Algoritmeskabeloner: Sweep- og søgealgoritmer C#-version

Størrelse: px
Starte visningen fra side:

Download "Algoritmeskabeloner: Sweep- og søgealgoritmer C#-version"

Transkript

1 Note til Programmeringsteknologi Akademiuddannelsen i Informationsteknologi Algoritmeskabeloner: Sweep- og søgealgoritmer C#-version Finn Nordbjerg 1/9

2 Indledning I det følgende introduceres et par abstrakte algoritmer eller algoritmeskabeloner. Idéen bag indførelse af algoritmeskabeloner er, at en lang række problemer kan løses med algoritmer, som har en fælles grundstruktur. Det er en stor hjælp, hvis man kan henføre en given algoritme til en skabelon: Man har en kendt grundstruktur, så den dybe tallerken ikke skal opfindes igen og igen. Det er enklere at verificere korrekthed, når man kan sammenholde sin løsning med en kendt skabelon. Skabelonen har et navn, så man kan snakke om den i forbindelse med udvikling, dokumentation og vedligeholdelse. Om notation. I det følgende anvendes et C#-lignende pseudosprog, hvor de abstrakte operationer er angivet i skarpe parenteser ("<...>"). En abstrakt operation skal konkretiseres til C#-sætninger, som realiserer den konkrete algoritme. Ved specifikation af operationer anvendes PRE til at angive en pre-betingelse for operationen, dvs. hvad der skal være opfyldt for, at det er meningsfuldt at udføre operationen. Tilsvarende anvendes POST ved angivelse af post-betingelsen for operationen, dvs. hvad der er opfyldt efter, operationen er udført under forudsætning af at pre-betingelsen var opfyldt inden. Om sweep-algoritmer. En lange række algoritmer er karakteriseret ved, at de hæmningsløst fejer (eng. sweep) henover en datamængde, kikker på alle elementer og gør et eller andet ved alle (evt. kun en del af) elementerne. Den abstrakte sweep-algoritme kan formuleres som følger: < evt. initiering af hensyn til GØR-operationen (GØR-INIT) >; < INITIER ubesøgt mængde, UM >; while <! FÆRDIG (dvs. UM ikke er tom)> { < UDVÆLG aktuelt element fra UM >; < GØR noget ved aktuelt element>; < FJERN aktuelt element fra UM> 2/9

3 Hvorledes operationerne INITIER, FÆRDIG, UDVÆLG og FJERN skal realiseres afhænger af repræsentationen af datamængden. Realiseringen af GØR-INIT og GØR afhænger endvidere af den konkrete opgave, som algoritmen skal løse. Om sweep-algoritmer på sekvenser af heltal. Hvis vores datamængde er et array af heltal (int[] a), kan INITIER, UDVÆLG, FÆRDIG og FJERN realiseres vha. en simpel tællerkonstruktion, og så får sweep-skabelonen følgende udseende, hvor vi antager, at i er en variabel af typen int: INITIER: i = 0 UDVÆLG: a[i] FÆRDIG: i > =a.length FJERN: i++ Indsættes dette i skabelonen, fås: < GØR-INIT >; int i=0; while ( i < a.length) { < GØR noget ved a[i] >; i++; Som bekendt kan tæller-styrede løkker udtrykkes simplere i C# vha. for-sætningen: < GØR-INIT >; for (int i=0 ; i<a.length ; i++ ) { < GØR noget ved a[i]>; } // end for Er opgaven fx. at tælle antal nuller i en sekvens af heltal kan de manglende operationer realiseres som følger: GØR-INIT: int result= 0; GØR: if (a[i] = = 0) result++; Indsættes dette i skabelonen, fås: 3/9

4 int result= 0; for (int i=0 ; i<a.length ; i++){ if (a[i] = = 0) result++; } // end for På samme måde kan andre algoritmer, der arbejder på sekvenser af heltal (eller sekvenser af alt muligt andet, for den sags skyld) ses som konkretiseringer af sweep-skabelonen. Specielt for C#: foreach og Enumerators I visse tilfælde i C# kan et sweep skrives endnu enklere ved brug af foreach-konstruktionen: int[] a= new int[10]; for(int i= 0; i<a.length; i++) a[i]= 2*i+1;//lav et array med nogle tal foreach(int x in a){ //gør noget ved x } Herved behandles alle elementer i a efter tur. Generelt har foreach-sætningen følgende form: foreach(type varnavn in collectionnavn) Sætning Hvor Type er en type (simple eller klasse), som er assignment-kompatibel med elementerne i collectionnavn, og collectionnavn er et objekt af en type, som implementerer IEnumerableinterfacet (herom ved en anden lejlighed). Alle C# s standard-collections (incl. Array) implementer dette interface. Variablen varnavn tildeles værdien af hver forekomst i collectionnavn efter tur og Sætning udføres for hver værdi. For et arrays vedkommende svarer sætningen altså fuldstændig til foreach(int x in a) for(int i= 0; i<a.length; i++) int x= a[i]; 4/9

5 foreach-konstruktionen kan dog ikke anvendes, hvis elementerne i collectionnavn skal ændres. F.eks. opgaven "læg een til alle elementer" : GØR-INIT: GØR: a[i]= a[i]+1; Indsat i skabelonen: Derimod vil for (int i= 0 ; i<a.length ; i++) { a[i]= a[i] +1; } // end for foreach(int x in a) x= x+1; ikke virke. foreach-loopet er baseret på iterator-begrebet: Kort fortalt er en iterator et objekt, som gør det muligt at iterere over en collection uden at kende den interne struktur. En collection som fx ArrayList (skal implementere IEnumerable) har en metode, som returnerer en iterator. Iteratoren har metoder til rykke til næste element, til at tilgå aktuelt element mv. I C# kaldes iteratorer enumeratorer, og de har statisk type IEnumerator: Eksempel: IList a = new ArrayList(); IEnumerator it = a.getenumerator();//få en iterator it while (it.movenext()) { System.Console.WriteLine(it.Current); //it.current = (int)it.current * 3;//Virker ikke. Current er read-only } it.reset();//sæt iteratoren før første element En nyoprettet iterator står før første element i collectionen, metoden MoveNext() flytter iteratoren til næste element og returnere sand, hvis der er et næste element. Hvis der ikke er flere elementer returneres falsk. Current er en read-only property, som returnerer aktuelt element. Reset() resetter iteratoren til umiddelbart før første element, så vi er klar til en ny iteration. 5/9

