Teoretiske Øvelser Mandag den 13. september 2010

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "Teoretiske Øvelser Mandag den 13. september 2010"

Transkript

1 Hans Kjeldsen 6. september 00 eoretiske Øvelser Mandag den 3. september 00 Computerøvelse nr. 3 Ligning (6.8) og (6.9) på side 83 i Lecture Notes angiver betingelserne for at konvektion finder sted i det indre af en stjerne. I nærværende computerøvelse skal vi undersøge denne betingelse for en simpel model af Solen. Det er tanken at øvelsen skal bruges som optakt til øvelse Ø-0. I det følgende ser vi på en simpel model af Solen, hvor ligningen for en ideal gas antages at gælde: k B μ m Vi antager at gassen i Solens indre er fuldstændigt ioniseret og at værdien af middel molekylvægten overalt i Solen er: μ 0,60 Vi antager desuden at opaciteten kan beskrives ved Kramers approksimation. I denne øvelse benyttes følgende udtryk: κ κ 4 0,4 0 cm / u g il undersøgelsen af (6.8) og (6.9) benytter vi nu følgende approksimation for temperaturen i Solens indre (som funktion af radius): 7 (,33 0 K , ( r / R) + 0,54 hvor r er afstanden fra Solen centrum og R er Solens radius. Side

2 For tætheden benyttes følgende approksimation (som er mindre præcis end den vi benytter for temperaturen): ( 0,77g / cm ( r / R) + 0,0 0, / + 0 (,44,0 ( r / R) ) g / cm C-3..: lot (eller log()) som funktion af r/r (vi benytter ovenstående approksimation for (). C-3.: Antag at L(/m( er konstant ud gennem Solen. Beregn og plot ud fra denne antagelse værdien af strålings-temperaturgradienten som funktion af r (benyt ligning 6.8). Hvor i Solen er der konvektion? Bestem dybden af den ydre konvektions zone. Sammenlign med figur 6.3. C-3.3.: Benyt nu approksimationen for ( til at beregne m( ved numerisk integration (benyt ligning 4.5). C-3.4.: Beregn massen af konvektionszonen i forhold til hele Solens masse, ved at benytte m( (fra C-3.3) og dybden af konvektionszonen som blev fundet i C-3.. Side

3 eoretiske Øvelser nr. 0 Fagpakke i Astronomi: Stjerner Vi skal i denne øvelse (som i computerøvelsen ovenfo regne på ligning (6.8) og via (6.9) undersøge betingelsen for konvektion i Solen. I C-3 benyttede vi MatLab til generelt at plotte strålings-temperaturgradienten som funktion af r, mens vi i denne opgave skal undersøge den samme problemstilling analytisk. I områder med adiabatisk konvektion er temperaturgradienten givet ved ad 0,4 Ø-0.: Vi antager at Solen består af en atmosfære og under dette ligger et område med adiabatisk konvektion, som vi antager begynder lige under atmosfæren. Vi antager at atmosfæren når % ind i Solen (til r/r 0,99) og at værdierne for temperatur og tryk (i cgs-enhede ved bunden af atmosfæren (og toppen af konvektionszonen) er: 4 4,0 0 K og 9,5 0 dyn / cm Vi antager at stoffet er fuldstændigt ioniseret (og at strålingstrykket negligeres). Bestem sammenhængen mellem og i konvektionszonen. Ø-0.: Vi antager nu (i lighed med computerøvelse C-3) at ligningen for en ideal gas gælder for stoffet i Solen: k B μ m Vi antager samtidigt at værdien af middel molekylvægten overalt i Solen er: μ 0,60 Desuden antages at opaciteten kan beskrives ved Kramers approksimation. I denne øvelse benyttes (som i C-3) følgende udtryk: κ κ 4 0,4 0 cm / u g Vi ønsker nu at bestemme værdierne for temperaturen, trykket og tætheden ved bunden af konvektionszonen i Solen, idet vi antager at værdien for L/m er konstant i konvektionszonen og er lig med L(sol)/M(sol). Side 3

4 Hint: Opskriv sammenhængen mellem og, og samt og i konvektionszonen. Indsæt nu værdierne for middel molekylvægten, opaciteten (som funktion af og ) og L/m i ligning (6.8) og bestem det sted hvor (6.9) går fra at være opfyldt til ikke længere at gælde. Dette sted udgør bunden af konvektionszonen. Ved indsættelse af () i (6.8) er den eneste ubekendte som derfor kan bestemmes under antagelse af (6.9). Bestem herefter og ud fra. Ø-0.3: Det er nu muligt at bestemme den brøkdel af Solens radius som konvektionszonen strækker sig over. Idéen er at benytte relationen mellem tætheden () og trykket () i konvektionszonen i sammenhæng med ligningen for hydrostatisk ligevægt. Herved er det muligt at opstille følgende ligning, hvor konstanten (k) er bestem ud fra værdierne i Ø-0. og Ø-0.: d dr k r Vis (ved at kombinere () med ligningen for hydrostatisk ligevægt) at ovenstående ligning er korrekt i konvektionszonen og bestem værdien af k. Vis nu at denne ligning har følgende løsning: 3/5 5 / 5 c + k r hvor c er en ny konstant. Benyt værdien for trykket i toppen af konvektionszonen (ved r/r 0,99) til at bestemme c. Indsæt herefter værdien for trykket i bunden af konvektionszonen og find r/r for konvektionszonens bund. Sammenlign resultatet med det vi fandt i øvelse C-3 og det vi finder ved aflæsning på figur 6.3. Side 4

