Finanskalkulationer Side 1/19 Steen Toft Jørgensen. Finanskalkulationer. avanceret rentesregning. matematiske modeller i økonomi

Størrelse: px
Starte visningen fra side:

Download "Finanskalkulationer Side 1/19 Steen Toft Jørgensen. Finanskalkulationer. avanceret rentesregning. matematiske modeller i økonomi"

Transkript

1 Faskalkulatoe Sde /9 Stee Toft Jøgese Faskalkulatoe avaceet etesegg matematske modelle økoom Idholdsfotegelse: Kaptel : Rete Retebegebet Omkostge Retefomle Effektv ete Kotuet foetg Tdsdagam Flytg af kaptal td Kaptel 2: Låtype Faselle udtyk Autetslå Uamotsabelt lå Fast lå Seelå Mxlå Afdagsfe lå Kaptel 3: Effektv ete & kusvæd Retebegebet (mee dgåede Kusvæd Autetslå Fast lå

2 Faskalkulatoe Sde 2/9 Stee Toft Jøgese Kap. : RENTE Retebegebet: Udlåes pege af e lågve tl e låtage, skal de betales mee tlbage ed ma faktsk låe. Foskelle kaldes ete. De ete, e lågve folage, skal dække følgede: flato, dvs. vædfogelse af pegee tabssko, hvs låtagee gå fallt, og kke ka betale gælde tlbage. poft, dvs. fotjeeste skat, det etee jo beskattes hos lågvee Lågvee ka placee se pege passvt på e bakkoto, og demed opå e ete ude eel tabssko. Defo vl ete på et ydet lå altd væe støe ed bakees dlåsete. Omkostge: Et lå e altd behæftet med omkostge, som skal dække udgftee ved opettelse (td tl ekspedto, og statsafgft ved tglysg af gælde samt de løbede udgfte tl admstato (kotol af betalge, dbeetge osv.. Det e mulgt at få dækg hefo på flee måde: stftelsespovso elle opettelsesgeby, som e e egagsudgft løbede admstatosgeby, avedes ved kassekedt bak, elle ved kedtfoegslå højee ete lavee kus (NB: omalt e kusgevste skattefe Retefomle: Som bekedt ske foetge af e kaptal efte de såkaldte etefomel. De e tale om ét beløb, som dsættes bake, og kaptale foetes teme. RENTEFORMLEN: K = statkaptal K = slutkaptal = atal teme = etefod p. tem K = K ( + Effektv ete: Nå e bak opgve de omelle ete tl 2 % p.a. med kvatalsvs tlskvg, betyde det at bake tlskve 2% 3% 4 = ete 4 gage ålgt. He e e tem altså å. De ålge ektve 4 ete udtykke de ete, ma faktsk skal betale, hvs de ku e é ålg etetlskvg:

3 Faskalkulatoe Sde 3/9 Stee Toft Jøgese 4 4 ( + 3% =, 03 =, dvs. =, = 0,255088! 2,6% EFFEKTIV RENTE: = ektv etefod om = omel etefod = atal teme om = + Kotuet foetg: Hvad ske de egetlg, hvs ma kaftgt øge atallet af teme defo et fastsat tdsum? F.eks. kue ma foestlle sg at ophæve e bakbog hve dag, og staks opette e y - fo heved at femtvge e etebeegg! NB: bakee fohde dette ved bug af begebet valødato, som e de dato, hvofa de ske etebeegg. Nå ma dsætte pege på bakboge, e valødatoe som egel æste hvedag. V øske altså, at udesøge fomle fo ektv foetg, å blve meget sto. V skal altså fde gæsevæde af + fo. Tcket e at tage logatme føst: l + l + l + l( l + = l + = = = l ( = = Ved gæseovegage e avedt deftoe af dffeetalkvotete fo de atulge logatmefukto. Hemed fås: l + + e Dvs. de ektve ete ved kotuet foetg e: = e t t + = + = e Lgeledes gælde: ( e t Retefomle ved kotuet foetg lyde defo (det t e tde å, og e etefode p.a.: t Kt ( = K e Kaptale vokse således ekspoetelt. Fomle avedes hyppgt vdeegåede økoom, det det e lagt lettee at abejde med dee fomel. Summatoe ove td ka så estattes med tegale! t Eksempel.: Gvet: = 4% p.a. og = 365. om

4 Faskalkulatoe Sde 4/9 Stee Toft Jøgese + = = 0,04 0,04 + = + = 0, e = e = 365 0,04 0, Altså opås de ca. 4,08% p.a. ved kotuet foetg. Tdsdagam: Fo at llustee d- og udbetalg på lå vl v tege tdsdagamme, dvs. dagamme med temsummeet ud af. akse, og ogle "pde" opad (hvs dbetalg/dtægt elle edad (hvs udbetalg/udgft. Dagammee ka laves på 2 måde; ete ses de fa låtages elle fa lågves sde. Dagammee vl væe spejlbllede af hade. akse! Eksempel.2: Gvet et lå, de udbetales med.000 k. staks og.000 k. ydelgee om 2 måede. Det tlbagebetales med k. om 5 måede. He e e tem således é måed.

5 Faskalkulatoe Sde 5/9 Stee Toft Jøgese Flytg af kaptal td: Pga. foetge af e kaptal e kaptales væd afhægg af de tdslge placeg..000 k. dag svae (med 2 % ete tl.20 k. om é tem,.254,40 k. om to teme 2 (.000,2 osv. Tlsvaede e.000 k. dag ækvvalet med 892,86 k. fo é tem sde (.000,2. Populæt sagt e.000 k. dag mee væd ed.000 k. moge! Ifølge etefomle ka ma altså flytte e kaptal på tdsdagammet efte følgede egle: gage med ( + ved flytg teme femad dvdee med ( + ved flytg teme bagud, dvs. gage med ( + De flyttede kaptal beteges kaptalvæde ( KV tl teme. Hvs = 0 kaldes kaptalvæde også fo utdsvæde ( NV. E kaptal, som modtages om e vs td, e altså mde væd ed kaptales faktske pålydede (åsage e jo flatoe, som dgå foetge. Tlsvaede vl alle meeske udsætte e betalg tl sdste øjeblk ("gats kedt" elle "lkvdtetslettelse"; hvs ma betale fø tde mste ma jo ete af pegee, som kue stå på e bakkoto. Bakees Betalgssevce udmøte dee de pakss. Eksempel.3: Gvet: Kaptal = K = k. Tem = = 3 (å Retefod = = 9 % (p.a. Kaptalvæd å 0 = KV (5.000 = Nutdsvæd = 3 0 NV = 5.000,09 = 3.860,92 k. Kaptalvæd å 0 = KV 7 0 (5.000 = 5.000,09 = 9.40, 20 k. Det betyde, at hvs ma dsætte 3.860,92 k. bake u tl 9 % p.a., vl pegee vokse tl k. om 3 å.

6 Faskalkulatoe Sde 6/9 Stee Toft Jøgese Kap. 2: LÅNTYPER Faselle udtyk: Ved behadlg af et lå avede ma vsse faselle udtyk, som vl blve foklaet he: Hovedstol ( H betyde blot låets støelse (statgæld. Restgæld (G e de aktuelle gæld. Gælde e tl stat = hovedstole, og tl slut = 0. Ydelse (Y dække det samlede beløb, ma betale p. tem; det gå tl afdag og ete. Ydelse = Afdag + Retebeløb Afdag ( A betyde det beløb, ma betale af på gælde. Summe af alle afdagee e etop hovedstole. Retebeløb ( R udtykke betalge fo at have gælde. Beeges ud fa estgælde og etefode. Tem udtykke peode, hvo betalge ske. Løbetd ( e atal gage, de skal betales af på gælde. Retefod ( e de ete %, de skal buges ved beegg af etebeløbet. LÅN (geeelt: H = hovedstol = løbetd = etefod Y = ydelse tl tem. A = afdag tl tem. R = etebeløb tl tem. G = estgæld tl tem. (efte 'te afdag G0 = H og G = 0 Fo =, 2,..., gælde: G = G A R = G Y = A + R A + A + + A = H 2 Autetslå: Et autetslå e kaakteseet ved, at ydelse p. tem e kostat. Ydelse kaldes så blot Y, og fofalde med samme mellemum (e tem. Autetslåets tlbagebetalg state almdelgvs tem efte gældsstftelse. V betagte dette afst e såda type:

7 Faskalkulatoe Sde 7/9 Stee Toft Jøgese Fo at fde sammehæge mellem støelsee et autetslå opstlles e balacelgg. Da gælde stftes "å 0", må v have følgede: Hovedstole = Kaptalvæde å 0 (utdsvæd af samtlge ydelse dvs. H = KV0( Y+ Y2 + + Y = På TI-89 dtastes: ( (+^(-,,, KV0( Y + KV0( Y2 + + KV0( Y = Det gve: ( + KV0( Y + KV0( Y + + KV0( Y = 2 Y ( + + Y ( Y ( + = som let educees tl: ( + 2 Y ( + + ( ( + ( Paetese e e kvotetække med kvotete q= ( + og. led = Y ( +. Summe e: (( + ( + H = Y ( + = Y = Y a(, ( + NB: a (, udtykke kaptalvæde å 0 (utdsvæde af e autet på k. ANNUITETSLÅN (alm.: H = hovedstol = løbetd Y = ydelse (kostat = etefod H = Y a(, Y = H a(, ( + hvo a (, = og a (, = ( + Restgælde, etebeløbet og afdaget beeges med de geeelle fomle, som e agvet state af kaptel 2. Øske v tlsvaede kaptalvæde å (slutvæde af e autet på k. skal v avede etefomle: ( + ( + ( + ( + ( + s (, = a (, ( + = ( + = = Dette e fomle fo opspagsautet, hvo ma ka beege væde tl slut (jf. pesosopspag.

