Lys og gitterligningen

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "Lys og gitterligningen"

Transkript

1 Fysik rapport: Lys og gitterligige Forfatter: Bastia Emil Jørgese.z Øvelse blev udført osdag de 25. jauar 202 samme med Lise Kjærgaard Paulse

2 2 - Bastia Emil Jørgese Fysik rapport (4 elevtimer), februar 202 Formål Målig af bølgelægde fra e lommelasers lys ved hjælp af et optisk gitter. Teori Lys er elektromagetisk strålig, der består af bølger. Det sylige lys er de del af det elek- tromagetiske spektrum (EM), som ka ses med det meeskelig øje, og består af strålig med bølgelægder, λ, fra ca. 400 m til ca. 750 m. Bølgelægde er afstade mellem to på hiade følgede bølgetoppe og beteges med det græske bogstav lambda, λ. Bølgere sviger også med et atal svigiger pr. sekud. Dette kaldes bølges frekves, f, og ehede for dette er Hertz (Hz). Det sylige lys udgør ku e lille del af EM, for der fides bølger med lagt lavere og højere lægder. Dette er ikke relevat i dee sammehæg, me vigtigt er det, at lys i modsætig til lydbølger ka bevæge sig geem et vakuum, og at de forskellige farver i det sylige lys spektrum er bestemt af de give bølgelægde. Som det ses i illustratioe heruder, har vio- let og blåt lys e kortere bølgelægde ed gul og rødt lys eksempelvis: Lys udsedes som små bølgepakker af eergi fra selve atomere, hvor elektroere udseder eergi, år de bevæger sig fra deres exciterede tilstad, hvor de som følge af absorberig af eergi er ået ud i e bae med større eergi omkrig atomkere, hvor de ikke reelt ikke hører til, til grudtilstade, hvor lyset så udsedes, år elektroe afgiver eergi i form af fotoer. I e laser udsedes esfarvet lys i et sævert og præcist strålebudt med høj itesitet, hvor alle svigiger foregår i takt. Dette sker fordi ma frembriger e stimuleret emissio, hvor e foto med samme eergi, som forskelle mellem to iveauer i atomet, briger e exciteret elektro ed i grudtilstade, så der forekommer to fotoer, der forstærker hiade og rammer flere atomer, så ma får e kostat stråle af fotoer, der så kaldes e laser. 3 For at dae laserstråle placerer ma to spejle på hver side af lasermediet, så lyset sedes frem og tilbage mage gage i lasere, og derved udløses edu flere fotoer, hvoraf ku e brøkdel lader sig slippe ud geem et lille hul i det ee spejl. Med e laser ka ma måle bølgelægde af lyset ud fra gitterligige, der ved bøjig af lys agiver forholdet med bølgelægde, λ, bøjigsvikle, v, mellem retige til 0. orde og retige til te orde og et optisk gitter med gitterafstade, d: d si (v) 2 Fogh, Esper & Kud Erik Nielse (2005), Veje til Fysik C, Silkeborg: Forlaget HAX 2 Billede låt fra gym.dk/fysik/la/atomfysik_webmappe/atom_2.htm, 22/2-202

3 3 - Bastia Emil Jørgese Fysik rapport (4 elevtimer), februar 202 Materialer laser, grø laser, målebåd og optiske gitre med følgede gittertyper: 00 lijer/mm, 300 lijer/mm, 600 lijer/mm og 200 lijer/mm. 4 Forsøgsbeskrivelse Forsøget blev udført ved at placere lasere, så des lys passerer geem gitteret, hvorved ma på e pla overflade (væg el. lig.) ka se lysets afbøjig og spredig. Herefter blev afstade og atallet af pukter oteret. Forsøget blev getaget med forskellige typer laser og optiske gitre med forskellige gitterafstade. Resultater Forsøg r Laserfarve Gittertype atal li- jer/mm, l Atal pukter Afstad mellem pukter, x Afstad til gitter Afstad til tavle fra gitter, a cm 2 cm 03 cm cm 2 cm 03 cm cm 2 cm 03 cm cm 03 cm ,8 cm 2 cm 03 cm cm 2 cm 03 cm cm 2 cm 03 cm cm 2 cm 03 cm 4 Billede veligst låt fra

4 4 - Bastia Emil Jørgese Fysik rapport (4 elevtimer), februar 202 Data- og resultatbehadlig: Nu ka ma vha. gitterligige berege lyskildes bølgelægde, λ, hvis dee isoleres: d si v λ d si v = d si v Da vikle, v, edu ikke kedes, skal dee bereges vha. tages: ta v = x a For at effektivisere beregigere idsættes dette direkte i gitterligige: x d si ta!! a Nu magler ma ku at defiere gitterkostate, d, der er afstade mellem spaltere i et givet gitter. Dette fides ved at dele med atallet af lijer pr. mm, l. Når dette idsættes fås følgede: x l si ta!! a Ved at beytte oveståede model ka ma berege rødt lys bølgelægde ud fra forsøg s resultater. Husk, at det er vigtigt, ma bruger de samme eheder i e formel som dee her vælges mm som udgagspukt, der derefter omreges til m: 00 si 70 ta!! 030 = 0, mm = 678,048 m På æste side er resultatere opstillet i skemaform, bereget ud fra oveståede model og sammeholdt med tabelværdie for de specifikke lysfarves bølgelægde.

