Hypotesetest. Hypotesetest og kritiske værdier Type 1 og Type 2 fejl Styrken af en test Sammenligning af to populationer

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "Hypotesetest. Hypotesetest og kritiske værdier Type 1 og Type 2 fejl Styrken af en test Sammenligning af to populationer"

Transkript

1 Hypoteetet Hypoteetet og kritike værdier Type og Type fejl Styrke af e tet Sammeligig af to populatioer

2 Kofideiterval for σ tore tikprøver. Hvi X følger e χ -fordelig med frihedgrader, dv. X~χ (), gælder E [ X ] V[ X ] Når atal frihedgrader er tort er e χ -fordelig approkimativt det amme om e ormalfordelig: χ ( ) N(,) Hvi e tikprøve af tørrele er ormalfordelt og er tikprøvevariae, å gælder der ( ) S ~ χ ( ) σ

3 Kofideiterval for σ tore tikprøver. Ekempel: 400,. Fid 95% kofide it for σ. Da tikprøve er tor har vi χ (-) N( -, (-) ) De ivere traformatio giver da χ ( ) ( ) ( ) α Vi ka u fide α/ og -α/ fraktilere i χ -fordelige: χ α / ( ) (.96) χ α / ( ) % kofideiterval for σ. ( ) ( ), χ χ α α , Z α [ 0.56,3.93]

4 Hypoteer og hypoteetet. E hypotee er et udag om ogle karakteritika af e variabel eller mægde af variable F Er middelhøjde af Oeco tuderede 75cm? I e hypoteetet tete værdier, der er optillet i e hypotee, ved at ammelige med værdier bereget fra data. For ekempel ka geemittet af e tikprøve af jere højder berege til 7,7 cm. Er det (igifikat) forkellig fra 75? Det er forkellig fra 75, me ka vi derfra kokludere, at det ikke bare kylde tilfældig variatio, afhægig af ekempelvi tikprøvetørrele? E hypoteetet betår af 5 elemeter: I. Atageler II. Hypoteer III. Tettørreler IV. p-værdi V. Belutig/kokluio

5 Ekempel: Tet af middelværdi (to-idet tet) Atagele: Tet af μ, X kvatitativ variabel, σ kedt og >30. Hypoteer: H H 0 : μ μ : μ μ 0 0 Stikprøvefordelig af X år H 0 er ad er approkimativ ormal med middelværdi μ 0 og tadard afvigele σ tadardierig Tettørrele: Z μ0 X μ 0 σ 0 z

6 p-værdi og igifikaiveau α p-værdie af e tet, er adylighede for at obervere e y tettørrele, der er midt lige å ufarvorabel for H 0 om de allerede oberverede tettørrele, år ul hypotee er ad. Sigifikaiveauet α er et tal, ålede at H 0 forkate, hvi p- værdie er midre ed α. α er ormalvi 0.05 eller 0.0. Kokluio p-værdi H 0 H p < α Forkat Accepter α vælge før aalye foretage. p > α Forkat ikke Accepter ikke Hvor lille et igifika iveau ma vælger, afhæger af hvilke koekveer belutige om at forkate H 0 har. Hvi det er et pørgmål om liv eller død, for ekempel i medicike forøg, vælge α meget lille. Me hvi det bare er at tete om et folketigparti er tørre ed et adet, ka ma godt α tørre.

7 Ekempel Hypoteer: H 0 : μ 30 H : μ 30 Stikprøve: σ 5 Tettørrele: Z, 5 50 Sigifikaiveau: α0.05 Fordelige Z uder H 0 : z. 0 z. p-værdi: p værdi P( Z >,) p( Z >,) Da p-værdi < α forkate H 0.

8 Kritike værdier I tilfælde, hvor ma ikke ka betemme p-værdie ka ma typik fide de kritike værdier. De kritike værdier varer til tettørreler, der har e p-værdi lig igifikaiveauet α. Ekempel: To-idet tet af middelværdie, σ kedt, α0.05. I dette tilfælde er de kritike værdier -.96 og.96 Dv. hvi.96 eller. 96, å ved vi at p-værdie Hvi p-værdie 0.05 afvier vi H Tilvarede kritike værdier ka fide for adre fordeliger, f t- fordelige.

9 Ekempel H0: μ 30 H: μ 30 Sigifikaiveau: α0.05 Stikprøve: σ 5 Tet tørrele: Z, 5 50 Kritike værdi: Da, >,96 forkate H 0 (eller hvi de var midre ed -,96) Hvi højreidet tet, dv. H :μ>30: Da, >.645 forkate H 0 Hvi vetreidet tet, dv. H :μ<30: Da, ikke er midre ed -,645, forkate H 0 ikke

10 E- og to-idet tet af middelværdi for tore eller ormale tikprøver og kedt varia og igifikaiveau α. H 0 : μ μ 0 Η : μ μ 0 Forkat H 0, hvi z > Z α/ To-idet tet H 0 : μ μ 0 H : μ < μ 0 H 0 : μ μ 0 H : μ > μ 0 Forkat H 0, hvi z < -Z α Forkat H 0, hvi z > Z α E-idet tet I alle tre tilfælde er tettørrele z σ / μ 0

11 Type og type fejl Type fejl: E ad H 0 forkate. Type fejl: E falk H 0 forkate ikke. Belutig Forkat H0 Forkat ikke H0 Sad tiltad af H 0 H 0 ad Type fejl Korrekt belutig H 0 falk Korrekt belutig Type fejl Sigifika iveauet α er adylighede for at begå e type fejl. Sadylighede for at begå e type fejl betege β Sadylighede for type og type fejl er ivert relaterede, dv. år de ee tiger, å falder de ade, å ma ka ikke vælge begge to å lavt om muligt e æte lide.

12 Hvorda α og β afhæger af hiade For forkellige og et betemt μ Typik vælger ma at fatætte adylighede for type fejl, α, å ma ikke begår tore fejl. For ekempel hvi H 0 er, at e eller ade medici er kadelig, er det bedre at være ikker på, at ma ikke forkater H 0 elvom de er ad, ed at være ikker på, at ma ikke forkater de, elvom de er falk.

13 Beregig af β (for e vetre idet tet) Se Se på påfølgede hypoteer: H 0 : : μ 000 H : 000 : μ < 000 Lad Lad σ 5, 5, α 5%, 5%, og og Vi Vi vil vil berege β år årμ μ Se Se æte lide Figure vier fordelige af af år årμ μ 0 og år , og år μ μ 998. Bemærk at at H 0 vil blive år er ed de 0 vil blive forkatet, år er midre ed de kritike værdi givet ved ved μ z σ / / krit Omvedt, H 0 vil ikke blive år er ed. 0 vil ikke blive forkatet, år er tørre ed. 0 α krit

14 Beregig af β Fordelig af år μ μ. krit Fordelig af år μ μ 0.

15 Beregig af β Når Nårμ μ 998, å er for ikke at 0, dv. 998, å er β adylighede for ikke at forkate H 0, dv. de de er er P ( X >.. krit ) Når Nårμ μ, å vil e med og, å vil X følge e ormal fordelig med middelværdi μ og tadard afvigele σ/, å: å: X krit μ β P Z > P( Z >.8/ 0.5) P( Z σ / >.360) Styrke (power) af af e e tet, tet, er er adylighede for for at at de de falke ul ul hypotee bliver opdaget af af tete. Styrke af aftete β

16 Sammeligig af to grupper Tjeer mæd og kvider lige meget? (Repo: Lø, Forklarede: Kø) Er adele af helbredte kræftpatieter de amme for to forkellige typer kemoterapi? (Repo: helbredte patieter, Forklarede: Kemotype) Er adele af overvægtige i 006 de amme om adele af overvægtige i 999? (Forklarede: årtal, Repo: overvægtige) Kører e VW Toura og e Skoda det amme atal kilometer per liter? (Forklarede: Bilmærke, Repo: atal kilometer per l) Kører e VW Toura det amme atal kilometer per liter på almidelig bezi, om på bio bezi? (Forklarede: Bezi type, Repo: atal kilometer) Er der forkel på hvor hurtigt ma løber 5 km, år ma har origiale Nike ko og Super Nike ko på?

