Besvarelses forslag til Tag-hjemeksamen Vinteren 02 03

Størrelse: px
Starte visningen fra side:

Download "Besvarelses forslag til Tag-hjemeksamen Vinteren 02 03"

Transkript

1 IMFUFA Carsten Lunde Petersen Besvarelses forslag til Tag-hjemeksamen Vinteren 02 0 Hvor ikke andet er angivet er henvisninger til W.R.Wade An Introduction to analysis. Opgave a) Idet udtrykket e x2 cos x er på formen f(x) g(x) med. f og g mindst 2 gange kontinuert differentiable, 2. 0 = f(x) = g(x) = f (x) = g (x),. g, g og g nulpunktsfrie på [, ] \ {0} 4. f (0) = 2 og g (0) = følger det af l hôspitals regel (Th. 4.8) at e x2 cos x = 2x e x2 sin x = (2 + 4x 2 ) e x2 cos x b) En hurtig afprøvning viser at for n =, 2 er sin x n sin n x =. = 2 = 2. I det generelle tilfælde er der flere forskellige metoder hvoraf jeg vil vise 2. Først den frække: sin x n sin xn x n sin ( xn x ) n sin n = x x n sin n = x x n sin x sinx hvor den kendte grænseværdi = (Exc vi.c)) samt kontinuitet af x n er x benyttet.

2 Alternativt kan l hôspitals regel benyttes sin x n sin n x = nx n cos x n n sin n x cos x = cos x n ( x ) n = cos x sin x sin xn f(x) idet udtrykket er på formen med f og g mindst 2 gange kontinuert sin n x g(x) differentiable, 0 = f(x) = g(x), g og g er nulpunktsfrie på [, ] \ {0}. Ved tredie lighedstegn er kontinuiteten af cos samt x m, m = n, n benyttet sammen med den kendte sinx grænseværdi =. x Opgave 2 a) Idet funktionen x log p for ethvert p R er positiv og kontinuert på intervallet [, [ og derfor specielt lokalt integrabel på dette interval ifølge Th. 5.0, skal vi jvf. Def. 5.8 blot undersøge for hvilke p b b x log p dx <? Ved substitutionen (jvf variabel skifte Sætningen Th 5.4) u = log og dermed du = finder vi b dx x x log p dx = = = b x=b u p du x= { [ p log p ] b p [log log ] b p = { p (log p log b log p log ) p log log log b log log log p = p log p log p > p < p = Her af ses at x log p er ugentlig Riemann integrabel på intervallet [, [ hvis og kun hvis p >. b) Kan løses analogt til a) eller ved at benytte substitutionen (jvf variabel skifte Sætningen Th 5.4) u = /x, du = dx/x 2 : / /b x log p dx = 2 b u log u log p log u du

3 Hvoraf ses at for hvert p er / 0 x log p dx = x log p dx. Heraf sluttes jvf. a) at x log p er uegentlig Riemann integrabel på intervallet ]0, /] hvis og kun hvis p >. c) Idet funktionen x log p er positiv for alle p og x > e samt aftagende for tilstrækkeligt store x (for fast p) følger det af integral kriteriet, Th. 6.2 (eller side i de udleverede noter) samt a) at n log n log p log n n= er konvergent hvis og kun hvis p >. Idet log log 2 < 0 er første led (n = 2) i summen n log n log p log n n=2 kun defineret for p Z hvorfor summen er veldefineret og konvergent for p >, p N. Opgave a) Jeg vil benytte mig af følgende Lemma Lad f : [a, b] R være en kontinuert voksende funktion og lad E [a, b] være en vilkårlig ikke tom delmængde da er sup x E f(x) = f(sup x) = f(sup E). x E Bevis : Lad s = sup E. Da f er voksende har vi for alle x E : f(x) f(s), hvorfor f(s) sup x E f(x). Med henblik på den modsatte ulighed lad ɛ > 0 være vilkårlig og vælg δ > 0 så x [a, b] : x s < δ f(x) f(s) < ɛ. Ifølge approximations egenskaben for supremum Th..20 findes der x E med s δ < x s og dermed med f(s) ɛ < f(x) f(s). Da denne ulighed holder for alle ɛ > 0 er f(s) sup x E f(x) ifølge Th.,9. q.e.d. Lad nu (x n ) n N [a, b] være en vilkårlig følge. Vi skal i det følgende bruge

4 definitionen af sup, i.e. sup x n = sup k n x k. Vi har f( sup x n ) = f( sup x k ) k n kontinuitet af f = f(sup x k ) Lemma med E = {x k k n} = k n sup k n def. af sup = sup f(x k ) f(x n ) b) Et eksempel på at betingelsen kontinuert ikke kan undværes: Lad x 0 x < f(x) = /2 x = + x < x 2 og lad (x n ) n N [0, 2] \ {} være en vilkårlig følge, som konvergerer mod. Da er sup x n = hvorfor f( sup x n ) = /2 som er forskellig fra sup f(x n ) Mere konkret hvis x n = + /n er sup f(x n ) = 2 og hvis x n = /n er sup f(x n ) =. Et eksempel på at betingelsen voksende ikke kan undværes: Lad f(x) = x : [, ] [, ] og lad x n = ( ) n. Da er = sup x n = sup f(x n ) f( sup x n ) = f() =. Opgave 4 Idet e x = x n n! for alle x R, får vi for ligeledes alle x R: f(x) = π e x2 /2 = ( ) n x 2n π 2n n!. Den angivne række er derfor Mclaurinrækken for f jvf. Th 7.9 og Def Af Th 7.2 følger da at F (x) = x 2 + f(t)dt = 2 + ( ) n x 2n+ π 2n n! (2n + ). 0 for alle x R og dermed er denne række Mclaurinrækken for F. 4

