Termodynamikkens første hovedsætning

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "Termodynamikkens første hovedsætning"

Transkript

1 Statistisk mekanik 2 Side 1 af 13 Termodynamikkens første hovedsætning Inden for termodynamikken kan energi overføres på to måder: I form af varme Q: Overførsel af atomar/molekylær bevægelsesenergi på det mikroskopiske plan som følge af temperaturforskelle. I form af arbede W: Makroskopisk forskydning af en krafts angrebspunkt. Endvidere opereres med begrebet indre energi E, hvorved forstås den kinetiske og potentielle energi forbundet med bevægelsen af et systems atomer og molekyler 1 i forhold til systemets massemidtpunkt 2. Termodynamikkens første hovedsætning (TI) Δ E = Q W (2.1) udtrykker således energibevarelse 3, idet et systems tilvækst i indre energi er lig den tilførte varmeenergi til systemet fratrukket det arbede, som systemet udfører på sine omgivelser. 1 Den del af den indre energi, som knytter sig til selve bevægelsen af et legemes atomer/molekyler, kaldes den termiske energi E term. Et legemes temperatur er i den forbindelse udtryk for den gennemsnitlige bevægelsesenergi af legemets enkelte atomer/molekyler. Den termiske energi er således en ekstensiv tilstandsvariabel, hvorimod temperaturen er ensiv. Den del af den indre energi, som knytter sig til den indbyrdes vekselvirkning atomer og molekyler imellem, kaldes på engelsk bond energy E. bond En ideal gas er således kendetegnet ved E = 0 og dermed E = E, svarende til at den indre energi af en ideal gas bond term kun afhænger af temperaturen. 2 Energien knyttet til systemets bevægelse som sådan er således ikke inkluderet. 3 Bemærk, at denne energibevarelse hviler på en sidestilling af det termodynamiske begreb varme og det mekaniske begreb arbede. Formuleringen af termodynamikkens første hovedsætning i midten af 1800-tallet på baggrund af bla. James Joules opdagelser førte således til den erkendelse, at termodynamik og mekanik er to sider af samme sag.

2 Statistisk mekanik 2 Side 2 af 13 Helmholtz-funktionen Helmholtz-funktionen, som defineres i det flg., angiver en øvre grænse for det arbede, som kan udføres i en proces, hvor temperaturen er uændret. Betragt derfor et system, som under vekselvirkning med et varmereservoir 4 med temperaturen T undergår en proces, hvori systemets start- og sluttemperatur er denne temperatur T 5. Betragtes systemet og reservoiret tilsammen som et isoleret system, haves fra udtryk (1.15) samt TII: Q Δ S+Δ SR =ΔS 0 : T hvor ΔS og TΔS Q, (2.2) Δ SR er entropitilvæksten for hhv. det betragtede system og varmereservoiret, og hvor Q er varmetilførslen fra reservoiret til systemet 6. Vha. TI findes flg. øvre grænse for det af systemet udførte arbede: TΔS Δ E + W : T W Δ E + TΔ S, (2.3) T idet W T er arbedet udført ved en proces med samme start- og sluttemperatur T. 4 Et system med uendelig stor varmekapacitet, sådan at temperaturen altid er den samme. 5 Det er således underforstået, at systemet til såvel start som slut er i en tilstand af termisk ligevægt, idet T i modsat fald ikke ville være defineret. Derimod behøver systemet ikke at være i termisk ligevægt underves i processen, og den omtalte proces er således ikke nødvendigvis isoterm. 6 Q er dermed varmetilførslen fra systemet til reservoiret.

3 Statistisk mekanik 2 Side 3 af 13 Indføres Helmholtz-funktionen som flg. tilstandsvariabel 7 : kan udtryk (2.3) skrives 8 F E TS, (2.4) WT Δ F. (2.5) Den øvre grænse for arbedet udført i en proces mellem to tilstande med samme temperatur er således givet ved Helmholtz-funktionens aftagen mellem de to tilstande. Da Helmholtz-funktionens aftagen således angiver den øvre grænse for, hvor meget energi, der kan omdannes ( blive frigort ) til arbede, kaldes F også systemets Helmholtz-frie energi. En tilvækst i Helmholtz-funktionen kræver således, at der bliver udført arbede på systemet ( W < 0) T, svarende til at F enten aftager eller forbliver konstant i spontant forløbende processer mellem to tilstande med samme T. Som bemærket i forbindelse med TII optræder der lighedstegn i udtryk (2.2), (2.3) og dermed i udtryk (2.5), hvis processen er reversibel, og skarpt ulighedstegn, hvis processen er irreversibel. Det udførte arbede antager således sin maksimale værdi for en reversibel proces. 7 I SM6 indføres den generaliserede Helmholtz-funktion energi også indeholder systemets potentielle energi i et eller flere konservative kraftfelter. 8 Eftersom at Δ F = ΔE TΔS SΔ T for denne proces, hvor Δ T = 0. * F = E TS, hvor E = E + E udover systemets indre pot

4 Statistisk mekanik 2 Side 4 af 13 Gibbs-funktionen Udført arbede i en infinitesimal proces kan skrives som en sum af produkter mellem en ensiv tilstandsvariabel 9 Y og en infinitesimal tilvækst i en tilhørende ekstensiv tilstandsvariabel X: dw. (2.6) = YidX i i Det mest velkendte eksempel 10 fra termodynamikken på et sådant YdX -arbede er PdV -arbedet W PdV = PdV. (2.7) Gibbs-funktionen, som indføres i det flg., angiver den øvre grænse for arbedet fraregnet YdX -arbedet i en proces, hvor såvel T som Y er uændrede. I det tilfælde hvor Y = P og X = V haves således hvor PdV PdV W W W PdV W således er arbedet fraregnet PdV -arbedet. = +, (2.8) 9 Se fodnote 24 i SM1. 10 Et andet eksempel hentet fra elektricitetslæren er det arbede dw = E dp = E dp, som det kræver at forøge proektionen af et systems elektriske dipolmoment p på et elektrostatisk felt E. Hvis E-feltet er upåvirket af denne tilvækst i systemets dipolmoment, er det samlede arbede, som systemet skal udføre på sine omgivelser (feltet) givet ved W = dw = E dp = p. E Dette arbede er minus det arbede, som feltet (Coulombkraften) skal udføre på systemet, og dermed ifølge EM2 lig systemets elektrostatiske energi E, hvilket fremgår af EM udtryk (3.5). el Bemærk, at p er proportional med ladning og dermed med stofmængde og således er et eksempel på en ekstensiv tilstandsvariabel X, hvorimod E er et eksempel på en ensiv tilstandsvariabel Y. Magnetiske dipoler ville f. EM udtryk (8.23) udgøre et helt tilsvarende eksempel. i { x, y, z} i i

5 Statistisk mekanik 2 Side 5 af 13 Hvis processen beskrevet i afsnittet om Helmholtz-funktionen ydermere har samme start- og sluttryk P, fås fra udtryk (2.5), (2.7) og (2.8): W + W = PΔV + W Δ F : PdV PdV PdV TP, TP, TP, PdV W TP, ΔF PΔV. (2.9) Indføres Gibbs-funktionen kan udtryk (2.9) skrives G F + PV = E TS + PV, (2.10) PdV TP, W Δ G. (2.11) Den øvre grænse for ikke- PdV -arbedet udført i en proces mellem to tilstande med samme temperatur og tryk er således givet ved Gibbs-funktionens aftagen mellem de to tilstande. Generelt defineres Gibbs-funktionen således G F + YX = E TS + YX, (2.12) svarende til at Gibbs-funktionens aftagen angiver den øvre grænse for ikke-ydx - arbedet udført i en proces mellem to tilstande med samme T og Y. YdX TY, W Δ G. (2.13) Analogt til Helmholtz-funktionen kaldes G systemets Gibbs-frie energi, og der er ligeledes lighedstegn hhv. skarpt ulighedstegn i udtryk (2.11) og (2.13) for hhv. reversible og irreversible processer. Bemærk, at da E, S og X er ekstensive tilstandsvariable, er både F og G det også.