17 Afhægige og uafhægige tikprøver Ved e uafhægig tikprøve udtage e tikprøve fra hver gruppe.. Mæd og kvider lø: Tag e tikprøve fra gruppe af mæd og e tikprøve fra gruppe af kvider og ammelig geemitløe for de to grupper.. Kilometer per liter: Tilfældig tikprøve af Toura er og tilfældig tikprøve af Skoda er. Ved e afhægig tikprøve er obervatioere i de to grupper parrede. Oftet er det de amme pero/getad, der bliver oberveret i to forkellige ituatioer.. Bio bezi kotra almidelig bezi: Vælg tilfældigt et atal VW Toura er og tet dem med de to forkellige typer bezi.. Origial Nike ko kotra Super Nike ko: Vælg tilfældigt ogle peroer til at løbe 5 km og lad dem tete begge par ko.

18 Forklarede variabel og repo variabel. To grupper, der ammelige, udgør e bivariat variabel dv. e variabel, der ku har to kategorier, for ekempel mæd og kvider. Dee variabel kalde de forklarede variabel (eller de uafhægige variabel). De variabel, der ammelige, kalde repo variable (eller de afhægige variabel), for ekempel lø. Når repo variable er kvatitativ, ammelige middelværdier. Når repo variable er kvalitativ, ammelige adele. Summeopgave: Se på ekemplere idetificer repo og forklarede variabel og e på om repoe er kvalitativ eller kvatitativ.

19 Rete af forelæige Sammeligig af to middelværdier kedt varia. Hypoteetet. Kofideiterval Sammeligig af to middelværdier ukedt varia. Hypoteetet. Kofideiterval Sammeligig af to adele. Hypoteetet. Kofideiterval

20 Sammeligig af to middelværdier kedte variaer og tore tikprøver eller populatioer ormalfordelte Populatio Populatio X har middelværdi μ og varia σ. X har middelværdi μ og varia σ. Er der forkel på dere middelværdier? Bedte etimator af μ μ er. σ σ E( ) μ μ ogv ( ). Når og er ormalfordelte, er ormalfordelt, og år og er tore, er approkimativt ormalfordelt, uaet fordelige af og.

21 Stikprøvefordelig af X X

22 Sammeligig af to middelværdier kedte variaer og tore tikprøver eller populatioer ormalfordelte Hypoteer : H H 0 : μ μ ( μ μ) : μ μ ( μ μ ) 0 0 Kritike pukter : ± z, hvor α er igifika iveauet. α Belutig : Tettørrele : X X ( μ μ) z σ σ 0 Forkat H 0 hvi z > z α eller hvi z < z α Bemærk!! Ka ogå lave om et højreidet tet, H : μ > μ eller vetreidet tet, H : μ < μ. Deude ka vi elvfølgelig ogå berege p - værdie om vi plejer, i tedet for at ammelige med de kritike værdi. z α

23 Kofideiterval (-α )00% kofide iterval for μ μ : ( X X ) ± z α σ σ zα / vælge ud fra kofideiveauet. Hvi det ekempel er et 95% kofideiterval, er z 0.05 for,96. Hvi kofideitervallet ideholder 0, varer det til, at et hypoteetet ikke havde forkatet ul hypotee om at de to middelværdier er e.

24 Ekempel er der forkel på hvor lagt bilere kører på 5 l. bezi? Populatio : VW Toura H H 0 : μ μ 0 : μ μ σ 84 z ( ) (308 54) σ σ , Populatio : σ 67 Skoda p- værdi: p(z >5,05) p(z < -5,05) 0 H0 forkate, der er altå forkel på hvor lagt de to biltyper kører på litere. 95% kofide iterval: 54±,96 0,75 [3,93 ; 75,07]

25 To Normalfordelte populatioer med ukedt varia Hypoteer: H 0 : μ μ H : μ μ To ituatioer: σ σ σ σ ) ( : ) ( ) ( : ) ( : ± t pukter Kritike Pooled Varia t Tettørrele : p p ν ν σ σ α, hvor For ) ( ) ( ) ( ) ( : ) ( : ± t pukter Kritike t Tettørrele : ν ν σ σ α hvor, For Hvi tore tikprøver, bruge z i tedet for t-fordelige. Boge bruger z, år og er tørre ed 30. SPSS reger altid med t-fordelige

26 Ekempel Forkel på højde af drege og piger 0 (atal drege) 9 (atal piger) 8,30 70,89 0, 6,7 Atag σ σ. Hypoteer: H 0 : μ μ H : μ μ Sigifikaiveau: α 0.05 (geemithøjde drege) (geemithøjde piger) (et. varia drege) (et. varia piger) Tettørrele: ( ) t p ( ( ) p ) ( ) (0 )0, (9 )6,7 p 7,3 0 9 (8,30 70,89) t,67 7,3 0 ( 9) Kritike pukter: ±t α/ ( -) ±t 0.05 (7) ±. Belutig: H 0 afvie da.67 >.

27 Kofideitervaller for μ μ ) / (/ ) ( / ± v t p, α * / / ) ( / ± v t, α ( ) ( ) ( ) / / / / * Kofideiterval for μ μ år σ σ. Kofideiterval for μ μ år σ σ. v Atal frihedgrader

28 SPSS Ekempel Data: Vægt for 06 mæd og 43 kvider. Er der e forkel i middelvægte? Aalyze > Compare Mea > Idepedet-Sample T Tet I dette dataæt tager variable ko værdiere og alt efter om det er mæd eller kvider. Vægt iddele efter kø

29 SPSS Ekempel - output Group Statitic vægt Kø Mad Kvide Std. Error N Mea Std. Deviatio Mea 06 78,990,5345, ,38,745,980 Idepedet Sample Tet vægt Equal variace aumed Equal variace ot aumed Levee' Tet for Equality of Variace F Sig. t df Sig. (-tailed) t-tet for Equality of Mea Mea Differece 95% Cofidece Iterval of the Std. Error Differece Differece Lower Upper 6,8,009 3, ,000 4,6094,4639 3,6997 5,590 3, 449,037,000 4,6094,468 3,695 5,573 t-tettørrele alt efter om p-værdi for e to-idet tet: H : μ μ der er ataget e eller forkellig varia Atal frihedgrader 95% kofideiterval for μ μ

Statistik Lektion 7. Hypotesetest og kritiske værdier Type I og Type II fejl Styrken af en test Sammenligning af to populationer