5 eoretiske Øvelser nr. Fagpakke i Astronomi: Stjerner Den dynamiske tidsskala for Solen er omkring 30 millioner år og udtrykker bl.a. den tid energien er om at bevæge sig fra centrum af Solen til overfladen. Det er i forlængelse af dette, naturligvis interessant at undersøge om energistrømmen ud gennem Solen sker med konstant hastighed, eller om der er steder i Solen hvor energien transporteres væsentligt hurtigere. Dette vil vi undersøge i denne øvelse. Ø-.: Den termiske tidsskala (Kelvin-Helmholtz tiden) er givet ved: t KH GM RL S U L tot S Vis at vi kan opstille et lignende udtryk for den tid det tager energien at strømme gennem kugleskallen dr i afstanden r fra stjernens centrum, hvor u( er den indre energi pr. enhedsvolumen og L( er total luminositeten dt 4 r u( dr π L( Benyt sammenhængen mellem u og til at opstille et udtryk for hastigheden dr/dt som funktion af r, ( og L( og vis at for Solen bliver denne energistrømningshastighed (i cgs-enhede: v Energi dyn cm s L / L 0 S 4, 0 ( r / R) Ø-.: Benyt tabellen herunder til at beregne hastigheden i forskellige dybder af Solen. Værdierne i tabellen er hentet fra tabel. (side 47 i Lecture Notes). r/r L/LS log( cm²/dyn) 0,0 0,938 6,637 0,30 0,999 6,04 0,40,000 5,433 0,50,000 4,86 0,60,000 4,33 0,70,000 3,80 0,80,000 3,3 0,90,000,38 0,99,000 9,37 0,999,000 6,063 Side 5

6 eoretiske Øvelser nr. I følgende opgave skal en sollignende stjerne undersøges. å de to figurer herunder ses Solens temperatur og tryk som funktion af afstanden fra centrum. De afsatte værdier er identiske med værdierne i tabel. i Lecture Notes on Stellar Structure and Evolution. Den fuldtoptrukne kurve er en analytisk beskrivelse af temperatur- og trykprofilen, som i store dele af Solens indre stemmer godt overens med den model, der er vist i figurerne. Nær centrum af den stjernemodel, som er vist ovenfor, kan den analytiske beskrivelse opskrives som ( ( C C e e r / R 8r / R Hvor C og C er hhv. den centrale temperatur og det central tryk. R er stjernens radius, og r er afstanden fra centrum. Ø-. Bestem værdien for temperaturgradienten d ln d ln d dr d dr nær stjernens centrum. og undersøg om energien nær den pågældende stjernes centrum transporteres ved stråling eller ved konvektion. Side 6

7 Det antages, at idealgasligningen kan benyttes til at beskrive sammenhængen mellem tryk, tæthed og temperatur i stjernens indre. Ø-. Vis, at der i centrum af denne stjerne (hvis vi ser bort fra variationen i middelmolekylvægten (μ)) gælder ( hvor C er den centrale densitet. r e 7r / R ) C eoretiske Øvelser nr. 3 Middel vejlængden for en foton i det indre af en stjerne er givet ved ligning (5.3): λ n σ R κ Beregn hvor langt en foton bevæger sig (i middel) i forskellige afstande fra Solens centrum. Benyt værdierne i tabellen herunder (fra tabel.) til beregningen af middel vejlængden. r/r log( cm³/g) κ g/cm² 0,00,88,4 0,0,94,54 0,0,543, 0,40 0,595 5,0 0,60-0,95,54 0,70-0,68 9,6 0,80 -,038 50,9 0,90 -, ,95 -,0 00 0,98 -, ,99-3, ,996-4, ,999-5, Side 7

Kvalifikationsbeskrivelse

Kvalifikationsbeskrivelse Astrofysik II Kvalifikationsbeskrivelse Kursets formål er at give deltagerne indsigt i centrale aspekter af astrofysikken. Der lægges vægt på en detaljeret beskrivelse af en række specifikke egenskaber

Læs mere

Teoretiske Øvelser Mandag den 30. august 2010

Teoretiske Øvelser Mandag den 30. august 2010 Hans Kjeldsen hans@phys.au.dk 3. august 010 Teoretiske Øvelser Mandag den 30. august 010 Computerøvelse (brug MatLab) Det er tanken at I - i forbindelse med hver øvelsesgang - får en opgave som kræver

Læs mere

Teoretiske Øvelser Mandag den 28. september 2009

Teoretiske Øvelser Mandag den 28. september 2009 Hans Kjeldsen hans@phys.au.dk 21. september 2009 Teoretiske Øvelser Mandag den 28. september 2009 Øvelse nr. 10: Solen vor nærmeste stjerne Solens masse-lysstyrkeforhold meget stort. Det vil sige, at der

Læs mere

Teoretiske Øvelser Mandag den 31. august 2009

Teoretiske Øvelser Mandag den 31. august 2009 agpakke i Astronomi: Introduktion til Astronomi Hans Kjeldsen hans@phys.au.dk 3. august 009 Teoretiske Øvelser Mandag den 31. august 009 Øvelse nr. 1: Keplers og Newtons love Keplers 3. lov giver en sammenhæng

Læs mere

Projektopgave Observationer af stjerneskælv

Projektopgave Observationer af stjerneskælv Projektopgave Observationer af stjerneskælv Af: Mathias Brønd Christensen (20073504), Kristian Jerslev (20072494), Kristian Mads Egeris Nielsen (20072868) Indhold Formål...3 Teori...3 Hvorfor opstår der

Læs mere

STJERNER OG STJERNEMODELLER

STJERNER OG STJERNEMODELLER STJERNER OG STJERNEMODELLER JAKOB RØRSTED MOSUMGAARD, PHD STUDERENDE SILKEBORG HØJSKOLE, AUGUST HVAD ER STJERNER? Kilde: https://dk.pinterest.com/unforgettable28/night-sky/ HVAD ER STJERNER? OG HVORFOR

Læs mere

Udledning af den barometriske højdeformel. - Beregning af højde vha. trykmåling. af Jens Lindballe, Silkeborg Gymnasium

Udledning af den barometriske højdeformel. - Beregning af højde vha. trykmåling. af Jens Lindballe, Silkeborg Gymnasium s.1/5 For at kunne bestemme cansatsondens højde må vi se på, hvorledes tryk og højde hænger sammen, når vi bevæger os opad i vores atmosfære. I flere fysikbøger kan man læse om den Barometriske højdeformel,

Læs mere

MODUL 1-2: ELEKTROMAGNETISK STRÅLING

MODUL 1-2: ELEKTROMAGNETISK STRÅLING MODUL 1-2: ELEKTROMAGNETISK STRÅLING MODUL 1 - ELEKTROMAGNETISKE BØLGER I 1. modul skal I lære noget omkring elektromagnetisk stråling (EM- stråling). I skal lære noget om synligt lys, IR- stråling, UV-