6 Statistisk mekanik 2 Side 6 af 13 Første og anden hovedsætning kombineret Ved at kombinere TI for et PVT-system 11 med den differentielle variant af udtryk (1.15), fås: 12 dqr = TdS, (2.14) TdS = de + PdV. (2.15) Som ekstensive tilstandsvariable skalerer S, E og V med stofmængden n. Udtryk (2.15) har således flg. mol-specifikke variant 13 : Tds = de + Pdv, (2.16) hvor s Sn, e E n og v V n, ligesom T og P, er ensive tilstandsvariable. 11 Et system fuldt beskrevet ved P, V og T, hvor der dermed udelukkende udføres -arbede PdV ( Y P, X V) = =, sådan at dw = PdV 12 Udtryk (2.14) og (2.7) knytter sig til reversible processer, men bemærk, at udtryk (2.15) ikke knytter sig til nogen proces, men beskriver sammenhængen mellem tilstandsvariable i nabo-ligevægtstilstande. 13 For to systemer, der er ens i alle andre henseender end stofmængden, og som derfor har samme fysiske egenskaber, vil udtryk (2.15) have to forskellige varianter, hvorimod udtryk (2.16) vil være det samme for de to systemer.

7 Statistisk mekanik 2 Side 7 af 13 Kemisk Potential I dette afsnit indføres begrebet kemisk potential μ. Et systems bestanddele 14 vil søge mod lavest muligt kemisk potential (deraf navnet), og det kemiske potential indgår derfor i beskrivelsen af hvilke kemiske processer, der kan forekomme. Endvidere indgår μ ifølge SM3 i de såkaldte fordelingsfunktioner, herunder Fermi- Dirac-fordelingen. I det flg. roduceres begrebet som led i beskrivelsen af en simpel proces, og efterfølgende præsenteres en formel definition. To ideale gassers irreversible diffusion Betragt en beholder med rumfang V, der består af to adskilte rum indeholdende hhv. og n mol af to forskellige ideale n1 2 gasser, som begge er kendetegnet ved trykket P og temperaturen T. PV,, T n 1 n 2 Når adskillelsen fernes, og de to gasser diffunderer ind i hinanden, vil der med tiden opstå en ny ligevægtstilstand, som, idet gasserne er ideale 15, vil have uændret temperatur T og tryk hvor p er partialtrykket 16,17. P= p1+ p 2 (2.17) 14 Forskellige stoffer ( stof-bestanddele ) eller samme stof i forskellige faser. 15 En ideal gas er kendetegnet ved, at gasmolekylerne ikke vekselvirker med hinanden. I modsat fald ville en kemisk reaktion mellem to typer gasmolekyler f.eks. kunne føre til en temperaturændring. 16 Partialtrykket p er det tryk, som den te gas ville have givet anledning til, hvis den havde været alene i beholderen. 17 Jf. udtryk (2.17) er p < P, eftersom de to gasser efter diffusionen er spredt ud over et større rumfang.

8 Statistisk mekanik 2 Side 8 af 13 Da Gibbsfunktionen er ekstensiv, er systemets samlede Gibbsfunktion givet ved G= G + G ng. 2 2 = ng + Det kan vises, at den molspecifikke Gibbsfunktion for en ideal gas, for hvilken kan antages konstant, kan skrives ( ln φ ( )) hvor φ ( T ) ses at være en enhedsløs funktion af T. (2.18) g = RT P+ T, (2.19) c P Gibbsfunktionen før og efter diffusionen er dermed ifølge udtryk (2.18) og (2.19) hhv. G = n g + n g i 1 1i 2 2i T( P ) n R T ( P ) = nr 1 ln + φ1 + 2 ln + φ 2, Gf = ng 1 1f + n2g2 f = nrt( ln p + φ ) + nrt ( l n p + φ ), idet den te gas efter diffusionen giver anledning til partialtrykket p. (2.20) (2.21) De to gassers mol-andele er og ifølge idealgasligningen er sådan at 18 n x, n= n1+ n2, (2.22) n n = pv PV, n, RT = R (2.23) T x p =. (2.24) P 18 Mol-andelen og tryk-andelen er nødvendigvis ens, eftersom stofmængden og trykket er proportionale for en ideal gas.

9 Statistisk mekanik 2 Side 9 af 13 Ifølge udtryk (2.24) er ln p = ln P+ ln x, (2.25) sådan at udtryk (2.21) kan skrives f ( ln ln φ ) ( ln ln x φ ) G = nr 1 T P+ x n2rt P (2.26) Indføres det kemiske potential af den te gas: kan udtryk (2.21) skrives ( ln p φ ) μ = RT + f , (2.27) G = nμ + n μ. (2.28) Ved den irreversible diffusionsproces er tilvæksten i Gibbsfunktionen ifølge udtryk (2.20) og (2.28) ( μ ) ( μ ) Δ G= n g + n g i (2.29) 1 1 1i G = nrtln x + n RTln x. (2.30) Alternativt, vha. udtryk (2.26): 19 Δ Kemisk potential Ved sammenligning af udtryk (2.29) og (2.30) ses, at det kemiske potential af en bestanddel er μ g + RTln x, (2.31) hvor x er mol-andelen af den pågældende bestanddel, og hvor g er den mol-specifikke Gibbsfunktion for bestanddelen ved systemets samlede tryk P Bemærk, at da x < 1, er ln x < 0, og dermed er Δ G > 0 hvilket er i overensstemmelse med udtryk (2.11) for PdV denne irreversible proces med uændret tryk og temperatur, hvori der ikke bliver udført ikke- PdV -arbede (W = 0 )., 20 I modsætning til bestanddelens partialtryk. T P

10 Statistisk mekanik 2 Side 10 af 13 μ er således en ensiv tilstandsvariabel, og μ = g, hvis der kun er én bestanddel i systemet ( x = 1). Ved indsættelse af udtryk (2.19) og (2.25) ses udtryk (2.31) at være identisk med udtryk (2.27). Bemærk, at udtrykkene for g og μ i udtryk (2.19) og (2.27) er identiske, bortset fra at g er udtrykt ved det samlede tryk P, hvor μ er udtrykt ved partialtrykket p. 21 Åbne systemer Indtil nu har alle betragtede systemer underforstået været lukkede. Udtryk (2.15), de = TdS PdV, (2.32) gælder således for et lukket PVT-system beskrevet ved en tilstandsligning f ( P, V, T; n ) = 0 22, hvori n er en parameter 23 og ikke en variabel. Et lukket PVT-system således kendetegnet ved 2 frihedsgrader, idet fastlæggelse af to af de tre variable gennem tilstandsligningen vil fastlægge den trede. Alle tilstandsvariable vil således kunne fastlægges ud fra to andre, sådan at man ved at vælge S og V som uafhængige variable f.eks. har E E de = ds + dv S V V S som ved sammenligning med udtryk (2.32) giver E E T S V V =, = P S, (2.33). (2.34) 21 Svarende til, at hvis der kun er én bestanddel i systemet, er p = P og dermed μ = g. 22 For en ideal gas haves f.eks. ( ) f P, V, T; n = PV nrt = Ved beskrivelsen betragtes n som værende konstant, men en konstant, der kan antage en hvilken som helst værdi.