5 b) Det blev under a) vist at rækken for F konvergerer for alle x R. Alternativt kan rækkens konvergensradius beregnes til R = sup a n = /n ( ) n 2n+ π 2 n n!(2n+) =. Heraf følger også at rækken for F konvergerer for alle x R. c) Idet rækken for F kun indeholder ulige potenser af x (x 2n+ ) er restledene R 2k (x) = R 2k+ (x) = F (x) (/2 + = n=k k ( ) n x 2n+ π 2n n! (2n + ) ( ) n x 2n+ π 2n n! (2n + ) ) for k. Igen på grund af den oprindelige række og dermed restrækkerne kun indeholder ulige potenser af n er rækkerne altenerende for alle x. Størrelsen af restledet kan derfor vurderes ved det først bortkastede led jvf Th 6.8 eller de udleverede noter. Mere præcist har R 2k (x) samme fortegn som ( )k x 2k+ π 2 og er nummerisk k k! (2k+) mindre end eller lig den nummeriske værdi af dette led. Det følger heraf at den største nummeriske fejl der begås ved at approximere F på intervallet [, ] med Taylor polynomiet P 2(k ) (x) = P 2k (x) = /2 + k ( ) n x 2n+ π 2n n! (2n + ) er begrænset af den nummeriske værdi af det først bortkastede led taget i intervalendepunkterne: x [, ] : R 2k (x) R 2k () π 2k k! (2k + ) Ved beregning på lommeregner eller computer fås: k = 2 : R 2k (x) 0, 04 > 0, 00 k = : R 2k (x) 0, 007 0, 00 Heraf sluttes at de fire første led i rækken for F, i.e. (/2 + x/ π x /6 π + x 5 /40 π) skal medtages for at opnå en præcission på 0 på 5

6 intervallet [, ]. d) På basis af argumentationen i c) har vi vurderingen x [, ] : R 2k (x) R 2k () 2k+ π 2k k! (2k + ) Ved beregning på lommeregner eller computer fås: k = 8 : R 2k (x) 7, 0 6 > 0 6 k = 9 : R 2k (x) 9, Heraf sluttes at de 20 første led i rækken for F, i.e. (P 2 8 (x) = P 6 (x)) skal medtages for at opnå en præcission på 0 6 på intervallet [, ]. Opgave 5 a) Idet x, y E : f(x) f(y) L x y, hvor L > 0, kan vi til et vilkårligt givet ɛ > 0 vælge δ = ɛ/l > 0. Derved har vi x, y E, x y < δ f(x) f(y) L x y < Lδ = ɛ. b) Sætning Lad f n : E R, n N være en følge af L-Lipschitz funktioner. Hvis følgen {f n } n N konvergerer punktvis mod en funktion f : E R, da er f også L- Lipschitz. Bevis : Lad x, y E være vilkårlige. Idet f n konvergerer punktvis mod f og den nummeriske værdi, er kontinuert følger det af Def. 7. og Cor. 2.6 at f n (x) f n (y) f(x) f(y). Da endvidere hver f n er L-Lipschitz har vi for alle n N: f n (x) f n (y) L x y. Af Th. 2.7 følger da at f(x) f(y) L x y. q.e.d. 6

7 c) Med f n (x) = x n og dermed f n(x) = nx n får vi af middelværdisætningen, Th. 4.5.ii x, y [0, ] : x n y n = nz n (x y), hvor z ]x, y[ [0, ]. Af trekantsuligheden fås da umiddelbart at x n y n n. Det ses også at f n ikke er L-Lipschitz for noget L < n, ved f.eks. at vælge y = og se på en følge (x n ) som konvergerer mod. Da den punktvise grænsefunktion f(x) = x n = { 0 0 x <, x =. ikke er kontinuert i er f specielt ikke uniformt kontinuert og derfor heller ikke Lipschitz ifølge a). Dette strider selvfølgelig ikke imod sætningen da hvert f n godt nok er Lipschitz, men følgen ikke er ligeligt Lipschitz, dvs. der findes ikke en fælles Lipschitz konstant for alle f n. Faktisk viser bemærkningen ovenfor at den optimale Lipschitz konstant L n for f n er n, som går mod uendelig når n går mod uendelig. 7

Oversigt [S] 4.5, 5.10

Oversigt [S] 4.5, 5.10 Oversigt [S] 4.5, 5.0 Nøgleord og begreber Ubestemte udtryk l Hospitals regel l Hospitals regel 2 Test l Hospitals regel Uegentlige integraler Test uegentlige integraler Uegentlige integraler 2 Test uegentlige

Læs mere

Besvarelse, Eksamen Analyse 1, 2013

Besvarelse, Eksamen Analyse 1, 2013 Københavns Universitet Prøve ved Det naturvidenskabelige Fakultet juni 23 Besvarelse, Eksamen Analyse, 23 Opgave Lad, for n N, funktionen f n : [, ) R være givet ved NB. Trykfejl. Burde være x. f n (x)

Læs mere

Fundamentale begreber fra Analysen. Introduktion. De reelle tal. Carsten Lunde Petersen

Fundamentale begreber fra Analysen. Introduktion. De reelle tal. Carsten Lunde Petersen IMFUFA Carsten Lunde Petersen Fundamentale begreber fra Analysen Introduktion Disse noter udgør et meget ltreret udkik over de grundlæggende begreber i reel analyse. Noten indeholder meget lidt om det

Læs mere

Kalkulus 2 - Grænseovergange, Kontinuitet og Følger

Kalkulus 2 - Grænseovergange, Kontinuitet og Følger Kalkulus - Grænseovergange, Kontinuitet og Følger Mads Friis 8. januar 05 Indhold Grundlæggende uligheder Grænseovergange 3 3 Kontinuitet 9 4 Følger 0 5 Perspektivering 4 Grundlæggende uligheder Sætning

Læs mere

En differentiabel funktion hvis afledte ikke er kontinuert Søren Knudby

En differentiabel funktion hvis afledte ikke er kontinuert Søren Knudby 24 En differentiabel funktion hvis afledte ikke er kontinuert Søren Knudby Det er velkendt for de fleste, at differentiabilitet af en reel funktion f medfører kontinuitet af f, mens det modsatte ikke gælder

Læs mere

Hilbert rum. Chapter 3. 3.1 Indre produkt rum

Hilbert rum. Chapter 3. 3.1 Indre produkt rum Chapter 3 Hilbert rum 3.1 Indre produkt rum I det følgende skal vi gøre brug af komplekse såvel som reelle vektorrum. Idet L betegner enten R eller C minder vi om, at et vektorrum over L er en mængde E

Læs mere

af koblede differentialligninger (se Apostol Bind II, s 229ff) 3. En n te ordens differentialligning

af koblede differentialligninger (se Apostol Bind II, s 229ff) 3. En n te ordens differentialligning EKSISTENS- OG ENTYDIGHEDSSÆTNINGEN Vi vil nu bevise eksistens- og entydighedssætningen for ordinære differentialligninger. For overskuelighedens skyld vil vi indskrænke os til at undersøge een 1. ordens

Læs mere

MATEMATIK 11 Eksamensopgaver Juni 1995 Juni 2001, 3. fjerdedel

MATEMATIK 11 Eksamensopgaver Juni 1995 Juni 2001, 3. fjerdedel MATEMATIK Eksamensopgaver Juni 995 Juni 200, 3. fjerdedel August 998 Opgave. Lad f : R \ {0} R betegne funktionen givet ved f(x) = ex x for x 0. (a) Find eventuelle lokale maksimums- og minimumspunkter