Læs mere

Formelsamling i astronomi. Februar 2016

Formelsamling i astronomi. Februar 2016 Formelsamling i astronomi. Februar 016 Formelsamlingen er ikke komplet det bliver den nok aldrig. Men måske kan alligevel være til en smule gavn. Sammenhæng mellem forskellige tidsenheder Jordens sideriske

Læs mere

DETTE OPGAVESÆT INDEHOLDER 5 OPGAVER MED IALT 11 SPØRGSMÅL. VED BEDØMMELSEN VÆGTES DE ENKELTE

DETTE OPGAVESÆT INDEHOLDER 5 OPGAVER MED IALT 11 SPØRGSMÅL. VED BEDØMMELSEN VÆGTES DE ENKELTE DETTE OPGAVESÆT INDEHOLDER 5 OPGAVER MED IALT 11 SPØRGSMÅL. VED BEDØMMELSEN VÆGTES DE ENKELTE SPØRGSMÅL ENS. SPØRGSMÅLENE I DE ENKELTE OPGAVER KAN LØSES UAFHÆNGIGT AF HINANDEN. 1 Opgave 1 En massiv metalkugle

Læs mere

Reaktionskinetik - 1 Baggrund. lineære og ikke-lineære differentialligninger. Køreplan

Reaktionskinetik - 1 Baggrund. lineære og ikke-lineære differentialligninger. Køreplan Reaktionskinetik - lineære og ikke-lineære differentialligninger Køreplan 1 Baggrund På 2. eller 4. semester møder kemi/bioteknologi studerende faget Indledende Fysisk Kemi (26201/26202). Her behandles

Læs mere

Stjerneudvikling, grundstofsyntese og supernovaer. Jørgen Christensen-Dalsgaard Dansk AsteroSeismologi Center Institut for Fysik og Astronomi

Stjerneudvikling, grundstofsyntese og supernovaer. Jørgen Christensen-Dalsgaard Dansk AsteroSeismologi Center Institut for Fysik og Astronomi Stjerneudvikling, grundstofsyntese og supernovaer Jørgen Christensen-Dalsgaard Dansk AsteroSeismologi Center Institut for Fysik og Astronomi SN 1994D Starmodels ifølge GOOGLE Tromsø Astronomiforening Stjernebrettingskomiteen

Læs mere

Formelsamling i astronomi. November 2015.

Formelsamling i astronomi. November 2015. Formelsamling i astronomi. November 015. Formelsamlingen er ikke komplet det bliver den nok aldrig. Men måske kan alligevel være til en smule gavn. Sammenhæng mellem forskellige tidsenheder: Jordens sideriske

Læs mere

Termodynamik. Esben Mølgaard. 5. april N! (N t)!t! Når to systemer sættes sammen bliver fordelingsfunktionen for det samlede system

Termodynamik. Esben Mølgaard. 5. april N! (N t)!t! Når to systemer sættes sammen bliver fordelingsfunktionen for det samlede system Termodynamik Esben Mølgaard 5. april 2006 1 Statistik Hvis man har N elementer hvoraf t er defekte, eller N elementer i to grupper hvor forskydningen fra 50/50 (spin excess) er 2s, vil antallet af mulige

Læs mere

Newtons love - bevægelsesligninger - øvelser. John V Petersen

Newtons love - bevægelsesligninger - øvelser. John V Petersen Newtons love - bevægelsesligninger - øvelser John V Petersen Newtons love 2016 John V Petersen art-science-soul Indhold 1. Indledning og Newtons love... 4 2. Integration af Newtons 2. lov og bevægelsesligningerne...

Læs mere

Matematisk modellering og numeriske metoder. Lektion 11

Matematisk modellering og numeriske metoder. Lektion 11 Matematisk modellering og numeriske metoder Lektion 11 Morten Grud Rasmussen 5. november 2016 1 Partielle differentialligninger 1.1 Udledning af varmeligningen Vi vil nu på samme måde som med bølgeligningen

Læs mere

Differential- ligninger

Differential- ligninger Differential- ligninger Et oplæg 2007 Karsten Juul Dette hæfte er tænkt brugt som et oplæg der kan gennemgås før man går i gang med en lærebogs fremstilling af emnet differentialligninger Læreren skal

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin December 2016. Institution KØBENHAVN SYD HF & VUC Uddannelse Fag og niveau Lærer(e) Hold GSK-hold Fysik B

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin December-januar 2015-2016 Institution VUC Hvidovre-Amager Uddannelse Fag og niveau Lærer(e) Hold GSK-hold

Læs mere

Drivhuseffekten. Hvordan styres Jordens klima?

Drivhuseffekten. Hvordan styres Jordens klima? Drivhuseffekten Hvordan styres Jordens klima? Jordens atmosfære og lyset Drivhusgasser Et molekyle skal indeholde mindst 3 atomer for at være en drivhusgas. Eksempler: CO2 (Kuldioxid.) H2O (Vanddamp.)

Læs mere

Udledning af Keplers love

Udledning af Keplers love Udledning af Keplers love Kristian Jerslev 8. december 009 Resumé Her præsenteres en udledning af Keplers tre love ud fra Newtonsk tyngdekraft. Begyndende med en analyse af et to-legeme problem vil jeg

Læs mere

DETTE OPGAVESÆT INDEHOLDER 6 OPGAVER MED IALT 11 SPØRGSMÅL. VED BEDØMMELSEN VÆGTES DE ENKELTE

DETTE OPGAVESÆT INDEHOLDER 6 OPGAVER MED IALT 11 SPØRGSMÅL. VED BEDØMMELSEN VÆGTES DE ENKELTE DETTE OPGAVESÆT INDEHOLDER 6 OPGAVER MED IALT 11 SPØRGSMÅL. VED BEDØMMELSEN VÆGTES DE ENKELTE SPØRGSMÅL ENS. SPØRGSMÅLENE I DE ENKELTE OPGAVER KAN LØSES UAFHÆNGIGT AF HINANDEN. 1 Opgave 1 En cylinderkapacitor

Læs mere

MODERNE KOSMOLOGI STEEN HANNESTAD, INSTITUT FOR FYSIK OG ASTRONOMI

MODERNE KOSMOLOGI STEEN HANNESTAD, INSTITUT FOR FYSIK OG ASTRONOMI MODERNE KOSMOLOGI STEEN HANNESTAD, INSTITUT FOR FYSIK OG ASTRONOMI T (K) t (år) 10 30 10-44 sekunder 1 mia. 10 sekunder 3000 300.000 50 1 mia. He, D, Li Planck tiden Dannelse af grundstoffer Baggrundsstråling

Læs mere

Eksamen i fysik 2016

Eksamen i fysik 2016 Eksamen i fysik 2016 NB: Jeg gør brug af DATABOG fysik kemi, 11. udgave, 4. oplag & Fysik i overblik, 1. oplag. Opgave 1 Proptrækker Vi kender vinens volumen og masse. Enheden liter omregnes til kubikmeter.