11 Statistisk mekanik 2 Side 11 af 13 Et åbent PVT-system er kendetegnet ved en tilstandsligning ( ) f P, V, T, n = 0, hvori n er en variabel, svarende til 3 frihedsgrader i stedet for 2, sådan at udtryk (2.33) erstattes med E E E. (2.35), de = ds + dv + dn S Vn, V Sn, n SV Et lukket system er således det samme som et åbent system med dn = 0, så pr. korrespondens med udtryk (2.33) og (2.34) må 24 E E T S V =, = P Vn, Sn,. (2.36) En alternativ definition af kemisk potential er μ E n, (2.37) svarende til at det kemiske potential er tilvæksten i indre energi pr. tilført stofmængde ved en proces med fastholdt entropi og rumfang. SV, Udtryk (2.35) kan således vha. udtryk (2.36) og (2.37) skrives de = TdS PdV + μdn, (2.38) og det generelle udtryk gældende for et vilkårligt åbent system er således ifølge udtryk (2.6): de = TdS YdX +μdn. (2.39) 24 I udtryk (2.34) er det således bare underforstået, at n er konstant.

12 Statistisk mekanik 2 Side 12 af 13 Der eksisterer en række alternativer til udtryk (2.37). Ifølge udtryk (2.4) og (2.12) er f.eks. 25 df = de TdS SdT, (2.40) dg = de TdS SdT + YdX + XdY. (2.41) Hvis summen i udtryk (2.39) for nemheds skyld antages at være begrænset til ét led YdX fås hhv. og dermed df = SdT YdX + μdn, (2.42) dg = SdT + XdY + μdn, (2.43) F μ =, (2.44) n T, X G μ =. (2.45) n TY, 25 Infinitesimale tilvækster regnes til laveste orden forskellig fra nul: d( YX) = ( Y + dy)( X + dx) YX = YdX + XdY + dydx, f. 2 dx dx = ( x+ Δx) x x + + Δ lim Δx = lim Δx 0 Δx 0 ( ) 2 2 Δx 2x x x Δ x = lim( Δx + 2x) = 2x Δx 0 d ( xx) xdx + xdx 2xdx = = = 2x dx dx dx.

13 Statistisk mekanik 2 Side 13 af 13 Enthalpi Den ekstensive tilstandsvariabel enthalpien er defineret som der for Y = P og X = V reducerer til Ved sammenligning af udtryk (2.46) med udtryk (2.12) fås H E + YX, (2.46) H = E + PV. (2.47) G = H TS. (2.48) Den infinitesimale enthalpi-tilvækst mellem to nabo-tilstande er ifølge udtryk (2.46) dh = de + YdX + XdY. (2.49)

Statistisk mekanik 2 Side 1 af 10 Entropi, Helmholtz- og Gibbs-funktionen og enthalpi. Entropi

Statistisk mekanik 2 Side 1 af 10 Entropi, Helmholtz- og Gibbs-funktionen og enthalpi. Entropi Statistisk mekanik 2 Side 1 af 10 Entropi Entropi er en tilstandsvariabel 1, der løst formuleret udtrykker graden af uorden. Entropien er det centrale begreb i termodynamikkens anden hovedsætning (TII):

Læs mere

Statistisk mekanik 2 Side 1 af 10 Entropi, Helmholtz- og Gibbs-funktionen og enthalpi. Entropi

Statistisk mekanik 2 Side 1 af 10 Entropi, Helmholtz- og Gibbs-funktionen og enthalpi. Entropi Statistisk mekanik 2 Side 1 af 10 Entropi Entropi er en tilstandsvariabel 1, der løst formuleret udtrykker graden af uorden i et system. Da der er mange flere uordnede (tilfældigt ordnede) mikrotilstande

Læs mere

Tilstandssummen. Ifølge udtryk (4.28) kan MB-fordelingen skrives , (5.1) og da = N, (5.2) . (5.3) Indføres tilstandssummen 1 , (5.

Tilstandssummen. Ifølge udtryk (4.28) kan MB-fordelingen skrives , (5.1) og da = N, (5.2) . (5.3) Indføres tilstandssummen 1 , (5. Statistisk mekanik 5 Side 1 af 10 ilstandssummen Ifølge udtryk (4.28) kan M-fordelingen skrives og da er μ N e e k = N g ε k, (5.1) N = N, (5.2) μ k N Ne g = e ε k. (5.3) Indføres tilstandssummen 1 Z g

Læs mere

Termodynamik. Esben Mølgaard. 5. april N! (N t)!t! Når to systemer sættes sammen bliver fordelingsfunktionen for det samlede system

Termodynamik. Esben Mølgaard. 5. april N! (N t)!t! Når to systemer sættes sammen bliver fordelingsfunktionen for det samlede system Termodynamik Esben Mølgaard 5. april 2006 1 Statistik Hvis man har N elementer hvoraf t er defekte, eller N elementer i to grupper hvor forskydningen fra 50/50 (spin excess) er 2s, vil antallet af mulige

Læs mere

Benyttede bøger: Statistisk fysik 1, uredigerede noter, Per Hedegård, 2007.

Benyttede bøger: Statistisk fysik 1, uredigerede noter, Per Hedegård, 2007. Formelsamling Noter til Fysik 3 You can know the name of a bird in all the languages of the world, but when you re finished, you ll know absolutely nothing whatever about the bird... So let s look at the

Læs mere

Nanotermodynamik formelsamling

Nanotermodynamik formelsamling Nanotermodynamik formelsamling Af Asmus Ougaard Dohn & Sune Klamer Jørgensen 2. november 2005 ndhold 1 Kombinatorik 2 2 Termodynamik 3 3 deal gasser: 5 4 Entropi og temp.: 7 5 Kemisk potential: 7 6 Gibbs

Læs mere

Elektromagnetisme 13 Side 1 af 8 Maxwells ligninger. Forskydningsstrømme I S 1

Elektromagnetisme 13 Side 1 af 8 Maxwells ligninger. Forskydningsstrømme I S 1 Elektromagnetisme 13 Side 1 af 8 Betragt Amperes lov fra udtryk (1.1) anvendt på en kapacitor der er ved at blive ladet op. For de to flader og S der begge S1 afgrænses af C fås H dl = J ˆ C S n da = I

Læs mere

Statistisk mekanik 10 Side 1 af 7 Sortlegemestråling og paramagnetisme. Sortlegemestråling

Statistisk mekanik 10 Side 1 af 7 Sortlegemestråling og paramagnetisme. Sortlegemestråling Statistisk mekanik 0 Side af 7 Sortlegemestråling I SM9 blev vibrationerne i et krystalgitter beskrevet som fononer. I en helt tilsvarende model beskrives de EM svingninger i en sortlegeme-kavitet som

Læs mere

Statistisk mekanik 10 Side 1 af 7 Sortlegemestråling og paramagnetisme. Sortlegemestråling

Statistisk mekanik 10 Side 1 af 7 Sortlegemestråling og paramagnetisme. Sortlegemestråling Statistisk mekanik 0 Side af 7 Sortlegemestråling I SM9 blev vibrationerne i et krystalgitter beskrevet som fononer. I en helt tilsvarende model beskrives de M svingninger i en sortlegeme-kavitet som fotoner.