Læs mere

ANALYSE 1. Uge 7, 4. juni juni, 2007

ANALYSE 1. Uge 7, 4. juni juni, 2007 ANALYSE 1 Uge 7, 4. juni - 10. juni, 2007 Forelæsninger Mandag 4. juni Formålet med denne dags forelæsninger er at etablere en overgang til emnet metriske rum, hvis hovedformål er at udvide begreber som

Læs mere

Oversigt [S] 8.7, 8.8, 8.9

Oversigt [S] 8.7, 8.8, 8.9 Oversigt [S] 8.7, 8.8, 8.9 Nøgleord og begreber Binomialformlen Binomialkoefficienter Binomialrækken Taylor polynomier Vurdering af Taylor s restled Eksponentialrækken konvereger mod eksponentialfunktionen

Læs mere

Analyse 1, Prøve 4 Besvarelse

Analyse 1, Prøve 4 Besvarelse Københavns Universitet Prøve ved Det naturvidenskabelige Fakultet juni 2011 1 Analyse 1, Prøve 4 Besvarelse Lad Opgave 1 (50%) M = {T R 2 T er en åben trekant} og lad A : M R være arealfunktionen, dvs.

Læs mere

MASO Uge 1. Relle tal Følger. Jesper Michael Møller. 10. september Department of Mathematics University of Copenhagen

MASO Uge 1. Relle tal Følger. Jesper Michael Møller. 10. september Department of Mathematics University of Copenhagen MASO Uge 1 Relle tal Jesper Michael Møller Department of Mathematics University of Copenhagen 10. september 2018 Oversigt Relle tal Notation Tal Største og mindste element, mindste overtal og største undertal

Læs mere

Indhold. Litteratur 11

Indhold. Litteratur 11 Indhold Forord ii 00-sættet 1 Opgave 1....................................... 1 Spørgsmål (a).................................. 1 Spørgsmål (b).................................. 1 Spørgsmål (c)..................................

Læs mere

Supplerende opgaver. S1.3.1 Lad A, B og C være delmængder af X. Vis at

Supplerende opgaver. S1.3.1 Lad A, B og C være delmængder af X. Vis at Supplerende opgaver Analyse Jørgen Vesterstrøm Forår 2004 S.3. Lad A, B og C være delmængder af X. Vis at (A B C) (A B C) (A B) C og find en nødvendig og tilstrækkelig betingelse for at der gælder lighedstegn

Læs mere

MASO Uge 1. Relle tal Følger. Jesper Michael Møller. 7. september Department of Mathematics University of Copenhagen

MASO Uge 1. Relle tal Følger. Jesper Michael Møller. 7. september Department of Mathematics University of Copenhagen MASO Uge 1 Relle tal Jesper Michael Møller Department of Mathematics University of Copenhagen 7. september 2016 Formålet med MASO Integer sequences Oversigt Relle tal Notation Tal Overtal og undertal Største

Læs mere

Oversigt [S] 8.7, 8.8, 8.9

Oversigt [S] 8.7, 8.8, 8.9 Oversigt [S] 8.7, 8.8, 8.9 Nøgleord og begreber Potensrækker og opgaver Binomialformlen Binomialkoefficienter Binomialrækken Taylor polynomier Vurdering af Taylor s restled Eksponentialrækken konvereger

Læs mere

Taylorudvikling I. 1 Taylorpolynomier. Preben Alsholm 3. november Definition af Taylorpolynomium

Taylorudvikling I. 1 Taylorpolynomier. Preben Alsholm 3. november Definition af Taylorpolynomium Taylorudvikling I Preben Alsholm 3. november 008 Taylorpolynomier. Definition af Taylorpolynomium Definition af Taylorpolynomium Givet en funktion f : I R! R og et udviklingspunkt x 0 I. Find et polynomium

Læs mere

Taylor s approksimationsformler for funktioner af én variabel

Taylor s approksimationsformler for funktioner af én variabel enote 17 1 enote 17 Taylor s approksimationsformler for funktioner af én variabel I enote 14 og enote 16 er det vist hvordan funktioner af én og to variable kan approksimeres med førstegradspolynomier

Læs mere

Indhold. Forord. Det græske alfabet. 1. Kontinuitet og grænseværdi Indledning Kontinuitet Opgaver til 1.2

Indhold. Forord. Det græske alfabet. 1. Kontinuitet og grænseværdi Indledning Kontinuitet Opgaver til 1.2 Indhold Forord Det græske alfabet 1. Kontinuitet og grænseværdi 1.1. Indledning 1.2. Kontinuitet Opgaver til 1.2 1.3. Regning med kontinuerte funktioner Opgaver til 1.3 1.4. Kontinuerte funktioners egenskaber

Læs mere

Mat H /05 Note 2 10/11-04 Gerd Grubb

Mat H /05 Note 2 10/11-04 Gerd Grubb Mat H 1 2004/05 Note 2 10/11-04 Gerd Grubb Nødvendige og tilstrækkelige betingelser for ekstremum, konkave og konvekse funktioner. Fremstillingen i Kapitel 13.1 2 af Sydsæters bog [MA1] suppleres her med

Læs mere

Taylor s approksimationsformler for funktioner af én variabel

Taylor s approksimationsformler for funktioner af én variabel enote 4 1 enote 4 Taylor s approksimationsformler for funktioner af én variabel I enote 19 og enote 21 er det vist hvordan funktioner af én og to variable kan approksimeres med førstegradspolynomier i

Læs mere

Afgør for hver af følgende rækker om den er divergent, betinget konvergent eller absolut konvergent. 2 n. n=1 2n (n + 1)2 1 = 2(n + n+1

Afgør for hver af følgende rækker om den er divergent, betinget konvergent eller absolut konvergent. 2 n. n=1 2n (n + 1)2 1 = 2(n + n+1 Analyse Reeksamen 00 Rasmus Sylvester Bryder 5. august 0 Opgave Afgør for hver af følgende rækker om den er divergent, betinget konvergent eller absolut konvergent. ( ) n n +3n+7 n= n + For alle n N vil

Læs mere

Matematisk modellering og numeriske metoder. Lektion 8

Matematisk modellering og numeriske metoder. Lektion 8 Matematisk modellering og numeriske metoder Lektion 8 Morten Grud Rasmussen 18. oktober 216 1 Fourierrækker 1.1 Periodiske funktioner Definition 1.1 (Periodiske funktioner). En periodisk funktion f er

