FORSØGSVEJLEDNING. Kasteparablen

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "FORSØGSVEJLEDNING. Kasteparablen"

Transkript

1 Fysik i idræt - Idræt i fysik 006 FORSØGSVEJLEDNING Kasteparablen Formål: At bestemme kastelængden (x-positionen) for kast ed forskellige afleeringsinkler: o Ca. 30 o. o Ca. 45 o. o Ca. 60 o. og ed brug af forskellige bolde fx: o Volleyball-bold o Kuglestødskugle Apparatur: Digitalkamera med ideofunktion fx Olympus digitalkamera (CAMEDIA C-350 ZOOM) Kamerastati 1 m lineal (til kalibrering af billedet) Volleyball-bold Kuglestødskugle En ægt til at eje boldene Et. en stor inkelmåler til at gie en idé om en gien inkels størrelse. Tegning af opstilling: Fotografisk plan (D) Lineal (1m) Kamera Udførelse: Kameraet opstilles på et kamerastati og et fotografisk plan (-dimensionalt) afmærkes. Kameraet skal optage med en frekens på 15 Hz. Person A starter og stopper kameraet, mens Person B kaster boldene på følgende måde: o Stående kuglestød ed afleeringsinkel på hh. ca. 30 o, ca. 45 o og ca. 60 o. o Almindeligt kast med olleyball-bold ed afleeringsinkel på ca. 30 o, ca. 45 o og ca. 60 o. Filmsekenserne oerføres direkte til computeren som AVI-filer, der fx kan afspilles i Quicktime. 1

2 Fysik i idræt - Idræt i fysik 006 Med programmet Videopoint (se ejledning) angies boldens position på hert billede ed at klikke på den med musen. Efter kalibrering (angielse af de to ender på 1 m-linealen) opnås til hert tidspunkt x- og y-koordinaterne for bolden. Herefter kan programmet beregne hastigheden i hh. x- og y-retning mm. Bemærk: Det il sandsynligis ikke ære alle filmsekenser, der er brugbare, hilket fx kan skyldes, at man skal lære at anende kameraet samt at kast kan mislykkes eller ryge helt ud af billedet. His hert kast udføres fx 3 gange, er der nogle at udælge blandt til den følgende analyse. Eksperimenter med at udføre stød og kast fra enstre mod højre og fra højre mod enstre set fra kamerainklen. Dette påirker nemlig, om hastigheden i x-retningen i den efterfølgende analyse blier positi eller negati. Baggrund His man i en sæefase for et objekt (fx en bold/kugle), der blier kastet, ser bort fra ind- og luftmodstand (hilket optimalt set er muligt ed lae hastigheder, og his man er indendørs) samt skru (topspin, underskru), irker kun én ydre kraft nemlig tyngdekraften. Og det er den kraft, der sammen med afleeringshastigheden og -inklen ift. andret bestemmer objektets bane i luften. Under antagelse af at ind- og luftmodstand er negligible og at objektet ikke skruer, il den andrette hastighedskomposant ikke ændres under sæet, da der ikke er nogen ydre kraft i andret retning. Altså er den andrette hastighed (H på figur 1) konstant i hele sæefasen. Den lodrette hastighed påirkes derimod af tyngdeacceleration, der altid irker nedad, således, at objektet i hele den opadgående del af sæefasen il blie bremset (deceleration) for til sidst i toppunktet at hae en lodret hastighed på 0 m/s. Herefter stiger hastigheden igen (acceleration) i nedadgående retning indtil objektet lander på jorden (V på figur 1). Figur 1: Vertikal (V), horisontal (H) og resulterende hastighed (R) til forskellige tidspunkter i en kasteparabel for et sæ uden luft/indmodstand samt skru.

3 Fysik i idræt - Idræt i fysik 006 Det interessante i disse forsøg er at diskutere med eleerne, hilke faktorer, der er afgørende for hor langt kastet blier. Man kan fx starte med at eleerne uden at de kender formler eller andet teori kommer med nogle bud på, hilke faktorer, der kunne ære medirkende til et langt kast: Diskussion 1: Had er afgørende for, hor langt et kast blier? Derefter kunne man gå idere med slutningen ed at gie eleerne formlen til beregning af kastelængde og ud fra denne diskutere hilke størrelser, der her kan ændres. Man kan et. ælge også at tegne en kasteparabel på talen, horpå afleeringshastigheden () og afleeringsinklen (θ) indtegnes! His der IKKE er forskel på afleerings- og landingshøjde beregnes den tilbagelagte andrette distance (x) ud fra følgende formel: sin(θ ) x = (1) g Diskussion : Hilke faktorer er ifølge formel (1) afgørende for, hor langt et kast blier? Ved fastholdt afleeringsinkel (θ), had afgør da, hor langt kan kastet teoretisk set kan blie? Ved fastholdt afleeringshastighed (), had afgør da, hor langt kan kastet teoretisk set kan blie? I praksis kan oenstående formel kun benyttes, når man fx sparker til en fodbold, idet afleeringsog landingshøjde her er identiske. Formlen kan ikke bruges, når man fx kaster en bold stående, da bolden il lande laere end den ble afleeret og dermed få en længere sæefase. Man kunne derfor oereje at lae et forsøg med et spark til en fodbold, da dette il gie mere simple beregninger. Sparket il dog sandsynligis gå langt ud oer kameraets billede og ære særere at styre. Ved kast/spark, hor landingshøjden er y (i meter) laere end afleeringshøjden, skal følgende formel derfor anendes (i il ikke anbefale, at man udleder denne formel for gymnasieleer): x = sinθ cosθ + cosθ g ( sinθ ) + g y afleering () Diskussion 3: Hilke faktorer har i denne situation betydning for kastelængden? Formel () er lidt særere at gennemskue rent matematisk, men man kan ed at se på formlen muligis fornemme, hilke faktorer, der afgør kastet/stødets længde. 3