Læs mere

INDHOLD. 5 Lektion Opgave a b Opgave K Lynge opgave

INDHOLD. 5 Lektion Opgave a b Opgave K Lynge opgave . Indhold 1 Lektion 1 1 1.1 Opgave A............................... 1 1.1.1 A.a............................... 1 1.1. A.b.............................. 1.1.3 A.c............................... 1. Lynge

Læs mere

Statistisk mekanik 12 Side 1 af 9 Van der Waals-gas

Statistisk mekanik 12 Side 1 af 9 Van der Waals-gas Statistisk mekanik Side af 9 Ideale gasmolekyler har pr. definition ingen udstrækning og påirker ikke hinanden med kræfter. En an der Waals-gas, hor der tages højde for såel molekylær udstrækning som er-molekylære

Læs mere

Elementær termodynamik og kalorimetri

Elementær termodynamik og kalorimetri Elementær termodynamik og kalorimetri 1/14 Elementær termodynamik og kalorimetri Indhold 1. Indre og ydre energi...2 2. Varmeteoriens (termodynamikkens) 1. hovedsætning...2 3. Stempelarbejde...4 4. Isoterm

Læs mere

1. Varme og termisk energi

1. Varme og termisk energi 1 H1 1. Varme og termisk energi Den termiske energi - eller indre energi - af et stof afhænger af hvordan stoffets enkelte molekyler holdes sammen (løst eller fast eller slet ikke), og af hvordan de bevæger

Læs mere

Figur 1 Energetisk vekselvirkning mellem to systemer.

Figur 1 Energetisk vekselvirkning mellem to systemer. Energibånd Fysiske fænomener er i reglen forbundet med udveksling af energi mellem forskellige systemer. Udvekslingen af energi mellem to systemer A og B kan vi illustrere grafisk som på figur 1 med en

Læs mere

Kræfter og Energi. Nedenstående sammenhæng mellem potentiel energi og kraft er fundamental og anvendes indenfor mange af fysikkens felter.

Kræfter og Energi. Nedenstående sammenhæng mellem potentiel energi og kraft er fundamental og anvendes indenfor mange af fysikkens felter. Kræfter og Energi Jacob Nielsen 1 Nedenstående sammenhæng mellem potentiel energi og kraft er fundamental og anvendes indenfor mange af fysikkens felter. kraften i x-aksens retning hænger sammen med den

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Danmarks Tekniske Universitet Side af 7 Skriftlig prøve, tirsdag den 6. december, 008, kl. 9:00-3:00 Kursus navn: ysik Kursus nr. 00 Tilladte hjælpemidler: Alle hjælpemidler er tilladt. "Vægtning": Besvarelsen

Læs mere

Aalborg Universitet. Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik. Tirsdag d. 27. maj 2014 kl

Aalborg Universitet. Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik. Tirsdag d. 27. maj 2014 kl Aalborg Universitet Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik Tirsdag d. 27. maj 2014 kl. 9 00-13 00 Ved bedømmelsen vil der blive lagt vægt på argumentationen (som bør være kort og præcis),

Læs mere

AALBORG UNIVERSITET DET INGENIØR-, NATUR- OG SUNDHEDSVIDENSKABELIGE BASISÅR SE - KURSUS TERMODYNAMIK 2. SEMESTER NANOTEKNOLOGI

AALBORG UNIVERSITET DET INGENIØR-, NATUR- OG SUNDHEDSVIDENSKABELIGE BASISÅR SE - KURSUS TERMODYNAMIK 2. SEMESTER NANOTEKNOLOGI AALBORG UNIVERSITET DET INGENIØR-, NATUR- OG SUNDHEDSVIDENSKABELIGE BASISÅR SE - KURSUS TERMODYNAMIK 2. SEMESTER NANOTEKNOLOGI FORÅR 2008 Indholdsfortegnelse TERMODYNAMIK LEK. 1...4 VARMELÆRER...4 Hvorfor

Læs mere

Elementær termodynamik og kalorimetri

Elementær termodynamik og kalorimetri Elementær termodynamik og kalorimetri Indhold 1. Hvad er varme?...1 2. Smeltning og fordampning...1 3. Indre og ydre energi...3 4. Varmeteoriens (termodynamikkens) 1. hovedsætning...3 5. Stempelarbejde...5

Læs mere

Elektrokemisk potential, membranpotential og. Donnanligevægt

Elektrokemisk potential, membranpotential og. Donnanligevægt Elektrokemisk potential, membranpotential og Donnanligevægt Elektrokemisk potential: µ Når en elektrisk ladning, q, transporteres i et ydre elektrisk felt fra potentialet φ 1 til φ 2, er det tilhørende

Læs mere

Elektromagnetisme 7 Side 1 af 12 Elektrisk strøm. Elektrisk strøm

Elektromagnetisme 7 Side 1 af 12 Elektrisk strøm. Elektrisk strøm Elektromagnetisme 7 Side 1 af 1 Med dette emne overgås fra elektrostatikken, som beskriver stationære ladninger, til elektrodynamikken, som beskriver ladninger i bevægelse (elektriske strømme, magnetfelter,

Læs mere

Anvendt BioKemi: MM2. Anvendt BioKemi: Struktur. 1) MM2- Opsummering. Aminosyrer og proteiner som buffere

Anvendt BioKemi: MM2. Anvendt BioKemi: Struktur. 1) MM2- Opsummering. Aminosyrer og proteiner som buffere Anvendt BioKemi: Struktur 1) MM1 Intro: Terminologi, Enheder Math/ biokemi : Kemiske ligninger, syre, baser, buffer Små / Store molekyler: Aminosyre, proteiner 2) MM2 Anvendelse: blod som et kemisk system

Læs mere

Fysik 12. Sebastian B. Simonsen. June 13, 2004

Fysik 12. Sebastian B. Simonsen. June 13, 2004 Fysik 12 Sebastian B. Simonsen June 13, 2004 Contents 1 Vigtige formler til Fysik 12 3 1.1 Relativitets teori......................... 3 1.1.1 Einsteins postulater.................... 3 1.1.2 Fomler...........................