Læs mere

Konvergens i L 1 -forstand. Definition af L 1 -seminorm. Topologi i pseudometrisk rum. Seminorm til norm

Konvergens i L 1 -forstand. Definition af L 1 -seminorm. Topologi i pseudometrisk rum. Seminorm til norm Definition af L 1 -seminorm Konvergens i L 1 -forstand Lad (X, E, µ) være et målrum. Husk at L(µ) er et reelt vektorrum. Vi definerer f 1 = f dµ for f L Definition En følge af funktioner f 1, f 2, L siges

Læs mere

Pointen med Differentiation

Pointen med Differentiation Pointen med Differentiation Frank Nasser 20. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk:

Læs mere

MM502+4 forelæsningsslides

MM502+4 forelæsningsslides MM502+4 forelæsningsslides uge 11+12 1, 2009 Produceret af Hans J. Munkholm, delvis på baggrund af lignende materiale udarbejdet af Mikael Rørdam 1 I nærværende forbindelse er 11 + 12 23 1 Egenskaber for

Læs mere

Hilbert rum. Chapter Indre produkt rum

Hilbert rum. Chapter Indre produkt rum Chapter 4 Hilbert rum 4.1 Indre produkt rum I det følgende skal vi gøre brug af komplekse såvel som reelle vektorrum. Idet L betegner enten R eller C minder vi om, at et vektorrum over L er en mængde E

Læs mere

= λ([ x, y)) + λ((y, x]) = ( y ( x)) + (x y) = 2(x y).

= λ([ x, y)) + λ((y, x]) = ( y ( x)) + (x y) = 2(x y). Analyse 2 Øvelser Rasmus Sylvester Bryder 17. og 20. september 2013 Supplerende opgave 1 Lad λ være Lebesgue-målet på R og lad A B(R). Definér en funktion f : [0, ) R ved f(x) = λ(a [ x, x]). Vis, at f(x)

Læs mere

83 - Karakterisation af intervaller

83 - Karakterisation af intervaller 83 - Karakterisation af intervaller I denne opgave skal du bevise, at hvis A er en delmængde af R med følgende egenskab: x, y, z R : x, y A og x < z < y z A (1) så er A enten et interval eller en mængde

Læs mere

Analyse 1, Prøve 4. 25. juni 2009. r+1. Men vi har øjensynligt, at 2. r r+1

Analyse 1, Prøve 4. 25. juni 2009. r+1. Men vi har øjensynligt, at 2. r r+1 Analyse 1, Prøve 4 25. juni 29 Alle henvisninger til CB er henvisninger til Metriske Rum (1997, Christian Berg), alle henvisninger til TL er til Kalkulus (26, Tom Lindstrøm), og alle henvisninger til Opgaver

Læs mere

n=1 er veldefineret for alle følger for hvilke højresiden er endelig. F.eks. tilhører følgen

n=1 er veldefineret for alle følger for hvilke højresiden er endelig. F.eks. tilhører følgen 2 Hilbert rum 2. Eksempler på Hilbert rum Vi skal nu først forsøge at begrunde, at de indre produkt rum af funktioner eller følger, som blev indført i Kapitel, ikke er omfattende nok til vores formål.

Læs mere

ANALYSE 1, 2014, Uge 5

ANALYSE 1, 2014, Uge 5 ANALYSE, 204, Uge 5 Afleveringsfrist for Prøve 2 er Tirsdag den 20/5 kl 0:5. Forelæsninger Tirsdag Vi går videre med Afsnit 4 om uniform konvergens af Fourierrækker, hvor hovedsætningen er Sætning 4.3.

Læs mere

Analyse 2. Gennemgå bevis for Sætning Supplerende opgave 1. Øvelser. Sætning 1. For alle mængder X gælder #X < #P(X).

Analyse 2. Gennemgå bevis for Sætning Supplerende opgave 1. Øvelser. Sætning 1. For alle mængder X gælder #X < #P(X). Analyse 2 Øvelser Rasmus Sylvester Bryder 3. og 6. september 2013 Gennemgå bevis for Sætning 2.10 Sætning 1. For alle mængder X gælder #X < #P(X). Bevis. Der findes en injektion X P(X), fx givet ved x

Læs mere

Analyse 1. Mads Friis Anders Friis Anne Ryelund. 25. maj 2018

Analyse 1. Mads Friis Anders Friis Anne Ryelund. 25. maj 2018 Analyse 1 Mads Friis Anders Friis Anne Ryelund 25. maj 2018 Indhold Introduktion Aksiomer og den matematiske metode Formalistisk struktur Mængder Introduktion Definitioner Delmængder Fællesmængde og foreningsmængde

Læs mere

Funktionsundersøgelse. Rasmus Sylvester Bryder

Funktionsundersøgelse. Rasmus Sylvester Bryder Funktionsundersøgelse Rasmus Sylvester Bryder 7. november 2008 Dette projekt aeveres i forbindelse med LA T EX 2ε-kurset vejledningsuge 2, 2008-09 på KU; til projektet benyttes noter givet til opgaveløsning.

Læs mere

Eksamen 2014/2015 Mål- og integralteori

Eksamen 2014/2015 Mål- og integralteori Eksamen 4/5 Mål- og integralteori Københavns Universitet Institut for Matematiske Fag Formalia Eksamensopgaven består af 4 opgaver med ialt spørgsmål Ved bedømmelsen indgår de spørgsmål med samme vægt

Læs mere

Integration. Frank Villa. 8. oktober 2012

Integration. Frank Villa. 8. oktober 2012 Integration Frank Villa 8. oktober 2012 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser for brug her. Indhold 1 Introduktion 1

Læs mere

Differentiation. Frank Nasser. 11. juli 2011

Differentiation. Frank Nasser. 11. juli 2011 Differentiation Frank Nasser 11. juli 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

2. Fourierrækker i en variabel

2. Fourierrækker i en variabel .1. Fourierrækker i en variabel I Kapitel II 7 blev der indført, dels funktionsrummene L p (X, µ) (mere udførligt skrevet L p (X, E, µ)), dels rummene L p (X, µ), der fås af L p (X, µ) ved at funktioner

Læs mere

Fordybelsesprojekt Matematik 2, forår 2005 Potensrækker

Fordybelsesprojekt Matematik 2, forår 2005 Potensrækker Fordybelsesprojekt Matematik 2, forår 2005 Potensrækker Arne Jensen 7. 11. marts 2005 1 Indledning I forbindelse med kurset i Reelle og Komplekse Funktioner afholdes et fordybelsesprojekt med et omfang

Læs mere

ANALYSE 1, 2014, Uge 3

ANALYSE 1, 2014, Uge 3 ANALYSE 1, 2014, Uge 3 Forelæsninger Tirsdg. Vi generliserer tlrækker til funktionsrækker ved t udskifte tllene med funktioner (TL Afsnit 12.5). Det svrer til forrige uges skridt fr tlfølger til funktionsfølger.