8 Faskalkulatoe Sde 8/9 Stee Toft Jøgese Opspae ma Y k. hve tem, ha ma staks efte teme alt: ( + Y s(, = Y Eksempel 2.: Gvet e autet Ydelse = Y =.000 k. Løbetd = = 20 å Retefod = = 9% p.a. 20 ( +,09 Hovedstole beeges: H = Y a(, = Y =.000 = 9.28,55 k. 0,09 Fo at få et oveblk ove temsbetalgees opdelg etebeløb og afdag vl v femstlle e såkaldt amotsatostabel ('amotsee' vl sge at tlbagebetale gælde. Tabelle vl fo hve tem umme: ydelse, etebeløb, afdag og estgæld. Beegge ske mod høje og edad, som sædvalgt. Retebeløbet ka jo fatækkes skat, defo e dets pæcse støelse vgtg. Alle støelse e he fø skat (også kaldet buttostøelse. Eksempel 2.2: Gvet e autet Hovedstol = H = k. Løbetd = = 5 Retefod = = 0% Autetes ydelse = Y H a 0,0 (, = = = , 75. 5,0 k Restgæld = G 0 = H = k. Retebeløb = R = G0 = 0, = k. Afdag = A = Y R = Y R = , = 6.379, 75 k. Restgæld = G = G0 A = , 75 = , 25 k. osv. ANNUITETSLÅN AMORTISATIONSTABEL Tem. ( Ydelse ( Y Retebeløb ( R Afdag ( A Restgæld ( G [efte afdag] , , , , , , , , , , , , , , , , , , , ,59-0,0

9 Faskalkulatoe Sde 9/9 Stee Toft Jøgese At estgælde tl slut ( G 5 kke blve pæcst 0 skyldes afudge. Uamotsabelt lå: At amotsee et lå betyde "at afbetale på gælde". Defo e et uamotsabelt lå et lå, som kke afdages - de betales alee ete, kke afdag. Retebetalge fotsætte så tl evg td. Låtype avedes sjældet - me buges pakts tl vsse lå tl ulade, hvo ma kke 'fovete' oge tlbagebetalg. Y Y Ydelse Y = H H = KV0 = KV0 = Y Dee fomel ka også udledes fa autetslå-fomle. Idet v lade fås: ( + ( + 0 H = Y a(, = Y = Y Y = Y fod ( + da ( + >. UAMORTISABELT LÅN: H = hovedstol Y = ydelse (kostat G = estgæld (kostat R = etebeløb (kostat A = afdag (tet = etefod A = 0 R = H Y = H G = H Eksempel 2.3: Hvad e egetlg købekafte dag af at modtage.000 k. hvet å tl evg td, å flatoe fovetes at væe på 4% p.a.? Svaet e utdsvæde af et uamotsabelt lå, hvo etebetalge e 000 k. hvet å, og etefode e 4% p.a.!

10 Faskalkulatoe Sde 0/9 Stee Toft Jøgese Y.000 Væde e så: H = = = k. 0,04 Ma ka altså lge så godt modtage k. é gag fo alle! Eksempel 2.4: Gvet et uamotsabelt lå Hovedstol = H = k. Retefod = = 0% Retebeløbet = R = Ydelse = Y = H = 0, = k. Restgælde G = H = k. UAMORTISABELT LÅN Tem. ( Retebeløb ( R Afdag ( A AMORTISATIONSTABEL Ydelse ( Y Restgæld ( G [efte afdag] , , , , , , , , , , , , , Bemæk, at estgælde tl evg td e = H = hovedstole. Fast lå: Et fast lå e e låtype, hvo de alee betales ete hve tem, og tet afdag. Ydelse = etebeløb hele låets løbetd. Gælde (hovedstole betales så på é gag tl sdst - ma sge at "est-gælde fofalde tl betalg".

11 Faskalkulatoe Sde /9 Stee Toft Jøgese I hve tem betales etebeløbet H (gælde e jo kostat, dvs. Y = H. Me de sdste tem betales også afdaget H (hele gælde, dvs. Y = H + H. FAST LÅN: H = hovedstol = løbetd = etefod R = etebeløb (kostat A = afdag tl tem. Y = ydelse tl tem. G = estgæld tl tem. R = H A = = A = 0 og A = H Y = = Y = H og Y = H + H G = = G = H og G = 0 0 Eksempel 2.5: Gvet et fast lå Hovedstol = H = k. Løbetd = 5 Retefod = = 0 % Retebeløbet = R = H = 0, = k. Sdste tem e ydelse Y5 = H + H = = k. FAST LÅN AMORTISATIONSTABEL Tem. ( Retebeløb ( R Afdag ( A Ydelse ( Y Restgæld ( G [efte afdag] , , , , , , , , , , , , , , , ,00 0,00 Seelå: Et seelå e kaakteseet ved, at afdaget p. tem e kostat. Demod vl etebeløbet og ydelse aftage - lået e 'hådt' state, og blve lettee med tde.

12 Faskalkulatoe Sde 2/9 Stee Toft Jøgese Da gælde skal betales tlbage ove teme (løbetde, og afdaget e kostat, ka ma fde afdaget således: Hovedstol H Afdag = A = = Løbetd Retebeløbet, ydelse og estgælde fdes med de geeelle fomle (kaptel 2, state: Retebeløb = R = G Ydelse = Y = A+ R Restgæld = G0 = H og G = G A SERIELÅN: H = hovedstol = løbetd = etefod A = afdag (kostat R = etebeløb tl tem. Y = ydelse tl tem. G = estgæld tl tem. H A = R = G Y = A+ R G = H og G = G A 0 Eksempel 2.6: Gvet et seelå: Hovedstol = H = k. Løbetd = 5 Retefod = = 0 % H Afdaget = A = = = k. 5 Retebeløbet = R = G0 = 0, = k. Ydelse = Y = A+ R = = k. SERIELÅN AMORTISATIONSTABEL Tem. ( Afdag (A Retebeløb ( R Ydelse ( Y Restgæld ( G [efte afdag]

13 Faskalkulatoe Sde 3/9 Stee Toft Jøgese , , , , , , , , , , , , , , , , , , , ,00 0,00 Mxlå: Et mxlå e kaakteseet ved, at bestå at é del autetslå og é del seelå. E typsk fodelg e 60/40; dvs. 60 % af hovedstole amotsees som et autetslå, og 40 % af hovedstole amotsees som et seelå. Mxlå blev dføt slutge af 980 ee ('katoffel-kue'. Fomålet va at søge fo, at ettoydelse på huslået foblev kostat med tde. Mxlå va ftaget fo staf-eteafgft, mes de omalt bugte autetslå va belagt med staf-eteafgft. Dsse elemete af det poltske folg kaldet 'katoffel-kue' e u ophævet. Afdagsft lå: I begydelse af det ye åtusde ha ma dføt såkaldte afdagsfe lå. Det e pcppet et uamotsabelt lå e vs peode, eftefulgt af et alm. autetslå. Eksempel 2.7: Gvet: Hovedstol = H = k. Afdagsf peode = 0 å Løbetd ( alt = 30 å Retefod = = 6 % p.a. He betales e ydelse = etebeløb = H = 0, = k. hvet å de føste 0 å. Deefte betales e ydelse på: 0,06 Y = H a(, = H = = 87.84,56 k. hvet å de sdste 20 å. 20 ( +,06 I alt betale ma 2,344 mo. k. Hvs ma havde valgt et alm. autetslå ove 30 å, skulle de betales ,9 k. hvet å 30 å. På de måde vlle ma alt betale 2,79 mo. k. Ved buttoydelse fostås de faktske ydelse koe - det beløb, ma skal betale tl lågvee hve tem. Nettoydelse e de ydelse, ma eelt selv skal elægge - det etebeløbet gve fadag skatte. Skattevæseet betale således ca. halvdele af etebeløbet. buttoydelse = ydelse = afdag + etebeløb ettoydelse! afdag + 50 % af etebeløb