Læs mere

Elektromagnetisme 7 Side 1 af 12 Elektrisk strøm. Elektrisk strøm

Elektromagnetisme 7 Side 1 af 12 Elektrisk strøm. Elektrisk strøm Elektromagnetisme 7 Side 1 af 12 Med dette emne overgås fra elektrostatikken, som beskriver stationære ladninger, til elektrodynamikken, som beskriver ladninger i bevægelse (elektriske strømme, magnetfelter,

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Danmarks Tekniske Universitet Side 1 af 8 sider Skriftlig prøve, den 24. maj 2005 Kursus navn: Fysik 1 Kursus nr.: 10022 Tilladte hjælpemidler: Alle hjælpemidler tilladt. "Vægtning": Besvarelsen vægtes

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Danmarks Tekniske Universitet Side 1 af 11 Skriftlig prøve, torsdag den 8 maj, 009, kl 9:00-13:00 Kursus navn: Fysik 1 Kursus nr 100 Tilladte hjælpemidler: Alle hjælpemidler er tilladt "Vægtning": Besvarelsen

Læs mere

Reaktionskinetik - 1 Baggrund. lineære og ikke-lineære differentialligninger. Køreplan

Reaktionskinetik - 1 Baggrund. lineære og ikke-lineære differentialligninger. Køreplan Reaktionskinetik - lineære og ikke-lineære differentialligninger Køreplan 1 Baggrund På 2. eller 4. semester møder kemi/bioteknologi studerende faget Indledende Fysisk Kemi (26201/26202). Her behandles

Læs mere

Udledning af den barometriske højdeformel. - Beregning af højde vha. trykmåling. af Jens Lindballe, Silkeborg Gymnasium

Udledning af den barometriske højdeformel. - Beregning af højde vha. trykmåling. af Jens Lindballe, Silkeborg Gymnasium s.1/5 For at kunne bestemme cansatsondens højde må vi se på, hvorledes tryk og højde hænger sammen, når vi bevæger os opad i vores atmosfære. I flere fysikbøger kan man læse om den Barometriske højdeformel,

Læs mere

Fysikrapport: Rapportøvelse med kalorimetri. Maila Walmod, 1.3 HTX, Rosklide. I gruppe med Ulrik Stig Hansen og Jonas Broager

Fysikrapport: Rapportøvelse med kalorimetri. Maila Walmod, 1.3 HTX, Rosklide. I gruppe med Ulrik Stig Hansen og Jonas Broager Fysikrapport: Rapportøvelse med kalorimetri Maila Walmod, 1.3 HTX, Rosklide I gruppe med Ulrik Stig Hansen og Jonas Broager Afleveringsdato: 30. oktober 2007* *Ny afleveringsdato: 13. november 2007 1 Kalorimetri

Læs mere

Kvantitative Metoder 1 - Forår Dagens program

Kvantitative Metoder 1 - Forår Dagens program Dagens program Kontinuerte fordelinger Ventetider i en Poissonproces Beskrivelse af kontinuerte fordelinger: - Median og kvartiler - Middelværdi - Varians Simultane fordelinger 1 Ventetider i en Poissonproces

Læs mere

HALSE WÜRTZ SPEKTRUM FYSIK C Energiregnskab som matematisk model

HALSE WÜRTZ SPEKTRUM FYSIK C Energiregnskab som matematisk model HALSE WÜRTZ SPEKTRUM FYSIK C Energiregnskab som matematisk model Energiregnskab som matematisk model side 2 Løsning af kalorimeterligningen side 3 Artiklen her knytter sig til kapitel 3, Energi GYLDENDAL

Læs mere

KOMPENDIUM TIL STATISTISK FYSIK

KOMPENDIUM TIL STATISTISK FYSIK KOMPENDIUM TIL STATISTISK FYSIK 3. UDGAVE REVIDERET: 18. APRIL 2011 UDARBEJDET AF SØREN RIIS AARHUS SCHOOL OF ENGINEERING Ö Ô Ý º Ùº DETTE VÆRK ER TRYKT MED ADOBE UTOPIA 10PT LAYOUT OG TYPOGRAFI AF FORFATTEREN

Læs mere

Tema. Dagens tema: Indfør centrale statistiske begreber.

Tema. Dagens tema: Indfør centrale statistiske begreber. Tema Dagens tema: Indfør centrale statistiske begreber. Model og modelkontrol Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. konfidensintervaller Vi tager udgangspunkt i Ex. 3.1 i

Læs mere

Eksamen i fysik 2016

Eksamen i fysik 2016 Eksamen i fysik 2016 NB: Jeg gør brug af DATABOG fysik kemi, 11. udgave, 4. oplag & Fysik i overblik, 1. oplag. Opgave 1 Proptrækker Vi kender vinens volumen og masse. Enheden liter omregnes til kubikmeter.

Læs mere

Definition: Normalfordelingen. siges at være normalfordelt med middelværdi µ og varians σ 2, hvor µ og σ er reelle tal og σ > 0.

Definition: Normalfordelingen. siges at være normalfordelt med middelværdi µ og varians σ 2, hvor µ og σ er reelle tal og σ > 0. Landmålingens fejlteori Lektion 2 Transformation af stokastiske variable - kkb@math.aau.dk http://people.math.aau.dk/ kkb/undervisning/lf12 Institut for Matematiske Fag Aalborg Universitet Repetition:

Læs mere

PARTIELT MOLÆRT VOLUMEN

PARTIELT MOLÆRT VOLUMEN KemiF1 laboratorieøvelser 2008 ØvelseF1-2 PARTIELT MOLÆRT VOLUMEN Indledning I en binær blanding vil blandingens masse være summen af komponenternes masse; men blandingens volumen vil ikke være summen

Læs mere

Entropibegrebet Jacob Nielsen 1

Entropibegrebet Jacob Nielsen 1 Entropibegrebet Jacob Nielsen 1 I 1871 introducerede Maxwell dæmonen, der ved hjælp af molekylær information tilsyneladende kan krænke termodynamikkens 2. hovedsætning. Centralt i termodynamikken står

Læs mere

Statitisk fysik Minilex

Statitisk fysik Minilex Statitisk fysik Minilex Henrik Dahl 15. januar 006 Indhold 1 Sandsynlighedsteori Fordelinger 3 Eksperimentelle usikkerheder 3 4 Parameterbestemmelse 3 5 Priors, entropi 3 6 Termodynamik 4 6.1 Kanonisk

Læs mere

Dynamik. 1. Kræfter i ligevægt. Overvejelser over kræfter i ligevægt er meget vigtige i den moderne fysik.

Dynamik. 1. Kræfter i ligevægt. Overvejelser over kræfter i ligevægt er meget vigtige i den moderne fysik. M4 Dynamik 1. Kræfter i ligevægt Overvejelser over kræfter i ligevægt er meget vigtige i den moderne fysik. Fx har nøglen til forståelsen af hvad der foregår i det indre af en stjerne været betragtninger

Læs mere

Den klassiske oscillatormodel

Den klassiske oscillatormodel Kvantemekanik 6 Side af 8 n meget central model inden for KM er den såkaldte harmoniske oscillatormodel, som historisk set spillede en afgørende rolle i de banebrydende beskrivelser af bla. sortlegemestråling

Læs mere

Landmålingens fejlteori - Lektion 2. Sandsynlighedsintervaller Estimation af µ Konfidensinterval for µ. Definition: Normalfordelingen

Landmålingens fejlteori - Lektion 2. Sandsynlighedsintervaller Estimation af µ Konfidensinterval for µ. Definition: Normalfordelingen Landmålingens fejlteori Lektion Sandsynlighedsintervaller Estimation af µ Konfidensinterval for µ - rw@math.aau.dk Institut for Matematiske Fag Aalborg Universitet En stokastisk variabel er en variabel,

Læs mere

Aalborg Universitet. Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik. Tirsdag d. 2. juni 2015 kl

Aalborg Universitet. Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik. Tirsdag d. 2. juni 2015 kl Aalborg Universitet Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik Tirsdag d. 2. juni 2015 kl. 9 00-13 00 Ved bedømmelsen vil der blive lagt vægt på argumentationen (som bør være kort og præcis),