5 5 - Bastia Emil Jørgese Fysik rapport (4 elevtimer), februar 202 Bølgelægde og afvigelse fra tabelværdi Forsøg r Laserfarve Bølgelægde, λ Bølgelægde tabelværdi Afvigelse 00 si 70 ta!! 030 =0, mm Ca. m 5 678,048 = 4,32% = 678,048 m si 20 ta!! 030 =0, mm Ca. m 665,92 = 2,45% = 665,92 m si 440 ta!! 030 =0, mm Ca. m 654,736 = 0,73% = 654,736 m 4 Det var ikke muligt at måle afstade mel- lem to pukter, da der ku forekom ét si 58 ta!! 030 =0, mm Ca. 50 m 562, = 0,24% = 562,26 m si 70 ta!! 030 =0, mm Ca. 50 m 542, = 6,43% = 542,88 m si 350 ta!! 030 =0, mm Ca. 50 m 536, = 5,4% = 536,23 m si 840 ta!! 030 =0, mm Ca. 50 m 526, = 3,27% = 526,673 m 5 edu.larc.asa.gov/eddocs/wavelegths_for_colors.html, 22/2-202

6 6 - Bastia Emil Jørgese Fysik rapport (4 elevtimer), februar Sammehæg mellem bølgelægde og gitterkostat laser laser farve farve Bølgelægde i m /00 /300 /600 /200 Gitterkostat I oveståede graf, der viser sammehæge mellem bølgelægde og gitterkostate, ka ma se, at desto flere lijer der er i gitteret, desto tættere på farves tabelværdi kommer ma. Idsættes ma de fude resultater i det sylige lys spektrum, ser ma tydeligt, at resulta- tere for det grøe lys falder ide for det grøe område og de røde resultater ide for det røde område: Fejlkilder Forsøget gik som forvetet. Af fejlkilder ka æves e usikkerhed i måligere mellem de fremkome lysprikker. Diskussio og vurderig Målige af afstade mellem de fremkome prikker kue godt være mere præcis, da tallet er e afgørede værdi i gitterligige. Der er e klar sammehæg mellem atallet af lijer i det optiske gitter og hvor tæt, ma kommer på tabelværdie for det specifikke lys bølgelægde. Geerelt af afvigelsere accep- table og lægger mellem 4,32% og 0,73% for det røde lys og 0,24% og 3,27% for grøt lys.

7 7 - Bastia Emil Jørgese Fysik rapport (4 elevtimer), februar 202 Det er vigtigt at være opmærksom over for afvigelsere, me i dette eksperimet er det svært at få resultater, der fuldstædig stemmer overes med tabelværdiere for lys bølgelægde. Der eksisterer uedeligt mage farver, og da de ekelte uacer har hver si bølgelægde, er det svært at sammeholde laseres farve med de korrekt tabelværdi, da rød ka have mage forskellige uacer eksempelvis. Det er altså svært at sammeholde ege resultater med tabelværdier i dee sammehæg, og hvis ma skal getage forsøget, ka ma sikre sig, at ma keder de avedte lasers bøl- gelægde ide start. Koklusio Det var muligt at bestemme e lommelasers lys ved hjælp af et optisk gitter og gitterligige. Resultatere stemte i større eller midre grad me hele tid acceptabelt - overes med tabel- værdiere, fordi der fides mage forskellige uacer af grøt og rødt lys. Hvis ma samme- holder resultatere med følgede illustratio, falder måligere også id uder de øskede områder: Forsøg r Laserfarve Bølgelægde, λ Bølgelægde tabelværdi Afvigelse 678,048 m Ca. m 4,32% 2 665,92 m Ca. m 2,45% 3 654,736 m Ca. m 0,73% 4 Det var ikke muligt at måle afstade mel- lem to pukter, da der ku forekom ét ,26 m Ca. 50 m 0,24% 6 542,88 m Ca. 50 m 6,43% 7 536,23 m Ca. 50 m 5,4% 8 526,673 m Ca. 50 m 3,27%

Projekt 1.3 Brydningsloven

Projekt 1.3 Brydningsloven Projekt 1.3 Brydigslove Når e bølge, fx e lysbølge, rammer e græseflade mellem to stoffer, vil bølge ormalt blive spaltet i to: Noget af bølge kastes tilbage (spejlig), hvor udfaldsvikle u er de samme

Læs mere

Atom og kernefysik Ingrid Jespersens Gymnasieskole 2007

Atom og kernefysik Ingrid Jespersens Gymnasieskole 2007 Atom og kerefysik Igrid Jesperses Gymasieskole 2007 Baggrudsstrålig Mål baggrudsstrålige i 5 miutter. Udreg atallet af impulser i 10 sekuder. Alfa-strålig α Mål atallet af impulser fra e alfa-kilde ude

Læs mere

Renteformlen. Erik Vestergaard

Renteformlen. Erik Vestergaard Reteformle Erik Vestergaard 2 Erik Vestergaard www.matematikfysik.dk Erik Vestergaard, 2010. Billeder: Forside: istock.com/ilbusca Side 4: istock.com/adresrimagig Desude ege illustratioer. Erik Vestergaard

Læs mere

hvor i er observationsnummeret, som løber fra 1 til stikprøvestørrelsen n, X i

hvor i er observationsnummeret, som løber fra 1 til stikprøvestørrelsen n, X i Normalfordeliger For at e stokastisk variabel X ka være ormalfordelt, skal X agive værdie af e eller ade målig, f.eks. tid, lægde, vægt, beløb osv. Notatioe er: Xi ~ N( μ, σ hvor i er observatiosummeret,

Læs mere

A14 4 Optiske egenskaber

A14 4 Optiske egenskaber A4 4 Optiske egeskaber Brydigsideks Når lys træffer e græseflade mellem to materialer, kastes oget af lyset tilbage (refleksio), mes oget går igeem græseflade med foradret retig (brydig eller refraktio).