Statistik Lektion 7. Hypotesetest og kritiske værdier Type I og Type II fejl Styrken af en test Sammenligning af to populationer Statistik Lektio 7 Hpotesetest og kritiske værdier Tpe I og Tpe II fejl Strke af e test Sammeligig af to populatioer 1 Tri I e Hpotesetest E hpotesetest består af 5 elemeter: I. Atagelser Primært hvilke

Læs mere

Sammenligning af to grupper

Sammenligning af to grupper Sammeligig af to gruer Reetitio, heruder om kritiske værdier Sammeligig af to gruer Sammeligig af to middelværdier Sammeligig af to adele Sammeligig af to variaser yoteser og hyotesetest. E hyotese er

Læs mere

Statistik Lektion 8. Test for ens varians

Statistik Lektion 8. Test for ens varians Statitik Lektio 8 Tet for e varia ra tidligere Hvi populatioe er ormalfordelt med varia, å gælder ( ) S ~ χ hvor er tikprøve tørrele og S er tikprøvevariae. χ -fordelig med - frihedgrader χ Tet af Variae

Læs mere

Test i to populationer. Hypotesetest for parrede observationer Test for ens varians Gensyn med flyskræk!

Test i to populationer. Hypotesetest for parrede observationer Test for ens varians Gensyn med flyskræk! Test i to populatioer Hypotesetest for parrede observatioer Test for es varias Gesy med flyskræk! Afhægige og uafhægige stikprøver Ved e uafhægig stikprøve udtages e stikprøve fra hver gruppe.. Mæd og

Læs mere

Statistik Lektion 8. Parrede test Test for forskel i andele Test for ens varians Gensyn med flyskræk!

Statistik Lektion 8. Parrede test Test for forskel i andele Test for ens varians Gensyn med flyskræk! Statistik Lektio 8 Parrede test Test for forskel i adele Test for es varias Gesy med flyskræk! Afhægige og uafhægige stikprøver Ved e uafhægig stikprøve udtages e stikprøve fra hver gruppe.. Mæd og kviders

Læs mere

Estimation og test i normalfordelingen

Estimation og test i normalfordelingen af Birger Stjerholm Made Samfudlitteratur 07 Etimatio og tet i ormalfordelige Dee tekt ideholder et overblik over ogle grudlæggede pricipper for etimatio og tet i ormalfordelige i hyppigt forekommede ituatioer:

Læs mere

Løsninger til kapitel 7

Løsninger til kapitel 7 Løsiger til kapitel 7 Opgave 7.1 a) HpoStat giver resultatet: Pop. varias er ukedt, me 30, så Normalf. bruges approksimativt = 54,400 s 1.069,90 = 00,000 0,95 49,868 58,93 Dette betder, at med 95% sikkerhed

Læs mere

Stikprøvefordelinger og konfidensintervaller

Stikprøvefordelinger og konfidensintervaller Stikprøvefordeliger og kofidesitervaller Stikprøvefordelige for middelværdi De Cetrale Græseværdi Sætig Egeskaber Ved Estimatore Kofidesitervaller t-fordelige Estimator og estimat E stikprøve statistik

Læs mere

Program. Statistisk inferens En enkelt stikprøve og lineær regression Stat. modeller, estimation og konfidensintervaller. Fordeling af gennemsnit

Program. Statistisk inferens En enkelt stikprøve og lineær regression Stat. modeller, estimation og konfidensintervaller. Fordeling af gennemsnit Faculty of Life Sciece Program Statitik ifere E ekelt tikprøve og lieær regreio Stat. modeller, etimatio og kofideitervaller Clau Ektrøm E-mail: ektrom@life.ku.dk Fordelig af geemit Statitik ifere for

Læs mere

24. januar Epidemiologi og biostatistik. Forelæsning 1 Uge 1, tirsdag. Niels Trolle Andersen, Afdelingen for Biostatistik.

24. januar Epidemiologi og biostatistik. Forelæsning 1 Uge 1, tirsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Epidemiologi og biostatistik. Forelæsig Uge, tirsdag. Niels Trolle Aderse, Afdelige for Biostatistik. Geerelt om kurset: - Formål - Forelæsiger - Øvelser - Forelæsigsoter - Bøger - EpiBasic: http://www.biostat.au.dk/teachig/software

Læs mere

Statistik 8. gang 1 KONFIDENSINTERVALLER. Konfidensintervaller: kapitel 11. Valg og test af fordelingsfunktion

Statistik 8. gang 1 KONFIDENSINTERVALLER. Konfidensintervaller: kapitel 11. Valg og test af fordelingsfunktion Statistik 8. gag 1 KONIDENSINTERVALLER Kofidesitervaller: kapitel 11 Valg og test af fordeligsfuktio Statistik 8. gag 11. KONIDENS INTERVALLER Et kofides iterval udtrykker itervallet hvori de rigtige værdi

Læs mere

Generelle lineære modeller

Generelle lineære modeller Geerelle lieære modeller Regressiosmodeller med é uafhægig itervalskala variabel: Y e eller flere uafhægige variable: X,..,X k De betigede fordelig af Y givet X,..,X k atages at være ormal med e middelværdi,

Læs mere

Opsamling. Lidt om det hele..!

Opsamling. Lidt om det hele..! Opsamlig Lidt om det hele..! Kursus oversigt Hvad har vi været igeem: Deskriptiv statistik Sadsyligheder Stokastiske variable diskrete og kotiuerte Fordeliger Estimatio Test Iferes Sammeligig af middelværdier

Læs mere

30. august Epidemiologi og biostatistik. Forelæsning 3 Uge 2, torsdag d. 8. september 2005 Michael Væth, Afdeling for Biostatistik.

30. august Epidemiologi og biostatistik. Forelæsning 3 Uge 2, torsdag d. 8. september 2005 Michael Væth, Afdeling for Biostatistik. 30. august 005 Epidemiologi og biostatistik. Forelæsig 3 Uge, torag d. 8. september 005 Michael Væth, Afdelig for Biostatistik. Mere om kategoriske data Test for uafhægighed I RxC tabeller Test for uafhægighed

Læs mere

13. februar Resumé: En statistisk analyse resulterer ofte i : Et estimat ˆ θ med en tilhørende se( ˆ θ )

13. februar Resumé: En statistisk analyse resulterer ofte i : Et estimat ˆ θ med en tilhørende se( ˆ θ ) 3. februar 003 Epidemiologi og biostatistik. Uge, torag d. 3. februar 003 Morte Frydeberg, Istitut for Biostatistik. Type og type fejl Nogle specielle metoder: Test i RxC tabeller Test i x tabeller Fishers

Læs mere

29. januar Epidemiologi og biostatistik Forelæsning 2 Uge 1, torsdag 2. februar 2006 Michael Væth, Afdeling for Biostatistik.