4 Fysik i idræt - Idræt i fysik 006 Nedenfor ses en skematisk oersigt oer de størrelser, der skal beregnes efter forsøget figur. y-akse y res θ x y afleering x afleering x-akse Figur : Skematisk oersigt oer størrelser, der beregnes i det følgende. Den resulterende hastighed ( res ) af bolden/kuglen beregnes ud fra Pythagoras s sætning: = + (3) res x y Hastigheden i andret og lodret retning ( x og y ) kan beregnes ud fra hor langt bolden har beæget sig pr. billede: gns s =, ds. slut = gns (4) t Sidste del af formel (4) tager udgangspunkt i en antagelse om, at accelerationen er konstant! Afleeringsinklen (θ) beregnes fx ud fra: Formel 5 er en omskrining af x θ afleering = arccos( ) (5) res res x cos θ = (sinus eller tangens kan også benyttes!). Herefter kan formel (1) udledes med udgangspunkt i energibearelse og formlen for det frie fald (beægelse med konstant acceleration). Vi anbefaler ikke, at man udleder formel (), selom det er den, man i praksis skal benytte. 4

5 Fysik i idræt - Idræt i fysik 006 Databehandling Beregninger Resultater og beregninger præsenteres fx i et skema som nedenstående: Type x (m/s) y (m/s) res (m/s) θ afleering ( o ) y afleering (m) x landing (m) x landing,beregnet (m) Kast nr. 1 Kast nr. Kast nr. 3 Kast nr. 4 Fx kuglestød 30 o. Tabel 1: Resulterende hastighed ( res ), afleeringsinkel (θ) samt den beregnede tilbagelagte andrette distance (x beregnet ) skal alle beregnes, mens de ørige størrelser kan aflæses i Videopoint. Kurer/grafer: For hert forsøg skal der tegnet en graf oer: Position: y som funktion af x. Hastighed: x og y som funktion af tiden. Position: Had iser kuren? Hordan forenter I, at kure ser ud? Hastighed: Vandret hastighed (x-retning): Had forenter I om hastigheden i x-retningen? Lodret hastighed (y-retning): Had forenter I om hastigheden i y-retningen? 5

6 Fysik i idræt - Idræt i fysik 006 Diskussion Følgende spørgsmål diskuteres indbyrdes i grupperne; punkterne 8 10 fremlægges et. og diskuteres i plenum til slut: 1. Har I yderligere forentninger til resultaterne?. Er der fejlkilder under forsøgene, som man kan/bør tage højde for? Hilke? 3. Er der usikkerheder i beregningerne, som kan kan/bør tage højde for? Hilke? 4. Hordan er præcisionen i plotningen? 5. Hordan stemte resultaterne oerens med jeres forentninger. 6. Er der forskel på kastelængden ud fra Videopoint og ud fra beregninger (formel ())? Horfor? 7. Hilket objekt (bold eller kugle) er mest påirkelig oerfor faktorer, som ind/luftmodstand samt skru? Horfor? 8. Hilke diskussionsspørgsmål ille ære releante i en gymnasieklasse? 9. Hordan kan øelsen udføres i en gymnasieklasse? Mere dedukti? Mere indukti? Andet? 10. Hilke muligheder er der for at idereudikle øelsen? 6

Kinematik. Ole Witt-Hansen 1975 (2015) Indhold. Kinematik 1

Kinematik. Ole Witt-Hansen 1975 (2015) Indhold. Kinematik 1 Kinematik Kinematik Indhold. Retlinet beægelse.... Jæn retlinet beægelse...3 3. Ujæn beægelse...4 4. Konstant accelereret beægelse...5 5. Tilbagelagt ej ed en konstant accelereret beægelse...8 6. Frit

Læs mere

Det skrå kast uden luftmodstand

Det skrå kast uden luftmodstand Det skrå kast uden luftmodstand I dette lille tillæg skal i smart benytte ektorer til at udlede udtryk for stedfunktionen og hastigheden i det skrå kast uden luftmodstand. Vi il gøre brug af de fundamentale

Læs mere

Lorentz kraften og dens betydning

Lorentz kraften og dens betydning Lorentz kraften og dens betydning I dette tillæg skal i se, at der irker en kraft på en ladning, der beæger sig i et agnetfelt, og i skal se på betydninger heraf. Før i gør det, skal i dog kigge på begrebet

Læs mere

Forsøgsvejledning - Hoppehøjde

Forsøgsvejledning - Hoppehøjde Forsøgsvejledning - Hoppehøjde Indledning: Indenfor idrættens verden er det ofte af stor vigtighed at man kan hoppe højt. Det være sig selvsagt i højdespring, hvor det er målet i sig selv, men også fx

Læs mere

Matematik F2 Opgavesæt 1

Matematik F2 Opgavesæt 1 Opgaer uge 1 I denne uge er temaet komplekse tal og komplekse funktioner af en kompleks ariabel. De første opgaer skulle gerne øge jeres fortrolighed med komplekse tal. I kan med fordel repetere de basale

Læs mere

Matematik F2 Opgavesæt 1

Matematik F2 Opgavesæt 1 Opgaer uge 1 I denne uge er temaet komplekse tal og komplekse funktioner af en kompleks ariabel. De første opgaer skulle gerne øge jeres fortrolighed med komplekse tal. I kan med fordel repetere de basale

Læs mere

Bevægelse i to dimensioner

Bevægelse i to dimensioner Side af 7 Bevægelse i to dimensioner Når man beskriver bevægelse i to dimensioner, som funktion af tiden, ser man bevægelsen som var den i et almindeligt koordinatsystem (med x- og y-akse). Ud fra dette

Læs mere

PIA JENSEN, 3.X MANDAG DEN 20. NOVEMBER 2006 ØVELSERNE ER UDFØRT MANDAG DEN 23. OKTOBER 2006 I SAMARBEJDE MED JESPER OG TOVE FYSIKRAPPORT SKRÅT KAST

PIA JENSEN, 3.X MANDAG DEN 20. NOVEMBER 2006 ØVELSERNE ER UDFØRT MANDAG DEN 23. OKTOBER 2006 I SAMARBEJDE MED JESPER OG TOVE FYSIKRAPPORT SKRÅT KAST PIA JENSEN, 3.X MANDAG DEN. NOVEMBER 6 ØVELSERNE ER UDFØRT MANDAG DEN 3. OKTOBER 6 I SAMARBEJDE MED JESPER OG TOVE FYSIKRAPPORT SKRÅT KAST Side 1 af FYSIKRAPPORT SKRÅT KAST FORORD OG INDHOLDSFORTEGNELSE

Læs mere

Kasteparabler i din idræt øvelse 1

Kasteparabler i din idræt øvelse 1 Kasteparabler i din idræt øvelse 1 Vi vil i denne første øvelse arbejde med skrå kast i din idræt. Du skal lave en optagelse af et hop, kast, spark eller slag af en person eller genstand. Herefter skal

Læs mere

Bevægelse op ad skråplan med ultralydssonde.