14 Faskalkulatoe Sde 4/9 Stee Toft Jøgese Kap. 3: EFFEKTIV RENTE & KURSVÆRDI Retebegebet (mee dgåede: Eksempel 3.: Gvet et lå på 000 k. u, og e tlbagebetalg af det dobbelte om 4 å! V øske at fde etefode. Hetl ka ma atulgvs avede etefomle, me v vl mdletd opstlle følgede balacelgg (som udtykke kaptalvæde å 0: KV0( dtægte = KV0( udgfte KV0(.000 = KV0( = ( + Lgge løses umesk med Solve-fuktoe på TI-89 (husk: > 0. Det gve: = dvs.! 8,9% Eksempel 3.2 Lå 000 k. u og om ét å, og betal 3000 k. om 4 å. Balacelgg opstlles (f.eks. kaptalvæd å 4:

15 Faskalkulatoe Sde 5/9 Stee Toft Jøgese KV ( dtægte = KV ( udgfte KV ( KV (.000 = KV ( ( ( + = Lgge løses umesk med Solve-fuktoe på TI-89 (husk: > 0. Det gve: = 0,2229 dvs.! 2, 2% Eksempel 3.3: Lad os se på et mee utadtoelt låeaagemet: Betal 00 k. u, få 230 k. om ét å, og betal 32 k. om to å! F.eks. gve Søe 00 k. tl Pete staks, og Pete gve Søe 230 k. om ét å, og tl sdst om 2 å gve Søe Pete 32 k.! Hvs v se bot fa ete, så vl Søe tabe på aagemetet: Søe ha udgfte på = 232 k. og dtægte på 230 k. Det spædede e, hvo sto e etefod de egetlg e tale om, hvs begge pate skal væe tlfedse? V opstlle balacelgge (kaptalvæde å 0: KV0( dtægte = KV0( udgfte KV0(00 + KV0(32 = KV0( ( + = 230 ( + Lgge løses umesk med Solve-fuktoe på TI-89 (husk: > 0. Det gve: = 0,0 = 0, 20 dvs. etefode e ete 0 % elle 20 %! De e således kke e etydg løsg! NB: Ma ka bevse, at de eksstee e etydg etefod, hvs de e tale om et almdelgt lå: ét beløb udbetales å 0, og de betales (et støe beløb tlbage åee heefte. Kusvæd: Et lå tlbydes ofte ved udstedelse af oblgatoe; f.eks. udstede kedtfoege oblgatoe, å et hus belåes. Oblgatoee sælges på bøse tl højestbydede. Hvs e oblgato med e pålydede væd af 00 k. sælges tl 93 k., sge v at kuse e 93 - mee pæcs at kusvæde e 0,93. Låtagee modtage altså ku 93 k., me skal betale ete og afdag af de 00 k.! E kusvæd ude,00 svae således tl e slags opettelsesgeby. Kus 00 beæves også pa.

16 Faskalkulatoe Sde 6/9 Stee Toft Jøgese Dee kusvæd vl v omege tl e ektv etefod, som jo blve støe ed de gve etefod, å kuse e ude pa. Væ opmæksom på, at de støe ektve etefod kke gve støe skattefadag. Kustabet e således sædeles dyt fo låtagee. Kusgevste hos oblgatoskøbee e omalt skattef, og defo eftetagtet. Modelle fo bestemmelse af de ektve etefod e: Alle beløb (afdag, etebeløb, geby, udbetalge osv. dgå flytge på tdsakse (kaptalvæd tl samme å. Resultatet af beeggee udtykkes de ektve etefod. Autetslå: Atag at v ege på et alm. autetslå med e gve kusvæd k. Ydelsee e kostate, og utdsvæde af ydelsee skal væe det faktsk udbetalte lå (kusvæd gage hovedstol. V opstlle e balace-lgg (kaptalvæd å 0: k H = Y a(, det k H e det faktske udbetalte beløb ( k H = H a(, a(, følge de alm. autetsfomel = (, (, det H ka fokotes væk k a a NB: De ektve etefod blve altså uafhægg af hovedstole! ANNUITETSLÅN (alm.: k = kusvæd = løbetd = etefod = ektve etefod a (, = k a (, Eksempel 3.4: Gvet et alm. autetslå: Kusvæd = k = 0,90 (populæt: "kus 90" Løbetd = = 30 å Retefod = = 0 % p.a. V øske at fde, og avede oveståede fomel: ( ,0 a (, = k a (, = 0,90 0,0 Ved bug af Gaftegg + Skægspukt på TI-89 få v e ektv etefod på: = 0,335!,3% p.a. NB: Solve-fuktoe svgte he. TI-89 blve aldg fædg! Eksempel 3.5: Gvet et alm. autetslå med helålg etetlskvg.

17 Faskalkulatoe Sde 7/9 Stee Toft Jøgese Hvlke kus skal e vesto gve fo e 9 % oblgato med e løbetd på 20 å, å ma øske % foetg af pegee? Svaet fdes ved bug af oveståede fomel: a (, k a (, k a (, a (, = = ,, 09 ( +, 0,09 k = = k = 0, ( Altså skal vestoe byde max. kus 87,2 fo 9 % oblgatoe. Fastlå: Tl bestemmelse af de ektve etefod opstlles balacelgge (kaptalvæd å 0: udbetalt lå = KV 0 (autete beståede af ydelse H + KV 0 (de fofalde gæld H å # k H = ( H a(, + H ( + k = a(, + ( + det H ka fokotes væk. FAST LÅN: k = kusvæd = løbetd = etefod = ektve etefod k = a(, + ( + Eksempel 3.6: Gvet et fast lå: Kusvæd = k = 0,93 (populæt: "kus 93" Løbetd = = 0 å Retefod = = 2 % p.a. Svaet fdes ved bug af oveståede fomel: 0 ( + 0 k = a(, + ( + 0,93 = 0,2 + ( + Ved bug af Gaftegg + Skægspukt på TI-89 få v e ektv etefod på: = 0,33058! 3,3% p.a. NB: Solve-fuktoe svgte he. TI-89 blve aldg fædg!

18 Faskalkulatoe Sde 8/9 Stee Toft Jøgese OPGAVER Opgave : (ektv ete Bestem de ektve etefod fo et bllå på 4 % p.a. omelt, hvo etetlskvge e kvatalsvs. Opgave 2: (tdsdagam Teg et tdsdagam med følgede beløb: dbetalg af k.. og 4. tem, udbetalg af.500 k. 2. og 6. tem. Opgave 3: (kaptalvæd Beeg kaptalvæde å 0 fo e kaptal på k. placeet å 2, det ete sættes tl 8 % p.a. Tlsvaede fo KV å 3, å 7 og å 5. Opgave 4: (autetslå Gvet et autetslå med e løbetd på 20 å og helålg etetlskvg. Hovedstole e k., og de ålge ydelse e k. Beeg etefode. Opgave 5: (ektv ete Fd de ektve etefod ved følgede låeaagemet: k. låes, og de tlbagebetales k. om 2 å. Opgave 6: (ektv ete Fd de ektve etefod ved følgede låeaagemet: k. låes, og de tlbagebetales k. om 2 å og k. om 3 å. Opgave 7: (ektv ete Beeg de ektve etefod ved følgede låeaagemet: k. låes ålgt (å 0,, 2, 3 og de tlbagebetales k. ålgt (å 4, 5, 6. Et lå af dee type llustee et SU-lå.

19 Faskalkulatoe Sde 9/9 Stee Toft Jøgese Opgave 8: (kus Bestem kuse på et oblgatoslå (autetstype ove 30 å, å etefode e 0 % p.a. med e ektv etefod på 2 % p.a. Opgave 9: (udskudt tlbagebetalg Et % autetslå lyde på k. ove 20 å. Låtagee få de k. staks, me e føst stad tl at tlbagebetale fa å 2, det hu lge skal fædggøe s uddaelse. a (samme sluttdspukt, mde atal teme Atag at tlbagebetalge ske som et autetslå å 2, 3, 4,..., 9, 20. Beeg de ålge ydelse. b (udskudt sluttdspukt, fastholdt atal teme Atag at tlbagebetalge ske som et autetslå å 2, 3, 4,..., 9, 20, 2. Beeg de ålge ydelse. Opgave 0: (huslå Gvet et alm. autetslå på k. tl % p.a.. Beeg. ås buttoydelse, å belåge ske ove 20 hhv. 30 å. Opgave : (afdagsft lå Beeg de ektve ete fo det afdagsfe lå, som e beskevet eksempel 2.7 sde 3. Altså hvo de e 0 å ude afdag på lået, og deefte e tlbagebetalg som e autet ove 20 å.