29. januar Epidemiologi og biostatistik Forelæsning 2 Uge 1, torsdag 2. februar 2006 Michael Væth, Afdeling for Biostatistik. Epidemiologi og biostatistik Forelæsig Uge 1, torsdag. februar 006 ichael Væth, Afdelig for Biostatistik. Sammeligig af to middelværdier sikkerhedsitervaller statistisk test Sammeligig af to proportioer

Læs mere

Konfidens intervaller

Konfidens intervaller Kofides itervaller Kofides itervaller for: Kofides iterval for middelværdi, varias kedt Kofides iterval for middelværdi, varias ukedt Kofides iterval for adel Kofides iterval for varias Bestemmelse af

Læs mere

hvor i er observationsnummeret, som løber fra 1 til stikprøvestørrelsen n, X i

hvor i er observationsnummeret, som løber fra 1 til stikprøvestørrelsen n, X i Normalfordeliger For at e stokastisk variabel X ka være ormalfordelt, skal X agive værdie af e eller ade målig, f.eks. tid, lægde, vægt, beløb osv. Notatioe er: Xi ~ N( μ, σ hvor i er observatiosummeret,

Læs mere

Kogebog: 5. Beregn F d

Kogebog: 5. Beregn F d tattk 8. gag KONFIDENINERVALLER Kofdetervaller: kaptel Valg og tet af fordelgfukto tattk 8. gag. KONFIDEN INERVALLER Et kofde terval udtrykker tervallet hvor de rgtge værd af parametere K, med γ % adylghed

Læs mere

Dagens program. Estimation: Kapitel Eksempler på middelrette og/eller konsistente estimator (de sidste fra sidste forelæsning)

Dagens program. Estimation: Kapitel Eksempler på middelrette og/eller konsistente estimator (de sidste fra sidste forelæsning) Dages program Estimatio: Kapitel 9.4-9.7 Eksempler på middelrette og/eller kosistete estimator (de sidste fra sidste forelæsig) Ko desiterval for store datasæt kap. 9.4 Ko desiterval for små datasæt kap.

Læs mere

Definition: Normalfordelingen. siges at være normalfordelt med middelværdi µ og varians σ 2, hvor µ og σ er reelle tal og σ > 0.

Definition: Normalfordelingen. siges at være normalfordelt med middelværdi µ og varians σ 2, hvor µ og σ er reelle tal og σ > 0. Repetitio: Normalfordelige Ladmåliges fejlteori Lektio Trasformatio af stokastiske variable - kkb@math.aau.dk http://people.math.aau.dk/ kkb/udervisig/lf13 Istitut for Matematiske Fag Aalborg Uiversitet

Læs mere

Oversigt. 1 Fordelingen for gennemsnittet t-fordelingen. 3 Den statistiske sprogbrug og formelle ramme

Oversigt. 1 Fordelingen for gennemsnittet t-fordelingen. 3 Den statistiske sprogbrug og formelle ramme Itroduktio til Statistik Forelæsig 4: Kofidesiterval for middelværdi (og spredig) Peder Bacher DTU Compute, Dyamiske Systemer Bygig 303B, Rum 009 Damarks Tekiske Uiversitet 2800 Lygby Damark e-mail: pbac@dtu.dk

Læs mere

Simpel Lineær Regression. Opsplitning af variationen Determinations koefficient Variansanalyse F-test Model-kontrol

Simpel Lineær Regression. Opsplitning af variationen Determinations koefficient Variansanalyse F-test Model-kontrol Simpel Lieær Regressio Opsplitig af variatioe Determiatios koefficiet Variasaalse F-test Model-kotrol Opbgig af statistisk model Specificer model Ligiger og atagelser Estimer parametre Modelkotrol Er modelle

Læs mere

Sætning: Middelværdi og varians for linearkombinationer. Lad X 1,X 2,...,X n være stokastiske variable. Da gælder. Var ( a 0 + a 1 X a n X n

Sætning: Middelværdi og varians for linearkombinationer. Lad X 1,X 2,...,X n være stokastiske variable. Da gælder. Var ( a 0 + a 1 X a n X n Ladmåliges fejlteori Lektio 3 Estimatio af σ Dobbeltmåliger Geometrisk ivellemet Lieariserig - rw@math.aau.dk Istitut for Matematiske Fag Aalborg Uiversitet Repetitio: Middelværdi og Varias Sætig: Middelværdi

Læs mere

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab Statistik ved Bachelor-uddaelse i folkesudhedsvideskab Græseværdisætiger Det hadler om geemsit Statistikere elsker geemsit Det er oplagt e god ide at tage geemsit. Hvis jeg f.eks skal gætte på vægte af

Læs mere

Vejledende besvarelser til opgaver i kapitel 15

Vejledende besvarelser til opgaver i kapitel 15 Vejledede besvarelser til opgaver i apitel 5 Opgave a) De teststatistier, ma aveder til at teste om to middelværdier er es, består af et estimat på forselle mellem middelværdiere,, divideret med et udtry

Læs mere

Tests for forskel i central tendens for data på ordinal- og intervalskala. Typer af statistiske test:

Tests for forskel i central tendens for data på ordinal- og intervalskala. Typer af statistiske test: Statistik for biologer 005-6, modul 7: Tests for forskel i cetral tedes for data på ordial- og itervalskala M7, slide M7, slide Typer af statistiske test: Parametrisk statistik: - Tester for forskel i

Læs mere

Oversigt. Kursus 02402/02323 Introducerende Statistik. Forelæsning 12: Inferens for andele. Klaus K. Andersen og Per Bruun Brockhoff

Oversigt. Kursus 02402/02323 Introducerende Statistik. Forelæsning 12: Inferens for andele. Klaus K. Andersen og Per Bruun Brockhoff Kursus 02402/02323 Itroducerede Statistik Forelæsig 12: Iferes for adele Klaus K. Aderse og Per Bruu Brockhoff DTU Compute, Statistik og Dataaalyse Damarks Tekiske Uiversitet 2800 Lygby Damark e-mail:

Læs mere

9. Binomialfordelingen

9. Binomialfordelingen 9. Biomialfordelige 9.. Gekedelse Hvert forsøg ka ku resultere i to mulige udfald; succes og fiasko. I modsætig til poissofordelige er atallet af forsøg edeligt. 9.. Model X : Stokastisk variabel, der

Læs mere

Program. Ensidet variansanalyse Normalfordelingen. Antibiotika og nedbrydning af organisk materiale. Tegninger

Program. Ensidet variansanalyse Normalfordelingen. Antibiotika og nedbrydning af organisk materiale. Tegninger Faculty of Life Scieces Program Esidet variasaalyse Normalfordelige Claus Ekstrøm E-mail: ekstrom@life.ku.dk Esidet variasaalyse (oe-way ANOVA) Hvilke type data? Hvad er problemstillige? Variatio mellem

Læs mere

Program. Populationer og stikprøver. Praktiske oplysninger. Eksempel vaccine mod miltbrand hos får. Praktiske oplysninger

Program. Populationer og stikprøver. Praktiske oplysninger. Eksempel vaccine mod miltbrand hos får. Praktiske oplysninger Faculty of Life Scieces Program Populatioer og stikprøver Claus Ekstrøm E-mail: ekstrom@life.ku.dk Praktiske oplysiger Populatioer og stikprøver Data Datatyper Visualiserig Cetrum og spredig af e fordelig

Læs mere

Konfidensintervaller og Hypotesetest

Konfidensintervaller og Hypotesetest Konfidensintervaller og Hypotesetest Konfidensinterval for andele χ -fordelingen og konfidensinterval for variansen Hypoteseteori Hypotesetest af middelværdi, varians og andele Repetition fra sidst: Konfidensintervaller