Læs mere

Undersøgelse af numeriske modeller

Undersøgelse af numeriske modeller Udersøgelse af umeriske modeller Formål E del af målsætige med dette delprojekt er at give kedskab til de begræsiger, fejl og usikkerheder, som optræder ved modellerig. I de forbidelse er følgede udersøgelse

Læs mere

9. Binomialfordelingen

9. Binomialfordelingen 9. Biomialfordelige 9.. Gekedelse Hvert forsøg ka ku resultere i to mulige udfald; succes og fiasko. I modsætig til poissofordelige er atallet af forsøg edeligt. 9.. Model X : Stokastisk variabel, der

Læs mere

Formelskrivning i Word 2. Sådan kommer du i gang 4. Eksempel med skrivning af brøker 5. Brøker skrevet med småt 6. Hævet og sænket skrift 6

Formelskrivning i Word 2. Sådan kommer du i gang 4. Eksempel med skrivning af brøker 5. Brøker skrevet med småt 6. Hævet og sænket skrift 6 Dee udgave er til geemkig på ettet. Boge ka købes for kr. 5 hos EH-Mat. E y og udvidet udgave med title»symbol- og formelskrivig«er udkommet september 00. Se mere om de her. Idholdsfortegelse Formelskrivig

Læs mere

vejer (med fortegn). Det vil vi illustrere visuelt og geometrisk for (2 2)-matricer og (3 3)-matricer i enote 6.

vejer (med fortegn). Det vil vi illustrere visuelt og geometrisk for (2 2)-matricer og (3 3)-matricer i enote 6. enote 5 enote 5 Determiater I dee enote ser vi på kvadratiske matricer. Deres type er altså for 2, se enote 4. Det er e fordel, me ikke absolut ødvedigt, at kede determiatbegrebet for (2 2)-matricer på

Læs mere

Bestemmelse af vandføring i Østerå

Bestemmelse af vandføring i Østerå Bestemmelse af vadførig i Østerå Geerelt varierer vadstade og vadførige i daske vadløb over året. Normalt er vadførige lille om sommere for derpå at øge om efteråret. Om vitere ses ormalt de højeste vadføriger

Læs mere

Definition: Normalfordelingen. siges at være normalfordelt med middelværdi µ og varians σ 2, hvor µ og σ er reelle tal og σ > 0.

Definition: Normalfordelingen. siges at være normalfordelt med middelværdi µ og varians σ 2, hvor µ og σ er reelle tal og σ > 0. Repetitio: Normalfordelige Ladmåliges fejlteori Lektio Trasformatio af stokastiske variable - kkb@math.aau.dk http://people.math.aau.dk/ kkb/udervisig/lf13 Istitut for Matematiske Fag Aalborg Uiversitet

Læs mere

Leica Lino. Præcise, selvnivellerende punkt- og linje-lasere

Leica Lino. Præcise, selvnivellerende punkt- og linje-lasere Leica Lio Præcise, selvivellerede pukt- og lije-lasere Opsæt, tæd, klar! Med Leica Lio er alt i lod og perfekt lige Leica Lios projekterer lijer eller pukter med milimeterøjagtighed, så du har hædere fri

Læs mere

Claus Munk. kap. 1-3

Claus Munk. kap. 1-3 Claus Muk kap. 1-3 1 Dages forelæsig Grudlæggede itroduktio til obligatioer Betaligsrækker og låeformer Det daske obligatiosmarked Pris og kurs Effektive reter 2 1 Obligatioer Grudlæggede Itro Debitor

Læs mere

Dagens forelæsning. Claus Munk. kap. 1-3. Obligationer Grundlæggende Intro. Obligationer Grundlæggende Intro. Obligationer Grundlæggende Intro

Dagens forelæsning. Claus Munk. kap. 1-3. Obligationer Grundlæggende Intro. Obligationer Grundlæggende Intro. Obligationer Grundlæggende Intro Dages forelæsig Grudlæggede itroduktio til obligatioer Claus Muk kap. - 3 Betaligsrækker og låeformer Det daske obligatiosmarked Effektive reter 2 Obligatioer Grudlæggede Itro Obligatioer Grudlæggede Itro

Læs mere

Matematik A. Studentereksamen. Forberedelsesmateriale. Forsøg med digitale eksamensopgaver med adgang til internettet.

Matematik A. Studentereksamen. Forberedelsesmateriale. Forsøg med digitale eksamensopgaver med adgang til internettet. Matematik A Studetereksame Forsøg med digitale eksamesopgaver med adgag til iterettet Forberedelsesmateriale Vejledede opgave Forår 0 til stx-a-net MATEMATIK Der skal afsættes 6 timer af holdets sædvalige

Læs mere

HASTIGHEDSKORT FOR DANMARK VHA. GPS

HASTIGHEDSKORT FOR DANMARK VHA. GPS HASTIGHEDSKORT FOR DANMARK VHA. GPS Ove Aderse xcalibur@cs.aau.dk Istitut for Datalogi Aalborg Uiversitet Harry Lahrma lahrma@pla.aau.dk Trafikforskigsgruppe Aalborg Uiversitet Kristia Torp torp@cs.aau.dk

Læs mere

StudyGuide til Matematik B.

StudyGuide til Matematik B. StudyGuide til Matematik B. OVERSIGT. Dee study guide ideholder følgede afsit Geerel itroduktio. Emeliste. Eksame. Bilag 1: Udervisigsmiisteriets bekedtgørelse for matematik B. Bilag 2: Bilag 3: Uddrag

Læs mere

Noter om kombinatorik, Kirsten Rosenkilde, februar 2008 1. Kombinatorik

Noter om kombinatorik, Kirsten Rosenkilde, februar 2008 1. Kombinatorik Noter om ombiatori, Kirste Roseilde, februar 008 Kombiatori Disse oter er e itrodutio til ombiatori og starter helt fra bude, så e del af det idledede er siert edt for dig allerede, me der ommer også hurtigt

Læs mere

Sejladsbestemmelser for Faurby Yacht 2STAR CUP 2015

Sejladsbestemmelser for Faurby Yacht 2STAR CUP 2015 Sejladsbestemmelser for Faurby Yacht 2STAR CUP 2015 Lørdag de 20. jui 2015 Arr. Middelfart- og Fredericia Sejlklubber. 1 Regler 1.1 Sejladse sejles efter de i Kapsejladsreglere defierede regler ikl. Skadiavisk

Læs mere

Duo HOME Duo OFFICE. Programmeringsmanual DK 65.044.50-1

Duo HOME Duo OFFICE. Programmeringsmanual DK 65.044.50-1 Duo HOME Duo OFFICE Programmerigsmaual DK 65.044.50-1 INDHOLD Tekiske data Side 2 Systemiformatio, brugere Side 3-4 Ligge til og slette brugere Side 5-7 Ædrig af sikkerhedsiveau Side 8 Programmere: Nødkode

Læs mere

3y MA, Steen Toft Jørgensen side 1/5 Helsingør Gymnasium. Definitioner, formler, sætninger og ideen i beviserne så det er muligt at huske beviserne.

