Principielt hører der en Bayes regel til hver parameter (α, β), men eftersom det kun er de betingede sandsynlighederπ β (y x) der indgår i den eksplicitte konstruktion (5.4),

7 5.2. Estimation og klassifikation 101 kan vi se at der findes Bayes regler, der kun afhænger afβ. Mere generelt kan man sige at alleν α -målene som oftest har de samme nulmængder, hvilket betyder at en Bayes regel svarende til parameteren (α, β) automatisk vil være en Bayes regel for (α,β) for et hvilket som helstα. På denne baggrund vælger vi at skriveψ β for Bayes regelen hørende til (α,β). Vi vil interessere os for L(α,β,β )= P α,β (ψ β (X)=Y)= π β (ψ β (x) x) dν α altså sandsynligheden for at klassificere korrekt når den sande parameter er (α,β ) mens vi bruger Bayes reglen svarende til den forkerte parameterβ. Det er klart at L(α,β,β ) κ(α,β ) hvorκ(α,β ) er Bayes sandsynligheden for den sande parameter. Men måske er forskellen ikke så stor hvisβ ligger tæt påβ? Lemma 5.4 Hvisβ π β (y x) er kontinuert for alle (x, y), så vil L(α,β,β ) κ(α,β ) forβ β. BEVIS: Tag et fast x X. Vi deleryop i to: A(x)={y π β (y x)<max π β (z x)}, B(x)={y π β (y x)=max π β (z x)}. z Y z Y Betragt etǫ> 0 så lille at π β (y x)<max π β (z x) ǫ for alle y A(x). z Y Ved at vælgeδtæt nok ved 0 kan vi på grund af kontinuiteten afπ β (y x) opnå at π β (y x)<max z Y π β (z x) ǫ 2 for alle y A(x), β β <δ Ved eventuelt at gøreδmindre kan vi tilsvarende opnå at π β (y x) max π β (z x) z Y <ǫ for alle y B(x), β β <δ 2

8 102 Kapitel 5. Klassifikation Kombineres disse oplysninger fås for det første atψ β (x) B(x) for β β <δ, og dernæst at π β (ψ β (x) x)=π β (ψ β (x) x) for alle β β <δ Hvor lilleδskal være for at denne identitet indtræffer, afhænger af x. Men vi opnår i hvert fald at for alle x vil π β (ψ β (x) x) π β (ψ β (x) x) for β β endda med lighedstegn fra et vist trin. Per konstruktion erπ(y x) 1, så af majorantsætningen følger det at π β (ψ β (x) x) dν α (x) π β (ψ β (x) x) dν α (x) for β β Og det er præcis påstanden vi skulle vise. Vi forestiller os at vi har det, der i klassifikationsbranchen ofte kaldes et training set. Det er uafhængige observationer (X 1, Y 1 ),...,(X n, Y n ) af samme fordeling som den (endnu ugjorte) observation af (X, Y). På baggrund af de gjorte observationer danner vi en estimator ˆβ n afβ. Det kan vi formentlig gøre på en konsistent måde, så ˆβ n P β for n under P α,β. I så fald følger det af den netop påviste kontinuitet af L at L(α,β, ˆβ n ) P κ(α,β) Det vil sige: bruger vi Bayes reglen for den estimerede parameter ˆβ n på de fremtidige observationer, så er det måske knap nok optimalt i forhold til hvad vi kunne gøre hvis vi kendte den sande parameter. Men hvis parameterestimatoren er konsistent, så er optimalitetstabet med stor sandsynlighed lille når n er stor.

Om hypoteseprøvning (1)

Om hypoteseprøvning (1) E6 efterår 1999 Notat 16 Jørgen Larsen 11. november 1999 Om hypoteseprøvning 1) Det grundlæggende problem kan generelt formuleres sådan: Man har en statistisk model parametriseret med en parameter θ Ω;

Læs mere

Eksamen 2014/2015 Mål- og integralteori

Eksamen 2014/2015 Mål- og integralteori Eksamen 4/5 Mål- og integralteori Københavns Universitet Institut for Matematiske Fag Formalia Eksamensopgaven består af 4 opgaver med ialt spørgsmål Ved bedømmelsen indgår de spørgsmål med samme vægt

Læs mere

Kvantitative Metoder 1 - Efterår 2006. Dagens program

Kvantitative Metoder 1 - Efterår 2006. Dagens program Dagens program Afsnit 2.4-2.5 Bayes sætning Uafhængige stokastiske variable - Simultane fordelinger - Marginale fordelinger - Betingede fordelinger Uafhængige hændelser - Indikatorvariable Afledte stokastiske

Læs mere

Kausale modeller. Konstruktion og analyse

Kausale modeller. Konstruktion og analyse Kausale modeller Konstruktion og analyse 1 Kausale modeller = DAGs (Directed acyclic graphs) defineret ved Fuldstændig ordnet kausal struktur Definition af direkte kausal effekt Antagelser om fravær af

Læs mere

Statistisk model. Definition: En statistisk model består af et repræsentationsrum (X, E) og en familie P af sandsynlighedsmål

Statistisk model. Definition: En statistisk model består af et repræsentationsrum (X, E) og en familie P af sandsynlighedsmål Statistisk model Definition: En statistisk model består af et repræsentationsrum (X, E) og en familie P af sandsynlighedsmål på (X, E). Modellen er parametriseret hvis der findes en parametermængde Θ og

Læs mere

Statistik og Sandsynlighedsregning 2

Statistik og Sandsynlighedsregning 2 Statistik og Sandsynlighedsregning 2 Uafhængighed og reelle transformationer Helle Sørensen Uge 8, mandag SaSt2 (Uge 8, mandag) Uafh. og relle transf. 1 / 16 Program I dag: Uafhængighed af kontinuerte

Læs mere

NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET.

NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET. NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET. Eksamen i Statistik 1 Tag-hjem prøve 1. juli 2010 24 timer Alle hjælpemidler er tilladt. Det er tilladt at skrive med blyant og benytte viskelæder,

Læs mere

Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19

Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19 Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19 For test med signifikansniveau α: p < α forkast H 0 2/19 p-værdi Betragt tilfældet med test for H 0 : µ = µ 0 (σ kendt). Idé: jo større

Læs mere

NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET.

NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET. NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET. Eksamen i Statistik 1TS Teoretisk statistik Den skriftlige prøve Sommer 2003 3 timer - alle hjælpemidler tilladt Det er tilladt at skrive

Læs mere

Supplement til kapitel 4 Om sandsynlighedsmodeller for flere stokastiske variable

Supplement til kapitel 4 Om sandsynlighedsmodeller for flere stokastiske variable IMM, 00--6 Poul Thyregod Supplement til kapitel 4 Om sandsynlighedsmodeller for flere stokastiske variable Todimensionale stokastiske variable Lærebogens afsnit 4 introducerede sandsynlighedsmodeller formuleret

Læs mere

I dag. Statistisk analyse af en enkelt stikprøve med kendt varians Sandsynlighedsregning og Statistik (SaSt) Eksempel: kobbertråd

I dag. Statistisk analyse af en enkelt stikprøve med kendt varians Sandsynlighedsregning og Statistik (SaSt) Eksempel: kobbertråd I dag Statistisk analyse af en enkelt stikprøve med kendt varians Sandsynlighedsregning og Statistik SaSt) Helle Sørensen Først lidt om de sidste uger af SaSt. Derefter statistisk analyse af en enkelt

Læs mere

Tema. Dagens tema: Indfør centrale statistiske begreber.

Tema. Dagens tema: Indfør centrale statistiske begreber. Tema Dagens tema: Indfør centrale statistiske begreber. Model og modelkontrol Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. konfidensintervaller Vi tager udgangspunkt i Ex. 3.1 i

Læs mere

Momenter som deskriptive størrelser. Hvad vi mangler fra onsdag. Momenter for sandsynlighedsmål

Momenter som deskriptive størrelser. Hvad vi mangler fra onsdag. Momenter for sandsynlighedsmål Hvad vi mangler fra onsdag Momenter som deskriptive størrelser Sandsynlighedsmål er komplicerede objekter de tildeler numeriske værdier til alle hændelser i en σ-algebra. Vi har behov for simplere, deskriptive

Læs mere

Hvad vi mangler fra onsdag. Vi starter med at gennemgå slides fra onsdag.

Hvad vi mangler fra onsdag. Vi starter med at gennemgå slides fra onsdag. Hvad vi mangler fra onsdag Vi starter med at gennemgå slides 34-38 fra onsdag. Slide 1/17 Niels Richard Hansen MI forelæsninger 6. December, 2013 Momenter som deskriptive størrelser Sandsynlighedsmål er

Læs mere

Lineære normale modeller (1) udkast. 1 Flerdimensionale stokastiske variable

Lineære normale modeller (1) udkast. 1 Flerdimensionale stokastiske variable E6 efterår 999 Notat 8 Jørgen Larsen 22. november 999 Lineære normale modeller ) udkast Ved hjælp af lineær algebra kan man formulere og analysere de såkaldte lineære normale modeller meget overskueligt

Læs mere

Reeksamen 2014/2015 Mål- og integralteori

Reeksamen 2014/2015 Mål- og integralteori Reeksamen 4/5 Mål- og integralteori Københavns Universitet Institut for Matematiske Fag Formalia Eksamensopgaven består af 4 opgaver med ialt spørgsmål. Ved bedømmelsen indgår de spørgsmål med samme vægt.

Læs mere

Sandsynlighedsregning 11. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 11. forelæsning Bo Friis Nielsen Sandsynlighedsregning 11. forelæsning Bo Friis Nielsen Matematik og Computer Science Danmarks Tekniske Universitet 28 Kgs. Lyngby Danmark Email: bfni@imm.dtu.dk Dagens nye emner afsnit 6.3 (og 6.4 Betingede

Læs mere

Estimation og konfidensintervaller

Estimation og konfidensintervaller Statistik og Sandsynlighedsregning STAT kapitel 4.4 Susanne Ditlevsen Institut for Matematiske Fag Email: susanne@math.ku.dk http://math.ku.dk/ susanne Estimation og konfidensintervaller Antag X Bin(n,

Læs mere

Områdeestimator. X x. P θ. ν θ. Θ C(x) En områdeestimator er en afbildning C : X P(Θ). . p.1/30

Områdeestimator. X x. P θ. ν θ. Θ C(x) En områdeestimator er en afbildning C : X P(Θ). . p.1/30 Områdeestimator X (Ω, F) (X, E) x 01 01 P θ ν θ θ Θ 0000 1111 000000 111111 0000 1111 0000 1111 C(x) En områdeestimator er en afbildning C : X P(Θ).. p.1/30 Konfidensområde En områdestimator C : X P(Θ)