6 Algoritmeskabeloner og søgealgoritmer Om søgealgoritmer Søgealgoritmer er karakteriseret ved, at de undersøger en samling elementer (søgemængden) for en evt. forekomst af et element med nogle bestemte karakteristika. Det søgte element kaldes målelementet, m. Strategien er at udvælge et element, kandidatelementet, k fra den del af søgemængden, som ikke allerede er undersøgt (kandidatmængden, KM); undersøge dette element: er det m, så er vi færdige, hvis ikke så splittes KM i en ny kandidatmængde og en del, hvori m ikke kan befinde sig, og søgningen fortsættes i den nye kandidatmængde. Algoritmen kan formuleres, som følger: < INITIER KM >; bool found= false; while (! found && < KM Ø > ) { < UDVÆLG k fra KM >; if ( k==m ) found = true; else { < SPLIT KM i forhold til k og m > }//end else Hvorledes de abstrakte operationer INITIER, KM Ø, UDVÆLG, og SPLIT skal realiseres afhænger af repræsentationen af datamængden. Det skal bemærkes, at søgeskabelonen adskiller sig fra sweep-skabelonen ved, at en sweepalgoritme altid gennemløber hele datamængden, mens en søgealgoritme standser første gang den møder målelementet. Krav til de abstrakte operationer INITIER: PRE none POST KM = søgemængden Efter INITIER er udført, skal KM være lig hele søgemængden. Vi må altså ikke fjerne noget på forhånd. (Notationen KM : mærket angiver variablens (objektets) tilstand efter operationen er udført.) KM Ø: PRE none POST returnerer true, hvis kandidatmængden er tom, ellers false 6/9

7 UDVÆLG: PRE KM Ø POST k KM UDVÆLG må kun kaldes, hvis KM ikke er tom. Det eneste krav er, at k skal udvælges fra kandidatmængden. SPLIT: PRE k m && KM Ø && k KM POST k er fjernet fra KM. m må ikke fjernes. SPLIT må kun kaldes, hvis målelementet ikke er fundet, hvis der flere kandidatelementer i KM,, og hvis k er i KM. Der må gerne fjernes flere elementer end kandidatelementet - bare ikke målelementet (hvis det findes i KM). Om søgealgoritmer på sekvenser af heltal Hvis vores datamængde er et array af heltal (int[] a ), kan INITIER, UDVÆLG, KM Ø og SPLIT realiseres vha. en tællerkonstruktion, og så får søgeskabelonen følgende udseende: INITIER: int i = 0 UDVÆLG: k = a[i] KM Ø: i < a.length SPLIT: i ++ Dette skal forståes på den måde, at KM er tallene i arrayet a fra plads i til enden af a. (Opgave: Overvej om disse realiseringer overholder kravene til de abstrakte operationer.) Indsættes dette i skabelonen, fås: int k; int i= 1; bool found= false; while (!found && i<a.length ) { k = a[i]; if (k == m) found= true; else i ++; 7/9

8 (Opgave: Hvis det vides, at søgemængden er sorteret (ikke-aftagende), kan man så effektivisere ovenstående realisering ved at ændre realiseringen af <KM Ø>? Løsningen kaldes binær søgning i en sorteret datamængde.) En "smart" realisering af søgeskabelonen på et sorteret array (binær søgning) Strategien i binær søgning er kort fortalt: kik i midten af kandidatmængden: er målelementet lig midterelementet, så er vi færdige er målelementet større end midterelementet, så søg i den del af kandidatmængden, som ligger over midten er målelementet mindre end midterelementet, så søg i den del af kandidatmængden, som ligge under midten gentag dette til målelementet er fundet eller kandidatmængden er tom Hvis søgemængden er et array, kan kandidatmængden repræsenteres ved to index, low og high, som udpeger start og slut på den del af søgemængden, som målelementet kan være i. Følgende realisering kan anvendes: INITIER: int low = 0; int high = a.length-1; UDVÆLG: middle = (high + low) / 2; k = a[middle]; KM Ø: low <= high SPLIT: if (k<m) { low= middle + 1 } else { high= middle 1} (Opgave: Overvej om disse realiseringer overholder kravene til de abstrakte operationer.) Realiseringen af skabelonen bliver hermed: 8/9

9 int low = 0; int high = a.length-1; int k, middle; bool found = false; while (! found && low<=high ) { middle = (high + low) / 2; k= a[middle]; if (k == m) found= true; else if ( k<m ) low = middle+1; else high= middle-1; På et sorteret array vil binær søgning være langt hurtigere end lineær søgning. (Opgave: Hvorfor? Hvor meget hurtigere?) Det viser sig, at en søgning i en liste med n elementer skal UDVÆLG, SPLIT og KM Ø udføres et antal gange, som proportional med n, hvis man anvender den simple søge-algoritme, men kun med log(n) ved den binære søgning. (Dette betyder, at hvis liste fx indeholder ca elementer, så vil den simple søgning i gennemsnit kikke på ca. 500 elementer, mens binær søgning kun kikker på ca. 10 elementer!). Til gengæld kræver binær søgning at listen er sorteret. 9/9

Abstrakte datatyper C#-version

Abstrakte datatyper C#-version Note til Programmeringsteknologi Akademiuddannelsen i Informationsteknologi Abstrakte datatyper C#-version Finn Nordbjerg 1/9 Abstrakte Datatyper Denne note introducerer kort begrebet abstrakt datatype

Læs mere

Rekursion C#-version

Rekursion C#-version Note til Programmeringsteknologi Akademiuddannn i Informationsteknologi Rekursion C#-version Finn Nordbjerg 1 Rekursion Rekursionsbegrebet bygger på, at man beskriver noget ved "sig selv". Fx. kan tallet

Læs mere

26 Programbeviser I. Noter. PS1 -- Programbeviser I. Bevis kontra 'check af assertions' i Eiffel. Betingelser og bevisregler.

26 Programbeviser I. Noter. PS1 -- Programbeviser I. Bevis kontra 'check af assertions' i Eiffel. Betingelser og bevisregler. 26 Programbeviser I. Bevis kontra 'check af assertions' i Eiffel. Betingelser og bevisregler. Hvad er programverifikation? Bevisregel for 'tom kommando'. Bevisregel for assignment. Bevisregler for selektive

Læs mere

3 Algebraisk Specifikation af Abstrakte Datatyper.

3 Algebraisk Specifikation af Abstrakte Datatyper. 3 Algebraisk Specifikation af Abstrakte Datatyper. Specifikation kontra program. Bestanddele af en algebraisk specifikation. Klassificering af funktioner i en ADT. Systematisk definition af ligninger.