Læs mere

MATEMATIK A-NIVEAU. Anders Jørgensen & Mark Kddafi. Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012.

MATEMATIK A-NIVEAU. Anders Jørgensen & Mark Kddafi. Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012. MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 Kapitel 6 Differentialregning og modellering med f 2016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver

Læs mere

Strålingsintensitet I = Hvor I = intensiteten PS = effekten hvormed strålingen rammer en given flade S AS = arealet af fladen

Strålingsintensitet I = Hvor I = intensiteten PS = effekten hvormed strålingen rammer en given flade S AS = arealet af fladen Strålingsintensitet Skal det fx afgøres hvor skadelig en given radioaktiv stråling er, er det ikke i sig selv relevant at kende aktiviteten af kilden til strålingen. Kilden kan være langt væk eller indkapslet,

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2015 Institution VUC Hvidovre-Amager Uddannelse Fag og niveau Lærer(e) Hold GSK-hold Fysik 0-B efter

Læs mere

Introduktion til Astronomi

Introduktion til Astronomi Introduktion til Astronomi Hans Kjeldsen Kontor: 1520-230 Email: hans@phys.au.dk Tlf.: 8942 3779 Introduktion til Astronomi 1 Introduktion til Astronomi Studieretning Astronomi 3. år Valgfag Relativistisk

Læs mere

Nanotermodynamik formelsamling

Nanotermodynamik formelsamling Nanotermodynamik formelsamling Af Asmus Ougaard Dohn & Sune Klamer Jørgensen 2. november 2005 ndhold 1 Kombinatorik 2 2 Termodynamik 3 3 deal gasser: 5 4 Entropi og temp.: 7 5 Kemisk potential: 7 6 Gibbs

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Danmarks Tekniske Universitet Side af 7 Skriftlig prøve, tirsdag den 6. december, 008, kl. 9:00-3:00 Kursus navn: ysik Kursus nr. 00 Tilladte hjælpemidler: Alle hjælpemidler er tilladt. "Vægtning": Besvarelsen

Læs mere

Aalborg Universitet. Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik. Torsdag d. 9. juni 2011 kl

Aalborg Universitet. Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik. Torsdag d. 9. juni 2011 kl Aalborg Universitet Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik Torsdag d. 9. juni 2011 kl. 9 00-13 00 Ved bedømmelsen vil der blive lagt vægt på argumentationen (som bør være kort og præcis),

Læs mere

Solindstråling på vandret flade Beregningsmodel

Solindstråling på vandret flade Beregningsmodel Solindstråling på vandret flade Beregningsmodel Formål Når solens stråler rammer en vandret flade på en klar dag, består indstrålingen af diffus stråling fra himlen og skyer såvel som solens direkte stråler.

Læs mere

Øvre rand ilt. Den målte variation, er antaget at være gældende på randen i en given periode før og efter målingerne er foretaget.

Øvre rand ilt. Den målte variation, er antaget at være gældende på randen i en given periode før og efter målingerne er foretaget. MIKE 11 model til beskrivelse af iltvariation i Østerå Formål Formålet med denne model er at blive i stand til at beskrive den naturlige iltvariation over døgnet i Østerå. Til beskrivelse af denne er der

Læs mere

Mini SRP. Afkøling. Klasse 2.4. Navn: Jacob Pihlkjær Hjortshøj, Jonatan Geysner Hvidberg og Kevin Høst Husted

Mini SRP. Afkøling. Klasse 2.4. Navn: Jacob Pihlkjær Hjortshøj, Jonatan Geysner Hvidberg og Kevin Høst Husted Mini SRP Afkøling Klasse 2.4 Navn: Jacob Pihlkjær Lærere: Jørn Christian Bendtsen og Karl G Bjarnason Roskilde Tekniske Gymnasium SO Matematik A og Informations teknologi B Dato 31/3/2014 Forord Under

Læs mere

MATEMATIK A-NIVEAU. Kapitel 1

MATEMATIK A-NIVEAU. Kapitel 1 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 01 Kapitel 1 016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 01

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Danmarks Tekniske Universitet Side 1 af 8 sider Skriftlig prøve, den 24. maj 2005 Kursus navn: Fysik 1 Kursus nr.: 10022 Tilladte hjælpemidler: Alle hjælpemidler tilladt. "Vægtning": Besvarelsen vægtes

Læs mere

Begge bølgetyper er transport af energi.

Begge bølgetyper er transport af energi. I 1. modul skal I lære noget omkring elektromagnetisk stråling(em-stråling). Herunder synligt lys, IR-stråling, Uv-stråling, radiobølger samt gamma og røntgen stråling. I skal stifte bekendtskab med EM-strålings

Læs mere

Modeldannelse og simulering

Modeldannelse og simulering Modeldannelse og simulering Tom S. Pedersen, Palle Andersen tom@es.aau.dk pa@es.aau.dk Aalborg Universitet, Institut for Elektroniske Systemer Automation and Control Modeldannelse og simulering p. 1/21

Læs mere

Solen - Vores Stjerne

Solen - Vores Stjerne Solen - Vores Stjerne af Christoffer Karoff, Aarhus Universitet På et sekund udstråler Solen mere energi end vi har brugt i hele menneskehedens historie. Uden Solen ville der ikke findes liv på Jorden.