Læs mere

Estimation ved momentmetoden. Estimation af middelværdiparameter

Estimation ved momentmetoden. Estimation af middelværdiparameter Statistik og Sadsylighedsregig 1 STAT kapitel 4.2 4.3 Susae Ditlevse Istitut for Matematiske Fag Email: susae@math.ku.dk http://math.ku.dk/ susae Estimatio ved mometmetode Idimellem ka det være svært (eller

Læs mere

Den flerdimensionale normalfordeling

Den flerdimensionale normalfordeling De flerdimesioale ormalfordelig Stokastiske vektorer Ved e stokastisk vektor skal vi forstå e vektor, hvor de ekelte kompoeter er sædvalige stokastiske variable. For de stokastiske vektor Y = Y,..., Y

Læs mere

Motivation. En tegning

Motivation. En tegning Motivatio Scatter-plot at det mådelige salg mod det måedlige reklamebudget. R: plot(salg ~ budget, data = salg) Økoometri Lektio Simpel Lieær Regressio salg 400 450 500 550 20 25 30 35 40 45 50 budget

Læs mere

Statistiske test. Efteråret 2010 Jens Friis, AAU. Hjemmeside :

Statistiske test. Efteråret 2010 Jens Friis, AAU. Hjemmeside : Statistiske test Efteråret 00 Jes Friis, AAU Hjemmeside : http://akaaudk/jfj Kotiuerte fordeliger Defiitio: Tæthedsfuktio E sadsylighedstæthedsfuktio på R er e itegrabel fuktio f : R [0; [ hvor f d = Defiitio:

Læs mere

antal gange krone sker i første n kast = n

antal gange krone sker i første n kast = n 1 Uge 15 Teoretisk Statistik, 5. april 004 1. Store tals lov Eksempel: møtkast Koverges i sadsylighed Tchebychevs ulighed Sætig: Store tals lov. De cetrale græseværdisætig 3. Approksimatio af sadsyligheder

Læs mere

Program. Statistik og Sandsynlighedsregning 2 Normalfordelingens venner og bekendte. χ 2 -fordelingen

Program. Statistik og Sandsynlighedsregning 2 Normalfordelingens venner og bekendte. χ 2 -fordelingen Program Statitik og Sandynlighedregning 2 Normalfordelingen venner og bekendte Helle Sørenen Uge 9, ondag Reultaterne fra denne uge kal bruge om arbejdhete i projekt 1. I formiddag: χ 2 -fordelingen, t-fordelingen,

Læs mere

Program. Middelværdi af Y = t(x ) Transformationssætningen

Program. Middelværdi af Y = t(x ) Transformationssætningen Program Statistik og Sadsylighedsregig 2 Trasformatio af kotiuerte fordeliger på R, flerdimesioale kotiuerte fordeliger, mere om ormalfordelige Helle Sørese Uge 7, osdag I formiddag: Opfølgig på trasformatiossætige

Læs mere

Indholdsfortegnelse Generelt Diskrete stokastiske variable: Kontinuerte stokastiske variable: Regneregler for stokastiske variable

Indholdsfortegnelse Generelt Diskrete stokastiske variable: Kontinuerte stokastiske variable: Regneregler for stokastiske variable Idholdsfortegelse Geerelt:...3 Stokastisk variabel:...3 Tæthedsfuktio/sadsylighedsfuktio for stokastisk variabel:...3 Fordeligsfuktio/sumfuktio for stokastisk variabel:...3 Middelværdi:...4 Geemsit:...4

Læs mere

bestemmelse af karakteristiske værdier for materialeparametre og modstandsevner

bestemmelse af karakteristiske værdier for materialeparametre og modstandsevner Statiti arateritie værdier BESTEMMELSE AF KARAKTERISTISKE VÆRDIER beteele af arateritie værdier for aterialearaetre og odtadever etode i ae A i DS 409 (DS 409: Sierhedbeteeler for Kotrtioer, 999) baeret

Læs mere

Uge 40 I Teoretisk Statistik, 30. september 2003

Uge 40 I Teoretisk Statistik, 30. september 2003 Uge 40 Teoretis tatisti, 30. september 003 Esidet variasaalyse Model, otatio, hypotese og hælpehypotese Test af hælpehypotese Opdaterig af variasestimat Test af hypotese om es middelværdier Variasaalysesema

Læs mere

STATISTISKE GRUNDBEGREBER

STATISTISKE GRUNDBEGREBER MOGENS ODDERSHEDE LARSEN STATISTISKE GRUNDBEGREBER 18 15 1 9 6 3 0 Histogram for ph 6,9 7,1 7,3 7,5 7,7 7,9 ph 13 udgave 013 FORORD Der er i dee bog søgt at give letlæst og askuelig fremstillig af de statistiske

Læs mere

Morten Frydenberg version dato:

Morten Frydenberg version dato: Morte Frdeberg versio dato: 4--4 Itroduktio til kurset Statistik Forelæsig Morte Frdeberg, Sektio for Biostatistik af Biostatistik dele af. semester kurset. Statistiske modeller Biomialfordelige Normalfordelige

Læs mere

Afsnit , Hypotesetest for en varians... 19

Afsnit , Hypotesetest for en varians... 19 Aft.-.7... 5 vad er tattk?... 5 Nøgletal... 5 Meda... 5 Vara... 5 Fraktler... 6 Fgurer... 6 Pareto dagram... 6 Dot dagram... 6 Frequecy dtrbuto... 6 togram... 6 Boplot... 6 Aft 4.-4.4 og 4.6 og 4.7...

Læs mere

BESTEMMELSE AF KARAKTERISTISKE VÆRDIER FOR MATERIALEPARAMETRE

BESTEMMELSE AF KARAKTERISTISKE VÆRDIER FOR MATERIALEPARAMETRE Betemmele af arateritie værdier for materialearametre 003 BESTEMMELSE AF KARAKTERISTISKE VÆRDIER FOR MATERIALEPARAMETRE Joh Dalgaard Søree Itituttet for Bygigtei Aalborg Uiveritet Idhold:. Idledig....

Læs mere

Variansanalyse (ANOVA) Repetition, sammenligning af to grupper Variansanalyse: Sammenligning af flere end to middelværdier.

Variansanalyse (ANOVA) Repetition, sammenligning af to grupper Variansanalyse: Sammenligning af flere end to middelværdier. Vaaaalye (ANOVA) Reetto, ammelgg af to gue Vaaaalye Sammelgg af flee ed to mddelvæde. Sammelgg af to mddelvæde kedte vaae og toe tkøve elle oulatoe omalfodelte Hyotee H H µ µ ( µ µ ) µ µ ( µ µ ) Tettøele

Læs mere

Økonometri 1. Inferens i den lineære regressionsmodel 29. september Økonometri 1: F7 1

Økonometri 1. Inferens i den lineære regressionsmodel 29. september Økonometri 1: F7 1 Økoometri 1 Iferes i de lieære regressiosmodel 9. september 006 Økoometri 1: F7 1 Dages program Opsamlig af hemmeopgave om Mote Carlo eksperimeter Mere om hypotesetest: Ekelt lieær restriktio på koefficieter

Læs mere

Diskrete og kontinuerte stokastiske variable

Diskrete og kontinuerte stokastiske variable Diskrete og kotiuerte stokastiske variable Beroulli Biomial fordelig Negativ biomial fordelig Hypergeometrisk fordelig Poisso fordelig Kotiuerte stokastiske variable Uiform fordelig Ekspoetial fordelig

Læs mere

Geometrisk nivellement. Landmålingens fejlteori - Lektion 7 - Repetition - Fejlforplantning ved geometrisk nivellement. Modellen.