Læs mere

Eksempel: et ordresystem note 5 Lagdeling s. 1

Eksempel: et ordresystem note 5 Lagdeling s. 1 Eksempel: et ordresystem note 5 Lagdeling s. 1 Eksempel: et ordre-system NiceHair er et firma, som sælger udstyr, inventar og frisørartikler til frisørsaloner over hele landet. Det er ejet af et ægtepar

Læs mere

Python programmering. Per Tøfting. MacFest

Python programmering. Per Tøfting. MacFest Python programmering MacFest 2005 Per Tøfting http://pertoefting.dk/macfest/ Indhold Måder at afvikle Python program på Variabler Data typer Tal Sekvenser Strenge Tupler Lister Dictionaries Kontrolstrukturer

Læs mere

Noter til C# Programmering Iteration

Noter til C# Programmering Iteration Noter til C# Programmering Iteration Programflow Programmer udfører det meste af deres arbejde vha. forgrening og løkker. Løkker Mange programmeringsproblemer kan løses ved at gentage en handling på de

Læs mere

Algoritmer og invarianter

Algoritmer og invarianter Algoritmer og invarianter Iterative algoritmer Algoritmen er overordnet set een eller flere while eller for-løkker. Iterative algoritmer Algoritmen er overordnet set een eller flere while eller for-løkker.

Læs mere

Skriftlig Eksamen Algoritmer og Datastrukturer (DM507)

Skriftlig Eksamen Algoritmer og Datastrukturer (DM507) Skriftlig Eksamen Algoritmer og Datastrukturer (DM507) Institut for Matematik og Datalogi Syddansk Universitet, Odense Onsdag den 0. juni 009, kl. 9 Alle sædvanlige hjælpemidler (lærebøger, notater, osv.)

Læs mere

Søgning og Sortering. Søgning og Sortering. Søgning. Linæer søgning

Søgning og Sortering. Søgning og Sortering. Søgning. Linæer søgning Søgning og Sortering Søgning og Sortering Philip Bille Søgning. Givet en sorteret tabel A og et tal x, afgør om der findes indgang i, så A[i] = x. Sorteret tabel. En tabel A[0..n-1] er sorteret hvis A[0]

Læs mere

dintprog Manual Revision: 1241 August 24, 2010 I Introduktion 3 1 Notation 3 II Begreber 4 2 Grundbegreber om programmering 4

dintprog Manual Revision: 1241 August 24, 2010 I Introduktion 3 1 Notation 3 II Begreber 4 2 Grundbegreber om programmering 4 dintprog Manual Revision: 1241 August 24, 2010 Indhold I Introduktion 3 1 Notation 3 II Begreber 4 2 Grundbegreber om programmering 4 3 Grundbegreber om modellering 4 III Sprogkonstruktioner 5 4 Klasser

Læs mere

Objektorienteret design med arv og polymorfi:

Objektorienteret design med arv og polymorfi: Note til Programmeringsteknologi Akademiuddannelsen i Informationsteknologi Objektorienteret design med arv og polymorfi: Substitutionsprincippet Composite Design Pattern Finn Nordbjerg Side 1 Objektorienteret

Læs mere

Binære søgetræer. Binære søgetræer. Nærmeste naboer. Nærmeste nabo

Binære søgetræer. Binære søgetræer. Nærmeste naboer. Nærmeste nabo Philip Bille Nærmeste naboer. Vedligehold en dynamisk mængde S af elementer. Hvert element har en nøgle key[] og satellitdata data[]. operationer. PREDECESSOR(k): returner element med største nøgle k.

Læs mere

Opskriv følgende funktioner efter stigende orden med hensyn til O-notationen: (logn) 5. 5n 2 5 logn. 2 logn

Opskriv følgende funktioner efter stigende orden med hensyn til O-notationen: (logn) 5. 5n 2 5 logn. 2 logn Eksamen august 0 Algoritmer og Datastrukturer (00-ordning) Side af sider Opgave (%) n +n er O(n )? Ja Nej n er O(n )? n+n er O(n. )? n+n er O(8n)? n logn er O(n )? Opgave (%) Opskriv følgende funktioner

Læs mere

DATALOGISK INSTITUT, AARHUS UNIVERSITET. Det Naturvidenskabelige Fakultet EKSAMEN. Grundkurser i Datalogi

DATALOGISK INSTITUT, AARHUS UNIVERSITET. Det Naturvidenskabelige Fakultet EKSAMEN. Grundkurser i Datalogi DATALOGISK INSTITUT, AARHUS UNIVERSITET Det Naturvidenskabelige Fakultet EKSAMEN Grundkurser i Datalogi Antal sider i opgavesættet (incl. forsiden): 1 (tretten) Eksamensdag: Tirsdag den 8. april 2008,

Læs mere

Binære søgetræer. Nærmeste naboer Binære søgetræer Indsættelse Predecessor og successor Sletning Trægennemløb. Philip Bille

Binære søgetræer. Nærmeste naboer Binære søgetræer Indsættelse Predecessor og successor Sletning Trægennemløb. Philip Bille Binære søgetræer Nærmeste naboer Binære søgetræer Indsættelse Predecessor og successor Sletning Trægennemløb Philip Bille Binære søgetræer Nærmeste naboer Binære søgetræer Indsættelse Predecessor og successor

Læs mere

Tilgang til data. To udbredte metoder for at tilgå data: Sekventiel tilgang Random access: tilgang via ID (også kaldet key, nøgle) for dataelementer.

Tilgang til data. To udbredte metoder for at tilgå data: Sekventiel tilgang Random access: tilgang via ID (også kaldet key, nøgle) for dataelementer. Merging og Hashing Tilgang til data To udbredte metoder for at tilgå data: Sekventiel tilgang Random access: tilgang via ID (også kaldet key, nøgle) for dataelementer. API for sekventiel tilgang (API =

Læs mere

16. december. Resume sidste gang

16. december. Resume sidste gang 16. december Resume sidste gang Abstrakt problem, konkret instans, afgørlighedsproblem Effektiv kodning (pol. relateret til binær kodning) Sprog L : mængden af instanser for et afgørlighedsproblem hvor

Læs mere

Opskriv følgende funktioner efter stigende orden med hensyn til O-notationen: 23n log n. 4 n (log n) log n

Opskriv følgende funktioner efter stigende orden med hensyn til O-notationen: 23n log n. 4 n (log n) log n Eksamen. kvarter 00 Algoritmer og Datastrukturer (00-ordning) Side af sider Opgave (%) Ja Nej n er O(n )? n er O(n )? n er O(n + 0 n)? n + n er O(n )? n log n er Ω(n )? Opgave (%) Opskriv følgende funktioner

Læs mere

Opgave 1 (10%) I det følgende angiver log n 2-tals-logaritmen af n. Ja Nej. n+3n er O(2n)? n 6 er O(n 5 )? nlogn er O(n 2 /logn)? 4n 3 er O(3n 4 )?