Januar2003/ AM Rentesregning - LÅN & OPSPARING 1/8. Aftager med...% Gange med (1...%) r:=...% Før aftager med...% og bliver til Efter, dvs.

Januar2003/ AM Rentesregning - LÅN & OPSPARING 1/8. Aftager med...% Gange med (1...%) r:=...% Før aftager med...% og bliver til Efter, dvs. Jaua2003/ AM Retesegig - LÅN & OPSPARING 1/8 PROCENT Po cet betyde p. 100" altså hudededele p% = p 100 Decimaltal Ved omskivig fa pocet til decimaltal flyttes kommaet to pladse mod veste 5%=0,05 0,1%=0,001

Læs mere

Med disse betegnelser gælder følgende formel for en annuitetsopsparing:

Med disse betegnelser gælder følgende formel for en annuitetsopsparing: Matema10k C-iveau, Fydelud Side 1 af 10 Auitetsopspaig De fides mage måde at spae op på. Vi vil he se på de såkaldte auitetsopspaig. Emet ka buges som e del af det suppleede stof, og det ka avedes som

Læs mere

Hvis man vil lægge 15% til 600, så kan det gøres ved at udregne, hvor meget 15% af 600 er lig med og lægge det til det oprindelige beløb:

Hvis man vil lægge 15% til 600, så kan det gøres ved at udregne, hvor meget 15% af 600 er lig med og lægge det til det oprindelige beløb: 0BRetesegig BTæk i femskivigsfaktoe! I dette tillæg skal vi se, at begebet femskivigsfaktoe e yttigt til at fostå og løse foskellige poblemstillige idefo pocet- og etesegig. 3B. Lægge pocet til elle tække

Læs mere

Opsparing og afvikling af gæld

Opsparing og afvikling af gæld Opspaig og afviklig af gæld Opspaig Eksempel 1 Lad os state med at se på et eksempel. 100 Euo idbetales å i tæk på e koto, de foetes med 3 % p.a. Vi ha tidligee beeget e såda kotos udviklig skidt fo skidt:

Læs mere

Procent og eksponentiel vækst - supplerende eksempler

Procent og eksponentiel vækst - supplerende eksempler Eksemple til iveau F, E og D Pocet og ekspoetiel vækst - suppleede eksemple Pocete og decimaltal... b Vækst-fomle... d Fa side f og femefte vises eksemple på bug af vækstfomle. Fomle skives omalt på dee

Læs mere

Projekt 4. Anlægsøkonomien i Storebæltsforbindelsen hvordan afdrages

Projekt 4. Anlægsøkonomien i Storebæltsforbindelsen hvordan afdrages Pojekt 4. Alægsøkoomie i Stoebæltsfobidelse hvoda afdages lå? Dette pojekt hadle om, hvoda økoomie va skuet samme, da ma byggede Stoebæltsfobidelse. Stoe alægspojekte e æste altid helt elle delvist låefiasieet.

Læs mere

Annuiteter og indekstal

Annuiteter og indekstal Annuitete og indekstal 1 Opspaing og lån Mike Auebach Odense 2010 Hvis man betale til en opspaingskonto i en bank, kan man ikke buge entefomlen til at beegne, hvo mange penge, de vil stå på kontoen. På

Læs mere

Forløb om annuitetslån

Forløb om annuitetslån Matema10k C-niveau, Fdenlund Side 1 af 7 Foløb om annuitetslån Dette mateiale fokusee på den tpe lån de betegnes annuitetslån. Emnet kan buges som en del af det suppleende stof, og mateialet kan anvendes

Læs mere

Claus Munk. kap. 1-3

Claus Munk. kap. 1-3 Claus Muk kap. 1-3 1 Dages forelæsig Grudlæggede itroduktio til obligatioer Betaligsrækker og låeformer Det daske obligatiosmarked Pris og kurs Effektive reter 2 1 Obligatioer Grudlæggede Itro Debitor

Læs mere

Dagens forelæsning. Claus Munk. kap. 1-3. Obligationer Grundlæggende Intro. Obligationer Grundlæggende Intro. Obligationer Grundlæggende Intro

Dagens forelæsning. Claus Munk. kap. 1-3. Obligationer Grundlæggende Intro. Obligationer Grundlæggende Intro. Obligationer Grundlæggende Intro Dages forelæsig Grudlæggede itroduktio til obligatioer Claus Muk kap. - 3 Betaligsrækker og låeformer Det daske obligatiosmarked Effektive reter 2 Obligatioer Grudlæggede Itro Obligatioer Grudlæggede Itro

Læs mere

1. Indledning... 1 2. Lineær iteration... 2

1. Indledning... 1 2. Lineær iteration... 2 Hvad e matematik? B, i og ISBN 978 87 766 494 3 Pojekte: Kapitel Pojekt.3 Lieæe Iteatiospocesse Idhold 1. Idledig... 1 2. Lieæ iteatio... 2 2.1 Lieæ vækst... 2 2.2 Ekspoetiel vækst... 2 2.3 Foskudt ekspoetiel

Læs mere

Rentesregning: Lektion A1. Forrentningsfaktor, Diskonteringsfaktor, og Betalingsrækker. Overordnede spørgsmål i Rentesregning. Peter Ove Christensen

Rentesregning: Lektion A1. Forrentningsfaktor, Diskonteringsfaktor, og Betalingsrækker. Overordnede spørgsmål i Rentesregning. Peter Ove Christensen Rentesegning: Lektion A1 Foentningsfakto, Diskonteingsfakto, og Pete Ove Chistensen Foå 2012 1 / 49 Oveodnede spøgsmål i Rentesegning Hvoledes kan betalinge sammenlignes, nå betalingene e tidsmæssigt adskilte?

Læs mere

x-klasserne Gammel Hellerup Gymnasium

x-klasserne Gammel Hellerup Gymnasium SANDSYNLIGHEDSREGNING OG KOMBINATORIK x-klassere Gammel Hellerup Gymasum Idholdsfortegelse SANDSYNLIGHEDSREGNING... 3 Sadsylghedsfelt... 3 Edelge sadsylghedsfelter (sadsylghedsfordelger):... 3 Uedelge

Læs mere

Renteformlen. Erik Vestergaard

Renteformlen. Erik Vestergaard Reteformle Erik Vestergaard 2 Erik Vestergaard www.matematikfysik.dk Erik Vestergaard, 2010. Billeder: Forside: istock.com/ilbusca Side 4: istock.com/adresrimagig Desude ege illustratioer. Erik Vestergaard

Læs mere

Projekt 0.5 Euklids algoritme, primtal og primiske tal

Projekt 0.5 Euklids algoritme, primtal og primiske tal Pojekt 0.5 Euklids algoitme, pimtal og pimiske tal Betegnelse. Mængden af hele tal (positive, negative og nul) betegnes. At et tal a e et helt tal angives med: aî, de læses a tilhøe. Nå vi ha to vilkålige

Læs mere

Projekt 5.2. Anvendelse af Cavalieris princip i areal- og rumfangsberegninger

Projekt 5.2. Anvendelse af Cavalieris princip i areal- og rumfangsberegninger Hvad e matematik? B, i-bog Pojekte: Kapitel 5. Pojekt 5.. Anvendelse af Cavalieis pincip i aeal- og umfangsbeegninge Pojekt 5.. Anvendelse af Cavalieis pincip i aeal- og umfangsbeegninge Den gundlæggende

Læs mere

Den stigende popularitet af de afdragsfrie lån har ad flere omgange fået skylden for de kraftigt stigende boligpriser de senere år.

Den stigende popularitet af de afdragsfrie lån har ad flere omgange fået skylden for de kraftigt stigende boligpriser de senere år. 16. septembe 8 Afdagsfie lån og pisstigninge på boligmakedet Den stigende populaitet af de afdagsfie lån ha ad flee omgange fået skylden fo de kaftigt stigende boligpise de senee å. Set ove en længee peiode

Læs mere

FY01 Obligatorisk laboratorieøvelse. O p t i k. Jacob Christiansen Afleveringsdato: 3. april 2003 Morten Olesen Andreas Lyder

FY01 Obligatorisk laboratorieøvelse. O p t i k. Jacob Christiansen Afleveringsdato: 3. april 2003 Morten Olesen Andreas Lyder FY0 Oblgatorsk laboratoreøvelse O p t k Hold E: Hold: D Jacob Chrstase Alevergsdato: 3. aprl 003 Morte Olese Adreas Lyder Idholdsortegelse Idholdsortegelse Forål...3 Måleresultater...4. Salelser...4. Spredelse...5.3

Læs mere

hvor i er observationsnummeret, som løber fra 1 til stikprøvestørrelsen n, X i

hvor i er observationsnummeret, som løber fra 1 til stikprøvestørrelsen n, X i Normalfordeliger For at e stokastisk variabel X ka være ormalfordelt, skal X agive værdie af e eller ade målig, f.eks. tid, lægde, vægt, beløb osv. Notatioe er: Xi ~ N( μ, σ hvor i er observatiosummeret,