Bevægelse op ad skråplan med ultralydssonde. Bevægelse op ad skråplan med ultralydssonde. Formål: a) At finde en formel for accelerationen i en bevægelse op ad et skråplan, og at prøve at eftervise denne formel, ud fra en lille vinkel og vægtskål

Læs mere

Bølgeligningen. Indhold. Udbredelseshastighed for bølger i forskellige stoffer 1

Bølgeligningen. Indhold. Udbredelseshastighed for bølger i forskellige stoffer 1 Udbredelseshastighed for bølger i forskellige stoffer 1 Bølgeligningen Indhold 1. Bølgeligningen.... Udbredelseshastigheden for bølger på en elastisk streng...3 3. Udbredelseshastigheden for longitudinalbølger

Læs mere

Arbejdet på kuglens massemidtpunkt, langs x-aksen, er lig med den resulterende kraft gange strækningen:

Arbejdet på kuglens massemidtpunkt, langs x-aksen, er lig med den resulterende kraft gange strækningen: Forsøgsopstilling: En kugle ligger mellem to skinner, og ruller ned af den. Vi måler ved hjælp af sensorer kuglens hastighed og tid ved forskellige afstand på rampen. Vi måler kuglens radius (R), radius

Læs mere

Matematik F2 - sæt 1 af 7, f(z)dz = 0 1

Matematik F2 - sæt 1 af 7, f(z)dz = 0 1 f(z)dz = 0 1 I denne uge er det meningen, at I skal blie fortrolige med komplekse tal og komplekse funktioner af en kompleks ariabel. Vi skal kigge nærmere på, hornår komplekse funktioner er differentiable

Læs mere

LotusLive. LotusLive Engage og LotusLive Connections Brugervejledning

LotusLive. LotusLive Engage og LotusLive Connections Brugervejledning LotusLie LotusLie Engage og LotusLie Connections Brugerejledning LotusLie LotusLie Engage og LotusLie Connections Brugerejledning Note Læs oplysningerne i Bemærkninger på side 181, før du bruger denne

Læs mere

Geometri med Geometer II

Geometri med Geometer II hristian Madsen & Frans Kappel Øre, Morsø Gymnasium Geometri med Geometer II I det første forløb om geometri med Geometer beskæftigede i os især med at konstruere på skærmen. Ved hjælp af konstruktionerne

Læs mere

En samtaleguide for frafaldstruede elever. Frederikshavn Handelsskole HG Kirkegade 9 9900 Frederikshavn

En samtaleguide for frafaldstruede elever. Frederikshavn Handelsskole HG Kirkegade 9 9900 Frederikshavn En samtaleguide for frafaldstruede eleer På ej - Introduktion Had Eleen forklarer had han/hun opleer som problemet, og hilke forentninger eleen har til samtaleforløbet Det afklares hordan mentor og ele

Læs mere

SOCIAL ARV SAMMENFATNING :10 SOCIAL ARV SAMMENFATNING :10. Niels Ploug

SOCIAL ARV SAMMENFATNING :10 SOCIAL ARV SAMMENFATNING :10. Niels Ploug 05:10 Det ser ud til, at de kulturelle forhold forstået som den påirkning der finder sted mellem mennesker i deres løbende omgang med hinanden spiller en betydelig rolle i forklaringen af sociale forskelle.

Læs mere

Pythagoras sætning. I denne note skal vi give tre forskellige beviser for Pythagoras sætning:

Pythagoras sætning. I denne note skal vi give tre forskellige beviser for Pythagoras sætning: Pythgors sætning I denne note skl i gie tre forskellige eiser for Pythgors sætning: Pythgors sætning I en retinklet treknt, hor den rette inkel etegnes med, gælder: + = eis 1 Ld os tegne et stort kdrt

Læs mere

Statistisk mekanik 12 Side 1 af 9 Van der Waals-gas

Statistisk mekanik 12 Side 1 af 9 Van der Waals-gas Statistisk mekanik Side af 9 Ideale gasmolekyler har pr. definition ingen udstrækning og påirker ikke hinanden med kræfter. En an der Waals-gas, hor der tages højde for såel molekylær udstrækning som er-molekylære

Læs mere

Videopoint. Vejledning til simpelt brug

Videopoint. Vejledning til simpelt brug Videopoint Vejledning til simpelt brug 0. Indledning Videopoint er et smart værktøj, der gør fysikstuderende i stand til, nærmest legende let, at analysere bevægelser af forskellige objekter. Eksempelvis

Læs mere

Velkommen i koldbøtten

Velkommen i koldbøtten Velkommen i koldbøtten Vi sætter en stor ære i at ære med til at uddanne nye pædagoger og i håber at du il få meget med dig herfra, ligesom i også håber, at du kan gie os meget. Vi opfordrer dig til at

Læs mere

Trigonometri. for 8. klasse. Geert Cederkvist

Trigonometri. for 8. klasse. Geert Cederkvist Trigonometri Ved konstruktion af bygningsærker, hor der kræes stor nøjagtighed, er der ofte brug for, at man kan beregne sider og inkler i geometriske figurer. Alle polygoner kan deles op i trekanter,

Læs mere

Statistisk mekanik 5 Side 1 af 11 Hastighedsfordeling for ideal gas. Enatomig ideal gas

Statistisk mekanik 5 Side 1 af 11 Hastighedsfordeling for ideal gas. Enatomig ideal gas Statistisk ekanik 5 Side 1 af 11 Enatoig ideal gas etragt en enatoig ideal gas bestående af N uskelnelige olekyler ed asse, der befinder sig i en beholder ed rufang V. For at kunne bestee tilstandssuen

Læs mere

DET KØNSOPDELTE ARBEJDSMARKED

DET KØNSOPDELTE ARBEJDSMARKED 06:02 EN KVANTITATIV OG KVALITATIV BELYSNING Gennem kalitatie interiew på fire irksomheder afdækkes nogle af de mekanismer, der gradist og til tider umærkeligt fører til, at udiklingsopgaer og lederstillinger

Læs mere

Dynamik. 1. Kræfter i ligevægt. Overvejelser over kræfter i ligevægt er meget vigtige i den moderne fysik.