Opgave 1 (10%) I det følgende angiver log n 2-tals-logaritmen af n. Ja Nej. n+3n er O(2n)? n 6 er O(n 5 )? nlogn er O(n 2 /logn)? 4n 3 er O(3n 4 )? Eksamen juni Algoritmer og Datastrukturer (-ordning) Side af sider Opgave (%) I det følgende angiver log n -tals-logaritmen af n. n+n er O(n)? n 6 er O(n )? nlogn er O(n /logn)? n er O(n )? n er O(n )?

Læs mere

Design by Contract Bertrand Meyer Design and Programming by Contract. Oversigt. Prædikater

Design by Contract Bertrand Meyer Design and Programming by Contract. Oversigt. Prædikater Design by Contract Bertrand Meyer 1986 Design and Programming by Contract Michael R. Hansen & Anne Haxthausen mrh@imm.dtu.dk Informatics and Mathematical Modelling Technical University of Denmark Design

Læs mere

University of Southern Denmark Syddansk Universitet. DM502 Forelæsning 3

University of Southern Denmark Syddansk Universitet. DM502 Forelæsning 3 DM502 Forelæsning 3 Indlæsning fra tastatur Udskrift til skærm Repetition Beregning af middelværdi Gentagelse med stop-betingelse (while) Heltalsdivision Division med nul Type-casting ( (double) ) Betinget

Læs mere

BRP Sortering og søgning. Hægtede lister

BRP Sortering og søgning. Hægtede lister BRP 18.10.2006 Sortering og søgning. Hægtede lister 1. Opgaver 2. Selection sort (udvælgelsessortering) 3. Kompleksitetsanalyse 4. Merge sort (flettesortering) 5. Binær søgning 6. Hægtede lister 7. Øvelser:

Læs mere

Målet for disse slides er at beskrive nogle algoritmer og datastrukturer relateret til at gemme og hente data effektivt.

Målet for disse slides er at beskrive nogle algoritmer og datastrukturer relateret til at gemme og hente data effektivt. Merging og hashing Mål Målet for disse slides er at beskrive nogle algoritmer og datastrukturer relateret til at gemme og hente data effektivt. Dette emne er et uddrag af kurset DM507 Algoritmer og datastrukturer

Læs mere

Introduktion til datastrukturer. Introduktion til datastrukturer. Introduktion til datastrukturer. Datastrukturer

Introduktion til datastrukturer. Introduktion til datastrukturer. Introduktion til datastrukturer. Datastrukturer Introduktion til datastrukturer Introduktion til datastrukturer Philip Bille Datastrukturer Datastruktur. Metode til at organise data så det kan søges i/tilgås/manipuleres effektivt. Mål. Hurtig Kompakt

Læs mere

Forelæsning Uge 2 Torsdag

Forelæsning Uge 2 Torsdag Forelæsning Uge 2 Torsdag Java syntax og style guide Sætninger Simple sætninger (assignment, interne og eksterne metodekald) Sammensatte sætninger (blok, selektion, gentagelse) Udtryk og operatorer Brug

Læs mere

Skriftlig eksamen i Datalogi

Skriftlig eksamen i Datalogi Roskilde Universitetscenter side 1 af 9 sider Skriftlig eksamen i Datalogi Modul 1 Vinter 1999/2000 Opgavesættet består af 6 opgaver, der ved bedømmelsen tillægges følgende vægte: Opgave 1 5% Opgave 2

Læs mere

Forelæsning Uge 4 Mandag

Forelæsning Uge 4 Mandag Forelæsning Uge 4 Mandag Algoritmeskabeloner Kan (ved simple tilretningerne) bruges til at implementere metoder, der gennemsøger en arrayliste (eller anden objektsamling) og finder objekter, der opfylder

Læs mere

Kursusarbejde 3 Grundlæggende Programmering

Kursusarbejde 3 Grundlæggende Programmering Kursusarbejde 3 Grundlæggende Programmering Arne Jørgensen, 300473-2919 klasse dm032-1a 21. november 2003 Indhold 1. Kode 2 1.1. forestillinger.h............................................. 2 1.2. forestillinger.cc.............................................

Læs mere

Søgning og Sortering. Søgning Linæer søgning Binær søgning Sortering Indsættelsessortering Flettesortering. Philip Bille

Søgning og Sortering. Søgning Linæer søgning Binær søgning Sortering Indsættelsessortering Flettesortering. Philip Bille Søgning og Sortering Søgning Linæer søgning Binær søgning Sortering Indsættelsessortering Flettesortering Philip Bille Søgning og Sortering Søgning Linæer søgning Binær søgning Sortering Indsættelsessortering

Læs mere

Introduktion til datastrukturer. Introduktion til datastrukturer. Introduktion til datastrukturer. Datastrukturer

Introduktion til datastrukturer. Introduktion til datastrukturer. Introduktion til datastrukturer. Datastrukturer Introduktion til datastrukturer Introduktion til datastrukturer Philip Bille Datastrukturer Datastruktur. Metode til at organise data så det kan søges i/tilgås/manipuleres effektivt. Mål. Hurtig Kompakt

Læs mere

Datastrukturer (recap)

Datastrukturer (recap) Dictionaries Datastrukturer (recap) Data: Datastruktur = data + operationer herpå En ID (nøgle) + associeret data. Operationer: Datastrukturens egenskaber udgøres af de tilbudte operationer (API for adgang

Læs mere

Introduktion til datastrukturer

Introduktion til datastrukturer Introduktion til datastrukturer Datastrukturer Stakke og køer Hægtede lister Dynamiske tabeller Philip Bille Introduktion til datastrukturer Datastrukturer Stakke og køer Hægtede lister Dynamiske tabeller

Læs mere

Forelæsning Uge 4 Torsdag

Forelæsning Uge 4 Torsdag Forelæsning Uge 4 Torsdag Algoritmeskabeloner findone, findall, findnoof, findsumof (sidste mandag) findbest Levetid for variabler og parametre Virkefeltsregler Hvor kan man bruge de forskellige variabler?