3y MA, Steen Toft Jørgensen side 1/5 Helsingør Gymnasium. Definitioner, formler, sætninger og ideen i beviserne så det er muligt at huske beviserne. 3y MA, Stee Toft Jørgese side /5 Helsigør Gymasium Vektorregig i 3D Formålet er at skabe overblik over emet. Boge Mat3A af Jes Carstese, kapitel 3 og 4, side 83-5. Defiitioer, formler, sætiger og idee

Læs mere

Supplerende noter II til MM04

Supplerende noter II til MM04 Supplerede oter II til MM4 N.J. Nielse 1 Uiform koverges af følger af fuktioer Vi starter med følgede defiitio: Defiitio 1.1 Lad S være e vilkårlig mægde og (X, d et metrisk rum. E følge (f af fuktioer

Læs mere

Kvadratisk 0-1 programmering. David Pisinger

Kvadratisk 0-1 programmering. David Pisinger Kvadratisk - programmerig David Pisiger 27-8 MAX-CUT problemet Givet e ikke-orieteret graf G = (V, E) er MAX-CUT problemet defieret som MAX-CUT = {< G > : fid et sit S, T i grafe G som maksimerer atal

Læs mere

Elementær Matematik. Polynomier

Elementær Matematik. Polynomier Elemetær Matematik Polyomier Ole Witt-Hase 2008 Køge Gymasium Idhold 1. Geerelle polyomier...1 2. Divisio med hele tal....1 3. Polyomiers divisio...2 4. Polyomiers rødder....4 5. Bestemmelse af røddere

Læs mere

antal gange krone sker i første n kast = n

antal gange krone sker i første n kast = n 1 Uge 15 Teoretisk Statistik, 5. april 004 1. Store tals lov Eksempel: møtkast Koverges i sadsylighed Tchebychevs ulighed Sætig: Store tals lov. De cetrale græseværdisætig 3. Approksimatio af sadsyligheder

Læs mere

Sandsynlighedsregning i biologi

Sandsynlighedsregning i biologi Om begrebet sadsylighed Sadsylighedsregig i biologi Hvis vi kaster e almidelig, symmetrisk terig, er det klart for de fleste af os, hvad vi meer, år vi siger, at sadsylighede for at få e femmer er 1/6.

Læs mere

Længde [cm] Der er frit vandspejle i sandkassen. Herudover er sandkassen åben i højden cm i venstresiden og 0-20 cm i højresiden.

Længde [cm] Der er frit vandspejle i sandkassen. Herudover er sandkassen åben i højden cm i venstresiden og 0-20 cm i højresiden. Vadtrasportmodel Formål For beregig af vadtrasporte i sadkasse er der lavet e boksmodel. Formålet med boksmodelle er at beskrive vadtrasporte i sadkasse. Herover er formålet at bestemme de hydrauliske

Læs mere

MOGENS ODDERSHEDE LARSEN. Fourieranalyse

MOGENS ODDERSHEDE LARSEN. Fourieranalyse MOGENS ODDERSHEDE LARSEN Fourieraalyse. udgave 7 FORORD Dette otat giver e kort idførig i teorie for fourierrækker og fouriertrasformatio. Det forudsættes i dette otat, at ma har rådighed over matematiklommeregere

Læs mere

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab Statistik ved Bachelor-uddaelse i folkesudhedsvideskab Græseværdisætiger Det hadler om geemsit Statistikere elsker geemsit Det er oplagt e god ide at tage geemsit. Hvis jeg f.eks skal gætte på vægte af

Læs mere

24. januar Epidemiologi og biostatistik. Forelæsning 1 Uge 1, tirsdag. Niels Trolle Andersen, Afdelingen for Biostatistik.

24. januar Epidemiologi og biostatistik. Forelæsning 1 Uge 1, tirsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Epidemiologi og biostatistik. Forelæsig Uge, tirsdag. Niels Trolle Aderse, Afdelige for Biostatistik. Geerelt om kurset: - Formål - Forelæsiger - Øvelser - Forelæsigsoter - Bøger - EpiBasic: http://www.biostat.au.dk/teachig/software

Læs mere

Motivation. En tegning

Motivation. En tegning Motivatio Scatter-plot at det mådelige salg mod det måedlige reklamebudget. R: plot(salg ~ budget, data = salg) Økoometri Lektio Simpel Lieær Regressio salg 400 450 500 550 20 25 30 35 40 45 50 budget

Læs mere

Branchevejledning. ulykker indenfor. lager. området. Branchearbejdsmiljørådet for transport og engros

Branchevejledning. ulykker indenfor. lager. området. Branchearbejdsmiljørådet for transport og engros Brachevejledig ulykker idefor lager området Brachearbejdsmiljørådet for trasport og egros Baggrud Udersøgelser på lager- og trasportområdet har vist, at beskrivelse af hædelsesforløbet ved udfyldelse

Læs mere

Begreber og definitioner

Begreber og definitioner Begreber og defiitioer Daske husstades forbrug på de medierelaterede udgiftsposter stiger og udgør i 2012*) 11,3 % af husstadees samlede forbrug mod 5,5 % i 1994. For husstade med de laveste idkomster

Læs mere

Branchevejledning. ulykker indenfor. godschauffør. området. Branchearbejdsmiljørådet for transport og engros