Læs mere

Aalborg Universitet. Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik. Tirsdag d. 27. maj 2014 kl

Aalborg Universitet. Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik. Tirsdag d. 27. maj 2014 kl Aalborg Universitet Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik Tirsdag d. 27. maj 2014 kl. 9 00-13 00 Ved bedømmelsen vil der blive lagt vægt på argumentationen (som bør være kort og præcis),

Læs mere

Lineære sammenhænge. Udgave 2. 2009 Karsten Juul

Lineære sammenhænge. Udgave 2. 2009 Karsten Juul Lineære sammenhænge Udgave 2 y = 0,5x 2,5 2009 Karsten Juul Dette hæfte er en fortsættelse af hæftet "Variabelsammenhænge, 2. udgave 2009". Indhold 1. Lineære sammenhænge, ligning og graf... 1 2. Lineær

Læs mere

Aalborg Universitet. Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik. Tirsdag d. 11. august 2015 kl

Aalborg Universitet. Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik. Tirsdag d. 11. august 2015 kl Aalborg Universitet Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik Tirsdag d. 11. august 2015 kl. 9 00-13 00 Ved bedømmelsen vil der blive lagt vægt på argumentationen (som bør være kort og

Læs mere

Note om Laplace-transformationen

Note om Laplace-transformationen Note om Laplace-transformationen Den harmoniske oscillator omskrevet til et ligningssystem I dette opgavesæt benyttes laplacetransformationen til at løse koblede differentialligninger. Fordelen ved at

Læs mere

Projekt 4.9 Bernouillis differentialligning

Projekt 4.9 Bernouillis differentialligning Projekt 4.9 Bernouillis differentialligning (Dette projekt dækker læreplanens krav om supplerende stof vedr. differentialligningsmodeller. Projektet hænger godt sammen med projekt 4.0: Fiskerimodeller,

Læs mere

Eksamensopgaver i Astrofysik

Eksamensopgaver i Astrofysik Eksamensopgaver i Astrofysik 1998 2006 Anden udgave, april 2007 Disse eksamensopgaver har været brugt til kurset Af.4 Astrofysik I og, siden vinter 2004 05, til kurset Astrofysik. De er lavet af Jørgen

Læs mere

a og b. Den magnetiske kraftlov Og måling af B ved hjælp af Tangensboussole

a og b. Den magnetiske kraftlov Og måling af B ved hjælp af Tangensboussole 3.1.2. a og b Den magnetiske kraftlov Og måling af B ved hjælp af Tangensboussole Udført d. 15.04.08 Deltagere Kåre Stokvad Hansen Max Berg Michael Ole Olsen 1 Formål: Formålet med øvelsen er at måle/beregne

Læs mere

MATEMATIK 11 Eksamensopgaver Juni 1995 Juni 2001, 4. fjerdedel

MATEMATIK 11 Eksamensopgaver Juni 1995 Juni 2001, 4. fjerdedel Juni 2000 MATEMATIK 11 Eksamensopgaver Juni 1995 Juni 2001, 4. fjerdedel Opgave 1. (a) Find den fuldstændige løsning til differentialligningen y 8y + 16y = 0. (b) Find den fuldstændige løsning til differentialligningen

Læs mere

Måling og modellering af partikelspredning

Måling og modellering af partikelspredning Måling og modellering af partikelspredning Formålet med partikeltransporten er at bestemme partikelspredningen ud fra målinger i strømrenden, og herefter modellere partikelspredningen i en af projektgruppen

Læs mere

Gaslovene. SH ver. 1.2. 1 Hvad er en gas? 2 1.1 Fysiske størrelser... 2 1.2 Gasligninger... 3

Gaslovene. SH ver. 1.2. 1 Hvad er en gas? 2 1.1 Fysiske størrelser... 2 1.2 Gasligninger... 3 Gaslovene SH ver. 1.2 Indhold 1 Hvad er en gas? 2 1.1 Fysiske størrelser................... 2 1.2 Gasligninger...................... 3 2 Forsøgene 3 2.1 Boyle Mariottes lov.................. 4 2.1.1 Konklusioner.................

Læs mere

Opgave 1. (a) Bestem de to kapacitorers kapacitanser C 1 og C 2.

Opgave 1. (a) Bestem de to kapacitorers kapacitanser C 1 og C 2. 2 Opgave 1 I første del af denne opgave skal kapacitansen af to kapacitorer bestemmes. Den ene kapacitor er konstrueret af to tynde koaksiale cylinderskaller af metal. Den inderste skal har radius r a

Læs mere

Kalkulus 1 - Opgaver. Anne Ryelund, Anders Friis og Mads Friis. 20. januar 2015

Kalkulus 1 - Opgaver. Anne Ryelund, Anders Friis og Mads Friis. 20. januar 2015 Kalkulus 1 - Opgaver Anne Ryelund, Anders Friis og Mads Friis 20. januar 2015 Mængder Opgave 1 Opskriv følgende mængder med korrekt mængdenotation. a) En mængde A indeholder alle hele tal fra og med 1

Læs mere

Det teknisk-naturvidenskabelige basisår Matematik 1A, Efterår 2005, Hold 3 Prøveopgave A

Det teknisk-naturvidenskabelige basisår Matematik 1A, Efterår 2005, Hold 3 Prøveopgave A Det teknisk-naturvidenskabelige basisår Matematik 1A, Efterår 2005, Hold 3 Prøveopgave A Opgaven består af tre dele, hver med en række spørgsmål, efterfulgt af en liste af teorispørgsmål. I alle opgavespørgsmålene

Læs mere

Løsningsforslag til fysik A eksamenssæt, 23. maj 2008

Løsningsforslag til fysik A eksamenssæt, 23. maj 2008 Løsningsforslag til fysik A eksamenssæt, 23. maj 2008 Kristian Jerslev 22. marts 2009 Geotermisk anlæg Det geotermiske anlæg Nesjavellir leverer varme til forbrugerne med effekten 300MW og elektrisk energi

Læs mere

Statistisk mekanik 10 Side 1 af 7 Sortlegemestråling og paramagnetisme. Sortlegemestråling

Statistisk mekanik 10 Side 1 af 7 Sortlegemestråling og paramagnetisme. Sortlegemestråling Statistisk mekanik 0 Side af 7 Sortlegemestråling I SM9 blev vibrationerne i et krystalgitter beskrevet som fononer. I en helt tilsvarende model beskrives de EM svingninger i en sortlegeme-kavitet som

Læs mere

Dronninglund Gymnasium Fysik skriftlig eksamen 27. maj 2011

Dronninglund Gymnasium Fysik skriftlig eksamen 27. maj 2011 Opgave 1. Solfanger Det viste anlæg er et ventilationssystem, som opvarmer luft udefra og blæser den ind i huset. Luften opvarmes idet, den strømmer langs en sort metalplade, der er opvarmet af solstrålingen.