Læs mere

Supplerende opgaver. S1.3.1 Lad A, B og C være delmængder af X. Vis at

Supplerende opgaver. S1.3.1 Lad A, B og C være delmængder af X. Vis at Supplerende opgaver Analyse Jørgen Vesterstrøm Forår 2004 S.3. Lad A, B og C være delmængder af X. Vis at (A B C) (A B C) (A B) C og find en nødvendig og tilstrækkelig betingelse for at der gælder lighedstegn

Læs mere

Normalfordelingen. Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: 1 2πσ

Normalfordelingen. Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: 1 2πσ Normalfordelingen Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: f(x) = ( ) 1 exp (x µ)2 2πσ 2 σ 2 Frekvensen af observationer i intervallet

Læs mere

Statistik og Sandsynlighedsregning 2. IH kapitel 12. Overheads til forelæsninger, mandag 6. uge

Statistik og Sandsynlighedsregning 2. IH kapitel 12. Overheads til forelæsninger, mandag 6. uge Statistik og Sandsynlighedsregning 2 IH kapitel 12 Overheads til forelæsninger, mandag 6. uge 1 Fordelingen af én (1): Regressionsanalyse udfaldsvariabel responsvariabel afhængig variabel Y variabel 2

Læs mere

Susanne Ditlevsen Institut for Matematiske Fag susanne

Susanne Ditlevsen Institut for Matematiske Fag    susanne Statistik og Sandsynlighedsregning 1 STAT kapitel 4.4 Susanne Ditlevsen Institut for Matematiske Fag Email: susanne@math.ku.dk http://math.ku.dk/ susanne 7. undervisningsuge, mandag 1 Estimation og konfidensintervaller

Læs mere

Statistik Lektion 3. Simultan fordelte stokastiske variable Kontinuerte stokastiske variable Normalfordelingen

Statistik Lektion 3. Simultan fordelte stokastiske variable Kontinuerte stokastiske variable Normalfordelingen Statistik Lektion 3 Simultan fordelte stokastiske variable Kontinuerte stokastiske variable Normalfordelingen Repetition En stokastisk variabel er en funktion defineret på S (udfaldsrummet, der antager

Læs mere

Estimation. Lad (ν θ ) θ Θ være en statistisk model på (X, E). En estimator af θ er en afbildning t : X Θ. En konkret værdi t(x) kaldes et estimat.

Estimation. Lad (ν θ ) θ Θ være en statistisk model på (X, E). En estimator af θ er en afbildning t : X Θ. En konkret værdi t(x) kaldes et estimat. Estimation Lad (ν θ ) θ Θ være en statistisk model på (X, E). En estimator af θ er en afbildning t : X Θ. En konkret værdi t(x) kaldes et estimat. En estimator er en gætteregel.. p.1/22 Estimation X acements

Læs mere

Agenda Sandsynlighedsregning. Regneregler (kap. 3-4) Fordelinger og genkendelse af fordelinger (kap. 3-5) Simultane, marginale og betingede

Agenda Sandsynlighedsregning. Regneregler (kap. 3-4) Fordelinger og genkendelse af fordelinger (kap. 3-5) Simultane, marginale og betingede Agenda Sandsynlighedsregning. Regneregler (kap. 3-4) Fordelinger og genkendelse af fordelinger (kap. 3-5) Simultane, marginale og betingede fordelinger (kap. 4) Middelværdi og varians (kap. 3-4) Fordelingsresultater

Læs mere

Regneregler for middelværdier M(X+Y) = M X +M Y. Spredning varians og standardafvigelse. 1 n VAR(X) Y = a + bx VAR(Y) = VAR(a+bX) = b²var(x)

Regneregler for middelværdier M(X+Y) = M X +M Y. Spredning varians og standardafvigelse. 1 n VAR(X) Y = a + bx VAR(Y) = VAR(a+bX) = b²var(x) Formelsamlingen 1 Regneregler for middelværdier M(a + bx) a + bm X M(X+Y) M X +M Y Spredning varians og standardafvigelse VAR(X) 1 n n i1 ( X i - M x ) 2 Y a + bx VAR(Y) VAR(a+bX) b²var(x) 2 Kovariansen

Læs mere

Elementær sandsynlighedsregning

Elementær sandsynlighedsregning Elementær sandsynlighedsregning Sandsynlighedsbegrebet Et udfaldsrum S er mængden af alle de mulige udfald af et eksperiment. En hændelse A er en delmængde af udfaldsrummet S. Den hændelse, der ikke indeholder

Læs mere

For nemheds skyld: m = 2, dvs. interesseret i fordeling af X 1 og X 2. Nemt at generalisere til vilkårligt m.

For nemheds skyld: m = 2, dvs. interesseret i fordeling af X 1 og X 2. Nemt at generalisere til vilkårligt m. 1 Uge 11 Teoretisk Statistik 8. marts 2004 Kapitel 3: Fordeling af en stokastisk variabel, X Kapitel 4: Fordeling af flere stokastiske variable, X 1,,X m (på en gang). NB: X 1,,X m kan være gentagne observationer

Læs mere

NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET.

NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET. NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET. Eksamen i Statistik 1TS Teoretisk statistik Den skriftlige prøve Sommer 2002 3 timer - alle hjælpemidler tilladt Det er tilladt at skrive

Læs mere

Nanostatistik: Stokastisk variabel

Nanostatistik: Stokastisk variabel Nanostatistik: Stokastisk variabel JLJ Nanostatistik: Stokastisk variabel p. 1/29 Repetition Ω: udfaldsrummet: alle de mulige udfald af et experiment P(A): ss for hændelsen A = frekvens i uafhængige gentagelser

Læs mere

Elementær sandsynlighedsregning

Elementær sandsynlighedsregning Elementær sandsynlighedsregning Sandsynlighedsbegrebet Et udfaldsrum S er mængden af alle de mulige udfald af et eksperiment. En hændelse A er en delmængde af udfaldsrummet S. Et sandsynlighedsmål er en

Læs mere

En martingalversion af CLT

En martingalversion af CLT Kapitel 11 En martingalversion af CLT Når man har vænnet sig til den centrale grænseværdisætning for uafhængige, identisk fordelte summander, plejer næste skridt at være at se på summer af stokastiske

Læs mere

Løsning eksamen d. 15. december 2008

Løsning eksamen d. 15. december 2008 Informatik - DTU 02402 Introduktion til Statistik 2010-2-01 LFF/lff Løsning eksamen d. 15. december 2008 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition, 7th

Læs mere

Kapitel 12 Variansanalyse

Kapitel 12 Variansanalyse Kapitel 12 Variansanalyse Peter Tibert Stoltze stat@peterstoltzedk Elementær statistik F2011 Version 7 april 2011 1 / 43 Indledning Sammenligning af middelværdien i to grupper indenfor en stikprøve kan

Læs mere

NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET. MI 2007 Obligatorisk opgave 4

NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET. MI 2007 Obligatorisk opgave 4 NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET. MI 2007 Obligatorisk opgave 4 Sættet består af 3 opgaver med ialt 15 delopgaver. Besvarelsen vil blive forkastet, medmindre der er gjort et

Læs mere

Mordell s Sætning. Henrik Christensen og Michael Pedersen. 17. december 2003

Mordell s Sætning. Henrik Christensen og Michael Pedersen. 17. december 2003 Mordell s Sætning Henrik Christensen og Michael Pedersen 17. december 2003 Mordells sætning siger at gruppen C(Q) af rationale punkter over en ellipse C er en endeligt frembragt abelsk gruppe. Elliptiske

Læs mere

MLR antagelserne. Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som

MLR antagelserne. Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som MLR antagelserne Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som y = β 0 + β 1 x 1 + β 2 x 2 + + β k x k + u, hvor β 0, β 1, β 2,...,β k er ukendte parametere,

Læs mere

standard normalfordelingen på R 2.

standard normalfordelingen på R 2. Standard normalfordelingen på R 2 Lad f (x, y) = 1 x 2 +y 2 2π e 2. Vi har så f (x, y) = 1 2π e x2 2 1 2π e y2 2, og ved Tonelli f dm 2 = 1. Ved µ(a) = A f dm 2 defineres et sandsynlighedsmål på R 2 målet

Læs mere

Oversigt. Kursus Introduktion til Statistik. Forelæsning 3: Kapitel 5: Kontinuerte fordelinger. Per Bruun Brockhoff.

Oversigt. Kursus Introduktion til Statistik. Forelæsning 3: Kapitel 5: Kontinuerte fordelinger. Per Bruun Brockhoff. Kursus 242 Introduktion til Statistik Forelæsning 3: Kapitel 5: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik Bygning 35/324 Danmarks Tekniske Universitet 28 Lyngby Danmark e-mail:

Læs mere

men nu er Z N((µ 1 µ 0 ) n/σ, 1)!! Forkaster hvis X 191 eller X 209 eller

men nu er Z N((µ 1 µ 0 ) n/σ, 1)!! Forkaster hvis X 191 eller X 209 eller Type I og type II fejl Type I fejl: forkast når hypotese sand. α = signifikansniveau= P(type I fejl) Program (8.15-10): Hvis vi forkaster når Z < 2.58 eller Z > 2.58 er α = P(Z < 2.58) + P(Z > 2.58) =

Læs mere

Program. Statistik og Sandsynlighedsregning. Eksempler. Sandsynlighedstæthed og sandsynlighedsmål

Program. Statistik og Sandsynlighedsregning. Eksempler. Sandsynlighedstæthed og sandsynlighedsmål Program Statistik og Sandsynlighedsregning Sandsynlighedstætheder og kontinuerte fordelinger på R Varians og middelværdi Normalfordelingen Susanne Ditlevsen Uge 48, tirsdag Tætheder og fordelingsfunktioner

Læs mere

Den lineære normale model

Den lineære normale model Den lineære normale model Ingredienser: V : N-dimensionalt vektorrum. X : Ω V : stokastisk variabel. L : ægte underrum af V, dimension k., : fundamentalt indre produkt på V. Vi laver en hel familie af

Læs mere

Forelæsning 3: Kapitel 5: Kontinuerte fordelinger

Forelæsning 3: Kapitel 5: Kontinuerte fordelinger Kursus 02402 Introduktion til Statistik Forelæsning 3: Kapitel 5: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Taylors formel. Kapitel Klassiske sætninger i en dimension

Taylors formel. Kapitel Klassiske sætninger i en dimension Kapitel 3 Taylors formel 3.1 Klassiske sætninger i en dimension Sætning 3.1 (Rolles sætning) Lad f : [a, b] R være kontinuert, og antag at f er differentiabel i det åbne interval (a, b). Hvis f (a) = f

Læs mere

Fortolkning. Foldning af sandsynlighedsmål. Foldning af tætheder. Foldning af Γ-fordelinger Eksempel: Hvis X og Y er uafhængige og. Sætning (EH 20.