Branchevejledning. ulykker indenfor. godschauffør. området. Branchearbejdsmiljørådet for transport og engros Brachevejledig ulykker idefor godschauffør området Brachearbejdsmiljørådet for trasport og egros Baggrud Udersøgelser på lager- og trasportområdet har vist, at beskrivelse af hædelsesforløbet ved udfyldelse

Læs mere

Projekt 4.8 De reelle tal og 1. hovedsætning om kontinuerte funktioner

Projekt 4.8 De reelle tal og 1. hovedsætning om kontinuerte funktioner Projekter: Kapitel 4 Projekt 48 De reelle tal og hovedsætig om kotiuerte fuktioer Projekt 48 De reelle tal og hovedsætig om kotiuerte fuktioer Kotiuitet og kotiuerte fuktioer Ord som kotiuert og kotiuerlig

Læs mere

Forslag til besvarelser af opgaver m.m. i ε-bogen, Matematik for lærerstuderende

Forslag til besvarelser af opgaver m.m. i ε-bogen, Matematik for lærerstuderende Forslag til besvarelser af opgaver m.m. i ε-boge, Matematik for lærerstuderede Dette er førsteudgave af opgavebesvarelser udarbejdet i sommere 008. Dokumetet ideholder forslag til besvarelser af de fleste

Læs mere

Termodynamik. Indhold. Termodynamik. Første og anden hovedsætning 1/18

Termodynamik. Indhold. Termodynamik. Første og anden hovedsætning 1/18 ermodyamik. Første og ade hovedsætig /8 ermodyamik Idhold. Isoterme og adiabatiske tilstadsædriger for gasser...3 3. ermodyamikkes. hovedsætig....5 4. Reversibilitet...6 5. Reversibel maskie og maksimalt

Læs mere

Noter om kombinatorik, Kirsten Rosenkilde, februar Kombinatorik

Noter om kombinatorik, Kirsten Rosenkilde, februar Kombinatorik Noter om ombiatori, Kirste Roseilde, februar 008 Kombiatori Disse oter er e itrodutio til ombiatori og starter helt fra bude, så e del af det idledede er siert edt for dig allerede, me der ommer også hurtigt

Læs mere

Dårligt arbejdsmiljø koster dyrt

Dårligt arbejdsmiljø koster dyrt Dårligt arbejdsmiljø F O A f a g o g a r b e j d e koster dyrt Hvad koster et dårligt arbejdsmiljø, og hvad ka vi gøre for at bedre forholdee for de asatte idefor Kost- og Servicesektore? Læs her om de

Læs mere

DATV: Introduktion til optimering og operationsanalyse, 2007. Bin Packing Problemet

DATV: Introduktion til optimering og operationsanalyse, 2007. Bin Packing Problemet DATV: Itroduktio til optimerig og operatiosaalyse, 2007 Bi Packig Problemet David Pisiger, Projektopgave 2 Dette er de ade obligatoriske projektopgave på kurset DATV: Itroduktio til optimerig og operatiosaalyse.

Læs mere

DATV: Introduktion til optimering og operationsanalyse, 2007. Følsomhed af Knapsack Problemet

DATV: Introduktion til optimering og operationsanalyse, 2007. Følsomhed af Knapsack Problemet DATV: Itroduktio til optimerig og operatiosaalyse, 2007 Følsomhed af Kapsack Problemet David Pisiger, Projektopgave 1 Dette er de første obligatoriske projektopgave på kurset DATV: Itroduktio til optimerig

Læs mere

NOTAT Det daglige arbejde med blisterpakninger

NOTAT Det daglige arbejde med blisterpakninger Sige Friis Christiase 7. maj 2015 NOTAT Det daglige arbejde med blisterpakiger I paeludersøgelse 55 i DSRs medlemspael blev deltagere stillet e række spørgsmål om deres arbejde med blisterpakiger. Afrapporterige

Læs mere

Dagens forelæsning. Claus Munk. kap. 4. Arbitrage. Obligationsprisfastsættelse. Ingen-Arbitrage princippet. Illustration af arbitrage

Dagens forelæsning. Claus Munk. kap. 4. Arbitrage. Obligationsprisfastsættelse. Ingen-Arbitrage princippet. Illustration af arbitrage Dages forelæsig Ige-Arbirage pricippe Claus Muk kap. 4 Nulkupoobligaioer Simpel og geerel boosrappig Forwardreer Obligaiosprisfassæelse Arbirage Værdie af e obligaio Nuidsværdie af obligaioes fremidige

Læs mere

Projekt 2.3 Det gyldne snit og Fibonaccitallene

Projekt 2.3 Det gyldne snit og Fibonaccitallene Projekter: Kapitel Projekt.3 Det glde sit og Fiboaccitallee Forslag til hvorda klasses arbejde med projektet ka tilrettelægges: Forløbet:. Præsetatio af emet med vægt på det glde sit.. Grppere arbejder

Læs mere

Psyken på overarbejde hva ka du gøre?

Psyken på overarbejde hva ka du gøre? Psyke på overarbejde hva ka du gøre? Idhold Hvorår kommer ma uder psykisk pres? 3 Hvad ka øge det psykiske pres på dit arbejde? 4 Typiske reaktioer 6 Hvorda forløber e krise? 7 Hvad ka du selv gøre? 9

Læs mere

Men tilbage til regression og Chi-i-anden. test. Begge begreber refererer til normalfordelingen med middelværdi μ og spredning σ.