Læs mere

Matematik A. Studentereksamen. Fredag den 5. december 2014 kl. 9.00-14.00. stx143-mat/a-05122014

Matematik A. Studentereksamen. Fredag den 5. december 2014 kl. 9.00-14.00. stx143-mat/a-05122014 Matematik A Studentereksamen stx143-mat/a-05122014 Fredag den 5. december 2014 kl. 9.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

Phillipskurven: Inflation og arbejdsløshed

Phillipskurven: Inflation og arbejdsløshed Phillipskurven: Inflation og arbejdsløshed Vores udgangspunkt er AS-kurven, dvs. relationen mellem prisniveau og output så der er ligevægt på arbejdsmarkedet, og der har følgende form P = ( + µ) P e F

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Danmarks Tekniske Universitet Side 1 af 11 sider Skriftlig prøve, lørdag den 22. august, 2015 Kursus navn Fysik 1 Kursus nr. 10916 Varighed: 4 timer Tilladte hjælpemidler: Alle hjælpemidler tilladt "Vægtning":

Læs mere

Aalborg Universitet. Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik. Torsdag d. 7. august 2014 kl

Aalborg Universitet. Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik. Torsdag d. 7. august 2014 kl Aalborg Universitet Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik Torsdag d. 7. august 2014 kl. 9 00-13 00 Ved bedømmelsen vil der blive lagt vægt på argumentationen (som bør være kort og præcis),

Læs mere

Modellering af grundvandsstrømning ved Vestskoven

Modellering af grundvandsstrømning ved Vestskoven Modellering af grundvandsstrømning ved Vestskoven Køreplan 01005 Matematik 1 - FORÅR 2005 Opgaven er udformet af Peter Engesgaard, Geologisk Institut, Københavns Universitet 1 Formål Formålet med opgaven

Læs mere

SOLOBSERVATION Version

SOLOBSERVATION Version SOLOBSERVATION Version 3-2012 Jørgen Valentin Enkelund JVE januar 2012 1 SOLOBSERVATION INDHOLDSFORTEGNELSE 1. Solen Vores nærmeste stjerne 2. Elektromagnetisk emission fra brint 3. Egne observationer

Læs mere

Diffusionsbegrænset reaktionskinetik

Diffusionsbegrænset reaktionskinetik Diffusionsbegrænset reaktionskinetik Bimolekylære reaktioner Ved en bimolekylær elementarreaktion afhænger hastigheden såvel af den hyppighed (frekvens), hvormed reaktantmolekylerne kolliderer, som af

Læs mere

Impuls og kinetisk energi

Impuls og kinetisk energi Impuls og kinetisk energi Peter Hoberg, Anton Bundgård, and Peter Kongstad Hold Mix 1 (Dated: 7. oktober 2015) 201405192@post.au.dk 201407987@post.au.dk 201407911@post.au.dk 2 I. INDLEDNING I denne øvelse

Læs mere

Aalborg Universitet. Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik. Torsdag d. 23. august 2012 kl

Aalborg Universitet. Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik. Torsdag d. 23. august 2012 kl Aalborg Universitet Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik Torsdag d. 23. august 2012 kl. 9 00-13 00 Ved bedømmelsen vil der blive lagt vægt på argumentationen (som bør være kort og

Læs mere

Statistisk mekanik 10 Side 1 af 7 Sortlegemestråling og paramagnetisme. Sortlegemestråling

Statistisk mekanik 10 Side 1 af 7 Sortlegemestråling og paramagnetisme. Sortlegemestråling Statistisk mekanik 0 Side af 7 Sortlegemestråling I SM9 blev vibrationerne i et krystalgitter beskrevet som fononer. I en helt tilsvarende model beskrives de M svingninger i en sortlegeme-kavitet som fotoner.

Læs mere

Bernoulli s lov. Med eksempler fra Hydrodynamik og aerodynamik. Indhold

Bernoulli s lov. Med eksempler fra Hydrodynamik og aerodynamik. Indhold Bernoulli s lov Med eksempler fra Indhold 1. Indledning...1 2. Strømning i væsker...1 3. Bernoulli s lov...2 4. Tømning af en beholder via en hane i bunden...4 Ole Witt-Hansen Køge Gymnasium 2008 Bernoulli

Læs mere

a og b Den magnetiske kraftlov Og måling af B ved hjælp af Tangensboussole

a og b Den magnetiske kraftlov Og måling af B ved hjælp af Tangensboussole 3.1.2. a og b Den magnetiske kraftlov Og måling af B ved hjælp af Tangensboussole Udført d. 15.04.08 Deltagere Kåre Stokvad Hansen Max Berg Michael Ole Olsen 1 Formål: Formålet med øvelsen er at måle/beregne

Læs mere

Rektangulær potentialbarriere

Rektangulær potentialbarriere Kvantemekanik 5 Side 1 af 8 ektangulær potentialbarriere Med udgangspunkt i det KM begrebsapparat udviklet i KM1-4 beskrives i denne lektion flg. to systemer, idet system gennemgås, og system behandles

Læs mere

Eksponentielle sammenhænge

Eksponentielle sammenhænge Eksponentielle sammenhænge Udgave 009 Karsten Juul Dette hæfte er en fortsættelse af hæftet "Lineære sammenhænge, udgave 009" Indhold 1 Eksponentielle sammenhænge, ligning og graf 1 Procent 7 3 Hvad fortæller

Læs mere

AARHUS UNIVERSITET. Det naturvidenskabelige fakultet 3. kvarter forår OPGAVESTILLER: Allan H. Sørensen

AARHUS UNIVERSITET. Det naturvidenskabelige fakultet 3. kvarter forår OPGAVESTILLER: Allan H. Sørensen AARHUS UNIVERSITET Det naturvidenskabelige fakultet 3. kvarter forår 2006 FAG: Elektromagnetisme OPGAVESTILLER: Allan H. Sørensen Antal sider i opgavesættet (inkl. forsiden): 5 Eksamensdag: fredag dato:

Læs mere

Besvarelser til de to blokke opgaver på Ugeseddel 7

Besvarelser til de to blokke opgaver på Ugeseddel 7 Besvarelser til de to blokke opgaver på Ugeseddel 7 De anførte besvarelser er til dels mere summariske end en god eksamensbesvarelse bør være. Der kan godt være fejl i - jeg vil meget gerne informeres,