Fortolkning. Foldning af sandsynlighedsmål. Foldning af tætheder. Foldning af Γ-fordelinger Eksempel: Hvis X og Y er uafhængige og. Sætning (EH 20. Foldning af sandsnlighedsmål Lad µ og ν være to sandsnlighedsmål på (R, B). Fortolkning Lad φ : R R være φ(, ) = + for (, ) R. Lad X og Y være to reelle stokastiske variable defineret på (Ω, F, P). Definition

Læs mere

Statistik og Sandsynlighedsregning 2

Statistik og Sandsynlighedsregning 2 Statistik og Sandsynlighedsregning 2 Lineære transformationer, middelværdi og varians Helle Sørensen Uge 8, onsdag SaSt2 (Uge 8, onsdag) Lineære transf. og middelværdi 1 / 15 Program I formiddag: Fordeling

Læs mere

1 Beviser for fornyelsessætningen

1 Beviser for fornyelsessætningen Hvordan beviser man fornyelsessætningen? 1 1 Beviser for fornyelsessætningen I dette notat skal vi diskutere, hvorman man kan bevise fornyelsessætningen. Vi vil starte med at se på tilfældet, hvor ventetidsfordelingen

Læs mere

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Indledende om Signifikanstest Boldøvelser

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Indledende om Signifikanstest Boldøvelser Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab Indledende om Signifikanstest Boldøvelser 1 Påstand: Et nyt præparat M virker mod migræne. Inden præparatet kan markedsføres, skal denne påstand

Læs mere

Kvantitative Metoder 1 - Efterår Dagens program

Kvantitative Metoder 1 - Efterår Dagens program Dagens program Estimation: Kapitel 9.7-9.10 Estimationsmetoder kap 9.10 Momentestimation Maximum likelihood estimation Test Hypoteser kap. 10.1 Testprocedure kap 10.2 Teststørrelsen Testsandsynlighed 1

Læs mere

Center for Statistik. Multipel regression med laggede responser som forklarende variable

Center for Statistik. Multipel regression med laggede responser som forklarende variable Center for Statistik Handelshøjskolen i København MPAS Tue Tjur November 2006 Multipel regression med laggede responser som forklarende variable Ved en tidsrække forstås i almindelighed et datasæt, der

Læs mere

Forelæsning 11: Kapitel 11: Regressionsanalyse

Forelæsning 11: Kapitel 11: Regressionsanalyse Kursus 02402 Introduktion til Statistik Forelæsning 11: Kapitel 11: Regressionsanalyse Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Nanostatistik: Stokastisk variabel

Nanostatistik: Stokastisk variabel Nanostatistik: Stokastisk variabel JLJ Nanostatistik: Stokastisk variabel p. 1/34 Repetition Ω: udfaldsrummet: alle de mulige udfald af et experiment P(A): ss for hændelsen A = frekvens i uafhængige gentagelser

Læs mere

Økonometri: Lektion 2 Multipel Lineær Regression 1/27

Økonometri: Lektion 2 Multipel Lineær Regression 1/27 Økonometri: Lektion 2 Multipel Lineær Regression 1/27 Multipel Lineær Regression Sidst så vi på simpel lineær regression, hvor y er forklaret af én variabel. Der er intet, der forhindre os i at have mere

Læs mere

Statistik og Sandsynlighedsregning 2

Statistik og Sandsynlighedsregning 2 Statistik og Sandsynlighedsregning 2 Normalfordelingen og transformation af kontinuerte fordelinger Helle Sørensen Uge 7, mandag SaSt2 (Uge 7, mandag) Normalford. og transformation 1 / 16 Program Paretofordelingen,

Læs mere

Matematik 3 SS. Københavns Universitet Naturvidenskabelig kandidateksamen, sommeren Opgaver til besvarelse i 3 timer fredag den 18. juni 1993.

Matematik 3 SS. Københavns Universitet Naturvidenskabelig kandidateksamen, sommeren Opgaver til besvarelse i 3 timer fredag den 18. juni 1993. Københavns Universitet Opgaver til besvarelse i 3 timer fredag den 18. juni 1993. Opgave 1 (50%) Det bemærkes, at en række af nedenstående spørgsmål kan besvares uafuængigt af de Øvrige spørgsmål (resultaterne,

Læs mere

Sandsynlighedsteori. Sandsynlighedsteori. Sandsynlighedsteori Et eksperiment beskrives af et udfaldsrum udstyret med et. Et Bayesiansk argument

Sandsynlighedsteori. Sandsynlighedsteori. Sandsynlighedsteori Et eksperiment beskrives af et udfaldsrum udstyret med et. Et Bayesiansk argument Sandsynlighedsteori Sandsynlighedsteori Et eksperiment beskrives af et udfaldsrum udstyret med et sandsynlighedsmål, (, E, ν). Et eksperiment beskrives af et udfaldsrum udstyret med et sandsynlighedsmål,

Læs mere

En martingalversion af CLT

En martingalversion af CLT Kapitel 9 En martingalversion af CLT Når man har vænnet sig til den centrale grænseværdisætning for uafhængige, identisk fordelte summander, plejer næste skridt at være at se på summer af stokastiske variable,

Læs mere

Simpel Lineær Regression

Simpel Lineær Regression Simpel Lineær Regression Mål: Forklare variablen y vha. variablen x. Fx forklare Salg (y) vha. Reklamebudget (x). Vi antager at sammenhængen mellem y og x er beskrevet ved y = β 0 + β 1 x + u. y: Afhængige

Læs mere

Teoretisk Statistik, 9 marts nb. Det forventes ikke, at alt materialet dækkes d. 9. marts.