Men tilbage til regression og Chi-i-anden. test. Begge begreber refererer til normalfordelingen med middelværdi μ og spredning σ. χ test matematkudervsge χ - test gymasets matematkudervsg I jauar ummeret 8 af LMFK bladet havde jeg e artkel, hvor jeg harcelerede ldt over, at regresso og sær χ fordelg havde fudet dpas matematkudervsge

Læs mere

Hvis man vil lægge 15% til 600, så kan det gøres ved at udregne, hvor meget 15% af 600 er lig med og lægge det til det oprindelige beløb:

Hvis man vil lægge 15% til 600, så kan det gøres ved at udregne, hvor meget 15% af 600 er lig med og lægge det til det oprindelige beløb: 0BRetesegig BTæk i femskivigsfaktoe! I dette tillæg skal vi se, at begebet femskivigsfaktoe e yttigt til at fostå og løse foskellige poblemstillige idefo pocet- og etesegig. 3B. Lægge pocet til elle tække

Læs mere

Statistik 8. gang 1 KONFIDENSINTERVALLER. Konfidensintervaller: kapitel 11. Valg og test af fordelingsfunktion

Statistik 8. gang 1 KONFIDENSINTERVALLER. Konfidensintervaller: kapitel 11. Valg og test af fordelingsfunktion Statistik 8. gag 1 KONIDENSINTERVALLER Kofidesitervaller: kapitel 11 Valg og test af fordeligsfuktio Statistik 8. gag 11. KONIDENS INTERVALLER Et kofides iterval udtrykker itervallet hvori de rigtige værdi

Læs mere

Matematikkens mysterier - på et obligatorisk niveau. 7. Ligninger, polynomier og asymptoter

Matematikkens mysterier - på et obligatorisk niveau. 7. Ligninger, polynomier og asymptoter Matematikkes mysterier - på et obligatorisk iveau af Keeth Hase 7. Ligiger, polyomier og asymptoter Hvad er e asymotote? Og hvorda fides de? 7. Ligiger, polyomier og asymptoter Idhold 7.0 Idledig 7.1 Udsag

Læs mere

Bjørn Grøn. Analysens grundlag

Bjørn Grøn. Analysens grundlag Bjør Grø Aalyses grudlag Aalyses grudlag Side af 4 Idholdsfortegelse Kotiuerte og differetiable fuktioer 3 Differetial- og itegralregiges udviklig 5 3 Hovedsætiger om differetiable fuktioer 8 Opgaver til

Læs mere

Du skal redegøre for løsning af ligninger og herunder behandle omformningsreglerne for ligninger.

Du skal redegøre for løsning af ligninger og herunder behandle omformningsreglerne for ligninger. Eksamesspørgsmål mac7100 maj/jui 013. Spørgsmål 1: Ligiger Du skal redegøre for løsig af ligiger og heruder behadle omformigsreglere for ligiger. Giv eksempler på hvorda forskellige ligigstyper (lieære,

Læs mere

Cykelfysik. Om udveksling og kraftoverførsel

Cykelfysik. Om udveksling og kraftoverførsel Cykelfysik 1/7 Cykelfysik Om udvekslig og kaftoveføsel Idhold 2. Kaftoveføsel og abejde...2 3. Abejde ved cykelkøsel...4 4. Regeeksemple fo e acecykel...5 5. Det e hådt at køe op ad bakke...6 6. Simple

Læs mere

Tankegangskompetence. Kapitel 9 Algebraiske strukturer i skolen 353

Tankegangskompetence. Kapitel 9 Algebraiske strukturer i skolen 353 Takegagskompetece Hesigte med de følgede afsit er først og fremmest at skabe klarhed over de mere avacerede regeregler i skole og give resultatet i de almee form, der er karakteristisk for algebra. Vi

Læs mere

x-klasserne Gammel Hellerup Gymnasium

x-klasserne Gammel Hellerup Gymnasium SANDSYNLIGHEDSREGNING OG KOMBINATORIK x-klassere Gammel Hellerup Gymasium Idholdsfortegelse SANDSYNLIGHEDSREGNING... 3 SANDSYNLIGHEDSFELT... 3 DE STORE TALS LOV... 4 Sadsyligheder og frekveser:... 4 STOKASTISK

Læs mere

Dagens program. Estimation: Kapitel Eksempler på middelrette og/eller konsistente estimator (de sidste fra sidste forelæsning)

Dagens program. Estimation: Kapitel Eksempler på middelrette og/eller konsistente estimator (de sidste fra sidste forelæsning) Dages program Estimatio: Kapitel 9.4-9.7 Eksempler på middelrette og/eller kosistete estimator (de sidste fra sidste forelæsig) Ko desiterval for store datasæt kap. 9.4 Ko desiterval for små datasæt kap.

Læs mere

Beregning af prisindeks for ejendomssalg

Beregning af prisindeks for ejendomssalg Damarks Saisik, Priser og Forbrug 2. april 203 Ejedomssalg JHO/- Beregig af prisideks for ejedomssalg Baggrud: e radiioel prisideks, fx forbrugerprisidekse, ka ma ofe følge e ideisk produk over id og sammelige

Læs mere

Estimation og test i normalfordelingen

Estimation og test i normalfordelingen af Birger Stjerholm Made Samfudlitteratur 07 Etimatio og tet i ormalfordelige Dee tekt ideholder et overblik over ogle grudlæggede pricipper for etimatio og tet i ormalfordelige i hyppigt forekommede ituatioer:

Læs mere

Mikroøkonomi, matematik og statistik Eksamenshjemmeopgave 14. 20. december 2007

Mikroøkonomi, matematik og statistik Eksamenshjemmeopgave 14. 20. december 2007 Mikroøkoomi, matematik og statistik Eksameshjemmeopgave 14. 20. december 2007 Helle Buzel, Tom Egsted og Michael H.J. Stæhr 14. december 2007 R E T N I N G S L I N I E R F O R E K S A M E N S H J E M M

Læs mere

Løsninger til kapitel 7

Løsninger til kapitel 7 Løsiger til kapitel 7 Opgave 7.1 a) HpoStat giver resultatet: Pop. varias er ukedt, me 30, så Normalf. bruges approksimativt = 54,400 s 1.069,90 = 00,000 0,95 49,868 58,93 Dette betder, at med 95% sikkerhed