Læs mere

Alt hvad du nogensinde har ønsket at vide om... Del 2. Frank Nasser 2006-2007

Alt hvad du nogensinde har ønsket at vide om... Del 2. Frank Nasser 2006-2007 Alt hvad du nogensinde ha ønsket at vide om... VEKTORER Del 2 Fank Nasse 2006-2007 - 1 - Indledning Vi skal i denne lille note gennemgå det basale teoi om vektoe i planen og i ummet. Stoffet e pæcis det

Læs mere

Wor King Papers. Management Working Papers. Højere kapitalkrav løfter krav til indtjening i den finansielle sektor en replik 2013-02

Wor King Papers. Management Working Papers. Højere kapitalkrav løfter krav til indtjening i den finansielle sektor en replik 2013-02 Wo Kng Papes Management Wokng Papes 2013-02 Højee kaptalkav løfte kav tl ndtjenng den fnanselle sekto en eplk Ken L. Bechmann, Andes Gosen and Johannes Raaballe Højee kaptalkav løfte kav tl ndtjenng den

Læs mere

9. Binomialfordelingen

9. Binomialfordelingen 9. Biomialfordelige 9.. Gekedelse Hvert forsøg ka ku resultere i to mulige udfald; succes og fiasko. I modsætig til poissofordelige er atallet af forsøg edeligt. 9.. Model X : Stokastisk variabel, der

Læs mere

Betænkning om kommunernes udgiftsbehov. Bilag (med metodediskussion af professor Anders Milhøj)

Betænkning om kommunernes udgiftsbehov. Bilag (med metodediskussion af professor Anders Milhøj) Betækg om kommueres udgftsbehov Blag (med metodedskusso af professor Aders Mlhøj) Betækg r. 36 Oktober 998 Kommueres Udgftsbehov Betækg om kommueres udgftsbehov - Redegørelse fra arbejdsgruppe uder Idergsmsterets

Læs mere

Matematik på Åbent VUC

Matematik på Åbent VUC Matematik på Åent VUC Lektion 8 Geometi Indoldsfotegnelse Indoldsfotegnelse... Længdemål og omegning mellem længdemål... Omkeds og aeal af ektangle og kvadate... Omkeds og aeal af ande figue... Omegning

Læs mere

Kontakt: - en anden tid et andet tempo! A13 Hobro. Løgstør. Skive. Bjerregrav Hjarbæk Fjord. Skals A13. Hobro/Randers Viborg. Kulturarvsforbindelsen

Kontakt: - en anden tid et andet tempo! A13 Hobro. Løgstør. Skive. Bjerregrav Hjarbæk Fjord. Skals A13. Hobro/Randers Viborg. Kulturarvsforbindelsen Hvolis Jenaldelandsby og Kultuavsfobindelsen, Skive Heedsvejen 135 Veste Bjeegav 9632 Møldup www.jenaldelandsby.dk hvolis@vibog.dk A13 Hobo Løgstø Bjeegav Hjabæk Fjod Skals OL Kontakt: - en anden tid et

Læs mere

Formelskrivning i Word 2. Sådan kommer du i gang 4. Eksempel med skrivning af brøker 5. Brøker skrevet med småt 6. Hævet og sænket skrift 6

Formelskrivning i Word 2. Sådan kommer du i gang 4. Eksempel med skrivning af brøker 5. Brøker skrevet med småt 6. Hævet og sænket skrift 6 Dee udgave er til geemkig på ettet. Boge ka købes for kr. 5 hos EH-Mat. E y og udvidet udgave med title»symbol- og formelskrivig«er udkommet september 00. Se mere om de her. Idholdsfortegelse Formelskrivig

Læs mere

MOGENS ODDERSHEDE LARSEN MATEMATIK

MOGENS ODDERSHEDE LARSEN MATEMATIK MOGENS ODDERSHEDE LARSEN MATEMATIK fa C- til A- niveau. udgave FORORD Denne bog e beegnet fo studeende, som ha behov fo at epetee elle opgadee dees matematiske viden fa C elle B- niveau til A-niveau Bogen

Læs mere

Introduktion til uligheder

Introduktion til uligheder Itroduktio til uligheder, marts 0, Kirste Rosekilde Itroduktio til uligheder Dette er e itroduktio til ogle basale uligheder om det aritmetiske geemsit, det geometriske geemsit, det harmoiske geemsit og

Læs mere

Lys og gitterligningen

Lys og gitterligningen Fysik rapport: Lys og gitterligige Forfatter: Bastia Emil Jørgese.z Øvelse blev udført osdag de 25. jauar 202 samme med Lise Kjærgaard Paulse 2 - Bastia Emil Jørgese Fysik rapport (4 elevtimer), februar

Læs mere

MATEMATIK på Søværnets officerskole

MATEMATIK på Søværnets officerskole MOGENS ODDERSHEDE LARSEN MATEMATIK på Søvænets officeskole (opeativ linie). udgave 9 FORORD Bogen gennemgå det pensum, som e beskevet i fagplanen af 9. Det e en foudsætning, at de studeende ha et solidt

Læs mere

Forberedelse til den obligatoriske selvvalgte opgave

Forberedelse til den obligatoriske selvvalgte opgave MnFremtd tl OSO 10. klasse Forberedelse tl den oblgatorske selvvalgte opgave Emnet for dn oblgatorske selvvalgte opgave (OSO) skal tage udgangspunkt dn uddannelsesplan og dt valg af ungdomsuddannelse.

Læs mere

Lineær regressionsanalyse8

Lineær regressionsanalyse8 Lneær regressonsanalyse8 336 8. Lneær regressonsanalyse Lneær regressonsanalyse Fra kaptel 4 Mat C-bogen ved v, at man kan ndtegne en række punkter et koordnatsystem, for at afgøre, hvor tæt på en ret

Læs mere

Tredimensional grafik

Tredimensional grafik Teimensionl gfi 6 Ksten Juul Inhol I Homogene oointsæt og gngning f mtie sie Vi vil fose og eje figue i ummet og æne ees støelse Defo inføe vi homogene oointsæt og gngning f mtie II th sie Et olsninge

Læs mere

NOTAT: Benchmarking: Roskilde Kommunes serviceudgifter i regnskab 2013

NOTAT: Benchmarking: Roskilde Kommunes serviceudgifter i regnskab 2013 Beskæftgelse, Socal og Økonom Økonom og Ejendomme Sagsnr. 260912 Brevd. 1957603 Ref. LAOL Dr. tlf. 4631 3152 lasseo@rosklde.dk NOTAT: Benchmarkng: Rosklde Kommunes servceudgfter regnskab 2013 19. august

Læs mere

Dimittendundersøgelse, 2009 Dato: 3. juni 2009

Dimittendundersøgelse, 2009 Dato: 3. juni 2009 Dimittendundesøgelse 2008-2009 Afspændingspædagoguddannelsen Dimittendundesøgelse, 2009 Dato: 3. juni 2009 Opsummeing af undesøgelse foetaget blandt dimittende fa Afspændingspædagoguddannelsen Datagundlag

Læs mere

Matematik A. Studentereksamen. Forberedelsesmateriale. Forsøg med digitale eksamensopgaver med adgang til internettet.

Matematik A. Studentereksamen. Forberedelsesmateriale. Forsøg med digitale eksamensopgaver med adgang til internettet. Matematik A Studetereksame Forsøg med digitale eksamesopgaver med adgag til iterettet Forberedelsesmateriale Vejledede opgave Forår 0 til stx-a-net MATEMATIK Der skal afsættes 6 timer af holdets sædvalige

Læs mere

Wear&Care Brugervejledning. A change for the better

Wear&Care Brugervejledning. A change for the better A change fo the bette Intoduktion Wea&Cae e en smat løsning, de give mulighed fo at følge fugtniveauet i bleen, så den kan skiftes efte behov. Infomationen gå fa en sende på bleen til modtageens smatphone

Læs mere

Projekt 4.8 De reelle tal og 1. hovedsætning om kontinuerte funktioner

Projekt 4.8 De reelle tal og 1. hovedsætning om kontinuerte funktioner Projekter: Kapitel 4 Projekt 48 De reelle tal og hovedsætig om kotiuerte fuktioer Projekt 48 De reelle tal og hovedsætig om kotiuerte fuktioer Kotiuitet og kotiuerte fuktioer Ord som kotiuert og kotiuerlig

Læs mere

Praksis om miljøvurdering

Praksis om miljøvurdering Paksis om miljøvudeing Miljøvudeingsdage 2015 Nyee paksis på miljøvudeingsomådet Flemming Elbæk Flemming Elbæk, advokat, HD(Ø) Ansættelse: Advokatfuldmægtig, 2006-2008 Juist, Miljøministeiet, 2008-2012