Geometrisk nivellement. Landmålingens fejlteori - Lektion 7 - Repetition - Fejlforplantning ved geometrisk nivellement. Modellen. Landmålingen fejlteori Lektion 7 Repetition Fejlforplantning ved geometrik nivellement h t f t f t f t 4 f 4 t n f n - kkb@mathaaudk http://peoplemathaaudk/ kkb/undervining/lf Intitut for Matematike Fag

Læs mere

STATISTISKE GRUNDBEGREBER

STATISTISKE GRUNDBEGREBER MOGENS ODDERSHEDE LARSEN STATISTISKE GRUNDBEGREBER med avedelse af TI 89 og Excel 8 5 9 6 3 0 Histogram for ph 6,9 7, 7,3 7,5 7,7 7,9 ph. udgave 0 FORORD Der er i dee bog søgt at give letlæst og askuelig

Læs mere

Teoretisk Statistik, 9. februar Beskrivende statistik

Teoretisk Statistik, 9. februar Beskrivende statistik Uge 7 I Teoretisk Statistik, 9 februar 004 Beskrivede statistik Kategoriserede variable 3 Kvatitative variable 4 Fraktiler for ugrupperede observatioer 5 Fraktiler for grupperede observatioer 6 Beliggeheds-

Læs mere

Modul 14: Goodness-of-fit test og krydstabelanalyse

Modul 14: Goodness-of-fit test og krydstabelanalyse Forskigsehede for Statistik ST01: Elemetær Statistik Bet Jørgese Modul 14: Goodess-of-fit test og krydstabelaalyse 14.1 Idledig....................................... 1 14.2 χ 2 -test i e r c krydstabel.............................

Læs mere

Statistik Lektion 14 Simpel Lineær Regression. Simpel lineær regression Mindste kvadraters metode Kovarians og Korrelation

Statistik Lektion 14 Simpel Lineær Regression. Simpel lineær regression Mindste kvadraters metode Kovarians og Korrelation Statstk Lekto 4 Smpel Leær Regresso Smpel leær regresso Mdste kvadraters metode Kovaras og Korrelato Scatterplot Scatterplot kf Advertsg Epedtures ( ad Sales ( Et scatterplot vser par (, af observatoer.

Læs mere

STATISTIKNOTER Simple normalfordelingsmodeller

STATISTIKNOTER Simple normalfordelingsmodeller STATISTIKNOTER Simple ormalfordeligsmodeller Jørge Larse IMFUFA Roskilde Uiversitetsceter Februar 1999 IMFUFA, Roskilde Uiversitetsceter, Postboks 260, DK-4000 Roskilde. Jørge Larse: STATISTIKNOTER: Simple

Læs mere

Sandsynlighedsregning i biologi

Sandsynlighedsregning i biologi Om begrebet sadsylighed Sadsylighedsregig i biologi Hvis vi kaster e almidelig, symmetrisk terig, er det klart for de fleste af os, hvad vi meer, år vi siger, at sadsylighede for at få e femmer er 1/6.

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Dages program Kvatitative metoder De multiple regressiosmodel 6. februar 007 Emet for dee forelæsig er de multiple regressiosmodel (Wooldridge kap 3.- 3.+appedix E.) Defiitio og motivatio Fortolkig af

Læs mere

Den stokastiske variabel X angiver levetiden i timer for en elektrisk komponent. Tæthedsfunktionen for den stokastiske variabel er givet ved

Den stokastiske variabel X angiver levetiden i timer for en elektrisk komponent. Tæthedsfunktionen for den stokastiske variabel er givet ved STATISTIK Skrtlg evaluerg, 3. emeter, madag de 3. jauar 5 kl. 9.-3.. Alle hjælpemdler er tlladt. Opgaveløge orye med av og CPR-r. OPGAVE De tokatke varabel agver levetde tmer or e elektrk kompoet. Tætheduktoe

Læs mere

Simpel Lineær Regression - repetition

Simpel Lineær Regression - repetition Smpel Leær Regresso - repetto Spørgsmål: Afhæger leært af?. Model: β + β + ε ε d N(0, σ 0 ) Sstematsk kompoet + Stokastsk kompoet Estmato - repetto Vha. Mdste Kvadraters Metode fder v regressosle hvor

Læs mere

Økonometri 1. Definition og motivation. Definition og motivation. Dagens program. Den multiple regressionsmodel 15. februar 2006

Økonometri 1. Definition og motivation. Definition og motivation. Dagens program. Den multiple regressionsmodel 15. februar 2006 Dages program Økoometri De multiple regressiosmodel 5. februar 006 Emet for dee forelæsig er de multiple regressiosmodel (Wooldridge kap 3.-3.3+appedix E.-E.) Defiitio og motivatio Fortolkig af parametree

Læs mere

Teoretisk Statistik, 18. november Stikprøveteori: hvor er vi, og hvor skal vi hen? Proportional allokering Optimal allokering

Teoretisk Statistik, 18. november Stikprøveteori: hvor er vi, og hvor skal vi hen? Proportional allokering Optimal allokering Uge 47 I Teoretisk Statistik, 8. oveber 003 Stikprøveteori: hvor er vi, og hvor skal vi he? Proportioal allokerig Optial allokerig Heruder: Saeligig af variaser og ødvedige stikprøvestørrelser for de forskellige

Læs mere

Anvendt Statistik Lektion 5. Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele

Anvendt Statistik Lektion 5. Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele Anvendt Statistik Lektion 5 Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele Motiverende eksempel Antal minutter brugt på rengøring/madlavning: Rengøring/Madlavning

Læs mere

Repetition. Forårets højdepunkter

Repetition. Forårets højdepunkter Repetto Forårets højdepukter Forårets højdepukter Smpel Leær Regresso Smpel leær regresso: Mdste kvadraters metode Kovaras og Korrelato Scatterplot Scatterplot kf Advertsg Epedtures (X ad Sales (Y Et scatterplot

Læs mere

vejer (med fortegn). Det vil vi illustrere visuelt og geometrisk for (2 2)-matricer og (3 3)-matricer i enote 6.

vejer (med fortegn). Det vil vi illustrere visuelt og geometrisk for (2 2)-matricer og (3 3)-matricer i enote 6. enote 5 enote 5 Determiater I dee enote ser vi på kvadratiske matricer. Deres type er altså for 2, se enote 4. Det er e fordel, me ikke absolut ødvedigt, at kede determiatbegrebet for (2 2)-matricer på

Læs mere

Anvendt Statistik Lektion 5. Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele

Anvendt Statistik Lektion 5. Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele Anvendt Statistik Lektion 5 Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele Motiverende eksempel Antal minutter brugt på rengøring/madlavning: Rengøring/Madlavning