Læs mere

dintprog Manual Revision: 731 September 30, 2009 1 Introduktion 3 1.1 Notation... 3 I Begreber 4 2 Grundbegreber om programmering 4

dintprog Manual Revision: 731 September 30, 2009 1 Introduktion 3 1.1 Notation... 3 I Begreber 4 2 Grundbegreber om programmering 4 dintprog Manual Revision: 731 September 30, 2009 Indhold 1 Introduktion 3 1.1 Notation................................. 3 I Begreber 4 2 Grundbegreber om programmering 4 3 Grundbegreber om modellering

Læs mere

BRP Tal. Om computer-repræsentation og -manipulation. Logaritmer

BRP Tal. Om computer-repræsentation og -manipulation. Logaritmer BRP 13.9.2006 Tal. Om computer-repræsentation og -manipulation. Logaritmer 1. Opgaverne til i dag dækker det meste af stoffet 2. Resten af stoffet logaritmer binære træer 3. Øvelse ny programmeringsopgave

Læs mere

Software Construction 1 semester (SWC) Spørgsmål 1

Software Construction 1 semester (SWC) Spørgsmål 1 Spørgsmål 1 Objekter #1 Giv en kort præsentation af begrebet objekt, samt hvorledes du erklærer(declare), opretter(create) og bruger objekter Du kan beskrive o Datatyper o Variable / Instans variable /

Læs mere

Grådige algoritmer. Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer.

Grådige algoritmer. Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Grådige algoritmer Grådige algoritmer Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Grådige algoritmer Et generelt algoritme-konstruktionsprincip ( paradigme ) for

Læs mere

UNION-FIND. UNION-FIND-problemet. Forbundethed kan være svær at afgøre (især for en computer) Eksempel på udførelse

UNION-FIND. UNION-FIND-problemet. Forbundethed kan være svær at afgøre (især for en computer) Eksempel på udførelse UNION-FIND-problemet UNION-FIND inddata: en følge af heltalspar (p, q); betydning: p er forbundet med q uddata: intet, hvis p og q er forbundet, ellers (p, q) Eksempel på anvendelse: Forbindelser i computernetværk

Læs mere

Datastrukturer (recap)

Datastrukturer (recap) Dictionaries Datastrukturer (recap) Data: Datastruktur = data + operationer herpå En ID (nøgle) + associeret data. Operationer: Datastrukturens egenskaber udgøres af de tilbudte operationer (API for adgang

Læs mere

Indledning. Hvorfor det forholder sig sådan har jeg en masse idéer om, men det bliver for meget at komme ind på her. God fornøjelse med læsningen.

Indledning. Hvorfor det forholder sig sådan har jeg en masse idéer om, men det bliver for meget at komme ind på her. God fornøjelse med læsningen. Indledning...2 Variabler...13 Eksempel: 1...13 Eksempel 2:...13 Eksempel 3:...15 Eksempel 4:...16 Metoder...17 Metode (intet ind og intet ud)...17 Metode (tekst ind)...18 Metode (tekst ind og tekst ud)...19

Læs mere

Løsning af møntproblemet

Løsning af møntproblemet Løsning af møntproblemet Keld Helsgaun RUC, oktober 1999 Antag at tilstandene i problemet (stillingerne) er repræsenteret ved objekter af klassen State. Vi kan da finde en kortest mulig løsning af problemet

Læs mere

Kapitel 3 Betinget logik i C#

Kapitel 3 Betinget logik i C# Kapitel 3 i C# er udelukkende et spørgsmål om ordet IF. Det er faktisk umuligt at programmere effektivt uden at gøre brug af IF. Du kan skrive små simple programmer. Men når det bliver mere kompliceret

Læs mere

SWC eksamens-spørgsmål. Oversigt

SWC eksamens-spørgsmål. Oversigt SWC eksamens-spørgsmål Oversigt #1 Typer og variable #2 Aritmetik og logik #3 Klasser (definition, objekter) #4 Klasser (metoder) #5 Klasser (nedarvning, polymorfi) #6 Conditional statements #7 Repetition

Læs mere

28 Algoritmedesign. Noter. PS1 -- Algoritmedesign

28 Algoritmedesign. Noter. PS1 -- Algoritmedesign 28 Algoritmedesign. Algoritmeskabelon for Del og Hersk. Eksempler på Del og Hersk algoritmer. Binær søgning i et ordnet array. Sortering ved fletning og Quicksort. Maksimal delsums problem. Tætteste par

Læs mere

University of Southern Denmark Syddansk Universitet. DM502 Forelæsning 4

University of Southern Denmark Syddansk Universitet. DM502 Forelæsning 4 DM502 Forelæsning 4 Flere kontrolstrukturer for-løkke switch-case Metoder Indhold Arrays og sortering af arrays String-funktioner for-løkke Ofte har man brug for at udføre det samme kode, for en sekvens

Læs mere

Grådige algoritmer. Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer.

Grådige algoritmer. Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Grådige algoritmer Grådige algoritmer Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Grådige algoritmer Et generelt algoritme-konstruktionsprincip ( paradigme ) for

Læs mere

Opskriv følgende funktioner efter stigende orden med hensyn til O-notationen: n 2 n (log n) 2. 3 n /n 2 n + (log n) 4

Opskriv følgende funktioner efter stigende orden med hensyn til O-notationen: n 2 n (log n) 2. 3 n /n 2 n + (log n) 4 Eksamen. kvarter 00 Side 1 af sider Opgave 1 ( %) Ja Nej n log n er O(n / )? n 1/ er O(log n)? n + n er O(n )? n( n + log n) er O(n / )? n er Ω(n )? Opgave ( %) Opskriv følgende funktioner efter stigende

Læs mere

Design by Contract. Design and Programming by Contract. Oversigt. Prædikater

Design by Contract. Design and Programming by Contract. Oversigt. Prædikater Design by Contract Design and Programming by Contract Anne Haxthausen ah@imm.dtu.dk Informatics and Mathematical Modelling Technical University of Denmark Design by Contract er en teknik til at specificere

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Eksamen 02105, F14 side 1 af 14 Danmarks Tekniske Universitet Skriftlig prøve, den 22. maj 2014. Kursusnavn: Algoritmer og datastrukturer 1 Kursusnummer: 02105 Hjælpemidler: Skriftlige hjælpemidler. Det

Læs mere

Korteste veje i vægtede grafer. Længde af sti = sum af vægte af kanter på sti.