Læs mere

DATV: Introduktion til optimering og operationsanalyse, 2007. Følsomhed af Knapsack Problemet

DATV: Introduktion til optimering og operationsanalyse, 2007. Følsomhed af Knapsack Problemet DATV: Itroduktio til optimerig og operatiosaalyse, 2007 Følsomhed af Kapsack Problemet David Pisiger, Projektopgave 1 Dette er de første obligatoriske projektopgave på kurset DATV: Itroduktio til optimerig

Læs mere

Beregning af prisindeks for ejendomssalg

Beregning af prisindeks for ejendomssalg Damarks Saisik, Priser og Forbrug 2. april 203 Ejedomssalg JHO/- Beregig af prisideks for ejedomssalg Baggrud: e radiioel prisideks, fx forbrugerprisidekse, ka ma ofe følge e ideisk produk over id og sammelige

Læs mere

Erhvervs- og Selskabsstyrelsen

Erhvervs- og Selskabsstyrelsen Ehvevs- og Selskabsstyelsen Måling af viksomhedenes administative byde ved afegning af moms, enegiafgifte og udvalgte miljøafgifte Novembe 2004 Rambøll Management Nøegade 7A DK-1165 København K Danmak

Læs mere

SERVICE BLUEPRINTS KY selvbetjening 2013

SERVICE BLUEPRINTS KY selvbetjening 2013 SERVICE BLUEPRINTS KY selvbetjenng 2013 EFTER Desgn by Research BRUGERREJSE Ada / KONTANTHJÆLP Navn: Ada Alder: 35 år Uddannelse: cand. mag Matchgruppe: 1 Ada er opvokset Danmark med bosnske forældre.

Læs mere

diagnostik Skulder fysioterapeuten nr. 05 marts 2009

diagnostik Skulder fysioterapeuten nr. 05 marts 2009 side 08 fysioteapeuten n. 05 mats 2009 diagnostik Skulde Mogens Dam e oplægsholde på fagfestivalen d. 26.-28. mats 2009. Fysioteapeut Mogens Dam ha udvalgt en ække gængse diagnostiske test fo skuldepobleme.

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Ds ese Uestet Sde sde Stlg pøe pøe, /, / og 3/, Kusus ys Kusus. //4 Vghed: 4 te lle hjælpedle: Ige hjælpedle "Vægtg": Beselse bedøes so e helhed. Alle s sl begudes ed de det e get. Alle elleegge sl eges.

Læs mere

Sprednings problemer. David Pisinger

Sprednings problemer. David Pisinger Spredigs problemer David Pisiger 2001 Idledig Jukfood A/S er e amerikask kæde af familierestaurater der etop er ved at etablere sig i Damark. E massiv reklamekampage med de to slogas vores fritter er de

Læs mere

Om Gear fra Technoingranaggi Riduttori Tilføjelser til TR s katalogmateriale

Om Gear fra Technoingranaggi Riduttori Tilføjelser til TR s katalogmateriale ...when motos must be contolled Om Gea fa Technoinganaggi Riduttoi Tilføjelse til TR s katalogmateiale ISO 9 cetificeing: Technoinganaggi Riduttoi følge ISO 9 pincippene i dees kvalitetsstying. Alle dele

Læs mere

Hvad vi gør for jer og hvordan vi gør det

Hvad vi gør for jer og hvordan vi gør det Hvad vi gør for jer og hvorda vi gør det Vi skaber resultater der er sylige på di budliie... Strategi Orgaisatio Produktio Økoomi [ Ide du læser videre ] [ Om FastResults ] [ Hvorfor os? ] I foråret 2009

Læs mere

HVIS FOLK OMKRING DIG IKKE VIL LYTTE, SÅ KNÆL FOR DEM OG BED OM TILGIVELSE, THI SKYLDEN ER DIN. Fjordor Dostojevskij

HVIS FOLK OMKRING DIG IKKE VIL LYTTE, SÅ KNÆL FOR DEM OG BED OM TILGIVELSE, THI SKYLDEN ER DIN. Fjordor Dostojevskij HVIS FOLK OMKRING DIG IKKE VIL LYTTE, SÅ KNÆL FOR DEM OG BED OM TILGIVELSE, THI SKYLDEN ER DIN. Fjordor Dostojevskj Den store russske forfatter tænkte naturlgvs kke på markedsførng, da han skrev dsse lner.

Læs mere

Bjørn Grøn. Analysens grundlag

Bjørn Grøn. Analysens grundlag Bjør Grø Aalyses grudlag Aalyses grudlag Side af 4 Idholdsfortegelse Kotiuerte og differetiable fuktioer 3 Differetial- og itegralregiges udviklig 5 3 Hovedsætiger om differetiable fuktioer 8 Opgaver til

Læs mere

Hverdagsliv før og nu. fortalt gennem Børnenes Arbejdermuseum. Arbejdsbog

Hverdagsliv før og nu. fortalt gennem Børnenes Arbejdermuseum. Arbejdsbog Hvedagsliv fø og nu fotalt gennem Bønenes Abejdemuseum Abejdsbog Hvedagsliv fø og nu fotalt gennem Bønenes Abejdemuseum Denne bog tilhøe Navn: Klasse: 1 Hvedagsliv fø og nu fotalt gennem Abejdemuseets

Læs mere

Sandsynlighedsregning i biologi

Sandsynlighedsregning i biologi Om begrebet sadsylighed Sadsylighedsregig i biologi Hvis vi kaster e almidelig, symmetrisk terig, er det klart for de fleste af os, hvad vi meer, år vi siger, at sadsylighede for at få e femmer er 1/6.

Læs mere

bioteket Om aftenen er Bioteket et iøjenfaldende fyrtårn for Smag på Århus med frisk mynte til din Moijito.

bioteket Om aftenen er Bioteket et iøjenfaldende fyrtårn for Smag på Århus med frisk mynte til din Moijito. bteet I Natue fdes de e le le elle sape æse. I ødet ed eeset blev atue tlpasset dyet sle æe. Bteet fdle dette øde, ed et atets udty de ved hjælp af le le plate æe, sabe et løst dffust u. E vea fe f e æse.

Læs mere

Pension og Tilbagetrækning - Ikke-parametrisk Estimation af Heterogenitet

Pension og Tilbagetrækning - Ikke-parametrisk Estimation af Heterogenitet Pension og Tilbagetækning - Ikke-paametisk Estimation af Heteogenitet Søen Anbeg De Økonomiske Råds Sekataiat, DØRS Pete Stephensen Danish Rational Economic Agents Model, DREAM DREAM Abedspapi 23:2 foeløbig

Læs mere

Kort om. Potenssammenhænge. 2011 Karsten Juul

Kort om. Potenssammenhænge. 2011 Karsten Juul Kot om Potenssmmenhænge 011 Ksten Juul Dette hæfte indeholde pensum i potenssmmenhænge, heunde popotionle og omvendt popotionle vible, fo gymnsiet og hf. Indhold 1. Ligning og gf fo potenssmmenhænge...

Læs mere

Få overblik over dit liv - og fokus på det vigtige

Få overblik over dit liv - og fokus på det vigtige Prs: r. 12,Fam e t Fr Bo g Net væ r g Uv Su he om o Ø Få overb over t v - og fous på et vgtge INDLEDNING Dee e-bog Lvshjuet er e ompet gue t, hvora u me é smpe øvese a få overb over t v ge u og prortere

Læs mere

Viden Om Vind oftere, stop i tide

Viden Om Vind oftere, stop i tide Vide Om Vid oftere, stop i tide Spørgsmål og svar Idhold Risici og relevas 2 Steffe Aderse Sadsyligheder 5 Per Hedegård Spørgsmål til eksperte 7 Thomas Aderse Til 8 Rasmus Østergaard Pederse E sikker strategi

Læs mere

Cisgene bygplanter. planteforskning.dk Bioteknologi

Cisgene bygplanter. planteforskning.dk Bioteknologi plantefoskning.dk Cisgene bygplante Nyttige egenskabe kan tilføes til femtidens afgøde ved hjælp af genetisk modifikation uden indsættelse af atsfemmede gene. Den nye stategi anvendes bl.a. til udvikling

Læs mere

FOLKEMØDE-ARRANGØR SÅDAN!