Læs mere

Integration. Frank Nasser. 15. april 2011

Integration. Frank Nasser. 15. april 2011 Integration Frank Nasser 15. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk: Dette er en arkiveret

Læs mere

Taylors formel. Kapitel Klassiske sætninger i en dimension

Taylors formel. Kapitel Klassiske sætninger i en dimension Kapitel 3 Taylors formel 3.1 Klassiske sætninger i en dimension Sætning 3.1 (Rolles sætning) Lad f : [a, b] R være kontinuert, og antag at f er differentiabel i det åbne interval (a, b). Hvis f (a) = f

Læs mere

Analyse 2. Bevis af Fatous lemma (Theorem 9.11) Supplerende opgave 1. Øvelser

Analyse 2. Bevis af Fatous lemma (Theorem 9.11) Supplerende opgave 1. Øvelser Analyse 2 Øvelser Rasmus Sylvester Bryder 24. og 27. september 203 Bevis af Fatous lemma (Theorem 9.) Hvis (u j ) j er en følge af positive, målelige, numeriske funktioner (dvs. med værdier i [, ]) over

Læs mere

Mujtaba og Farid Integralregning 06-08-2011

Mujtaba og Farid Integralregning 06-08-2011 Indholdsfortegnelse Integral regning:... 2 Ubestemt integral:... 2 Integrationsprøven:... 3 1) Integration af potensfunktioner:... 3 2) Integration af sum og Differens:... 3 3) Integration ved Multiplikation

Læs mere

matx.dk Differentialregning Dennis Pipenbring

matx.dk Differentialregning Dennis Pipenbring mat.dk Differentialregning Dennis Pipenbring 0. december 00 Indold Differentialregning 3. Grænseværdi............................. 3. Kontinuitet.............................. 8 Differentialkvotienten

Læs mere

Eksamensnoter til Analyse 1

Eksamensnoter til Analyse 1 ksamensnoter til Analyse 1 Martin Geisler gimpster@daimi.au.dk Sommer 23 Indledning Disse noter gennemgår de 26 spørgsmål stillet til den mundtlige eksamen i Analyse 1 ved Aarhus Universitet sommeren 23.

Læs mere

Funktionsrum. Kapitel 1. 1.1 Funktionsrummet L = L(X, E, µ)

Funktionsrum. Kapitel 1. 1.1 Funktionsrummet L = L(X, E, µ) Kapitel Funktionsrum. Funktionsrummet L = L(X, E, µ) For et vilkårligt målrum (X,E,µ) er mængdenl=l(x,e,µ) afµ-integrable funktioner f :X R et reelt vektorrum ifølge Theorem 7.3 i [EH]. Hvis vi indfører

Læs mere

Gamle eksamensopgaver (MASO)

Gamle eksamensopgaver (MASO) EO 1 Gamle eksamensopgaver (MASO) Opgave 1. (Vinteren 1990 91, opgave 1) a) Vis, at rækken er divergent. b) Vis, at rækken er konvergent. Opgave 2. (Vinteren 1990 91, opgave 2) Gør rede for at ligningssystemet

Læs mere

Analyse 1, Prøve 2 Besvarelse

Analyse 1, Prøve 2 Besvarelse Københavns Universitet Prøve ved Det naturvidenskabelige Fakultet maj Analyse, Prøve Besvarelse Opgave (3%) (a) (%) Bestem mængden af x R for hvilke rækken ( + (x) n ) er konvergent og angiv sumfunktionen

Læs mere

Punktmængdetopologi. Mikkel Stouby Petersen. 1. marts 2013

Punktmængdetopologi. Mikkel Stouby Petersen. 1. marts 2013 Punktmængdetopologi Mikkel Stouby Petersen 1. marts 2013 I kurset Matematisk Analyse 1 er et metrisk rum et af de mest grundlæggende begreber. Et metrisk rum (X, d) er en mængde X sammen med en metrik

Læs mere

Her skal du lære om 1. Talfølge og talrække 2. Afsnitssum 3. Konvergens 4. Konvergente rækker har små led 5. Regneregler

Her skal du lære om 1. Talfølge og talrække 2. Afsnitssum 3. Konvergens 4. Konvergente rækker har små led 5. Regneregler Oversigt [S] 8.2 Her skal du lære om. Talfølge og talrække 2. Afsnitssum 3. Konvergens 4. Konvergente rækker har små led 5. Regneregler Calculus - 2003 Uge 4. - Uendelig række Definition Givet en talfølge

Læs mere

PeterSørensen.dk : Differentiation

PeterSørensen.dk : Differentiation PeterSørensen.dk : Differentiation Betydningen af ordet differentialkvotient...2 Sekant...2 Differentiable funktioner...3 Bestemmelse af differentialkvotient i praksis ved opgaveløsning...3 Regneregler:...3

Læs mere

1.1. n u i v i, (u, v) = i=1

1.1. n u i v i, (u, v) = i=1 1.1 1. Hilbert rum 1.1. Hilbert rum og deres geometri. Definition 1.1. Et komplekst vektor rum V kaldes et indre produkt rum (eller præ-hilbert rum), når det er forsynet med en funktion (, ): V V C, som

Læs mere

Skriftlig eksamen - med besvarelse Topologi I (MM508)

Skriftlig eksamen - med besvarelse Topologi I (MM508) INSTITUT FOR MATEMATIK OG DATALOGI SYDDANSK UNIVERSITET, ODENSE Skriftlig eksamen - med besvarelse Topologi I (MM508) Mandag d. 14. januar 2007 2 timer med alle sædvanlige hjælpemidler tilladt. Opgavesættet

Læs mere

Projekt 1.4 De reelle tal og 2. hovedsætning om kontinuitet

Projekt 1.4 De reelle tal og 2. hovedsætning om kontinuitet Projekt 1.4 De reelle tal og 2. hovedsætning om kontinuitet Mens den 1. hovedsætning om kontinuerte funktioner kom forholdsvis smertefrit ud af intervalrusebetragtninger, så er 2. hovedsætning betydeligt