Læs mere

Undervisningsbeskrivelse. Fysik A - 2.A

Undervisningsbeskrivelse. Fysik A - 2.A Undervisningsbeskrivelse. Fysik A - 2.A Termin August 2014 Juni 2017 Institution Uddannelse Fag og niveau Lærer Rybners HTX HTX Fysik A Jesper Pedersen (JEPE) Hold 2.A Oversigt over planlagte undervisningsforløb

Læs mere

Forklaring. Størrelsesforhold i biologien DIFFUSION. Biofysik forelæsning 8 Kapitel 1 (8) Mindste organisme: 0.3 :m = m (mycoplasma)

Forklaring. Størrelsesforhold i biologien DIFFUSION. Biofysik forelæsning 8 Kapitel 1 (8) Mindste organisme: 0.3 :m = m (mycoplasma) Størrelsesforhold i biologien Forklaring Mindste organisme: 0.3 :m = 3 10-7 m (mycoplasma) Største organisme: 3 10 1 m (blåhval) Største Organismer : 10 Mindste = Enkelte celler: 0.3 :m - 3 :m Største

Læs mere

Landmålingens fejlteori - Lektion 2 - Transformation af stokastiske variable

Landmålingens fejlteori - Lektion 2 - Transformation af stokastiske variable Landmålingens fejlteori Lektion 2 Transformation af stokastiske variable - kkb@math.aau.dk http://people.math.aau.dk/ kkb/undervisning/lf12 Institut for Matematiske Fag Aalborg Universitet 1/31 Repetition:

Læs mere

Biofysik forelæsning 8 Kapitel 1 (8)

Biofysik forelæsning 8 Kapitel 1 (8) Størrelsesforhold i biologien Forklaring Mindste organisme:.3 :m = 3-7 m (mycoplasma) Største organisme: 3 m (blåhval) Største Organismer : Mindste = Enkelte celler:.3 :m - 3 :m Største Celler : Mindste

Læs mere

Elektromagnetisme 10 Side 1 af 11 Magnetisme. Magnetisering

Elektromagnetisme 10 Side 1 af 11 Magnetisme. Magnetisering Elektroagnetise 10 Side 1 af 11 Magnetisering Magnetfelter skabes af ladninger i bevægelse, altså af elektriske strøe. I den forbindelse skelnes elle to typer af agnetfeltskabende strøe: Frie strøe, der

Læs mere

Overheads til forelæsninger, mandag 5. uge På E har vi en mængde af mulige sandsynlighedsfordelinger for X, (P θ ) θ Θ.

Overheads til forelæsninger, mandag 5. uge På E har vi en mængde af mulige sandsynlighedsfordelinger for X, (P θ ) θ Θ. Statistiske modeller (Definitioner) Statistik og Sandsynlighedsregning 2 IH kapitel 0 og En observation er en vektor af tal x (x,..., x n ) E, der repræsenterer udfaldet af et (eller flere) eksperimenter.

Læs mere

Aalborg Universitet. Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik. Torsdag d. 8. august 2013 kl

Aalborg Universitet. Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik. Torsdag d. 8. august 2013 kl Aalborg Universitet Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik Torsdag d. 8. august 2013 kl. 9 00 13 00 Ved bedømmelsen vil der blive lagt vægt på argumentationen (som bør være kort og præcis),

Læs mere

Aalborg Universitet. Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik. Mandag d. 11. juni 2012 kl. 9 00-13 00

Aalborg Universitet. Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik. Mandag d. 11. juni 2012 kl. 9 00-13 00 Aalborg Universitet Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik Mandag d. 11. juni 2012 kl. 9 00-13 00 Ved bedømmelsen vil der blive lagt vægt på argumentationen (som bør være kort og præcis),

Læs mere

Energi, Enzymer & enzymkinetik.metabolisme

Energi, Enzymer & enzymkinetik.metabolisme (gruppeopgaver i databar 152 (og 052)) Energi, Enzymer & enzymkinetik.metabolisme Tirsdag den 17. september kl 13-14.15 (ca) Auditorium 53, bygning 210 Susanne Jacobsen sja@bio.dtu.dk Enzyme and Protein

Læs mere

Aalborg Universitet. Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik. Tirsdag d. 11. august 2015 kl

Aalborg Universitet. Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik. Tirsdag d. 11. august 2015 kl Aalborg Universitet Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik Tirsdag d. 11. august 2015 kl. 9 00-13 00 Ved bedømmelsen vil der blive lagt vægt på argumentationen (som bør være kort og

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj-juni 2014 Københavns

Læs mere

Tillæg til partikelfysik (foreløbig)

Tillæg til partikelfysik (foreløbig) Tillæg til partikelfysik (foreløbig) Vekselvirkninger Hvordan afgør man, hvilken vekselvirkning, som gør sig gældende i en given reaktion? Gravitationsvekselvirkningen ser vi bort fra. Reaktionen Der skabes

Læs mere

Bernoulli s lov. Med eksempler fra Hydrodynamik og aerodynamik. Indhold

Bernoulli s lov. Med eksempler fra Hydrodynamik og aerodynamik. Indhold Bernoulli s lov Med eksempler fra Indhold 1. Indledning...1 2. Strømning i væsker...1 3. Bernoulli s lov...2 4. Tømning af en beholder via en hane i bunden...4 Ole Witt-Hansen Køge Gymnasium 2008 Bernoulli

Læs mere

Naturkræfter Man skelner traditionelt set mellem fire forskellige naturkræfter: 1) Tyngdekraften Den svageste af de fire naturkræfter.

Naturkræfter Man skelner traditionelt set mellem fire forskellige naturkræfter: 1) Tyngdekraften Den svageste af de fire naturkræfter. Atomer, molekyler og tilstande 3 Side 1 af 7 Sidste gang: Elektronkonfiguration og båndstruktur. I dag: Bindinger mellem atomer og molekyler, idet vi starter med at se på de fire naturkræfter, som ligger

Læs mere

Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup)

Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup) Kursus 02402 Introduktion til Statistik Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske

Læs mere

Rektangulær potentialbarriere

Rektangulær potentialbarriere Kvantemekanik 5 Side 1 af 8 ektangulær potentialbarriere Med udgangspunkt i det KM begrebsapparat udviklet i KM1-4 beskrives i denne lektion flg. to systemer, idet system gennemgås, og system behandles

Læs mere

Aalborg Universitet. Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik. Tirsdag d. 31. maj 2016 kl

Aalborg Universitet. Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik. Tirsdag d. 31. maj 2016 kl Aalborg Universitet Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik Tirsdag d. 31. maj 2016 kl. 9 00-13 00 Ved bedømmelsen vil der blive lagt vægt på argumentationen (som bør være kort og præcis),

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj juni 2015 Institution HTX Vibenhus Københavns Tekniske Gymnasium Uddannelse Fag og niveau Lærer(e) Hold

Læs mere

Elektromagnetisme 15 Side 1 af 5 Molekylært elektrisk felt. Molekylært E-felt i et dielektrikum. mol

Elektromagnetisme 15 Side 1 af 5 Molekylært elektrisk felt. Molekylært E-felt i et dielektrikum. mol lektromagnetisme 15 Side 1 af 5 Molekylært -felt i et dielektrikum Det ekylære elektriske felt, som et enkelt ekyle i et dielektrikum oplever, er ikke det samme som det makroskopiske -felt defineret i