FOLKEMØDE-ARRANGØR SÅDAN! FOLKEMØDE-ARRANGØR SÅDAN! Bornholms Regonskommune står for Folkemødets praktske rammer. Men det poltske ndhold selve festvalens substans blver leveret af parter, organsatoner, forennger, vrksomheder og

Læs mere

Real valutakursen, ε, svinger med den nominelle valutakurs P P. Endvidere antages prisniveauet i ud- og indland at være identisk, hvorved

Real valutakursen, ε, svinger med den nominelle valutakurs P P. Endvidere antages prisniveauet i ud- og indland at være identisk, hvorved Lgevægt på varemarkedet gen! Sdste gang bestemtes følgende IS-relatonen, der beskrver lgevægten på varemarkedet tl: Y = C(Y T) + I(Y, r) + G εim(y, ε) + X(Y*, ε) Altså er varemarkedet lgevægt, hvs den

Læs mere

Projekt 1.3 Brydningsloven

Projekt 1.3 Brydningsloven Projekt 1.3 Brydigslove Når e bølge, fx e lysbølge, rammer e græseflade mellem to stoffer, vil bølge ormalt blive spaltet i to: Noget af bølge kastes tilbage (spejlig), hvor udfaldsvikle u er de samme

Læs mere

VORDINGBORG KOMMUNE. Boligområde ved Kalvøvej LOKALPLAN NR. B-24.2. 20 kr. Færgegårdsvej Bogøvej. Kalvøvej

VORDINGBORG KOMMUNE. Boligområde ved Kalvøvej LOKALPLAN NR. B-24.2. 20 kr. Færgegårdsvej Bogøvej. Kalvøvej VORDINGBORG KOMMUNE N Fægegådsvej Bogøvej Kalvøvej LOKALPLAN NR. B-24.2 Boligomåde ved Kalvøvej Vodingbog apil 2005 20 k. Lokalplanlægning Planloven indeholde bestemmelse om Byådets et og pligt til at

Læs mere

Kvadratisk 0-1 programmering. David Pisinger

Kvadratisk 0-1 programmering. David Pisinger Kvadratisk - programmerig David Pisiger 27-8 MAX-CUT problemet Givet e ikke-orieteret graf G = (V, E) er MAX-CUT problemet defieret som MAX-CUT = {< G > : fid et sit S, T i grafe G som maksimerer atal

Læs mere

STATISTISKE GRUNDBEGREBER

STATISTISKE GRUNDBEGREBER MOGENS ODDERSHEDE LARSEN STATISTISKE GRUNDBEGREBER med avedelse af TI 89 og Excel 8 5 9 6 3 0 Histogram for ph 6,9 7, 7,3 7,5 7,7 7,9 ph. udgave 0 FORORD Der er i dee bog søgt at give letlæst og askuelig

Læs mere

NASDAQ OMX Copenhagen A/S. 6. juli 2010

NASDAQ OMX Copenhagen A/S. 6. juli 2010 Tl NASDAQ OMX Copenhagen A/S 6. jul 2010 Ændrng Endelge vlkår tl prospekt for oblgatoner udstedt medfør af 33 e lov om realkredtlån og realkredtoblgatoner m.v. (junor covered bonds) (udstedt peroden 1.

Læs mere

FTF dokumentation nr. 3 2014. Viden i praksis. Hovedorganisation for 450.000 offentligt og privat ansatte

FTF dokumentation nr. 3 2014. Viden i praksis. Hovedorganisation for 450.000 offentligt og privat ansatte FTF dokumentaton nr. 3 2014 Vden prakss Hovedorgansaton for 450.000 offentlgt og prvat ansatte Sde 2 Ansvarshavende redaktør: Flemmng Andersen, kommunkatonschef Foto: Jesper Ludvgsen Layout: FTF Tryk:

Læs mere

Branchevejledning. ulykker indenfor. lager. området. Branchearbejdsmiljørådet for transport og engros

Branchevejledning. ulykker indenfor. lager. området. Branchearbejdsmiljørådet for transport og engros Brachevejledig ulykker idefor lager området Brachearbejdsmiljørådet for trasport og egros Baggrud Udersøgelser på lager- og trasportområdet har vist, at beskrivelse af hædelsesforløbet ved udfyldelse

Læs mere

G Skriverens Kryptologi

G Skriverens Kryptologi G Skrverens Kryptolog Nels Juul Munch, Mdtsjællands Gymnasum Matematk Indlednng I den foregående artkel G Skrverens Hstore blev det hstorske forløb om G Skrveren beskrevet og set sammenhæng med Sverges

Læs mere

Note til Generel Ligevægt

Note til Generel Ligevægt Mkro. år. semester Note tl Generel Lgevægt Varan kap. 9 Generel lgevægt bytteøkonom Modsat partel lgevægt betragter v nu hele økonomen på én gang; v betragter kke længere nogle prser for gvet etc. Den

Læs mere

Honeywell Hometronic

Honeywell Hometronic Honeywell Hometonic Komfot + Spa enegi Gulvvame Lysstying Lys Sikkehed Sikkehed Andet Andet Radiato Insight Building Automation 1 MANAGER Hometonic Manageen HCM200d e familiens oveodnede buge-inteface.

Læs mere

og Fermats lille sætning

og Fermats lille sætning Projekter: Kaitel 0. Projekt 0. Modulo-regig, restklassegruer og Fermats lille sætig Projekt 0. Modulo-regig, restklassegruere ( { 0 }, ) og Fermats lille sætig Vi aveder moduloregig og restklasser mage

Læs mere

NASDAQ OMX Copenhagen A/S. 3. december 2010

NASDAQ OMX Copenhagen A/S. 3. december 2010 Tl NASDAQ OMX Copenhagen A/S 3. december 2010 Ændrng Endelge vlkår tl prospekt for oblgatoner udstedt medfør af 33 e lov om realkredtlån og realkredtoblgatoner mv. (junor covered bonds) (udstedt peroden

Læs mere

LOKALPLAN NR. 360 HENRIETTELUND

LOKALPLAN NR. 360 HENRIETTELUND 1 LOKALPLAN NR. 360 HENRIETTELUND EN KORTFATTET BESKRIVELSE Beliggenhed Langs Kægade i Vop Lokalplanen omfatte et ca. 4,13 ha stot omåde fodelt på 4 pivate ejendomme beliggende fo foden af Tebbestp Bakke

Læs mere

EGA Vejledning om EGA og monotont arbejde

EGA Vejledning om EGA og monotont arbejde EGA og mootot arbejde 04/09/02 14:27 Side 1 Orgaisatioer repræseteret i Idustries Brachearbejdsmiljøråd: Arbejdstagerside: Arbejdsgiverside: Dask Metal Specialarbejderforbudet Kvideligt Arbejderforbud

Læs mere

SUNDHEDSHUS TOLDBODEN, VIBORG

SUNDHEDSHUS TOLDBODEN, VIBORG SUNDHEDSHUS TOLDODEN, VIORG [Et modene flebugehus med suveæn placeing] OK GROUP OFFIEPRK TOLDODEN SPRRE GDE Inde ingvej Tog busstation Toldbodgade Regionshospital, Vibog E47 Udendøs ophold foan kantinen

Læs mere

GENEREL INTRODUKTION.

GENEREL INTRODUKTION. Study Guide til Matematik C. OVERSIGT. Dee study guide ideholder følgede afsit - Geerel itroduktio. - Emeliste. - Eksame. - Bilag. Udervisigsmiisteriets bekedtgørelse for matematik C. GENEREL INTRODUKTION.

Læs mere

Salg af kirkegrunden ved Vejleå Kirke - opførelse af seniorboliger. hovedprincipper for et salg af kirkegrunden, som vi drøftede på voii møde.

Salg af kirkegrunden ved Vejleå Kirke - opførelse af seniorboliger. hovedprincipper for et salg af kirkegrunden, som vi drøftede på voii møde. Ishøj Kommune Att.: Kommunaldrektør Anders Hvd Jensen Ishøj Store Torv 20 2635 Ishøj Lett Advokatfrma Rådhuspladsen 4 1550 København V Tlr. 33 34 00 00 Fax 33 34 00 01 lettl lett.dk www.lett.dk Kære Anders

Læs mere

Grundlæggende Lederuddannelse

Grundlæggende Lederuddannelse Grudlæggede Lederuddaelse Grudlæggede Lederuddaelse God ledelse er vigtig for både dig og di virksomhed. Det er vigtigt for di ege persolige udviklig, for die medarbejderes motivatio og dermed i sidste

Læs mere

PrivatParkering. FådinegenpladsmidtiFaaborg. BilumsEjendommeopførernyparkeringskæ ldermed26pladserifaaborgcentrum.