Læs mere

Gult Foredrag Om Net

Gult Foredrag Om Net Gult Foredrag Om Net University of Aarhus Århus 8 th March, 2010 Introduktion I: Fra Metriske til Topologiske Rum Et metrisk rum er en mængde udstyret med en afstandsfunktion. Afstandsfunktionen bruges

Læs mere

ANALYSE 1, 2014, Uge 6

ANALYSE 1, 2014, Uge 6 ANALYSE 1, 2014, Uge 6 Forelæsninger Tirsdag Topologiske begreber i generelle metriske rum, dvs. begreber som åbne og afsluttede delmængder og rand af en mængde. For talrummene R k er disse begreber indført

Læs mere

Noter til Computerstøttet Beregning Taylors formel

Noter til Computerstøttet Beregning Taylors formel Noter til Computerstøttet Beregning Taylors formel Arne Jensen c 23 1 Introduktion I disse noter formulerer og beviser vi Taylors formel. Den spiller en vigtig rolle ved teoretiske overvejelser, og også

Læs mere

Den homogene ligning. Vi betragter den n te ordens, homogene, lineære differentialligning. d n y dt n. an 1 + any = 0 (1.2) dt. + a1 d n 1 y dt n 1

Den homogene ligning. Vi betragter den n te ordens, homogene, lineære differentialligning. d n y dt n. an 1 + any = 0 (1.2) dt. + a1 d n 1 y dt n 1 1/7 Den homogene ligning Vi betragter den n te ordens, homogene, lineære differentialligning a 0 d n y dt n + a1 d n 1 y dt n 1 hvor a 0,..., a n R og a 0 0. Vi skriver ligningen på kort form som + + dy

Læs mere

Potensrækker. Morten Grud Rasmussen 1 10. november 2015. Definition 1 (Potensrække). En potensrække er en uendelig række på formen

Potensrækker. Morten Grud Rasmussen 1 10. november 2015. Definition 1 (Potensrække). En potensrække er en uendelig række på formen Potensrækker Morten Grud Rasmussen 1 10 november 2015 Definition og konvergens af potensrækker Definition 1 Potensrække) En potensrække er en uendelig række på formen a n pz aq n, 1) hvor afsnittene er

Læs mere

N o t e r t i l G e o m e t r i

N o t e r t i l G e o m e t r i N o t e r t i l G e o m e t r i I b M a d s e n o g J o h a n D u p o n t J a n u a r 2 0 0 5 I n s t i t u t f o r M a t e m a t i s k e Fa g D e t N a t u rv i d e n s k a b e l i g e Fa k u l t e t

Læs mere

GEOMETRI-TØ, UGE 6. . x 1 x 1. = x 1 x 2. x 2. k f

GEOMETRI-TØ, UGE 6. . x 1 x 1. = x 1 x 2. x 2. k f GEOMETRI-TØ, UGE 6 Hvis I falder over tryk- eller regne-fejl i nedenstående, må I meget gerne sende rettelser til fuglede@imfaudk Opvarmningsopgave 1 Lad f : R 2 R være tre gange kontinuert differentierbar

Læs mere

Program. Statistik og Sandsynlighedsregning. Eksempler. Sandsynlighedstæthed og sandsynlighedsmål

Program. Statistik og Sandsynlighedsregning. Eksempler. Sandsynlighedstæthed og sandsynlighedsmål Program Statistik og Sandsynlighedsregning Sandsynlighedstætheder og kontinuerte fordelinger på R Varians og middelværdi Normalfordelingen Susanne Ditlevsen Uge 48, tirsdag Tætheder og fordelingsfunktioner

Læs mere

MASO Uge 6. Følger i euklidiske rum Ekstremværdisætningen. Jesper Michael Møller. Department of Mathematics University of Copenhagen.

MASO Uge 6. Følger i euklidiske rum Ekstremværdisætningen. Jesper Michael Møller. Department of Mathematics University of Copenhagen. MASO Uge 6 Følger i euklidiske rum Ekstremværdisætningen Jesper Michael Møller Department of Mathematics University of Copenhagen Uge 6 Formålet med MASO Oversigt Følger i R n Konvergens, delfølger Det

Læs mere

t a l e n t c a m p d k Kalkulus 1 Mads Friis Anders Friis Anne Ryelund Signe Baggesen 10. januar 2015 Slide 1/54

t a l e n t c a m p d k Kalkulus 1 Mads Friis Anders Friis Anne Ryelund Signe Baggesen 10. januar 2015 Slide 1/54 Slide 1/54 Indhold 1 2 3 4 5 Slide 2/54 Indhold 1 2 3 4 5 Slide 3/54 1) Hvad er et aksiom? Slide 4/54 1) Hvad er et aksiom? 2) Hvorfor har vi brug for aksiomer? The Monty Hall Problem Slide 4/54 1) Hvad

Læs mere

MATEMATIK 11 Eksamensopgaver Juni 1995 Juni 2001, 4. fjerdedel

MATEMATIK 11 Eksamensopgaver Juni 1995 Juni 2001, 4. fjerdedel Juni 2000 MATEMATIK 11 Eksamensopgaver Juni 1995 Juni 2001, 4. fjerdedel Opgave 1. (a) Find den fuldstændige løsning til differentialligningen y 8y + 16y = 0. (b) Find den fuldstændige løsning til differentialligningen

Læs mere

ANALYSE 1, 2015, Uge 2

ANALYSE 1, 2015, Uge 2 ANALYSE 1, 2015, Uge 2 Forelæsninger Denne uges tem er uendelige rækker. Tirsdg: Tlrækker. En uendelig tlrække består ligesom en uendelig tlfølge f uendelig mnge tl. Forskellen mellem de to begreber består

Læs mere

Differentiabilitet. f(h) = f(x 0 +h) f(x 0 ). y = f(x) f(h) df(h) Figur 1: Tangent, tilvækst og differential. lim. df(h) = f (x 0 )h.