Dynamik. 1. Kræfter i ligevægt. Overvejelser over kræfter i ligevægt er meget vigtige i den moderne fysik. M4 Dynamik 1. Kræfter i ligevægt Overvejelser over kræfter i ligevægt er meget vigtige i den moderne fysik. Fx har nøglen til forståelsen af hvad der foregår i det indre af en stjerne været betragtninger

Læs mere

Projekt 2.3 Euklids konstruktion af femkanten

Projekt 2.3 Euklids konstruktion af femkanten Projekter: Kapitel. Projekt.3 Euklids konstruktion af femkanten Projekt.3 Euklids konstruktion af femkanten Et uddrag af sætninger fra Euklids Elementer, der fører frem til konstruktionen af den regulære

Læs mere

David Kallestrup, Aarhus School of Engineering, SRP-forløb ved Maskinteknisk retning 1

David Kallestrup, Aarhus School of Engineering, SRP-forløb ved Maskinteknisk retning 1 1 Pendul David Kallestrup, Aarhus School of Engineering, SRP-forløb ved Maskinteknisk retning 1 1.1 Hvad er et pendul? En matematiker og en ingeniør ser tit ens på mange ting, men ofte er der forskelle

Læs mere

Statistisk mekanik 6 Side 1 af 11 Hastighedsfordeling for ideal gas. Enatomig ideal gas

Statistisk mekanik 6 Side 1 af 11 Hastighedsfordeling for ideal gas. Enatomig ideal gas Statistisk ekanik 6 Side 1 af 11 Enatoig ideal gas etragt en enatoig ideal gas bestående af N uskelnelige olekyler ed asse, der befinder sig i en beholder ed rufang V. For at kunne bestee tilstandssuen

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Danmarks Tekniske Universitet Side 1 af 11 sider Skriftlig prøve, lørdag den 22. august, 2015 Kursus navn Fysik 1 Kursus nr. 10916 Varighed: 4 timer Tilladte hjælpemidler: Alle hjælpemidler tilladt "Vægtning":

Læs mere

Volumenstrømsregulator

Volumenstrømsregulator lindab constant-/arable flow dampers Volumenstrømsregulator DAU Dimensioner B Ød l Beskrielse Mekanisk olumenstrømsregulator med manuel indstilling af olumenstrøm. DAU er en mekanisk olumenstrømsregulator,

Læs mere

Rejsen over Limfjorden

Rejsen over Limfjorden Rejsen oer Limfjorden Indledning Der har gennem de senere år æret stor diskussion om at forandre infrastrukturen omkring Limfjorden i Aalborg ed at oprette en 3. Limfjordsforbindelse. Et spørgsmål som

Læs mere

Newtons love - bevægelsesligninger - øvelser. John V Petersen

Newtons love - bevægelsesligninger - øvelser. John V Petersen Newtons love - bevægelsesligninger - øvelser John V Petersen Newtons love 2016 John V Petersen art-science-soul Indhold 1. Indledning og Newtons love... 4 2. Integration af Newtons 2. lov og bevægelsesligningerne...

Læs mere

Aalborg Universitet. Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik. Tirsdag d. 11. august 2015 kl

Aalborg Universitet. Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik. Tirsdag d. 11. august 2015 kl Aalborg Universitet Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik Tirsdag d. 11. august 2015 kl. 9 00-13 00 Ved bedømmelsen vil der blive lagt vægt på argumentationen (som bør være kort og

Læs mere

Det skrå kåst. Af Allan Tobias Langhoff, Nikolaj Egholk Jakobsen og Suayb Köse

Det skrå kåst. Af Allan Tobias Langhoff, Nikolaj Egholk Jakobsen og Suayb Köse Det skrå kåst Af Allan Tobias Langhoff, Nikolaj Egholk Jakobsen og Suayb Köse 19/12-2012 Matematik Opstil stedfunktionen s x (t) og s y (t) for den lodrette og den vandrette bevægelse, som funktion af

Læs mere

Sundhedssekretariatet. ETOS Svendborg 2013. Elevers trivsel og sundhed

Sundhedssekretariatet. ETOS Svendborg 2013. Elevers trivsel og sundhed Sundhedssekretariatet ETOS Sendborg 2013 Eleers trisel og sundhed 2 ETOS Sendborg 2013. Eleers trisel og sundhed Sendborg Kommune Sundhedssekretariatet Singet 14 5700 Sendborg Udarbejdet af Anne Bøgegaard

Læs mere

Her skal vi se lidt på de kræfter, der påvirker en pil når den affyres og rammer sit mål.

Her skal vi se lidt på de kræfter, der påvirker en pil når den affyres og rammer sit mål. a. Buens opbygning Her skal vi se lidt på de kræfter, der påvirker en pil når den affyres og rammer sit mål. Buen påvirker pilen med en varierende kraft, der afhænger meget af buens opbygning. For det

Læs mere

11:30-12:30 Oplæg om det interpersonelle klasserum, v. dr. Tim Maindhard, Utrecht Universitet.