Teoretisk Statistik, 9 marts nb. Det forventes ikke, at alt materialet dækkes d. 9. marts. Teoretisk Statistik, 9 marts 2005 Empiriske analoger (Kap. 3.7) Normalfordelingen (Kap. 3.12) Opsamling på Kap. 3 nb. Det forventes ikke, at alt materialet dækkes d. 9. marts. 1 Empiriske analoger Betragt

Læs mere

Lokalt ekstremum DiploMat 01905

Lokalt ekstremum DiploMat 01905 Lokalt ekstremum DiploMat 0905 Preben Alsholm Institut for Matematik, DTU 6. oktober 00 De nition Et stationært punkt for en funktion af ere variable f vil i disse noter blive kaldt et egentligt saddelpunkt,

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Kvantitative metoder 2 Den multiple regressionsmodel 5. marts 2007 regressionsmodel 1 Dagens program Emnet for denne forelæsning er stadig den multiple regressionsmodel (Wooldridge kap. 3.4-3.5, E.2) Variansen

Læs mere

Rettevejledning til eksamen i Kvantitative metoder 1, 2. årsprøve 2. januar 2007

Rettevejledning til eksamen i Kvantitative metoder 1, 2. årsprøve 2. januar 2007 Rettevejledning til eksamen i Kvantitative metoder 1,. årsprøve. januar 007 I rettevejledningen henvises der til Berry and Lindgren "Statistics Theory and methods"(b&l) hvis ikke andet er nævnt. Opgave

Læs mere

Skriftlig Eksamen Kombinatorik, sandsynlighed og randomiserede algoritmer (DM528)

Skriftlig Eksamen Kombinatorik, sandsynlighed og randomiserede algoritmer (DM528) Skriftlig Eksamen Kombinatorik, sandsynlighed og randomiserede algoritmer (DM58) Institut for Matematik & Datalogi Syddansk Universitet Torsdag den 7 Januar 010, kl. 9 13 Alle sædvanlige hjælpemidler (lærebøger,

Læs mere

Kapitel 12 Variansanalyse

Kapitel 12 Variansanalyse Kapitel 12 Variansanalyse Peter Tibert Stoltze stat@peterstoltzedk Elementær statistik F2011 Version 7 april 2011 1 Indledning 2 Ensidet variansanalyse 3 Blokforsøg 4 Vekselvirkning 1 Indledning 2 Ensidet

Læs mere

Overheads til forelæsninger, mandag 5. uge På E har vi en mængde af mulige sandsynlighedsfordelinger for X, (P θ ) θ Θ.

Overheads til forelæsninger, mandag 5. uge På E har vi en mængde af mulige sandsynlighedsfordelinger for X, (P θ ) θ Θ. Statistiske modeller (Definitioner) Statistik og Sandsynlighedsregning 2 IH kapitel 0 og En observation er en vektor af tal x (x,..., x n ) E, der repræsenterer udfaldet af et (eller flere) eksperimenter.

Læs mere

Uge 43 I Teoretisk Statistik, 21. oktober Forudsigelser

Uge 43 I Teoretisk Statistik, 21. oktober Forudsigelser Uge 43 I Teoretisk Statistik,. oktober 3 Simpel lineær regressionsanalyse Forudsigelser Fortolkning af regressionsmodellen Ekstreme observationer Transformationer Sammenligning af to regressionslinier

Læs mere

Integration m.h.t. mål med tæthed

Integration m.h.t. mål med tæthed Integration m.h.t. mål med tæthed Sætning (EH 11.7) Lad ν = f µ på (X, E). For alle g M + (X, E) gælder at gdν = g f dµ. Bevis: Standardbeviset: 1) indikatorfunktioner 2) simple funktioner 3) M + -funktioner.

Læs mere

Opgaver i sandsynlighedsregning

Opgaver i sandsynlighedsregning Afdeling for Teoretisk Statistik STATISTIK Institut for Matematiske Fag Preben Blæsild Aarhus Universitet 9. januar 005 Opgaver i sandsynlighedsregning Opgave Lad A og B være hændelser således at P(A)

Læs mere

Logistisk regression

Logistisk regression Logistisk regression Test af antagelsen om lineære effekter Modelkonstruktion og modelsøgning Hvilke variable og hvilke interaktioner skal inkluderes i regressionsmodellerne? 1 Logistiske regressionsmodeller

Læs mere

Økonometri 1. Dagens program. Den simple regressionsmodel 15. september 2006

Økonometri 1. Dagens program. Den simple regressionsmodel 15. september 2006 Dagens program Økonometri Den simple regressionsmodel 5. september 006 Den simple lineære regressionsmodel (Wooldridge kap.4-.6) Eksemplet fortsat: Løn og uddannelse på danske data Funktionel form Statistiske

Læs mere

Oversigt. 1 Gennemgående eksempel: Højde og vægt. 2 Korrelation. 3 Regressionsanalyse (kap 11) 4 Mindste kvadraters metode

Oversigt. 1 Gennemgående eksempel: Højde og vægt. 2 Korrelation. 3 Regressionsanalyse (kap 11) 4 Mindste kvadraters metode Kursus 02402 Introduktion til Statistik Forelæsning 11: Kapitel 11: Regressionsanalyse Oversigt 1 Gennemgående eksempel: Højde og vægt 2 Korrelation 3 Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse

Læs mere

Kvantitative Metoder 1 - Forår Dagens program

Kvantitative Metoder 1 - Forår Dagens program Dagens program Afsnit 6.1 Den standardiserede normalfordeling Normalfordelingen Beskrivelse af normalfordelinger: - Tæthed og fordelingsfunktion - Middelværdi, varians og fraktiler Lineære transformationer

Læs mere

Kombinant. En kombinant er en afbildning. hvor (Y, K) er endnu et målbart rum. Typisk taler vi om reelle kombinanter, hvor Y = R.