Læs mere

Statistiske modeller

Statistiske modeller Statistiske modeller Statistisk model Datamatrice Variabelmatrice Hændelse Sandsynligheder Data Statistiske modeller indeholder: Variable Hændelser defineret ved mulige variabel værdier Sandsynligheder

Læs mere

Kvantemekanik 8 Side 2 af 10 Observable og operatorer. Grundlæggende egenskaber ved operatorrepræsentanter ( ) O= O. (8.4)

Kvantemekanik 8 Side 2 af 10 Observable og operatorer. Grundlæggende egenskaber ved operatorrepræsentanter ( ) O= O. (8.4) Kvantemekanik 8 Side 1 af 10 Opsummering Egenskaber ved operatorrepræsentanter Det blev i KM3-4 vist, at enhver målbar bevægelsesegenskab (observabel) er repræsenteret ved en operator, som for position,

Læs mere

Økonometri: Lektion 2 Multipel Lineær Regression 1/33

Økonometri: Lektion 2 Multipel Lineær Regression 1/33 Økonometri: Lektion 2 Multipel Lineær Regression 1/33 Simpel Lineær Regression: Model Sidst så vi på simpel lineære regression. Det er en statisisk model på formen y = β 0 +β 1 x +u, hvor fejlledet u,

Læs mere

MODUL 5 ELLÆRE: INTRONOTE. 1 Basisbegreber

MODUL 5 ELLÆRE: INTRONOTE. 1 Basisbegreber 1 Basisbegreber ellæren er de mest grundlæggende størrelser strøm, spænding og resistans Strøm er ladningsbevægelse, og som det fremgår af bogen, er strømmens retning modsat de bevægende elektroners retning

Læs mere

Den levende kraft energi og varme

Den levende kraft energi og varme Den levende kraft energi og varme Hvad vil det sige, at noget har energi, og hvordan opstod begrebet? Og hvad er sammenhængen mellem energi og varme? Forståelsen af dette hang i 1800-tallet tæt sammen

Læs mere

Lineære systemer med hukommelse.

Lineære systemer med hukommelse. Lineær Response Teori. I responseteorien interesserer man sig for, hvad der kan siges generelt om sammenhængen mellem input φ(t) og output γ(t) for et system. Valg af variable. Det betragtede systems forskellige

Læs mere

Elementær sandsynlighedsregning

Elementær sandsynlighedsregning Elementær sandsynlighedsregning Sandsynlighedsbegrebet Et udfaldsrum S er mængden af alle de mulige udfald af et eksperiment. En hændelse A er en delmængde af udfaldsrummet S. Den hændelse, der ikke indeholder

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Termin hvori undervisningen afsluttes: maj-juni 2012 Københavns

Læs mere

Mini-formelsamling. Matematik 1

Mini-formelsamling. Matematik 1 Indholdsfortegnelse 1 Diverse nyttige regneregler... 1 1.1 Regneregler for brøker... 1 1.2 Potensregneregler... 1 1.3 Kvadratsætninger... 2 1.4 (Nogle) Rod-regneregler... 2 1.5 Den naturlige logaritme...

Læs mere

Aalborg Universitet. Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik. Torsdag d. 23. august 2012 kl

Aalborg Universitet. Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik. Torsdag d. 23. august 2012 kl Aalborg Universitet Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik Torsdag d. 23. august 2012 kl. 9 00-13 00 Ved bedømmelsen vil der blive lagt vægt på argumentationen (som bør være kort og

Læs mere

Sandsynlighedsregning

Sandsynlighedsregning Mogens Bladt www2.imm.dtu.dk/courses/02405 12. Oktober, 2007 Kontinuerte fordelinger Vi har hidtil set på fordelinger af stokastiske variable der højst kan antage tælleligt mange værdier (diskrete stokastiske

Læs mere

Fysik 7 - Statistisk fysik Formelsamling til eksamen

Fysik 7 - Statistisk fysik Formelsamling til eksamen Fysik 7 - Statistisk fysik Formelsamling til eksamen Sebastian B. Simonsen og Lykke Pedersen 18. januar 2006 Indhold 1 Kapitel 1 - Indledning 2 2 Kapitel 2 - Sandsynlighedsfordelinger 3 2.1 Binomial fordeling........................

Læs mere

Anvendt BioKemi: MM4. Anvendt BioKemi: Struktur. 1) MM4- Opsummering. Små molekyler: fedtsyre. Store molekyler: fedt, lipids, lipoproteiner

Anvendt BioKemi: MM4. Anvendt BioKemi: Struktur. 1) MM4- Opsummering. Små molekyler: fedtsyre. Store molekyler: fedt, lipids, lipoproteiner Anvendt BioKemi: Struktur 1) MM1 Intro: Terminologi, Enheder Math/ biokemi : Kemiske ligninger, syre, baser, buffer Små / Store molekyler: Aminosyre, proteiner 2) MM2 Anvendelse: blod som kemiske systemer

Læs mere

Sandsynlighedsregning 8. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 8. forelæsning Bo Friis Nielsen Sandsynlighedsregning 8. forelæsning Bo Friis Nielsen Matematik og Computer Science Danmarks Tekniske Universitet 28 Kgs. Lyngby Danmark Email: bfni@dtu.dk Dagens emner 5.1 og 5.2 Ligefordeling med to

Læs mere

Statistisk mekanik 5 Side 1 af 11 Hastighedsfordeling for ideal gas. Enatomig ideal gas

Statistisk mekanik 5 Side 1 af 11 Hastighedsfordeling for ideal gas. Enatomig ideal gas Statistisk ekanik 5 Side 1 af 11 Enatoig ideal gas etragt en enatoig ideal gas bestående af N uskelnelige olekyler ed asse, der befinder sig i en beholder ed rufang V. For at kunne bestee tilstandssuen

Læs mere

2. del. Reaktionskinetik

2. del. Reaktionskinetik 2. del. Reaktionskinetik Kapitel 10. Matematisk beskrivelse af reaktionshastighed 10.1. Reaktionshastighed En kemisk reaktions hastighed kan afhænge af flere forskellige faktorer, hvoraf de vigtigste er!

Læs mere

Udledning af Keplers love

Udledning af Keplers love Udledning af Keplers love Kristian Jerslev 8. december 009 Resumé Her præsenteres en udledning af Keplers tre love ud fra Newtonsk tyngdekraft. Begyndende med en analyse af et to-legeme problem vil jeg

Læs mere

Youngs dobbeltspalteforsøg 1

Youngs dobbeltspalteforsøg 1 Kvantemekanik Side af Youngs dobbeltspalteforsøg Klassisk beskrivelse Inden for den klassiske fysik kan man forklare forekomsten af et interferensmønster ud fra flg. bølgemodel. x Før spalterne beskrives

Læs mere

MM502+4 forelæsningsslides. uge 6, 2009

MM502+4 forelæsningsslides. uge 6, 2009 MM502+4 forelæsningsslides uge 6, 2009 1 Definition partielle afledede: De (første) partielle afledede af en funktion f(x, y) af to variable er f(x + h, y) f(x, y) f 1 (x, y) := lim h 0 h f(x, y + k) f(x,

Læs mere

Simpel Lineær Regression: Model

Simpel Lineær Regression: Model Simpel Lineær Regression: Model Sidst så vi på simpel lineære regression. Det er en statisisk model på formen y = β 0 + β 1 x + u, hvor fejlledet u, har egenskaben E[u x] = 0. Dette betyder bl.a. E[y x]