11:30-12:30 Oplæg om det interpersonelle klasserum, v. dr. Tim Maindhard, Utrecht Universitet. Dagens program 9:00-10:00 Ankomst, registrering og kaffe 10:00-11:20 Velkomst ed V. Projektleder Henrik Nee, rektor ed Skie Handelsgymnasium. Oplæg med resultater fra -projektet,. forskerteamet: Lea Lund

Læs mere

i x-aksens retning, så fås ). Forskriften for g fås altså ved i forskriften for f at udskifte alle forekomster af x med x x 0

i x-aksens retning, så fås ). Forskriften for g fås altså ved i forskriften for f at udskifte alle forekomster af x med x x 0 BAndengradspolynomier Et polynomium er en funktion på formen f ( ) = an + an + a+ a, hvor ai R kaldes polynomiets koefficienter. Graden af et polynomium er lig med den højeste potens af, for hvilket den

Læs mere

Aalborg Universitet. Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik. 25. August 2011 kl. 9 00-13 00

Aalborg Universitet. Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik. 25. August 2011 kl. 9 00-13 00 Aalborg Universitet Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik 25. August 2011 kl. 9 00-13 00 Ved bedømmelsen vil der blive lagt vægt på argumentationen (som bør være kort og præcis), rigtigheden

Læs mere

ThinkVantage System Migration Assistant 5.0. Brugervejledning

ThinkVantage System Migration Assistant 5.0. Brugervejledning ThinkVantage System Migration Assistant 5.0 Brugerejledning ThinkVantage System Migration Assistant 5.0 Brugerejledning Bemærk: Før du bruger oplysningerne i denne bog og det produkt, de understøtter,

Læs mere

Folketallets bevægelser i Odense Kommune i 1999.

Folketallets bevægelser i Odense Kommune i 1999. NYHED S BREV Odense Kommune Borgmesterforaltningen Økonomi- og Planlægningsafdelingen Resume Folketallets beægelser i Odense Kommune i 1999. Nr. 3 marts 2000 Folketallet steg i løbet af 1999 med 32 personer

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Underisningsbeskrielse Stamoplysninger til brug ed prøer til gymnasiale uddannelser Termin August 2011 juni 2012 Institution Københans tekniske Gymnasium Uddannelse Fag og nieau Lærer(e) Hold Htx Teknikfaget

Læs mere

Løsninger til udvalgte opgaver i opgavehæftet

Løsninger til udvalgte opgaver i opgavehæftet V3. Marstal solvarmeanlæg a) Den samlede effekt, som solfangeren tilføres er Solskinstiden omregnet til sekunder er Den tilførte energi er så: Kun af denne er nyttiggjort, så den nyttiggjorte energi udgør

Læs mere

grafer og funktioner trin 1 brikkerne til regning & matematik preben bernitt

grafer og funktioner trin 1 brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik grafer og funktioner trin 1 preben bernitt brikkerne til regning & matematik grafer og funktioner, trin 1 ISBN: 978-87-92488-11-4 1. Udgave som E-bog 2003 by bernitt-matematik.dk

Læs mere

Andengradsfunktionen

Andengradsfunktionen Andengradsfunktionen 1. Find først diskriminanten og efterfølgende også toppunktet for følgende andengradsfunktioner. A y = 2 x 2 + 4 x + 3 B y = 1 x 2 + 6 x + 2 C y = 1 / 2 x 2 + 2 x 2 D y = 1 x 2 + 6

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Underisningsbeskrielse Stamoplysninger til brug ed prøer til gymnasiale uddannelser Termin 11.8.2008-29.6.2009 Institution Københans tekniske Gymnasium Uddannelse Fag og nieau Lærer(e) htx Teknikfaget

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Danmarks Tekniske Universitet Side 1 af 10 sider Skriftlig prøve, lørdag den 23. maj, 2015 Kursus navn Fysik 1 Kursus nr. 10916 Varighed: 4 timer Tilladte hjælpemidler: Alle hjælpemidler tilladt "Vægtning":

Læs mere

Faldmaskine. , får vi da sammenhængen mellem registreringen af hullerne : t = 2 r 6 v

Faldmaskine. , får vi da sammenhængen mellem registreringen af hullerne : t = 2 r 6 v Faldmaskine Rapport udarbejdet af: Morten Medici, Jonatan Selsing, Filip Bojanowski Formål: Formålet med denne øvelse er opnå en vis indsigt i, hvordan den kinetiske energi i et roterende legeme virker

Læs mere

Teknologi Projekt. Trafik - Optimal Vej

Teknologi Projekt. Trafik - Optimal Vej Roskilde Tekniske Gymnasium Teknologi Projekt Trafik - Optimal Vej Af Nikolaj Seistrup, Henrik Breddam, Rasmus Vad og Dennis Glindhart Roskilde Tekniske Gynasium Klasse 1.3 7. december 2006 Indhold 1 Forord

Læs mere

RØDDING BØRNEHAVE GRANKOGLEN

RØDDING BØRNEHAVE GRANKOGLEN RØDDING BØRNEHAVE GRANKOGLEN Indholdsfortegnelse Foraltningens forord Side 3 Årsberetning Side 4 Data Side 5 Status på egne indsatsområder Side 7 Temaer 2012-2015 Side 8 Indsatsområder fremadrettet Side

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Underisningsbeskrielse Stamoplysninger til brug ed prøer til gymnasiale uddannelser Termin 10.8.2009- juni 2010 Institution Københans tekniske Gymnasium Uddannelse Fag og nieau Lærer(e) htx Teknikfaget

Læs mere

American Football. I det følgende ser vi nærmere på, hvilke pladser, der er på et american football hold.

American Football. I det følgende ser vi nærmere på, hvilke pladser, der er på et american football hold. American Football Opgaven Jeres klasse er blevet udtaget til at deltage i en american football turnering. I skal stille med 2 hold. Der kan vindes store præmier, så I ønsker naturligvis at stille med to

Læs mere

AFSLUTTENDE RAPPORT EVALUERING AF BRUG FOR ALLE UNGES OMRÅDEINDSATS 2011-2014 UNDERVISNINGSMINISTERIET

AFSLUTTENDE RAPPORT EVALUERING AF BRUG FOR ALLE UNGES OMRÅDEINDSATS 2011-2014 UNDERVISNINGSMINISTERIET AFSLUTTENDE RAPPORT EVALUERING AF BRUG FOR ALLE UNGES OMRÅDEINDSATS 2011-2014 UNDERVISNINGSMINISTERIET INDSATSERNE I HARALDSGADEKVARTERET, KØBENHAVN KORSKÆRPARKEN OG SØNDERPARKEN, FREDERICIA URBANPLANEN

Læs mere

Det er ikke personligt

Det er ikke personligt Det er ikke personligt Hans Harhoff Andersen 18. september 2013 Forudsætninger for dette kursus Forudsætninger for dette kursus Forudsætninger for dette kursus Fysik Forudsætninger for dette kursus Fysik

Læs mere

Sportsfysik i Basketball Hvad er det bedste skud? Af Jerôme W. H. Baltzersen

Sportsfysik i Basketball Hvad er det bedste skud? Af Jerôme W. H. Baltzersen Sportsfysik i Basketball Hvad er det bedste skud? Af Jerôme W. H. Baltzersen I mit projekt ønsker jeg at studere den optimale måde at skyde en basketball i kurven på, når man tager hensyn til, at man kan

Læs mere

KAPACITET AF RUF SYSTEMET KAN DET LADE SIG GØRE?