Læs mere

Andengradsligninger i to og tre variable

Andengradsligninger i to og tre variable enote 0 enote 0 Andengradsligninger i to og tre variable I denne enote vil vi igen beskæftige os med andengradspolynomierne i to og tre variable som også er behandlet og undersøgt med forskellige teknikker

Læs mere

Analytisk plangeometri 1

Analytisk plangeometri 1 1 Analytisk plangeometri 1 Kære 1. x, Vi begynder dag vores forløb om analytisk plangeometri. Dette bliver en udvidelse af ting i allerede kender til, så noget ved I i forvejen, mens andet bliver helt

Læs mere

Bringing Mathematics to Earth... using many languages 155

Bringing Mathematics to Earth... using many languages 155 Bringing Mathematics to Earth... using many languages 155 Rumrejser med 1 g acceleration Ján Beňačka 1 Introduktion Inden for en overskuelig fremtid vil civilisationer som vores være nødt til at fremskaffe

Læs mere

Højere Teknisk Eksamen maj 2008. Matematik A. Forberedelsesmateriale til 5 timers skriftlig prøve NY ORDNING. Undervisningsministeriet

Højere Teknisk Eksamen maj 2008. Matematik A. Forberedelsesmateriale til 5 timers skriftlig prøve NY ORDNING. Undervisningsministeriet Højere Teknisk Eksamen maj 2008 HTX081-MAA Matematik A Forberedelsesmateriale til 5 timers skriftlig prøve NY ORDNING Undervisningsministeriet Fra onsdag den 28. maj til torsdag den 29. maj 2008 Forord

Læs mere

Log - Mikro og makroskopiske tilstande, det mikrokanoniske ensemble, multiplicitet og entropi

Log - Mikro og makroskopiske tilstande, det mikrokanoniske ensemble, multiplicitet og entropi Log - Mikro og makroskopiske tilstande, det mikrokanoniske ensemble, multiplicitet og entropi Amalie Christensen 26. februar 2009 Indhold 1 Om spillet 2 2 Multipliciteten af makroskopiske tilstande 3 3

Læs mere

GEOMETRI-TØ, UGE 3. og resultatet følger fra [P] Proposition 2.3.1, der siger, at

GEOMETRI-TØ, UGE 3. og resultatet følger fra [P] Proposition 2.3.1, der siger, at GEOMETRI-TØ, UGE 3 Hvis I falder over tryk- eller regne-fejl i nedenstående, må I meget gerne sende rettelser til fuglede@imf.au.dk. Opvarmningsopgave 1. Lad γ : (α, β) R 2 være en regulær kurve i planen.

Læs mere

1 Løsningsforslag til årsprøve 2009

1 Løsningsforslag til årsprøve 2009 1 Løsningsforslag til årsprøve 009 Opgave 1 Figur 1 viser en tegning af en person der står på en skrænt og smider en sten ud over vandet. Vandet har overflade i t-aksen. Stenen følger grafen for funktionen

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Danmarks Tekniske Universitet Side 1 af 11 Skriftlig prøve, torsdag den 8 maj, 009, kl 9:00-13:00 Kursus navn: Fysik 1 Kursus nr 100 Tilladte hjælpemidler: Alle hjælpemidler er tilladt "Vægtning": Besvarelsen

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Danmarks Tekniske Universitet Side 1 af 4 sider Skriftlig prøve, den 29. maj 2006 Kursus navn: Fysik 1 Kursus nr. 10022 Tilladte hjælpemidler: Alle "Vægtning": Eksamenssættet vurderes samlet. Alle svar

Læs mere

KØBENHAVNS UNIVERSITET NATURVIDENSKABELIG BACHELORUDDANNELSE Skriftlig prøve i Fysik 4 (Elektromagnetisme) 27. juni 2008

KØBENHAVNS UNIVERSITET NATURVIDENSKABELIG BACHELORUDDANNELSE Skriftlig prøve i Fysik 4 (Elektromagnetisme) 27. juni 2008 KØBENHAVNS UNIVERSITET NATURVIDENSKABELIG BACHELORUDDANNELSE Skriftlig prøve i Fysik 4 (Elektromagnetisme) 27. juni 2008 Tilladte hjælpemidler: Medbragt litteratur, noter og lommeregner. Der må besvares

Læs mere

Røntgenspektrum fra anode

Røntgenspektrum fra anode Røntgenspektrum fra anode Elisabeth Ulrikkeholm June 24, 2016 1 Formål I denne øvelse skal I karakterisere et røntgenpektrum fra en wolframanode eller en molybdænanode, og herunder bestemme energien af

Læs mere

Danske besvarelser af udvalgte opgaver.

Danske besvarelser af udvalgte opgaver. IMFUFA, INM Carsten Lunde Petersen Danske besvarelser af udvalgte opgaver. Introduction Forslag til besvarelse af udvalgte opgaver. Opgave 7.9: Vis, at en ikke plan glat kurve α : I R 3 i rummet forløber

Læs mere

Simuleringsresultater

Simuleringsresultater Alfred Heller Solvarmeanlæg ved biomassefyrede fjernvarmecentraler m.m. Simuleringsresultater DANMARKS TEKNISKE UNIVERSITET Sagsrapport BYG DTU SR-01-16 001 ISSN 1396-40x Solvarmeanlæg ved biomassefyrede

Læs mere

Eksperimentelle øvelser, øvelse nummer 3 : Røntgenstråling målt med Ge-detektor

Eksperimentelle øvelser, øvelse nummer 3 : Røntgenstråling målt med Ge-detektor Modtaget dato: (forbeholdt instruktor) Godkendt: Dato: Underskrift: Eksperimentelle øvelser, øvelse nummer 3 : Røntgenstråling målt med Ge-detektor Kristian Jerslev, Kristian Mads Egeris Nielsen, Mathias

Læs mere

Figur 1 Energetisk vekselvirkning mellem to systemer.