Læs mere

Muligheder og visioner for monitering af anlægskonstruktioner

Muligheder og visioner for monitering af anlægskonstruktioner Muligheder og visioer for moiterig af alægskostruktioer Claus Vestergaard Nielse, Betocetret Dask Brodag de 31. marts 2009, Odese Dask Brodag, 31.03.2009 Claus V. Nielse, Betocetret INDHOLD Bæredygtighed

Læs mere

Sprednings problemer. David Pisinger

Sprednings problemer. David Pisinger Spredigs problemer David Pisiger 2001 Idledig Jukfood A/S er e amerikask kæde af familierestaurater der etop er ved at etablere sig i Damark. E massiv reklamekampage med de to slogas vores fritter er de

Læs mere

Rettevejledning til HJEMMEOPGAVE 1 Makro 1, 2. årsprøve, foråret 2007 Peter Birch Sørensen

Rettevejledning til HJEMMEOPGAVE 1 Makro 1, 2. årsprøve, foråret 2007 Peter Birch Sørensen Rettevejledig til HJEMMEOPGAVE Makro, 2. årsprøve, foråret 2007 Peter Birch Sørese Opgave... Udsaget er forkert. De omtalte skatteomlægig må atages at øge beskæftigelse p.gr.a. e positiv substitutioseffekt

Læs mere

Spørgsmål 3 (5 %) Bestem sandsynligheden for at et tilfældigt valgt vindue har en fejl ved listerne, når man ved at der er fejl i glasset.

Spørgsmål 3 (5 %) Bestem sandsynligheden for at et tilfældigt valgt vindue har en fejl ved listerne, når man ved at der er fejl i glasset. STATISTIK Skriftlig evaluerig, 3. semester, madag de 30. auar 006 kl. 9.00-3.00. Alle hælpemidler er tilladt. Opgaveløsige forsyes med av og CPR-r. OPGAVE Ved e produktio af viduer er der mulighed for,

Læs mere

Vejledende opgavebesvarelser

Vejledende opgavebesvarelser Vejledede opgavebesvarelser 1. Atal hæder er lig med K(52,5), altså 2598960. Ved brug af multiplikatiospricippet ka atal hæder med 3 ruder og 2 spar udreges som K(13, 3) K(13, 2), hvilket giver 22308.

Læs mere

Kvantemekanik 4 Side 1 af 11 Energi og tid. Hamiltonoperatoren

Kvantemekanik 4 Side 1 af 11 Energi og tid. Hamiltonoperatoren Kvateekaik 4 Side 1 af 11 ergi og tid Hailtooperatore Af KM3 fregik det, at ehver observabel er repræseteret ved e operator, f.eks. jf. udtryk (3.1) og (3.). Ispireret af det klassiske udtryk for kietisk

Læs mere

De Platoniske legemer De fem regulære polyeder

De Platoniske legemer De fem regulære polyeder De Platoiske legemer De fem regulære polyeder Ole Witt-Hase jauar 7 Idhold. Polygoer.... Nogle topologiske betragtiger.... Eulers polyedersætig.... Typer af et på e kugleflade.... Toplasvikle i e regulær

Læs mere

Gamle eksamensopgaver. Diskret Matematik med Anvendelser (DM72) & Diskrete Strukturer(DM504)

Gamle eksamensopgaver. Diskret Matematik med Anvendelser (DM72) & Diskrete Strukturer(DM504) Gamle eksamesopgaver Diskret Matematik med Avedelser (DM72) & Diskrete Strukturer(DM504) Istitut for Matematik& Datalogi Syddask Uiversitet, Odese Alle sædvalige hjælpemidler(lærebøger, otater etc.), samt

Læs mere

Vejledende besvarelser til opgaver i kapitel 15

Vejledende besvarelser til opgaver i kapitel 15 Vejledede besvarelser til opgaver i apitel 5 Opgave a) De teststatistier, ma aveder til at teste om to middelværdier er es, består af et estimat på forselle mellem middelværdiere,, divideret med et udtry

Læs mere

Med disse betegnelser gælder følgende formel for en annuitetsopsparing:

Med disse betegnelser gælder følgende formel for en annuitetsopsparing: Matema10k C-iveau, Fydelud Side 1 af 10 Auitetsopspaig De fides mage måde at spae op på. Vi vil he se på de såkaldte auitetsopspaig. Emet ka buges som e del af det suppleede stof, og det ka avedes som

Læs mere

Kommunens styringssystemer og offentlige leders krydspres eller

Kommunens styringssystemer og offentlige leders krydspres eller Kommues styrigssystemer og offetlige leders krydspres eller hvorda får du forebyggelse sat på kommues dagsorde 1 Dispositio: Præsetatio og itroduktio til emet Ledergruppes styrigsmæssige dagsorde Begreber

Læs mere

Sætning: Middelværdi og varians for linearkombinationer. Lad X 1,X 2,...,X n være stokastiske variable. Da gælder. Var ( a 0 + a 1 X a n X n

Sætning: Middelværdi og varians for linearkombinationer. Lad X 1,X 2,...,X n være stokastiske variable. Da gælder. Var ( a 0 + a 1 X a n X n Ladmåliges fejlteori Lektio 3 Estimatio af σ Dobbeltmåliger Geometrisk ivellemet Lieariserig - rw@math.aau.dk Istitut for Matematiske Fag Aalborg Uiversitet Repetitio: Middelværdi og Varias Sætig: Middelværdi

Læs mere

Hvad vi gør for jer og hvordan vi gør det

Hvad vi gør for jer og hvordan vi gør det Hvad vi gør for jer og hvorda vi gør det Vi skaber resultater der er sylige på di budliie... Strategi Orgaisatio Produktio Økoomi [ Ide du læser videre ] [ Om FastResults ] [ Hvorfor os? ] I foråret 2009

Læs mere

FOREBYGGELSE OG BEKÆMPELSE AF ROTTER

FOREBYGGELSE OG BEKÆMPELSE AF ROTTER Hadligspla for FOREBYGGELSE OG BEKÆMPELSE AF ROTTER 2016-2018 LYNGBY-TAARBÆK KOMMUNE 2015 Lygby-Taarbæk Kommue Trykt på Rådhustrykkeriet Grafik Layout: Ole Lud Aderse, Iter Service INDHOLD Rotte - dyret

Læs mere

Modul 14: Goodness-of-fit test og krydstabelanalyse

Modul 14: Goodness-of-fit test og krydstabelanalyse Forskigsehede for Statistik ST01: Elemetær Statistik Bet Jørgese Modul 14: Goodess-of-fit test og krydstabelaalyse 14.1 Idledig....................................... 1 14.2 χ 2 -test i e r c krydstabel.............................