PrivatParkering. FådinegenpladsmidtiFaaborg. BilumsEjendommeopførernyparkeringskæ ldermed26pladserifaaborgcentrum. PvaPakeng FådnegpadsmdFaabg BumsEjdommeopføenypakengskæ demed26padsefaabgcum Pos kon og Supe b ugs Kommuna e Pake ngsp adse Kommuna e Pake ngsp adse OFF TOI ET NY PKÆDER INDKØRSSRAMPE DI SPONI B TFOR EJ

Læs mere

AUGUST v. Margit Ingtoft, María Muniz Auken,

AUGUST v. Margit Ingtoft, María Muniz Auken, SOMMER-, WEEKEND- & EFTERÅRSKURSER 2007 SOMMERKURSER AUGUST v. Margit Igtoft, María Muiz Auke, JUNI og / eller Sommer 2007 Jui (A) + August (B) Dato: 5/6 28/6 og eller 7/8 30/8: MUY BARATO: Pris pr. hold

Læs mere

Kreditrisiko efter IRBmetoden

Kreditrisiko efter IRBmetoden Kredtrsko efter IRBmetoden Vacceks formel Arbejdspapr, oktober 2013 1 KRAKAfnans - Fnanskrsekommssonens sekretarat Teknsk arbejdspapr udkast 15. oktober 2013 Indlednng Det absolutte mndstekrav tl et kredtnsttut

Læs mere

TO-BE BRUGERREJSE // Personligt tillæg

TO-BE BRUGERREJSE // Personligt tillæg TO-BE BRUGERREJSE // Personlgt tllæg PROCES FØR SITUATION / HANDLING Pa er 55 år og bor en mndre by på Sjælland. Hun er på førtdspenson og har været det mange år på grund af problemer med ryggen efter

Læs mere

Referat fra Bestyrelsesmøde Mandag den 4. marts 2013 - kl. 19.00 i Holmsland Idræts- og Kulturcenter

Referat fra Bestyrelsesmøde Mandag den 4. marts 2013 - kl. 19.00 i Holmsland Idræts- og Kulturcenter Bestyrelsesmøde Holmsland Sogneforenng. Bestyrelsesmedlemmer er ndkaldt tl bestyrelsesmøde som ovenfor anført. Fremmødte: Iver Poulsen, Chrstan Holm Nelsen, Bodl Schmdt, Bjarne Vogt, Lars Provstgaard,

Læs mere

Den Store Sekretærdag

Den Store Sekretærdag De Store Sekretærdag Tilmeld dig ide 1. oktober og få 300 kr. i rabat! De 25. ovember 2008 Tekologisk Istitut Taastrup De 8. december 2008 Mukebjerg Hotel Vejle Nia Siegefeldt, chefsekretær Camilla Miehe-Reard,

Læs mere

Bølgeudbredelse ved jordskælv

Bølgeudbredelse ved jordskælv rojekt: Jordskæl Bølgeudbredelse ed jordskæl IAG 2005 Bølgeudbredelse ed jordskæl V skal dette projekt studere bølgeudbredelse ed jordskæl. Her kommer så ldt teor om bølger. Bølger Man tegner næsten altd

Læs mere

Fagstudieordning for tilvalgsuddannelsen i Erhvervsøkonomi (2012-ordning)

Fagstudieordning for tilvalgsuddannelsen i Erhvervsøkonomi (2012-ordning) Fagstudieodning fo tilvalgsuddannelsen i Ehvevsøkonomi (2012-odning) 1 Indledning Til denne uddannelsesspecifikke fagstudieodning knytte sig også Rammestudieodning fo Det Samfundsvidenskabelige Fakultet,

Læs mere

Matematikkens mysterier - på et obligatorisk niveau. 6. Matematik og økonomi

Matematikkens mysterier - på et obligatorisk niveau. 6. Matematik og økonomi Matematikkes mysterier - på et obligatorisk iveau af Keeth Hase 6. Matematik og økoomi 20% 40% 60% 40% Hvor udbredt er vaskepulveret af type A? 6. Matematik og økoomi Idhold 6.1 Procettal 2 6.2 Vejet geemsit

Læs mere

Luftfartens vilkår i Skandinavien

Luftfartens vilkår i Skandinavien Luftfartens vlkår Skandnaven - Prsens betydnng for valg af transportform Af Mette Bøgelund og Mkkel Egede Brkeland, COWI Trafkdage på Aalborg Unverstet 2000 1 Luftfartens vlkår Skandnaven - Prsens betydnng

Læs mere

Grundlæggende matematiske begreber del 1 Mængdelære Talmængder Tal og regneregler Potensregneregler Numerisk værdi Gennemsnit

Grundlæggende matematiske begreber del 1 Mængdelære Talmængder Tal og regneregler Potensregneregler Numerisk værdi Gennemsnit Grudlæggede mtemtiske begreber del 1 Mægdelære Tlmægder Tl og regeregler Potesregeregler Numerisk værdi Geemsit x-klssere Gmmel Hellerup Gymsium 1 Idholdsfortegelse MÆNGDELÆRE... 3 TAL... 9 De turlige

Læs mere

Ønskekøbing Kommune - netværksanalyse i den administrative organisation

Ønskekøbing Kommune - netværksanalyse i den administrative organisation Ønskekøbing Kommune - netvæksanalyse i den administative oganisation Hvodan vike det i paksis? Elektonisk spøgeskemaundesøgelse Svaene fa undesøgelsen kombinees med alleede eksisteende stamdata i minde

Læs mere

Se muligheder med Berlingske Business.

Se muligheder med Berlingske Business. busness Se mulghede med Belngske Busness. DOW JONES OG NASDAQ AFLÆST KL. 20.30 0,23% 0,21% 0,04% TEMA D E TA I L H A N D E L Jyde gå tl kamp mod Intespot 12-13 PORTRÆT Økonompofesso Pete Noman Søs e eltefoske

Læs mere

VURDERING AF LØSNINGSFORSLAG I FORBINDELSE MED DEN EUROPÆISKE STATSGÆLDSKRISE

VURDERING AF LØSNINGSFORSLAG I FORBINDELSE MED DEN EUROPÆISKE STATSGÆLDSKRISE Modul 0: Speciale 0. semeste, cand.oecon Aalbog Univesitet Afleveet d. 30. maj 202 VURDERING AF LØSNINGSFORSLAG I FORBINDELSE MED DEN EUROPÆISKE STATSGÆLDSKRISE Vejlede: Finn Olesen Skevet af Henik Hanghøj

Læs mere

Kvalitetsmål til On-line algoritmer

Kvalitetsmål til On-line algoritmer Istitut for Matematik og Datalogi Bachelorprojekt Kvalitetsmål til O-lie algoritmer Forfatter: Christia Kuahl Vejleer: Joa Boyar Jauary 1, 2011 Cotets 1 Ileig 3 2 Problemet 3 3 Algoritmer og variater 4

Læs mere

klædeskab samt et børneværelse/kontor med renoveret i 2008/2011. ALT er nyt!. Udover yderst charmerende og med klassiske

klædeskab samt et børneværelse/kontor med renoveret i 2008/2011. ALT er nyt!. Udover yderst charmerende og med klassiske Totalrenoveret 4-værelses med bedste belggenhed Oplevelsen af denne sønne lejlghed starter allerede på gaden med de flotte gamle træer. Den klassske hovedtrappe fører dg op tl. lejlgheden, hvor man kommer

Læs mere

Binomialfordelingen. Erik Vestergaard

Binomialfordelingen. Erik Vestergaard Bnomalfordelngen Erk Vestergaard Erk Vestergaard www.matematkfysk.dk Erk Vestergaard,. Blleder: Forsde: Stock.com/gnevre Sde : Stock.com/jaroon Sde : Stock.com/pod Desuden egne fotos og llustratoner. Erk

Læs mere

Kap 1. Procent og Rentesregning

Kap 1. Procent og Rentesregning Idhold Kp. Procet og Retesregig.... Regig med proceter.... Reteformle.... Geemsitlig retefod (vækstrte)... Kp Opsprigs- og gældsuiteter...5. Auiteter...5. Sumformel for e kvotietrække...5. Opsprigsuitet...6.

Læs mere

MuligHeden. www.ikast-brande.dk. Vær med!

MuligHeden. www.ikast-brande.dk. Vær med! www.ikast-bande.dk Væ med! Vi vil godt væe med I te månede ha bogee i Nøe Snede taget skald og skidt i eg hånd. Det e histoi om by, de også e ved at tage ejeskab fo at tage sig godt ud. Skald på bys offtlige

Læs mere

Referat fra Bestyrelsesmøde Onsdag den 28. november 2012 - kl. 19.00 i Holmsland Idræts- og Kulturcenter

Referat fra Bestyrelsesmøde Onsdag den 28. november 2012 - kl. 19.00 i Holmsland Idræts- og Kulturcenter Bestyrelsesmøde Holmsland Sogneforenng. Bestyrelsesmedlemmer er ndkaldt tl bestyrelsesmøde som ovenfor anført. Fremmødte: Iver Poulsen, Chrstan Holm Nelsen, Bodl Schmdt, Maybrtt Pugflod, Lars Provstgaard,

Læs mere

Vejledende opgavebesvarelser

Vejledende opgavebesvarelser Vejledede opgavebesvarelser 1. Atal hæder er lig med K(52,5), altså 2598960. Ved brug af multiplikatiospricippet ka atal hæder med 3 ruder og 2 spar udreges som K(13, 3) K(13, 2), hvilket giver 22308.

Læs mere