KAPACITET AF RUF SYSTEMET KAN DET LADE SIG GØRE? KAPACITET AF RUF SYSTEMET KAN DET LADE SIG GØRE? Af Torben A. Knudsen, Sud. Poly. & Claus Rehfeld, Forskningsadjunk Cener for Trafik og Transporforskning (CTT) Danmarks Tekniske Uniersie Bygning 115, 800

Læs mere

EN 1991-1-4 DK NA:2007

EN 1991-1-4 DK NA:2007 EN 1991-1-4 DK NA:007 Nationalt anneks til Eurocode 1: Last på bygærker Del 1-4: Generelle laster - Vindlast Forord I forbindelse ed ipleenteringen af Eurocodes i dansk byggelogining til erstatning for

Læs mere

Den Specielle Relativitetsteori

Den Specielle Relativitetsteori Den Speielle Relatiitetsteori Kristian Jersle, 3y, Ringkjøbing Gymnasium 30-01-07-1- Indholdsfortegnelse Indledning... 3 En begienhed... 4 Relatiitetsteori og Kinematik... 4 Tidsforlængelse... 4 Længdeforkortelse...

Læs mere

Studieretningsopgave

Studieretningsopgave Virum Gymnasium Studieretningsopgave Harmoniske svingninger i matematik og fysik Vejledere: Christian Holst Hansen (matematik) og Bodil Dam Heiselberg (fysik) 30-01-2014 Indholdsfortegnelse Indledning...

Læs mere

Matematik A. Højere teknisk eksamen

Matematik A. Højere teknisk eksamen Matematik A Højere teknisk eksamen Matematik A 215 Prøvens varighed er 5 timer. Alle hjælpemidler er tilladte. Opgavebesvarelsen skal afleveres renskrevet, det er tilladt at skrive med blyant. Notatpapir

Læs mere

Michael Jokil 11-05-2012

Michael Jokil 11-05-2012 HTX, RTG Det skrå kast Informationsteknologi B Michael Jokil 11-05-2012 Indholdsfortegnelse Indledning... 3 Teori... 3 Kravspecifikationer... 4 Design... 4 Funktionalitet... 4 Brugerflade... 4 Implementering...

Læs mere

koordinatsystemer og skemaer

koordinatsystemer og skemaer brikkerne til regning & matematik koordinatsystemer og skemaer basis preben bernitt brikkerne til regning & matematik Koordinatsystemer og skemaer, basis 1. Udgave som E-bog 2003 by bernitt-matematik.dk

Læs mere

Institut for Matematik, DTU: Gymnasieopgave. Det skrå kast. Teori: Erik Øhlenschlæger, Fysik for Diplomingeniører, Gyldendal 1996, side 13-14.

Institut for Matematik, DTU: Gymnasieopgave. Det skrå kast. Teori: Erik Øhlenschlæger, Fysik for Diplomingeniører, Gyldendal 1996, side 13-14. Det skå kast o ballistiske kue side 1 Institut fo Matematik, DTU: Gymnasieopae Det skå kast Teoi: Eik Øhlenschlæe, Fysik fo Diplomineniøe, Gyldendal 1996, side 13-14 Fa kastemaskine til pojektile Fiu 1

Læs mere

Parameterkurver. Kapitel 7:

Parameterkurver. Kapitel 7: Kapitel 7: Parameterkurver 7 Oversigt af tegning af parameterkurver... 116 Oversigt over tegning af parameterkurver... 117 Forskelle mellem tegning af parameterkurver og funktioner... 118 I dette kapitel

Læs mere

VUC Vestsjælland Syd, Slagelse Nr. 1 Institution: Projekt Trigonometri

VUC Vestsjælland Syd, Slagelse Nr. 1 Institution: Projekt Trigonometri VUC Vestsjælland Syd, Slagelse Nr. 1 Institution: 333247 2015 Anders Jørgensen, Mark Kddafi, David Jensen, Kourosh Abady og Nikolaj Eriksen 1. Indledning I dette projekt, vil man kunne se definitioner

Læs mere

Keplers ellipse. Perihel F' Aphel

Keplers ellipse. Perihel F' Aphel Keplers ellipse Keplers udgangspunkt er ellipsen opfattet som en fladtrykt cirkel. Han har selfølgelig stadigæk brug for brændpunkter mm. Konstruktionen af disse er simpel ud fra ellipsens omskrene rektangel.

Læs mere

Brydningsloven og bestemmelse af brydningsindeks Fysikrapport, 5/9-2008

Brydningsloven og bestemmelse af brydningsindeks Fysikrapport, 5/9-2008 ROSKILDE TEKNISKE GYMNASIUM Brydningsloven og bestemmelse af brydningsindeks Fysikrapport, 5/9-2008 Louise Regitze Skotte Andersen, Klasse 2.4 Lærer: Ashuak Jacob France 2 Indhold Indledning... 3 Materialeliste...

Læs mere

Hos Solo er målet at (gen)skabe en positiv identitetsfølelse og hjælpe til forståelse af, hvordan man begår sig i denne verden.