Læs mere

Epidemi. Matematik. Indermohan Singh Walia, Egedal Gymnasium & HF

Epidemi. Matematik. Indermohan Singh Walia, Egedal Gymnasium & HF Matematik Epidemi Indermohan Singh Walia, Egedal Gymnasium & HF Denne artikel er skrevet som den matematiske teori til beskrivelse af udvikling af en epidemi i en befolkning. Den matematiske model indeholder

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Termin hvori undervisningen afsluttes: maj-juni 2013 Københavns

Læs mere

Introduktion til Laplace transformen (Noter skrevet af Nikolaj Hess-Nielsen sidst revideret marts 2013)

Introduktion til Laplace transformen (Noter skrevet af Nikolaj Hess-Nielsen sidst revideret marts 2013) Introduktion til Laplace transformen (oter skrevet af ikolaj Hess-ielsen sidst revideret marts 23) Integration handler ikke kun om arealer. Tværtimod er integration basis for mange af de vigtigste værktøjer

Læs mere

Partielle afledede og retningsafledede

Partielle afledede og retningsafledede Partielle afledede og retningsafledede 1 Partielle afledede, definitioner og notationer Bertragt en funktion af to reelle variable f : D R, hvor D R 2 er et åbent område Med benyttelse af tilvækstfunktionen

Læs mere

Lineære differentialligningers karakter og lineære 1. ordens differentialligninger

Lineære differentialligningers karakter og lineære 1. ordens differentialligninger enote 11 1 enote 11 Lineære differentialligningers karakter og lineære 1. ordens differentialligninger I denne note introduceres lineære differentialligninger, som er en speciel (og bekvem) form for differentialligninger.

Læs mere

Hvis α vælges meget lavt, bliver β meget stor. Typisk vælges α = 0.01 eller 0.05

Hvis α vælges meget lavt, bliver β meget stor. Typisk vælges α = 0.01 eller 0.05 Statistik 7. gang 9. HYPOTESE TEST Hypotesetest ved 6 trins raket! : Trin : Formuler hypotese Spørgsmål der ønskes testet vha. data H : Nul hypotese Formuleres som en ligheds hændelse H eller H A : Alternativ

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin August 2011-Juni 2013 Institution Teknisk Gymnasium Grenå Uddannelse Fag og niveau Lærer(e) Hold Htx Fysik

Læs mere

Teoretisk Statistik, 16. februar Generel teori,repetition

Teoretisk Statistik, 16. februar Generel teori,repetition 1 Uge 8 Teoretisk Statistik, 16. februar 2004 1. Generel teori, repetition 2. Diskret udfaldsrum punktssh. 3. Fordelingsfunktionen 4. Tæthed 5. Transformationer 6. Diskrete vs. Kontinuerte stokastiske

Læs mere

Teoretiske Øvelser Mandag den 13. september 2010

Teoretiske Øvelser Mandag den 13. september 2010 Hans Kjeldsen hans@phys.au.dk 6. september 00 eoretiske Øvelser Mandag den 3. september 00 Computerøvelse nr. 3 Ligning (6.8) og (6.9) på side 83 i Lecture Notes angiver betingelserne for at konvektion

Læs mere

Ekstra termodynamikopgaver i Fysik 1, 10022/24 F12

Ekstra termodynamikopgaver i Fysik 1, 10022/24 F12 Ekstra termodynamikopgaver i Fysik, 00/4 F Opgave Tre opfindere, A, B og C, fortæller dig at de hver har designet en varmemaskine A s maskine kan udføre et arejde på 0 J ved tilførsel af 50 J med en spildvarme

Læs mere

Skriftlig prøve i KemiF1 (Grundlæggende fysisk kemi) Fredag 30 Juni 2006 kl. 9 00 13 00. Opgave

Skriftlig prøve i KemiF1 (Grundlæggende fysisk kemi) Fredag 30 Juni 2006 kl. 9 00 13 00. Opgave Skriftlig prøve i KemiF1 (Grundlæggende fysisk kemi) Fredag 30 Juni 2006 kl. 9 00 13 00 Opgave Alle nødvendige data til besvarelse af spørgsmålene i eksamensopgaven er samlet i Tabel 1. Tabel 1: Termodynamiske

Læs mere

Økonometri: Lektion 2 Multipel Lineær Regression 1/27

Økonometri: Lektion 2 Multipel Lineær Regression 1/27 Økonometri: Lektion 2 Multipel Lineær Regression 1/27 Multipel Lineær Regression Sidst så vi på simpel lineær regression, hvor y er forklaret af én variabel. Der er intet, der forhindre os i at have mere

Læs mere

Heisenbergs usikkerhedsrelationer. Abstrakt. Hvorfor? Funktionsrum. Nils Byrial Andersen Institut for Matematik. Matematiklærerdag 2013

Heisenbergs usikkerhedsrelationer. Abstrakt. Hvorfor? Funktionsrum. Nils Byrial Andersen Institut for Matematik. Matematiklærerdag 2013 Heisenbergs usikkerhedsrelationer Nils Byrial Andersen Institut for Matematik Matematiklærerdag 013 1 / 17 Abstrakt Heisenbergs usikkerhedsrelationer udtrykker at man ikke på samme tid både kan bestemme

Læs mere

Exoterme og endoterme reaktioner (termometri)

Exoterme og endoterme reaktioner (termometri) AKTIVITET 10 (FAG: KEMI) NB! Det er i denne øvelse ikke nødvendigt at udføre alle forsøgene. Vælg selv hvilke du/i vil udføre er du i tvivl så spørg. Hvis du er interesseret i at måle varmen i et af de

Læs mere

Elementær sandsynlighedsregning

Elementær sandsynlighedsregning Elementær sandsynlighedsregning Sandsynlighedsbegrebet Et udfaldsrum S er mængden af alle de mulige udfald af et eksperiment. En hændelse A er en delmængde af udfaldsrummet S. Et sandsynlighedsmål er en

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin August 2011-Juni 2014 Institution Teknisk Gymnasium Grenå Uddannelse Fag og niveau Lærer(e) Hold Htx Fysik

Læs mere

FYSIK 3 / TERMODYNAMIK Københavns Universitet, 13. april, 2016, Skriftlig prøve

FYSIK 3 / TERMODYNAMIK Københavns Universitet, 13. april, 2016, Skriftlig prøve FYSIK 3 / TERMODYNAMIK Københavns Universitet, 13. april, 2016, Skriftlig prøve Benyttelse af medbragt litteratur, noter, lommeregner og computer uden internetadgang er tilladt. Der må skrives med blyant.

Læs mere

Matematisk modellering og numeriske metoder. Lektion 11

Matematisk modellering og numeriske metoder. Lektion 11 Matematisk modellering og numeriske metoder Lektion 11 Morten Grud Rasmussen 17. oktober, 2013 1 Partielle differentialligninger 1.1 D Alemberts løsning af bølgeligningen [Bogens sektion 12.4 på side 553]

Læs mere

Differentialligninger med TI-Interactive!

Differentialligninger med TI-Interactive! Differentialligninger med TI-Interactive! Jan Leffers (2008) Indholdsfortegnelse Indholdsfortegnelse...3 1. ordens differentialligninger... 4 Den fuldstændige løsning... 4 Løsning med bibetingelse...4

Læs mere