Differentiabilitet. f(h) = f(x 0 +h) f(x 0 ). y = f(x) f(h) df(h) Figur 1: Tangent, tilvækst og differential. lim. df(h) = f (x 0 )h. Differentiabilitet 1 Funktioner af én reel variabel Tilvækstfunktionen f med udgangspunkt i x 0 er en reel funktion af tilvæksten : f() = f(x 0 +) f(x 0 ). y = f(x) Tangent (x 0,f(x 0 )) df() f() x 0 x

Læs mere

Partielle afledede og retningsafledede

Partielle afledede og retningsafledede Partielle afledede og retningsafledede 1 Partielle afledede, definitioner og notationer Bertragt en funktion af to reelle variable f : D R, hvor D R 2 er et åbent område Med benyttelse af tilvækstfunktionen

Læs mere

Program. Statistik og Sandsynlighedsregning 2 Middelværdi og varians. Eksempler fra sidst. Sandsynlighedstæthed og sandsynlighedsmål

Program. Statistik og Sandsynlighedsregning 2 Middelværdi og varians. Eksempler fra sidst. Sandsynlighedstæthed og sandsynlighedsmål Program Statistik og Sandsynlighedsregning 2 Middelværdi og varians Helle Sørensen Uge 6, onsdag I formiddag: Tætheder og fordelingsfunktioner kort resume fra i mandags og et par eksempler mere om sammenhængen

Læs mere

Oversigt [S] 5.2, 5.4, 12.1

Oversigt [S] 5.2, 5.4, 12.1 Oversigt [S] 5.2, 5.4, 12.1 Nøgleord og begreber Bestemt integral Areal iemann summer Volumen Dobbelt integral Test dobbelt integral iemann dobbeltsummer Nyttige regneregler for integral Test integral

Læs mere

Om Følger og Rækker. Nyttige Grænseværdier. Nyttige Rækker. Carsten Lunde Petersen. lim. lim = 0. lim (1 + x n n )n = e x. n n n.

Om Følger og Rækker. Nyttige Grænseværdier. Nyttige Rækker. Carsten Lunde Petersen. lim. lim = 0. lim (1 + x n n )n = e x. n n n. IMFUFA Carste Lude Peterse Om Følger og Ræer Nyttige Græseværdier lim = 1 lim! = x = 0! lim lim (1 + x ) = e x! lim = e 1 Nyttige Ræer 1 p < p > 1 1 log p ( + 1) < p > 1 x = = x 1 x for x < 1 og Z, diverget

Læs mere

Kalkulus 1 - Opgaver. Anne Ryelund, Anders Friis og Mads Friis. 20. januar 2015

Kalkulus 1 - Opgaver. Anne Ryelund, Anders Friis og Mads Friis. 20. januar 2015 Kalkulus 1 - Opgaver Anne Ryelund, Anders Friis og Mads Friis 20. januar 2015 Mængder Opgave 1 Opskriv følgende mængder med korrekt mængdenotation. a) En mængde A indeholder alle hele tal fra og med 1

Læs mere

Differential- regning

Differential- regning Differential- regning del () f () m l () 6 Karsten Juul Indhold Tretrinsreglen 59 Formler for differentialkvotienter64 Regneregler for differentialkvotienter67 Differentialkvotient af sammensat funktion7

Læs mere

Polynomier. Indhold. Georg Mohr-Konkurrencen. 1 Polynomier 2. 2 Polynomiumsdivision 4. 3 Algebraens fundamentalsætning og rødder 6

Polynomier. Indhold. Georg Mohr-Konkurrencen. 1 Polynomier 2. 2 Polynomiumsdivision 4. 3 Algebraens fundamentalsætning og rødder 6 Indhold 1 Polynomier 2 Polynomier 2 Polynomiumsdivision 4 3 Algebraens fundamentalsætning og rødder 6 4 Koefficienter 8 5 Polynomier med heltallige koefficienter 9 6 Mere om polynomier med heltallige koefficienter

Læs mere

Noget om Riemann integralet. Noter til Matematik 2

Noget om Riemann integralet. Noter til Matematik 2 Noget om Riemnn integrlet. Noter til Mtemtik 2 Arne Jensen Afdeling for Mtemtik og Dtlogi Institut for Elektroniske Systemer Alborg Universitetscenter Fredrik Bjers Vej 7 9220 Alborg Ø 4. pril 1991 Revideret

Læs mere

Noter om Komplekse Vektorrum, Funktionsrum og Differentialligninger LinAlg 2004/05-Version af 16. Dec.

Noter om Komplekse Vektorrum, Funktionsrum og Differentialligninger LinAlg 2004/05-Version af 16. Dec. Noter om Komplekse Vektorrum, Funktionsrum og Differentialligninger LinAlg 2004/05-Version af 16. Dec. 1 Komplekse vektorrum I defininitionen af vektorrum i Afsnit 4.1 i Niels Vigand Pedersen Lineær Algebra

Læs mere

MASO-Eksempler. x n. + 1 = 1 y n

MASO-Eksempler. x n. + 1 = 1 y n 3. oktober EXPL 1 Eksempel 1. Et par talfølger: (1 ( (3 (4 (5 (6 (7 (8 MASO-Eksempler,,,,,,..., n =, 1, 1, 1, 1, 1, 1,..., n = 1 1,, 1,, 1,, 1,..., n = (1 + ( 1 n /,, 1,,,, 3,..., n = n(1 + ( 1 n /4, 1,

Læs mere

Integralregning Infinitesimalregning

Integralregning Infinitesimalregning Udgave 2.1 Integralregning Infinitesimalregning Noterne gennemgår begreberne integral og stamfunktion, og anskuer dette som et redskab til bestemmelse af arealer under funktioner. Noterne er supplement

Læs mere

Nøgleord og begreber Analysens hovedsætning Stamfunktioner Itereret integral Test itereret integral Fubinis sætning Test Fubini Eksempler Test produkt

Nøgleord og begreber Analysens hovedsætning Stamfunktioner Itereret integral Test itereret integral Fubinis sætning Test Fubini Eksempler Test produkt Oversigt [S] 5., 5.3, 5.4,.,. Nøgleord og begreber Analysens hovedsætning Stamfunktioner Itereret integral Test itereret integral Fubinis sætning Test Fubini Eksempler Test produkt Calculus - 6 Uge 39.