Hos Solo er målet at (gen)skabe en positiv identitetsfølelse og hjælpe til forståelse af, hvordan man begår sig i denne verden. n Der er faste tidspunkter for ækning, måltider m.. og et aktiitetsprogram, som er tilrettelagt på forhånd. Der er ringe eller ingen mulighed for afigelser fra dagsprogrammet. Den unge i fokus I mange

Læs mere

Konstruktive nyheder November 2012

Konstruktive nyheder November 2012 Konstruktie nyheder Noember 2012 Baggrund for dette Journalistiske laboratorium Et journalistisk laboratorium (J-lab) har til hensigt at udforske og udikle et nyt journalistisk ærktøj, irkemiddel eller

Læs mere

1. Kræfter. 2. Gravitationskræfter

1. Kræfter. 2. Gravitationskræfter 1 M1 Isaac Newton 1. Kræfter Vi vil starte med at se på kræfter. Vi ved fra vores hverdag, at der i mange daglige situationer optræder kræfter. Skal man fx. cykle op ad en bakke, bliver man nødt til at

Læs mere

Volumenstrømsregulator

Volumenstrømsregulator R comfort olumenstrømsregulatorer Volumenstrømsregulator DAEU Dimensioner B 0 Ød l Beskrielse Mekanisk olumenstrømsregulator med el-motor for omstilling mellem to forskellige olumenstrømme. DAEU er en

Læs mere

Trigonometri. Store konstruktioner. Måling af højde

Trigonometri. Store konstruktioner. Måling af højde Trigonometri Ordet trigonometri er sammensat af de to ord trigon og metri, hvor trigon betyder trekant og metri kommer af det græske ord metros, som kan oversættes til måling. Så ordet trigonometri er

Læs mere

Bølgeudbredelse ved jordskælv

Bølgeudbredelse ved jordskælv rojekt: Jordskæl Bølgeudbredelse ed jordskæl IAG 2005 Bølgeudbredelse ed jordskæl V skal dette projekt studere bølgeudbredelse ed jordskæl. Her kommer så ldt teor om bølger. Bølger Man tegner næsten altd

Læs mere

Vikar-Guide. 1. Fælles gennemgang: Vikarguiden findes på side 5. 2. Efter fælles gennemgang: Venlig hilsen holdet bag Vikartimen.

Vikar-Guide. 1. Fælles gennemgang: Vikarguiden findes på side 5. 2. Efter fælles gennemgang: Venlig hilsen holdet bag Vikartimen. Vikar-Guide Fag: Klasse: OpgaveSæt: Fysik/Kemi 7. klasse Reaktionstid 1. Fælles gennemgang: Vikarguiden findes på side 5. 2. Efter fælles gennemgang: Venlig hilsen holdet bag Vikartimen.dk Hjælp os med

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2015 Institution VUC Fredericia Uddannelse Fag og niveau Lærer(e) Hold Hfe Matematik B Susanne Holmelund

Læs mere

KØBENHAVNS UNIVERSITET NATURVIDENSKABELIG BACHELORUDDANNELSE

KØBENHAVNS UNIVERSITET NATURVIDENSKABELIG BACHELORUDDANNELSE KØBENHAVNS UNIVERSITET NATURVIDENSKABELIG BACHELORUDDANNELSE Fysik 2, Klassisk mekanik 2 - ny og gammel ordning Skriftlig eksamen 25. januar 2008 Tillae hjælpemidler: Medbragt litteratur, noter og lommeregner

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Danmarks Tekniske Universitet Side 1 af 9 sider Skriftlig prøve, lørdag den 13. december, 2014 Kursus navn Fysik 1 Kursus nr. 10916 Varighed: 4 timer Tilladte hjælpemidler: Alle tilladte hjælpemidler på

Læs mere

Impuls og kinetisk energi

Impuls og kinetisk energi Impuls og kinetisk energi Peter Hoberg, Anton Bundgård, and Peter Kongstad Hold Mix 1 (Dated: 7. oktober 2015) 201405192@post.au.dk 201407987@post.au.dk 201407911@post.au.dk 2 I. INDLEDNING I denne øvelse

Læs mere

Volumenstrømsregulator

Volumenstrømsregulator lindab constant-/arable flow dampers Volumenstrømsregulator DAVU Dimensioner B 0 Ød Beskrielse Mekanisk olumenstrømsregulator for kontinuerlig trinløs olumenregulering - forsynet med elektrisk motor. DAVU

Læs mere

Svingninger. Erik Vestergaard

Svingninger. Erik Vestergaard Svingninger Erik Vestergaard 2 Erik Vestergaard www.matematikfysik.dk Erik Vestergaard, 2009. Billeder: Forside: Bearbejdet billede af istock.com/-m-i-s-h-a- Desuden egne illustrationer. Erik Vestergaard

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Danmarks Tekniske Universitet Side 1 af 11 sider Skriftlig prøve, lørdag den 12. december, 2015 Kursus navn Fysik 1 Kursus nr. 10916 Varighed: 4 timer Tilladte hjælpemidler: Alle hjælpemidler tilladt "Vægtning":

Læs mere

I fysik er der forskellige skriftlige discipliner, som du kan læse mere om på denne og de følgende sider.

I fysik er der forskellige skriftlige discipliner, som du kan læse mere om på denne og de følgende sider. Side 1 af 7 Indhold Rapportering rapportskrivning... 1 Løsning af fysikfaglige problemer opgaveregning.... 2 Formidling af fysikfaglig indsigt i form at tekster, præsentationer og lignende... 4 Projektrapporter...

Læs mere

Aalborg Universitet. Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik. Torsdag d. 7. august 2014 kl

Aalborg Universitet. Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik. Torsdag d. 7. august 2014 kl Aalborg Universitet Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik Torsdag d. 7. august 2014 kl. 9 00-13 00 Ved bedømmelsen vil der blive lagt vægt på argumentationen (som bør være kort og præcis),

Læs mere

Brugsvejledning for Frit fald udstyr

Brugsvejledning for Frit fald udstyr Brugsvejledning for 1980.10 Frit fald udstyr 13.12.10 Aa 1980.10 1. Udløser 2. Tilslutningsbøsninger for prøveledninger 3. Trykknap for udløser 4. Kontaktplader 5. Udfræsning for placering af kugle 6.

Læs mere

Konflikthåndtering og kommunikation. Lær at tackle konflikter konstruk1vt, inden de når at skabe ineffek/vitet, stress eller tab af arbejdsglæde.