Læs mere

Mikroøkonomi, matematik og statistik Eksamenshjemmeopgave 14. 20. december 2007

Mikroøkonomi, matematik og statistik Eksamenshjemmeopgave 14. 20. december 2007 Mikroøkoomi, matematik og statistik Eksameshjemmeopgave 14. 20. december 2007 Helle Buzel, Tom Egsted og Michael H.J. Stæhr 14. december 2007 R E T N I N G S L I N I E R F O R E K S A M E N S H J E M M

Læs mere

Asymptotisk optimalitet af MLE

Asymptotisk optimalitet af MLE Kapitel 4 Asymptotisk optimalitet af MLE Lad Y 1, Y 2,... være uafhægige, idetisk fordelte variable med værdier i et rum (Y,K). Vi har givet e model (ν θ ) θ Θ for fordelige af Y 1 (og dermed også for

Læs mere

Noter om polynomier, Kirsten Rosenkilde, Marts Polynomier

Noter om polynomier, Kirsten Rosenkilde, Marts Polynomier Noter om polyomier, Kirste Rosekilde, Marts 2006 1 Polyomier Disse oter giver e kort itroduktio til polyomier, og de fleste sætiger æves ude bevis. Udervejs er der forholdsvis emme opgaver, mes der til

Læs mere

Sandsynlighedsteori 1.2 og 2 Uge 5.

Sandsynlighedsteori 1.2 og 2 Uge 5. Istitut for Matematiske Fag Aarhus Uiversitet De 27. jauar 25. Sadsylighedsteori.2 og 2 Uge 5. Forelæsiger: Geemgage af emere karakteristiske fuktioer og Mometproblemet afsluttes, og vi starter på afsittet

Læs mere

Supplerende noter II til MM04

Supplerende noter II til MM04 Supplerede oter II til MM4 N.J. Nielse 1 Uiform koverges af følger af fuktioer Vi starter med følgede defiitio: Defiitio 1.1 Lad S være e vilkårlig mægde og (X, d et metrisk rum. E følge (f af fuktioer

Læs mere

1. Undersøg om den nye astma-medicin har en signifikant virkning.

1. Undersøg om den nye astma-medicin har en signifikant virkning. Opgave 4.7 For a vurdere virkige af e y amamedici, er 10 paieer lugekapacie bleve mål før og behadlige med de ye medici og ige 3 uger ide i behadligperiode. Die reulaer e i edeåede abel: Lugekapacie Lugekapacie

Læs mere

Kapitel 10 KALIBRERING AF STRØMNINGSMODEL

Kapitel 10 KALIBRERING AF STRØMNINGSMODEL Kapitel 0 KALIBRERING AF STRØMNINGSMODEL Torbe Obel Soeborg Hydrologisk afdelig, GEUS Nøglebegreber: Kalibrerigsprotokol, observatiosdata, kalibrerigskriterier, idetificerbarhed, etydighed, parameterestimatio,

Læs mere

Introduktion til Statistik

Introduktion til Statistik Itroduktio til Statistik 4. udgave Susae Ditlevse og Helle Sørese Susae Ditlevse, susae@math.ku.dk Helle Sørese, helle@math.ku.dk Istitut for Matematiske Fag Købehavs Uiversitet Uiversitetsparke 5 2100

Læs mere

6 Populære fordelinger

6 Populære fordelinger 6 Populære fordeliger I apitel 4 itroducerede vi stoastise variabler so e åde at repræsetere udfald af et esperiet på. De stoastise variabler ue være både disrete (fx terigslag) og otiuerte (fx vareægder).

Læs mere

Formelskrivning i Word 2. Sådan kommer du i gang 4. Eksempel med skrivning af brøker 5. Brøker skrevet med småt 6. Hævet og sænket skrift 6

Formelskrivning i Word 2. Sådan kommer du i gang 4. Eksempel med skrivning af brøker 5. Brøker skrevet med småt 6. Hævet og sænket skrift 6 Dee udgave er til geemkig på ettet. Boge ka købes for kr. 5 hos EH-Mat. E y og udvidet udgave med title»symbol- og formelskrivig«er udkommet september 00. Se mere om de her. Idholdsfortegelse Formelskrivig

Læs mere

Hvis α vælges meget lavt, bliver β meget stor. Typisk vælges α = 0.01 eller 0.05

Hvis α vælges meget lavt, bliver β meget stor. Typisk vælges α = 0.01 eller 0.05 Statistik 7. gang 9. HYPOTESE TEST Hypotesetest ved 6 trins raket! : Trin : Formuler hypotese Spørgsmål der ønskes testet vha. data H : Nul hypotese Formuleres som en ligheds hændelse H eller H A : Alternativ

Læs mere

Spørgsmål 3 (5 %) Bestem sandsynligheden for at et tilfældigt valgt vindue har en fejl ved listerne, når man ved at der er fejl i glasset.

Spørgsmål 3 (5 %) Bestem sandsynligheden for at et tilfældigt valgt vindue har en fejl ved listerne, når man ved at der er fejl i glasset. STATISTIK Skriftlig evaluerig, 3. semester, madag de 30. auar 006 kl. 9.00-3.00. Alle hælpemidler er tilladt. Opgaveløsige forsyes med av og CPR-r. OPGAVE Ved e produktio af viduer er der mulighed for,

Læs mere

Induktionsbevis og sum af række side 1/7

Induktionsbevis og sum af række side 1/7 Iduktosbevs og sum af række sde /7 Skrver ma,,,...,,..., =, 2, 3,... 2 3 taler ma om e talfølge, eller blot e følge. Adre eksempler på følger er, -,, -,, -,..., (-) +,..., =, 2, 3,..., 2, 3, 4,...,,...,

Læs mere

Analyse af bivariate data: korrelation og regression. korrelation. Korrelation og regression: Co-varians:

Analyse af bivariate data: korrelation og regression. korrelation. Korrelation og regression: Co-varians: ,,,,,,,,,, Stattk for bologer -, modul og : Korrelato og regreo: Aale af bvarate data: korrelato og regreo Korrelato: llutrerer v.h.a. e koeffcet hvlke grad to varable er dbrde afhægge: - (perfekt egatv

Læs mere

Sandsynlighedsregning 9. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 9. forelæsning Bo Friis Nielsen Dages eer afsit 5.3 og 5.4 Siultae kotiuerte fordeliger P(X dx,y dy = f(x,ydxdy Sadsylighedsregig 9. forelæsig Bo Friis Nielse Mateatik og Coputer Sciece Daarks Tekiske Uiversitet 8 Kgs. Lygby Daark Eail:

Læs mere

Gamle eksamensopgaver. Diskret Matematik med Anvendelser (DM72) & Diskrete Strukturer(DM504)

Gamle eksamensopgaver. Diskret Matematik med Anvendelser (DM72) & Diskrete Strukturer(DM504) Gamle eksamesopgaver Diskret Matematik med Avedelser (DM72) & Diskrete Strukturer(DM504) Istitut for Matematik& Datalogi Syddask Uiversitet, Odese Alle sædvalige hjælpemidler(lærebøger, otater etc.), samt

Læs mere

Eksempel: PEFR. Epidemiologi og biostatistik. Uge 1, tirsdag. Erik Parner, Institut for Biostatistik.