Figur 1 Energetisk vekselvirkning mellem to systemer. Energibånd Fysiske fænomener er i reglen forbundet med udveksling af energi mellem forskellige systemer. Udvekslingen af energi mellem to systemer A og B kan vi illustrere grafisk som på figur 1 med en

Læs mere

Kernefysik og dannelse af grundstoffer. Fysik A - Note. Kerneprocesser. Gunnar Gunnarsson, april 2012 Side 1 af 14

Kernefysik og dannelse af grundstoffer. Fysik A - Note. Kerneprocesser. Gunnar Gunnarsson, april 2012 Side 1 af 14 Kerneprocesser Side 1 af 14 1. Kerneprocesser Radioaktivitet Fission Kerneproces Fusion Kollisioner Radioaktivitet: Spontant henfald ( af en ustabil kerne. Fission: Sønderdeling af en meget tung kerne.

Læs mere

Fysik 3 Frie øvelser. Massen af galaksehob Abell 2218

Fysik 3 Frie øvelser. Massen af galaksehob Abell 2218 Fysik 3 Frie øvelser Massen af galaksehob Abell 18 Udført af: Anne Mette Frejsel, Andreas Terkildsen, Maja Larsen og Christian Eistrup Københavns Universitet Forår 008 Massen af galaksehob Abell 18 Anne

Læs mere

Besvarelser til Calculus Ordinær Eksamen - 3. Januar 2017

Besvarelser til Calculus Ordinær Eksamen - 3. Januar 2017 Besvarelser til Calculus Ordinær Eksamen - 3. Januar 17 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende

Læs mere

Uafhængig og afhængig variabel

Uafhængig og afhængig variabel Uddrag fra http://www.emu.dk/gym/fag/ma/undervisningsforloeb/hf-mat-c/introduktion.doc ved Hans Vestergaard, Morten Overgaard Nielsen, Peter Trautner Brander Variable og sammenhænge... 1 Uafhængig og afhængig

Læs mere

Exoplaneter og stjerner - med specielt fokus på de fordampende varme exoplaneter

Exoplaneter og stjerner - med specielt fokus på de fordampende varme exoplaneter Kredit: Peter Devine Exoplaneter og stjerner - med specielt fokus på de fordampende varme exoplaneter Mia Sloth Lundkvist Motivation Er vi alene i Universet? Er vores Jord unik? 2/43 Beboelige zone Afstand,

Læs mere

Opgave 1 Opskriv følgende vinkler i radianer 180, 90, 135, 270, 60, 30.

Opgave 1 Opskriv følgende vinkler i radianer 180, 90, 135, 270, 60, 30. Opgaver Polære koordinater Opgave 1 Opskriv følgende vinkler i radianer 180, 90, 15, 70, 60, 0. Opgave Bestem sin π Opgave. Et punkt p i xy-planen er givet ved de kartesiske koordinater,. Bestem p s polære

Læs mere

FYSIK 3 / TERMODYNAMIK Københavns Universitet, 13. april, 2016, Skriftlig prøve

FYSIK 3 / TERMODYNAMIK Københavns Universitet, 13. april, 2016, Skriftlig prøve FYSIK 3 / TERMODYNAMIK Københavns Universitet, 13. april, 2016, Skriftlig prøve Benyttelse af medbragt litteratur, noter, lommeregner og computer uden internetadgang er tilladt. Der må skrives med blyant.

Læs mere

Dæmpet harmonisk oscillator

Dæmpet harmonisk oscillator FY01 Obligatorisk laboratorieøvelse Dæmpet harmonisk oscillator Hold E: Hold: D1 Jacob Christiansen Afleveringsdato: 4. april 003 Morten Olesen Andreas Lyder Indholdsfortegnelse Indholdsfortegnelse 1 Formål...3

Læs mere

Klimamodel for en planet. Illustration 1: Foto: Mario Hoppmann.

Klimamodel for en planet. Illustration 1: Foto: Mario Hoppmann. Klimamodel for en planet Illustration 1: Foto: Mario Hoppmann. Af Michael Andrew Dolan Møller August 2017 Klimamodel for planeter. Af Michael Andrew Dolan Møller. August 2017. side 1/13 Indholdsfortegnelse

Læs mere

Skriftlig eksamen BioMatI (MM503)

Skriftlig eksamen BioMatI (MM503) INSTITUT FOR MATEMATIK OG DATALOGI SYDDANSK UNIVERSITET, ODENSE Skriftlig eksamen BioMatI (MM503) 14. januar 2009 2 timer med alle sædvanlige hjælpemidler, inklusive brug af lommeregner/computer. OPGAVESÆTTET

Læs mere

Øvelse 1.5: Spændingsdeler med belastning Udført af: Kari Bjerke Sørensen, Hjalte Sylvest Jacobsen og Toke Lynæs Larsen.

Øvelse 1.5: Spændingsdeler med belastning Udført af: Kari Bjerke Sørensen, Hjalte Sylvest Jacobsen og Toke Lynæs Larsen. Øvelse 1.5: Spændingsdeler med belastning Udført af: Kari jerke Sørensen, Hjalte Sylvest Jacobsen og Toke Lynæs Larsen. Formål: Formålet med denne øvelse er at anvende Ohms lov på en såkaldt spændingsdeler,

Læs mere

Dosering af anæstesistoffer

Dosering af anæstesistoffer Dosering af anæstesistoffer Køreplan 01005 Matematik 1 - FORÅR 2005 1 Formål Formålet med opgaven er at undersøge hvordan man kan opnå kendskab til koncentrationen af anæstesistoffer i vævet på en person

Læs mere

Uge 10 Teoretisk Statistik 1. marts 2004

Uge 10 Teoretisk Statistik 1. marts 2004 1 Uge 10 Teoretisk Statistik 1. marts 004 1. u-fordelingen. Normalfordelingen 3. Middelværdi og varians 4. Mere normalfordelingsteori 5. Grafisk kontrol af normalfordelingsantagelse 6. Eksempler 7. Oversigt

Læs mere

HTX. Matematik A. Onsdag den 11. maj Kl GL111 - MAA - HTX

HTX. Matematik A. Onsdag den 11. maj Kl GL111 - MAA - HTX HTX Matematik A Onsdag den 11. maj 2011 Kl. 09.00-14.00 GL111 - MAA - HTX 1 2 Side 1 af 7 sider Matematik A Prøvens varighed er 5 timer. Alle hjælpemidler er tilladt. Ved valgopgaver må kun det anførte

Læs mere