Læs mere

Differentialregning. Ib Michelsen

Differentialregning. Ib Michelsen Differentialregning Ib Michelsen Ikast 2012 Forsidebilledet Tredjegradspolynomium i blåt med rød tangent Version: 0.02 (18-09-12) Denne side er (~ 2) Indholdsfortegnelse Introduktion...5 Definition af

Læs mere

13 -Integralregning. Hayati Balo, AAMS,Århus. 1. Det ubestemte integrale som betegnes med f (x)dx. 2. Det bestemte integrale som betegnes med b

13 -Integralregning. Hayati Balo, AAMS,Århus. 1. Det ubestemte integrale som betegnes med f (x)dx. 2. Det bestemte integrale som betegnes med b 3 -Integralregning Hayati Balo, AAMS,Århus 3. Stamfunktioner Der er to slags integralregning:. Det ubestemte integrale som betegnes med f (x)dx. Det bestemte integrale som betegnes med b a f (x)dx Det

Læs mere

ANALYSE 1, 2013, Uge 2

ANALYSE 1, 2013, Uge 2 ANALYSE 1, 2013, Uge 2 Forelæsninger Denne uges tem er uendelige rækker. Tirsdg: Tlrækker. En uendelig tlrække består ligesom en uendelig tlfølge f uendelig mnge tl. Forskellen mellem de to begreber består

Læs mere

Indledning. 1 Martingalerepræsentationssætningen

Indledning. 1 Martingalerepræsentationssætningen Indledning I disse noter vil uddybe nogle af Øksendals resultater i afsnittene 4 og 7 samt give andre beviser for dem. Disse resultater er gennemgået til forelæsningerne. 1 Martingalerepræsentationssætningen

Læs mere

Differentiation af Potensfunktioner

Differentiation af Potensfunktioner Differentiation af Potensfunktioner Frank Nasser 12. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her.

Læs mere

Lokalt ekstremum DiploMat 01905

Lokalt ekstremum DiploMat 01905 Lokalt ekstremum DiploMat 0905 Preben Alsholm Institut for Matematik, DTU 6. oktober 00 De nition Et stationært punkt for en funktion af ere variable f vil i disse noter blive kaldt et egentligt saddelpunkt,

Læs mere

Reeksamen 2014/2015 Mål- og integralteori

Reeksamen 2014/2015 Mål- og integralteori Reeksamen 4/5 Mål- og integralteori Københavns Universitet Institut for Matematiske Fag Formalia Eksamensopgaven består af 4 opgaver med ialt spørgsmål. Ved bedømmelsen indgår de spørgsmål med samme vægt.

Læs mere

Tallet π er irrationalt Jens Siegstad

Tallet π er irrationalt Jens Siegstad 32 Tallet π er irrationalt Jens Siegstad At tallet π er irrationalt har været kendt i pænt lang tid Aristoteles postulerede det da han påstod at diameteren og radius i en cirkel er inkommensurable størrelser

Læs mere

Statistik og Sandsynlighedsregning 2

Statistik og Sandsynlighedsregning 2 Statistik og Sandsynlighedsregning 2 Sandsynlighedstætheder og kontinuerte fordelinger på R Helle Sørensen Uge 6, mandag SaSt2 (Uge 6, mandag) Tætheder og kont. fordelinger 1 / 19 Program Velkommen I dag:

Læs mere

Nøgleord og begreber Analysens hovedsætning Stamfunktioner Itereret integral Test itereret integral Fubinis sætning Test Fubini Eksempler Test produkt

Nøgleord og begreber Analysens hovedsætning Stamfunktioner Itereret integral Test itereret integral Fubinis sætning Test Fubini Eksempler Test produkt Oversigt [S] 5.2, 5.3, 5.4, 2., 2.2 Nøgleord og begreber Analysens hovedsætning Stamfunktioner Itereret integral Test itereret integral Fubinis sætning Test Fubini Eksempler Test produkt Calculus - 26

Læs mere

En martingalversion af CLT

En martingalversion af CLT Kapitel 9 En martingalversion af CLT Når man har vænnet sig til den centrale grænseværdisætning for uafhængige, identisk fordelte summander, plejer næste skridt at være at se på summer af stokastiske variable,

Læs mere

Statistik og Sandsynlighedsregning 2

Statistik og Sandsynlighedsregning 2 Statistik og Sandsynlighedsregning 2 Middelværdi og varians Helle Sørensen Uge 6, onsdag SaSt2 (Uge 6, onsdag) Middelværdi og varians 1 / 18 Program I formiddag: Tætheder og fordelingsfunktioner kort resume

Læs mere

Supplerende note om Hilbertrum og Banachrum

Supplerende note om Hilbertrum og Banachrum Supplerende note om Hilbertrum og Banachrum Jimi Lee Truelsen Om Noten Vi vil i denne note uddybe nogle af emnerne fra de første 3 apitler af [Ve] og komme med nogle eksempler. Det drejer sig især om begreberne

Læs mere

MATEMATIK B. Videooversigt

MATEMATIK B. Videooversigt MATEMATIK B Videooversigt 2. grads ligninger.... 2 CAS værktøj... 3 Differentialregning... 3 Eksamen... 5 Funktionsbegrebet... 5 Integralregning... 5 Statistik... 6 Vilkårlige trekanter... 7 71 videoer.

Læs mere

MM501 forelæsningsslides

MM501 forelæsningsslides MM50 forelæsningsslides uge 36, 2009 Produceret af Hans J. Munkholm Nogle talmængder s. 3 N = {, 2, 3, } omtales som de naturlige tal eller de positive heltal. Z = {0, ±, ±2, ±3, } omtales som de hele

Læs mere

Ang. skriftlig matematik B på hf

Ang. skriftlig matematik B på hf Peter Sørensen: 02-04-2012 Ang. skriftlig matematik B på hf Til skriftlig eksamen i matematik B på hf skal man ikke kunne hele pensum. Pensum til skriftlig eksamen kan defineres ved, at opgaverne i opgavehæftet

Læs mere

Histogrammetoden For (x i, y i ) R 2, i = 1,..., n, ser vi på den gennemsnitlige

Histogrammetoden For (x i, y i ) R 2, i = 1,..., n, ser vi på den gennemsnitlige Histogrammetoden For (x i, y i ) R 2, i = 1,..., n, ser vi på den gennemsnitlige længde: z = 1 n hvor z i = xi 2 + yi 2. n z i = 1 n i=1 n i=1 x 2 i + y 2 i Indfør tabellen samt vægtene Da er a k = #{i

Læs mere

Introduktion til Laplace transformen (Noter skrevet af Nikolaj Hess-Nielsen sidst revideret marts 2013)

Introduktion til Laplace transformen (Noter skrevet af Nikolaj Hess-Nielsen sidst revideret marts 2013) Introduktion til Laplace transformen (oter skrevet af ikolaj Hess-ielsen sidst revideret marts 23) Integration handler ikke kun om arealer. Tværtimod er integration basis for mange af de vigtigste værktøjer

Læs mere

Foldningsintegraler og Doobs martingale ulighed

Foldningsintegraler og Doobs martingale ulighed Foldningsintegraler og Doobs martingale ulighed N.J. Nielsen Indledning I dette notat vil vi vise en sætning om foldningsintegraler, som blev benyttet trin 2 i onstrutionen af Itointegralet, gennemgå esempel

Læs mere