Konflikthåndtering og kommunikation. Lær at tackle konflikter konstruk1vt, inden de når at skabe ineffek/vitet, stress eller tab af arbejdsglæde. Konflikthåndtering og kommunikation Lær at tackle konflikter konstruk1t, inden de når at skabe ineffek/itet, stress eller tab af arbejdsglæde. Det er helt utroligt, hordan alle AROS underisere formår at

Læs mere

Enkelt og dobbeltspalte

Enkelt og dobbeltspalte Enkelt og dobbeltsalte Jan Scholtyßek 4.09.008 Indhold 1 Indledning 1 Formål 3 Teori 3.1 Enkeltsalte.................................. 3. Dobbeltsalte................................. 3 4 Fremgangsmåde

Læs mere

Eksamen i fysik 2016

Eksamen i fysik 2016 Eksamen i fysik 2016 NB: Jeg gør brug af DATABOG fysik kemi, 11. udgave, 4. oplag & Fysik i overblik, 1. oplag. Opgave 1 Proptrækker Vi kender vinens volumen og masse. Enheden liter omregnes til kubikmeter.

Læs mere

Geometri, (E-opgaver 9d)

Geometri, (E-opgaver 9d) Geometri, (E-opgaver 9d) GEOMETRI, (E-OPGAVER 9D)... 1 Vinkler... 1 Trekanter... 2 Ensvinklede trekanter... 2 Retvinklede trekanter... 3 Pythagoras sætning... 3 Sinus, Cosinus og Tangens... 4 Vilkårlige

Læs mere

Nogle opgaver om fart og kraft

Nogle opgaver om fart og kraft &HQWHUIRU1DWXUIDJHQHV'LGDNWLN 'HWQDWXUYLGHQVNDEHOLJH)DNXOWHW $DUKXV8QLYHUVLWHW &HQWUHIRU6WXGLHVLQ6FLHQFH(GXFDWLRQ)DFXOW\RI6FLHQFH8QLYHUVLW\RI$DUKXV Nogle opgaver om fart og kraft Opgavesættet er oversat

Læs mere

ThinkCentre. Vejledning i udskiftning af hardware Type 8143, 8144, 8146 Type 8422, 8423, 8427

ThinkCentre. Vejledning i udskiftning af hardware Type 8143, 8144, 8146 Type 8422, 8423, 8427 ThinkCentre Vejledning i udskiftning af hardware Type 8143, 8144, 8146 Type 8422, 8423, 8427 ThinkCentre Vejledning i udskiftning af hardware Type 8143, 8144, 8146 Type 8422, 8423, 8427 Første udgae (april

Læs mere

Kræfter og Energi. Nedenstående sammenhæng mellem potentiel energi og kraft er fundamental og anvendes indenfor mange af fysikkens felter.

Kræfter og Energi. Nedenstående sammenhæng mellem potentiel energi og kraft er fundamental og anvendes indenfor mange af fysikkens felter. Kræfter og Energi Jacob Nielsen 1 Nedenstående sammenhæng mellem potentiel energi og kraft er fundamental og anvendes indenfor mange af fysikkens felter. kraften i x-aksens retning hænger sammen med den

Læs mere

LotusLive. LotusLive Administrationsvejledning

LotusLive. LotusLive Administrationsvejledning LotusLie LotusLie Administrationsejledning LotusLie LotusLie Administrationsejledning Note Læs oplysningerne i Bemærkninger på side 83, før du bruger denne dokumentation og det tilhørende produkt. Bemærk

Læs mere

Volumenstrømsregulator

Volumenstrømsregulator lindab a Dimensioner (MF, MP, ON, MOD, KNX) Beskrielse er en cirkulær olumenstrømsregulator for VAV regulering i kanalsystemer og består af en måleenhed og et spjæld. anendes til olumenstrømsregulering

Læs mere

Kapitel 1. Håndbogen Kom godt i gang

Kapitel 1. Håndbogen Kom godt i gang Kapitel 1. Håndbogen Kom godt i gang Denne håndbog indeholder en introduktion til WebSphere Portal content publishing. Håndbogen indeholder følgende emner: Beskrielser af de sy miniportaler, der findes

Læs mere

Det teknisk-naturvidenskabelige basisår Matematik 1A, Efterår 2005, Hold 3 Prøveopgave A

Det teknisk-naturvidenskabelige basisår Matematik 1A, Efterår 2005, Hold 3 Prøveopgave A Det teknisk-naturvidenskabelige basisår Matematik 1A, Efterår 2005, Hold 3 Prøveopgave A Opgaven består af tre dele, hver med en række spørgsmål, efterfulgt af en liste af teorispørgsmål. I alle opgavespørgsmålene

Læs mere

Aalborg Universitet. Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik. Tirsdag d. 31. maj 2016 kl

Aalborg Universitet. Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik. Tirsdag d. 31. maj 2016 kl Aalborg Universitet Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik Tirsdag d. 31. maj 2016 kl. 9 00-13 00 Ved bedømmelsen vil der blive lagt vægt på argumentationen (som bør være kort og præcis),

Læs mere

Optimale konstruktioner - når naturen former. Opgaver. Opgaver og links, der knytter sig til artiklen om topologioptimering

Optimale konstruktioner - når naturen former. Opgaver. Opgaver og links, der knytter sig til artiklen om topologioptimering Opgaver Opgaver og links, der knytter sig til artiklen om solsikke Opgave 1 Opgave 2 Opgaver og links, der knytter sig til artiklen om bobler Opgave 3 Opgave 4 Opgaver og links, der knytter sig til artiklen

Læs mere

Kompendium i faget. Matematik. Tømrerafdelingen. 2. Hovedforløb. Y = ax 2 + bx + c. (x,y) Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard

Kompendium i faget. Matematik. Tømrerafdelingen. 2. Hovedforløb. Y = ax 2 + bx + c. (x,y) Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard Kompendium i faget Matematik Tømrerafdelingen 2. Hovedforløb. Y Y = ax 2 + bx + c (x,y) X Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard Indholdsfortegnelse for H2: Undervisningens indhold...

Læs mere

Aalborg Universitet. Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik. Mandag d. 11. juni 2012 kl. 9 00-13 00

Aalborg Universitet. Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik. Mandag d. 11. juni 2012 kl. 9 00-13 00 Aalborg Universitet Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik Mandag d. 11. juni 2012 kl. 9 00-13 00 Ved bedømmelsen vil der blive lagt vægt på argumentationen (som bør være kort og præcis),

Læs mere