Kombinant. En kombinant er en afbildning. hvor (Y, K) er endnu et målbart rum. Typisk taler vi om reelle kombinanter, hvor Y = R. Kombinant Lad (ν θ ) θ Θ være en statistisk model på (X, E). En kombinant er en afbildning hvor (Y, K) er endnu et målbart rum. R : X Θ Y Typisk taler vi om reelle kombinanter, hvor Y = R. Som regel forsøger

Læs mere

Mat H /05 Note 2 10/11-04 Gerd Grubb

Mat H /05 Note 2 10/11-04 Gerd Grubb Mat H 1 2004/05 Note 2 10/11-04 Gerd Grubb Nødvendige og tilstrækkelige betingelser for ekstremum, konkave og konvekse funktioner. Fremstillingen i Kapitel 13.1 2 af Sydsæters bog [MA1] suppleres her med

Læs mere

Økonometri Lektion 1 Simpel Lineær Regression 1/31

Økonometri Lektion 1 Simpel Lineær Regression 1/31 Økonometri Lektion 1 Simpel Lineær Regression 1/31 Simpel Lineær Regression Mål: Forklare variablen y vha. variablen x. Fx forklare Salg (y) vha. Reklamebudget (x). Statistisk model: Vi antager at sammenhængen

Læs mere

Normale tal. Outline. Hvad er tilfældighed? Uafhængighed. Matematiklærerdag Simon Kristensen. Aarhus Universitet, 24/03/2017

Normale tal. Outline. Hvad er tilfældighed? Uafhængighed. Matematiklærerdag Simon Kristensen. Aarhus Universitet, 24/03/2017 Matematiklærerdag 2017 Institut for Matematik Aarhus Universitet Aarhus Universitet, 24/03/2017 Outline 1 2 3 Hvad er tilfældighed? I statistik, sandsynlighedsteori og ikke mindst i programmering er det

Læs mere

Løsning til eksaminen d. 14. december 2009

Løsning til eksaminen d. 14. december 2009 DTU Informatik 02402 Introduktion til Statistik 200-2-0 LFF/lff Løsning til eksaminen d. 4. december 2009 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition,

Læs mere

Vinkelrette linjer. Frank Villa. 4. november 2014

Vinkelrette linjer. Frank Villa. 4. november 2014 Vinkelrette linjer Frank Villa 4. november 2014 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

Økonometri 1. Dagens program. Den multiple regressionsmodel 18. september 2006

Økonometri 1. Dagens program. Den multiple regressionsmodel 18. september 2006 Dagens program Økonometri Den multiple regressionsmodel 8. september 006 Opsamling af statistiske resultater om den simple lineære regressionsmodel (W kap..5). Den multiple lineære regressionsmodel (W

Læs mere

BM121 Resume af tirsdags forlæsningen, Uge 47

BM121 Resume af tirsdags forlæsningen, Uge 47 BM121 Resume af tirsdags forlæsningen, Uge 47 Morten Källberg (kallberg@imada.sdu.dk) 22/11-2005 1 Probabilistiske modeller Vi vil i det følgende betragte to forskellige måder at evaluerer en given model

Læs mere

Teoretisk Statistik, 16. februar Generel teori,repetition

Teoretisk Statistik, 16. februar Generel teori,repetition 1 Uge 8 Teoretisk Statistik, 16. februar 2004 1. Generel teori, repetition 2. Diskret udfaldsrum punktssh. 3. Fordelingsfunktionen 4. Tæthed 5. Transformationer 6. Diskrete vs. Kontinuerte stokastiske

Læs mere

NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET.

NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET. NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET. Eksamen i Statistik 1TS Teoretisk statistik Den skriftlige prøve Sommer 2005 3 timer - alle hjælpemidler tilladt Det er tilladt at skrive

Læs mere

Gamle eksamensopgaver (MASO)

Gamle eksamensopgaver (MASO) EO 1 Gamle eksamensopgaver (MASO) Opgave 1. (Vinteren 1990 91, opgave 1) a) Vis, at rækken er divergent. b) Vis, at rækken er konvergent. Opgave 2. (Vinteren 1990 91, opgave 2) Gør rede for at ligningssystemet

Læs mere

Et eksempel på en todimensional normalfordeling Anders Milhøj September 2006

Et eksempel på en todimensional normalfordeling Anders Milhøj September 2006 Et eksempel på en todimensional normalfordeling Anders Milhøj September 006 I dette notat gennemgås et eksempel, der illustrerer den todimensionale normalfordelings egenskaber. Notatet lægger sig op af

Læs mere

Billedbehandling og mønstergenkendelse: Lidt elementær statistik (version 1)