Korteste veje i vægtede grafer. Længde af sti = sum af vægte af kanter på sti. Korteste veje Korteste veje i vægtede grafer Længde af sti = sum af vægte af kanter på sti. Korteste veje i vægtede grafer Længde af sti = sum af vægte af kanter på sti. δ(u, v) = længden af en korteste

Læs mere

Iteration af et endomorft kryptosystem. Substitutions-permutations-net (SPN) og inversion. Eksklusiv disjunktion og dens egenskaber

Iteration af et endomorft kryptosystem. Substitutions-permutations-net (SPN) og inversion. Eksklusiv disjunktion og dens egenskaber Produktsystemer, substitutions-permutations-net samt lineær og differentiel kryptoanalyse Kryptologi, fredag den 10. februar 2006 Nils Andersen (Stinson 3., afsnit 2.7 3.4 samt side 95) Produkt af kryptosystemer

Læs mere

Grundlæggende køretidsanalyse af algoritmer

Grundlæggende køretidsanalyse af algoritmer Grundlæggende køretidsanalyse af algoritmer Algoritmers effektivitet Størrelse af inddata Forskellige mål for køretid Store -notationen Klassiske effektivitetsklasser Martin Zachariasen DIKU 1 Algoritmers

Læs mere

Stakke, køer og lidt om hægtede lister - kapitel 16 og 17

Stakke, køer og lidt om hægtede lister - kapitel 16 og 17 Datastrukturer & Algoritmer, Datalogi C Forelæsning 2/11-2004 Henning Christiansen Stakke, køer og lidt om hægtede lister - kapitel 16 og 17 Fundamentale datastrukturer man får brug for igen og igen Et

Læs mere

DM507 Algoritmer og datastrukturer

DM507 Algoritmer og datastrukturer DM507 Algoritmer og datastrukturer Forår 2016 Projekt, del I Institut for matematik og datalogi Syddansk Universitet 29. februar, 2016 Dette projekt udleveres i tre dele. Hver del har sin deadline, således

Læs mere

19 Hashtabeller. Noter. PS1 -- Hashtabeller. Hashing problemet. Hashfunktioner. Kollision. Søgning og indsættelse.

19 Hashtabeller. Noter. PS1 -- Hashtabeller. Hashing problemet. Hashfunktioner. Kollision. Søgning og indsættelse. 19 Hashtabeller. Hashing problemet. Hashfunktioner. Kollision. Søgning og indsættelse. Sammenligning af hashtabeller og søgetræer. 281 Hashing-problemet (1). Vi ønsker at afbilde n objekter på en tabel

Læs mere

Skriftlig eksamen i Datalogi

Skriftlig eksamen i Datalogi Roskilde Universitetscenter Skriftlig eksamen i Datalogi Modul 1 Sommer 1999 Opgavesættet består af 5 opgaver, der ved bedømmelsen tillægges følgende vægte: Opgave 1 15% Opgave 2 15% Opgave 3 8% Opgave

Læs mere

Koordinering. dopsys

Koordinering. dopsys Koordinering At indføre flertrådethed (1) når tråde tages i brug opstår typisk konflikter (et velkendt eksempel er errno ) 2 At indføre flertrådethed (2) en del konflikter kan afhjælpes med thread-local

Læs mere

Binære søgetræer. Binære søgetræer. Nærmeste naboer. Nærmeste nabo

Binære søgetræer. Binære søgetræer. Nærmeste naboer. Nærmeste nabo Philip Bille er. Vedligehold en dynamisk mængde S af elementer. Hvert element har en nøgle x.key og satellitdata x.data. operationer. PREDECESSOR(k): returner element x med største nøgle k. SUCCESSOR(k):

Læs mere

Skriftlig Eksamen Algoritmer og Datastrukturer (DM507)

Skriftlig Eksamen Algoritmer og Datastrukturer (DM507) Skriftlig Eksamen Algoritmer og Datastrukturer (DM507) Institut for Matematik og Datalogi Syddansk Universitet, Odense Mandag den 7. juni 00, kl. 9 Alle sædvanlige hjælpemidler (lærebøger, notater, osv.)

Læs mere

Merging og Hashing (del I)

Merging og Hashing (del I) Merging og Hashing (del I) Tilgang til data To udbredte metoder for at tilgå data: Sekventiel tilgang Random access: tilgang via ID (også kaldet key, nøgle) for dataelementer. API for sekventiel tilgang

Læs mere

Geometrisk skæring. Afgørelse af om der findes skæringer blandt geometriske objekter Bestemmelse af alle skæringspunkter

Geometrisk skæring. Afgørelse af om der findes skæringer blandt geometriske objekter Bestemmelse af alle skæringspunkter Planfejning 1 Skæring 2 Geometrisk skæring Afgørelse af om der findes skæringer blandt geometriske objekter Bestemmelse af alle skæringspunkter Løsningsmetoder: Rå kraft Planfejning (eng. plane sweep)

Læs mere

Forelæsning Uge 3 Torsdag

Forelæsning Uge 3 Torsdag Forelæsning Uge 3 Torsdag Billedredigering Gråtonebilleder (som er lidt simplere end farvebilleder) Rekursive metoder Metoder der kalder sig selv Giver ofte meget elegante og simple løsninger på komplekse

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af 3 sider anmarks Tekniske Universitet Skriftlig prøve, den 29. maj 203. ursusnavn: lgoritmer og datastrukturer ursus nr. 02326. jælpemidler: Skriftlige hjælpemidler. et er ikke tilladt at medbringe

Læs mere

DM507 Algoritmer og datastrukturer

DM507 Algoritmer og datastrukturer DM507 Algoritmer og datastrukturer Forår 2015 Projekt, del I Institut for matematik og datalogi Syddansk Universitet 3. marts, 2015 Dette projekt udleveres i to dele. Hver del har sin deadline, således

Læs mere

Bits DM534. Rolf Fagerberg, 2012

Bits DM534. Rolf Fagerberg, 2012 Bits DM534 Rolf Fagerberg, 2012 Resume af sidst Overblik over kursus Introduktion. Tre pointer: Datalogi er menneskeskabt og dynamisk. Tidslinie over fremskridt mht. ideer og hardware. Algoritme er et

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af sider Danmarks Tekniske Universitet Skriftlig prøve, den. maj 00. Kursusnavn Algoritmer og datastrukturer Kursus nr. 06. Tilladte hjælpemidler: Alle hjælpemidler. Vægtning af opgaverne: Opgave

Læs mere

Forelæsning Uge 2 Mandag

Forelæsning Uge 2 Mandag Forelæsning Uge 2 Mandag Sætninger Simple sætninger (assignment, interne og eksterne metodekald) Sammensatte sætninger (blok, selektion, gentagelse) Udtryk og operatorer Java syntax og style guide Afleveringsopgave:

Læs mere

Sortering. De n tal i sorteret orden. Eksempel: Kommentarer:

Sortering. De n tal i sorteret orden. Eksempel: Kommentarer: Sortering Sortering Input: Output: n tal De n tal i sorteret orden Eksempel: Kommentarer: 6, 2, 9, 4, 5, 1, 4, 3 1, 2, 3, 4, 4, 5, 9 Sorteret orden kan være stigende eller faldende. Vi vil i dette kursus

Læs mere

DATALOGI 1E. Skriftlig eksamen torsdag den 3. juni 2004

DATALOGI 1E. Skriftlig eksamen torsdag den 3. juni 2004 Københavns Universitet Naturvidenskabelig Embedseksamen DATALOGI 1E Skriftlig eksamen torsdag den 3. juni 2004 Opgaverne vægtes i forhold til tidsangivelsen herunder, og hver opgaves besvarelse bedømmes

Læs mere

HTML, PHP, SQL, webserver, hvad er hvad??