Eksempel: PEFR. Epidemiologi og biostatistik. Uge 1, tirsdag. Erik Parner, Institut for Biostatistik. Epdemolog og bostatstk. Uge, trsdag. Erk Parer, Isttut for Bostatstk. Geerelt om statstk Dataaalyse - Deskrptv statstk - Statstsk feres Sammelgg af to grupper med kotuerte data - Geemst og spredg - Parametre

Læs mere

Vejledende opgavebesvarelser

Vejledende opgavebesvarelser Vejledede opgavebesvarelser 1. Atal hæder er lig med K(52,5), altså 2598960. Ved brug af multiplikatiospricippet ka atal hæder med 3 ruder og 2 spar udreges som K(13, 3) K(13, 2), hvilket giver 22308.

Læs mere

Geometrisk Optik. Teori og forsøg

Geometrisk Optik. Teori og forsøg Geometrik Optik Teori og orøg Køge Gmaium 004-005 Ole Witt-Hae Idold Kap. Geometrik Optik.... Strålegage i toer.... relekio i et plat pejl... 3. elekio i et kokavt ulpejl... 4. elekio i et kovekt ulpejl...6

Læs mere

STATISTISKE GRUNDBEGREBER

STATISTISKE GRUNDBEGREBER MOGENS ODDERSHEDE LARSEN STATISTISKE GRUNDBEGREBER 18 15 1 9 6 3 0 Histogram for ph 6,9 7,1 7,3 7,5 7,7 7,9 ph 17. udgave 016 FORORD Der er i dee bog søgt at give letlæst og askuelig fremstillig af de

Læs mere

Noter om kombinatorik, Kirsten Rosenkilde, februar 2008 1. Kombinatorik

Noter om kombinatorik, Kirsten Rosenkilde, februar 2008 1. Kombinatorik Noter om ombiatori, Kirste Roseilde, februar 008 Kombiatori Disse oter er e itrodutio til ombiatori og starter helt fra bude, så e del af det idledede er siert edt for dig allerede, me der ommer også hurtigt

Læs mere

Fag: Fysik - Matematik - IT Elever: Andreas Bergström, Mads Paludan, Jakob Poulsgærd & Mathias Elmhauge Petersen. Det skrå kast

Fag: Fysik - Matematik - IT Elever: Andreas Bergström, Mads Paludan, Jakob Poulsgærd & Mathias Elmhauge Petersen. Det skrå kast Det krå kat Data Forøg 1: = 38 V 0 = 4, 94 K vidde = 2, 058 H = 0, 406 t = 0, 53 Forøg 2 (60 ): = 60 V 0 = 4, 48 K vidde = 1, 724 H = 0, 788 t = 0, 77 Fyik del Udførel af forøg Kat på 38 : Forøgoptilling:

Læs mere

Program: 1. Repetition: fordeling af observatorer X, S 2 og t. 2. Konfidens-intervaller, hypotese test, type I og type II fejl, styrke.

Program: 1. Repetition: fordeling af observatorer X, S 2 og t. 2. Konfidens-intervaller, hypotese test, type I og type II fejl, styrke. Program: 1. Repetition: fordeling af observatorer X, S 2 og t. 2. Konfidens-intervaller, hypotese test, type I og type II fejl, styrke. 1/23 Opsummering af fordelinger X 1. Kendt σ: Z = X µ σ/ n N(0,1)

Læs mere

Sandsynlighedsregning

Sandsynlighedsregning Sadsylighedsregig E ote om sadsylighedsregig. Via basal sadsylighedsregig gøres læsere klar til forstå biomialfordelige. Herik S. Hase, Sct. Kud Versio 5.0 Opgaver til hæftet ka hetes her. PDF Facit til

Læs mere

Hjemmeopgave 1 Makroøkonomi, 1. årsprøve, foråret 2005 Vejledende besvarelse

Hjemmeopgave 1 Makroøkonomi, 1. årsprøve, foråret 2005 Vejledende besvarelse Hjemmeopgave Makroøkonomi,. årprøve, foråret 2005 Vejledende bevarele Opgave. Korrekt. Arbejdtyrken er en beholdning- (tock) variabel, idet man på et givet tidpunkt (fx. jan) kan tælle, hvor mange der

Læs mere

GENEREL INTRODUKTION.

GENEREL INTRODUKTION. Study Guide til Matematik C. OVERSIGT. Dee study guide ideholder følgede afsit - Geerel itroduktio. - Emeliste. - Eksame. - Bilag. Udervisigsmiisteriets bekedtgørelse for matematik C. GENEREL INTRODUKTION.

Læs mere

Matematisk Modellering 1 Hjælpeark

Matematisk Modellering 1 Hjælpeark Matematisk Modellerig Hjælpeark Kaare B. Mikkelse 2005090 3. september 2007 Idhold Formler 2 2 Aalyse af k ormalfordelte prøver 2 2. Modelcheck............................................ 2 2.2 Test af

Læs mere

STATISTISKE GRUNDBEGREBER

STATISTISKE GRUNDBEGREBER MOGENS ODDERSHEDE LARSEN STATISTISKE GRUNDBEGREBER 18 15 1 9 6 3 0 Histogram for ph 6,9 7,1 7,3 7,5 7,7 7,9 ph 14 udgave 014 FORORD Der er i dee bog søgt at give letlæst og askuelig fremstillig af de statistiske

Læs mere

Skitse til notat om hvor de forskellige sandsynlighedsfordelinger kan tænkes at komme fra

Skitse til notat om hvor de forskellige sandsynlighedsfordelinger kan tænkes at komme fra E6 efterår 1999 Notat 8 Jørge Larse 12. oktober 1999 Skitse til otat om hvor de forskellige sadsylighedsfordeliger ka tækes at komme fra I statistik opererer ma i vid udstrækig med et lille atal»stadardfordeliger«.

Læs mere

Projekt 2.3 Det gyldne snit og Fibonaccitallene

Projekt 2.3 Det gyldne snit og Fibonaccitallene Projekter: Kapitel Projekt.3 Det glde sit og Fiboaccitallee Forslag til hvorda klasses arbejde med projektet ka tilrettelægges: Forløbet:. Præsetatio af emet med vægt på det glde sit.. Grppere arbejder

Læs mere

Hvordan hjælper trøster vi hinanden, når livet er svært?

Hvordan hjælper trøster vi hinanden, når livet er svært? Hvorda hjælper trøster vi hiade, år livet er svært? - at være magtesløs med de magtesløse Dask Myelomatoseforeig Temadag, Hotel Scadic, Aalborg Lørdag de 2. april 2016 kl. 14.00-15.30 Ole Raakjær, præst

Læs mere

BILAG I PRODUKTRESUME

BILAG I PRODUKTRESUME BILAG I PRODUKTRESUME 1 1. LÆGEMIDLETS NAVN Nimerix pulver og solves til ijektiosvæske, opløsig i fyldt ijektiossprøjte Meigokokgruppe A, C, W-135 og Y kojugeret vaccie 2. KVALITATIV OG KVANTITATIV SAMMENSÆTNING

Læs mere

og Fermats lille sætning

og Fermats lille sætning Projekter: Kaitel 0. Projekt 0. Modulo-regig, restklassegruer og Fermats lille sætig Projekt 0. Modulo-regig, restklassegruere ( { 0 }, ) og Fermats lille sætig Vi aveder moduloregig og restklasser mage

Læs mere