Billedbehandling og mønstergenkendelse: Lidt elementær statistik (version 1) ; C ED 6 > Billedbehandling og mønstergenkendelse Lidt elementær statistik (version 1) Klaus Hansen 24 september 2003 1 Elementære empiriske mål Hvis vi har observationer kan vi udregne gennemsnit og varians

Læs mere

Økonometri 1. Inferens i den lineære regressionsmodel 2. oktober Økonometri 1: F8 1

Økonometri 1. Inferens i den lineære regressionsmodel 2. oktober Økonometri 1: F8 1 Økonometri 1 Inferens i den lineære regressionsmodel 2. oktober 2006 Økonometri 1: F8 1 Dagens program Opsamling om asymptotiske egenskaber: Asymptotisk normalitet Asymptotisk efficiens Test af flere lineære

Læs mere

Trykfejlsliste - alle fejl Asymptotisk teori

Trykfejlsliste - alle fejl Asymptotisk teori 9. januar 2005 Stat 2A / EH Trykfejlsliste - alle fejl Asymptotisk teori Denne liste indeholder alle de regulære fejl, slåfejl og stavefejl der er fundet i 2A-noterne indtil nu. 9 1 Forkert: x C x ro alle

Læs mere

Sandsynlighedsregning Oversigt over begreber og fordelinger

Sandsynlighedsregning Oversigt over begreber og fordelinger Tue Tjur Marts 2007 Sandsynlighedsregning Oversigt over begreber og fordelinger Stat. MØK 2. år Kapitel : Sandsynlighedsfordelinger og stokastiske variable En sandsynlighedsfunktion på en mængde E (udfaldsrummet)

Læs mere

Susanne Ditlevsen Institut for Matematiske Fag susanne

Susanne Ditlevsen Institut for Matematiske Fag     susanne Statistik og Sandsynlighedsregning 1 Repetition MS kapitel 1 3 Susanne Ditlevsen Institut for Matematiske Fag Email: susanne@math.ku.dk http://math.ku.dk/ susanne Hvad er sandsynlighed? - beskriver systemer

Læs mere

13 Markovprocesser med transitionssemigruppe

13 Markovprocesser med transitionssemigruppe 13 Markovprocesser med transitionssemigruppe I nærværende kapitel vil vi antage at tilstandsrummet er polsk, hvilket sikrer, at der findes regulære betingede fordelinger. Vi skal se på eksistensen af Markovprocesser.

Læs mere

Sandsynlighedsregning 9. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 9. forelæsning Bo Friis Nielsen Sandsynlighedsregning 9. forelæsning Bo Friis Nielsen Matematik og Computer Science Danmarks Tekniske Universitet 800 Kgs. Lyngby Danmark Email: bfni@dtu.dk Dagens emner afsnit 5.3 og 5.4 Simultane kontinuerte

Læs mere

Deskriptiv teori i flere dimensioner

Deskriptiv teori i flere dimensioner Kapitel 17 Deskriptiv teori i flere dimensioner I kapitel 13 og 14 udviklede vi en række deskriptive værktøjer til at beskrive sandsynlighedsmål på (R, B) Vi vil i dette kapitel forsøge at udvikle varianter

Læs mere

Kapitel 7 Forskelle mellem centraltendenser

Kapitel 7 Forskelle mellem centraltendenser Kapitel 7 Forskelle mellem centraltendenser Peter Tibert Stoltze stat@peterstoltze.dk Elementær statistik F2011 1 / 29 Indledning 1. z-test for ukorrelerede data 2. t-test for ukorrelerede data med ens

Læs mere

Poul Thyregod, introslide.tex Specialkursus vid.stat. foraar Lad θ = θ(β) R k for β B R m med m k

Poul Thyregod, introslide.tex Specialkursus vid.stat. foraar Lad θ = θ(β) R k for β B R m med m k Dagens program: Likelihoodfunktion, begreber : Mandag den 4. februar Den generelle lineære model score-funktion: første afledede af log-likelihood har middelværdien nul observeret information: anden afledede

Læs mere

Økonometri 1. Den simple regressionsmodel 11. september Økonometri 1: F2

Økonometri 1. Den simple regressionsmodel 11. september Økonometri 1: F2 Økonometri 1 Den simple regressionsmodel 11. september 2006 Dagens program Den simple regressionsmodel SLR : Én forklarende variabel (Wooldridge kap. 2.1-2.4) Motivation for gennemgangen af SLR Definition

Læs mere

Økonometri: Lektion 2 Multipel Lineær Regression 1/33

Økonometri: Lektion 2 Multipel Lineær Regression 1/33 Økonometri: Lektion 2 Multipel Lineær Regression 1/33 Simpel Lineær Regression: Model Sidst så vi på simpel lineære regression. Det er en statisisk model på formen y = β 0 +β 1 x +u, hvor fejlledet u,

Læs mere

Tema. Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse.

Tema. Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. Tema Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. (Fx. x. µ) Hypotese og test. Teststørrelse. (Fx. H 0 : µ = µ 0 ) konfidensintervaller

Læs mere

Et eksperiment beskrives af et udfaldsrum udstyret med et. alle mulige resultater af eksperimentet

Et eksperiment beskrives af et udfaldsrum udstyret med et. alle mulige resultater af eksperimentet Sandsynlighedsteori Et eksperiment beskrives af et udfaldsrum udstyret med et sandsynlighedsmål, (X, E, ν). Udfaldsrummet X indeholder alle mulige resultater af eksperimentet men ofte også yderligere elementer

Læs mere