HTML, PHP, SQL, webserver, hvad er hvad?? Dagens menu HTML og PHP: Baglæs fra output til input PHP: Variable, strenge og arrays Funktioner, oprettelse og kald (og variable på tværs af funktioner) echo vs return? if-else konstruktioner MySQL: Hvad

Læs mere

Projekt - Visual Basic for Applications N på stribe

Projekt - Visual Basic for Applications N på stribe Projekt - Visual Basic for Applications N på stribe Mikkel Kaas og Troels Henriksen - 03x 3. november 2005 1 Introduktion Spillet tager udgangspunkt i det gamle kendte 4 på stribe, dog med den ændring,

Læs mere

DM507 Algoritmer og datastrukturer

DM507 Algoritmer og datastrukturer DM507 Algoritmer og datastrukturer Forår 2012 Projekt, del II Institut for matematik og datalogi Syddansk Universitet 15. marts, 2012 Dette projekt udleveres i tre dele. Hver del har sin deadline, således

Læs mere

Bevisteknikker. Bevisteknikker (relevant både ved design og verifikation) Matematisk induktion. Matematisk induktion uformel beskrivelse

Bevisteknikker. Bevisteknikker (relevant både ved design og verifikation) Matematisk induktion. Matematisk induktion uformel beskrivelse Bevisteknikker Bevisteknikker (relevant både ved design og verifikation) Bevisførelse ved modstrid (indirekte bevis) Antag, at det givne teorem er falsk Konkluder, at dette vil føre til en modstrid Teorem:

Læs mere

Induktive og rekursive definitioner

Induktive og rekursive definitioner Induktive og rekursive definitioner Denne note omhandler matematiske objekter, som formelt er opbygget fra et antal basale byggesten, kaldet basistilfælde eller blot basis, ved gentagen brug af et antal

Læs mere

Opgaver. Oktober 2009

Opgaver. Oktober 2009 Opgaver Oktober 2009 Dette er en samling af supplerende opgaver til kurset Programmering 2. I nogle opgaver henvises til filer med Java programmer/klasser. Dette eksempelmateriale kan nås via WWW: http://www.cs.au.dk/dprog2/eksempler/

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Eksamen 005, F0 side af sider Danmarks Tekniske Universitet Skriftlig prøve, den 6. maj 00. Kursusnavn Algoritmik og datastrukturer I Kursus nr. 005. Tilladte hjælpemidler: Alle skriftlige hjælpemidler.

Læs mere

Appendiks 6: Universet som en matematisk struktur

Appendiks 6: Universet som en matematisk struktur Appendiks 6: Universet som en matematisk struktur En matematisk struktur er et meget abstrakt dyr, der kan defineres på følgende måde: En mængde, S, af elementer {s 1, s 2,,s n }, mellem hvilke der findes

Læs mere

Flowchart og Nassi ShneidermanN Version. Et flowchart bruges til grafisk at tegne et forløb. Det kan fx være et programforløb for en microcontroller.

Flowchart og Nassi ShneidermanN Version. Et flowchart bruges til grafisk at tegne et forløb. Det kan fx være et programforløb for en microcontroller. Flowchart Et flowchart bruges til grafisk at tegne et forløb. Det kan fx være et programforløb for en microcontroller. Et godt program til at tegne flowcharts med er, EDGE-Diagrammer, eller Smartdraw.

Læs mere

t a l e n t c a m p d k Matematiske Metoder Anders Friis Anne Ryelund 25. oktober 2014 Slide 1/42

t a l e n t c a m p d k Matematiske Metoder Anders Friis Anne Ryelund 25. oktober 2014 Slide 1/42 Slide 1/42 Hvad er matematik? 1) Den matematiske metode 2) Hvad vil det sige at bevise noget? 3) Hvor begynder det hele? 4) Hvordan vælger man et sæt aksiomer? Slide 2/42 Indhold 1 2 3 4 Slide 3/42 Mængder

Læs mere

Affine rum. a 1 u 1 + a 2 u 2 + a 3 u 3 = a 1 u 1 + (1 a 1 )( u 2 + a 3. + a 3. u 3 ) 1 a 1. Da a 2

Affine rum. a 1 u 1 + a 2 u 2 + a 3 u 3 = a 1 u 1 + (1 a 1 )( u 2 + a 3. + a 3. u 3 ) 1 a 1. Da a 2 Affine rum I denne note behandles kun rum over R. Alt kan imidlertid gennemføres på samme måde over C eller ethvert andet legeme. Et underrum U R n er karakteriseret ved at det er en delmængde som er lukket

Læs mere

DATALOGISK INSTITUT, AARHUS UNIVERSITET

DATALOGISK INSTITUT, AARHUS UNIVERSITET DATALOGISK INSTITUT, AARHUS UNIVERSITET Det Naturvidenskabelige Fakultet EKSAMEN Grundkurser i Datalogi Antal sider i opgavesættet (incl. forsiden): 12 (tolv) Eksamensdag: Fredag den 1. april 200, kl..00-11.00

Læs mere

Specifikation Abstrakt OO OS-API Rev. 1.7. Specifikation. Abstrakt, objektorienteret operativsystem-api

Specifikation Abstrakt OO OS-API Rev. 1.7. Specifikation. Abstrakt, objektorienteret operativsystem-api Specifikation Abstrakt, objektorienteret operativsystem-api Indhold 1 Indledning... 3 1.1 Introduktion... 3 1.2 Formål... 3 1.3 Overordnede krav... 3 2 Ressourcer i OS-API et... 4 2.1 Tråde... 4 2.2 Timere...

Læs mere

University of Southern Denmark Syddansk Universitet. DM502 Forelæsning 2

University of Southern Denmark Syddansk Universitet. DM502 Forelæsning 2 DM502 Forelæsning 2 Repetition Kompilere og køre Java program javac HelloWorld.java java HeloWorld.java Debugge Java program javac -g HelloWorld.java jswat Det basale Java program public class HelloWorld

Læs mere

Bevisteknikker (relevant både ved design og verifikation)

Bevisteknikker (relevant både ved design og verifikation) Bevisteknikker 1 Bevisteknikker (relevant både ved design og verifikation) Bevisførelse ved modstrid (indirekte bevis) Antag, at det givne teorem er falsk Konkluder, at dette vil føre til en modstrid Teorem:

Læs mere

Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Ideen er simpel:

Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Ideen er simpel: Grådige algoritmer Grådige algoritmer Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Ideen er simpel: Opbyg løsningen skridt for skridt ved hele tiden af vælge lige

Læs mere

DATALOGI 1E. Skriftlig eksamen fredag den 7. juni 2002

DATALOGI 1E. Skriftlig eksamen fredag den 7. juni 2002 Københavns Universitet Naturvidenskabelig Embedseksamen DATALOGI 1E Skriftlig eksamen fredag den 7. juni 2002 Opgaverne vægtes i forhold til tidsangivelsen, og hver opgaves besvarelse bedømmes som en helhed.

Læs mere

BOSK F2012, 1. del: Prædikatslogik

BOSK F2012, 1. del: Prædikatslogik ε > 0. δ > 0. x. x a < δ f (x) L < ε February 8, 2012 Prædikater Vi skal lære om prædikatslogik lad os starte med prædikater. Et prædikat er et orakel der svarer ja eller nej. Eller mere præcist: Prædikater

Læs mere

PHP Snippets. De små korte. Skrevet af Daniel Pedersen

PHP Snippets. De små korte. Skrevet af Daniel Pedersen PHP Snippets De små korte Skrevet af Daniel Pedersen Indhold PHP Snippets De små korte er en samling af små og praktiske kode eksempler med kort forklaring, som med formål at kunne benyttes til opsalgsværk

Læs mere

1 Opsumering fra tidligere. 2 Dagsorden 3 BIMS. 4 Programtilstande. Statements/kommandoer (Stm) i bims. 3.1 Abstrakt syntaks for bims

1 Opsumering fra tidligere. 2 Dagsorden 3 BIMS. 4 Programtilstande. Statements/kommandoer (Stm) i bims. 3.1 Abstrakt syntaks for bims 1 Opsumering fra tidligere Hvis A er kontekstfrit, S er der et p > 0 s Alle s A hvor s p kan splittes op som s = uvxyz så argument 1-3 holder A er ikke kontekstfrit, hvis for ethvert bud på p kan findes

Læs mere

Ugeseddel 12(10.12 14.12)

Ugeseddel 12(10.12 14.12) Ugeseddel (..) Matematisk Programmering Niels Lauritzen..7 FORELÆSNINGER I ugen. 7. gennemgik vi algoritmer til løsning af heltalsprogrammer ved hjælp af simplex algoritmen. Dette er heltalsprogrammeringsugesedlen

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af sider Danmarks Tekniske Universitet Skriftlig prøve, den 6. maj 0. Kursusnavn: Algoritmer og datastrukturer I Kursus nr. 005. Tilladte hjælpemidler: Skriftlige hjælpemidler. Varighed: timer Vægtning

Læs mere

Køreplan Matematik 1 - FORÅR 2005

Køreplan Matematik 1 - FORÅR 2005 Lineær algebra modulo n og kryptologi Køreplan 01005 Matematik 1 - FORÅR 2005 1 Introduktion Kryptologi er en ældgammel disciplin, som går flere tusinde år tilbage i tiden. Idag omfatter disciplinen mange

Læs mere

Korteste veje i vægtede grafer. Længde af sti = sum af vægte af kanter på sti.

Korteste veje i vægtede grafer. Længde af sti = sum af vægte af kanter på sti. Korteste veje Korteste veje i vægtede grafer Længde af sti = sum af vægte af kanter på sti. Korteste veje i vægtede grafer Længde af sti = sum af vægte af kanter på sti. δ(u, v) = længden af en korteste

Læs mere

Noter til C# Programmering Selektion

Noter til C# Programmering Selektion Noter til C# Programmering Selektion Sætninger Alle sætninger i C# slutter med et semikolon. En sætning kontrollerer sekvensen i programafviklingen, evaluerer et udtryk eller gør ingenting Blanktegn Mellemrum,

Læs mere

Åben uddannelse, Efterår 1996, Oversættere og køretidsomgivelser

Åben uddannelse, Efterår 1996, Oversættere og køretidsomgivelser 3/10/96 Seminaret den 26/10 vil omhandle den sidste fase af analysen og de første skridt i kodegenereringen. Det drejer sig om at finde betydningen af programmet, nu hvor leksikalsk og syntaktisk analyse

Læs mere

Tabelbegrebet. Klassediagrammer (III) Oversigt. Anvendelse af Tabeller. Tabeller og qualified associations

Tabelbegrebet. Klassediagrammer (III) Oversigt. Anvendelse af Tabeller. Tabeller og qualified associations Tabelbegrebet Klassediagrammer (III) Tabeller og qualified associations originally by Michael R. Hansen modified/extended by Anne E. Haxthausen Informatics and Mathematical Modelling Technical University

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af 2 sider anmarks Tekniske Universitet Skriftlig prøve, den 23. maj 20. Kursusnavn: lgoritmer og datastrukturer Kursus nr. 02326. Varighed: 4 timer Tilladte hjælpemidler: lle skriftlige hjælpemidler.

Læs mere

Optimering af fraværsregistrering

Optimering af fraværsregistrering Journal Optimering af fraværsregistrering Eksamensprojekt i Programmering C, klasse 3.4, 2011 AFLEVERET 09-05-2014 Indhold Abstract... Fejl! Bogmærke er ikke defineret. Problemformulering... 2 Produktet...

Læs mere

Bemærk! Et PHP script har kun brug for at forbinde én gang til databaseserveren. Det kan så sagtens udføre flere kommandoer vha. denne forbindelse.

Bemærk! Et PHP script har kun brug for at forbinde én gang til databaseserveren. Det kan så sagtens udføre flere kommandoer vha. denne forbindelse. Mysqli Webintegrator Når vi arbejder med server-side scripting ( i vort tilfælde PHP), har vi ofte behov for at kunne tilgå data, som vi opbevarer i en database. Det kan f.eks. dreje sig om nyhederne i

Læs mere