Læs mere

Introduktion til uligheder

Introduktion til uligheder Itroduktio til uligheder, marts 0, Kirste Rosekilde Itroduktio til uligheder Dette er e itroduktio til ogle basale uligheder om det aritmetiske geemsit, det geometriske geemsit, det harmoiske geemsit og

Læs mere

Statistik Lektion 7. Hypotesetest og kritiske værdier Type I og Type II fejl Styrken af en test Sammenligning af to populationer

Statistik Lektion 7. Hypotesetest og kritiske værdier Type I og Type II fejl Styrken af en test Sammenligning af to populationer Statistik Lektio 7 Hpotesetest og kritiske værdier Tpe I og Tpe II fejl Strke af e test Sammeligig af to populatioer 1 Tri I e Hpotesetest E hpotesetest består af 5 elemeter: I. Atagelser Primært hvilke

Læs mere

13. februar Resumé: En statistisk analyse resulterer ofte i : Et estimat ˆ θ med en tilhørende se( ˆ θ )

13. februar Resumé: En statistisk analyse resulterer ofte i : Et estimat ˆ θ med en tilhørende se( ˆ θ ) 3. februar 003 Epidemiologi og biostatistik. Uge, torag d. 3. februar 003 Morte Frydeberg, Istitut for Biostatistik. Type og type fejl Nogle specielle metoder: Test i RxC tabeller Test i x tabeller Fishers

Læs mere

GENEREL INTRODUKTION.

GENEREL INTRODUKTION. Study Guide til Matematik C. OVERSIGT. Dee study guide ideholder følgede afsit - Geerel itroduktio. - Emeliste. - Eksame. - Bilag. Udervisigsmiisteriets bekedtgørelse for matematik C. GENEREL INTRODUKTION.

Læs mere

Udlevering af LER-oplysninger vedr. EnergiMidt Energi A/S og eksterne kunders vejbelysningskabler

Udlevering af LER-oplysninger vedr. EnergiMidt Energi A/S og eksterne kunders vejbelysningskabler Udleverig af LER-oplysiger vedr. EergiMidt Eergi A/S og ekstere kuders vejbelysigskabler Kableres beliggehed og målsætig er ku vejledede. Plaere viser udelukkede kabeltracé. Hvis der øskes yderligere oplysiger

Læs mere

Situationen er illustreret på figuren nedenfor. Her er også afsat nogle eksempler: Punktet på α giver anledning til punktet Q

Situationen er illustreret på figuren nedenfor. Her er også afsat nogle eksempler: Punktet på α giver anledning til punktet Q 3, 45926535 8979323846 2643383279 50288497 693993750 5820974944 592307864 0628620899 8628034825 34270679 82480865 3282306647 0938446095 505822372 535940828 4874502 84027093 85205559 6446229489 549303896

Læs mere

Simpel Lineær Regression. Opsplitning af variationen Determinations koefficient Variansanalyse F-test Model-kontrol

Simpel Lineær Regression. Opsplitning af variationen Determinations koefficient Variansanalyse F-test Model-kontrol Simpel Lieær Regressio Opsplitig af variatioe Determiatios koefficiet Variasaalse F-test Model-kotrol Opbgig af statistisk model Specificer model Ligiger og atagelser Estimer parametre Modelkotrol Er modelle

Læs mere

Yngre Lægers medlemsundersøgelse om det lægelige arbejdsmarked, 2016

Yngre Lægers medlemsundersøgelse om det lægelige arbejdsmarked, 2016 Ygre Læger, 23. maj 216 Ygre Lægers medlemsudersøgelse om det lægelige arbejdsmarked, 216 - svarfordeliger på ladspla Idholdsfortegelse 1. Idledig... 2 2. Baggrudsvariable... 2 3. Vide om arbejdspladse

Læs mere

29. januar Epidemiologi og biostatistik Forelæsning 2 Uge 1, torsdag 2. februar 2006 Michael Væth, Afdeling for Biostatistik.

29. januar Epidemiologi og biostatistik Forelæsning 2 Uge 1, torsdag 2. februar 2006 Michael Væth, Afdeling for Biostatistik. Epidemiologi og biostatistik Forelæsig Uge 1, torsdag. februar 006 ichael Væth, Afdelig for Biostatistik. Sammeligig af to middelværdier sikkerhedsitervaller statistisk test Sammeligig af to proportioer

Læs mere

Asymptotisk optimalitet af MLE

Asymptotisk optimalitet af MLE Kapitel 4 Asymptotisk optimalitet af MLE Lad Y 1, Y 2,... være uafhægige, idetisk fordelte variable med værdier i et rum (Y,K). Vi har givet e model (ν θ ) θ Θ for fordelige af Y 1 (og dermed også for

Læs mere

Januar2003/ AM Rentesregning - LÅN & OPSPARING 1/8. Aftager med...% Gange med (1...%) r:=...% Før aftager med...% og bliver til Efter, dvs.

Januar2003/ AM Rentesregning - LÅN & OPSPARING 1/8. Aftager med...% Gange med (1...%) r:=...% Før aftager med...% og bliver til Efter, dvs. Jaua2003/ AM Retesegig - LÅN & OPSPARING 1/8 PROCENT Po cet betyde p. 100" altså hudededele p% = p 100 Decimaltal Ved omskivig fa pocet til decimaltal flyttes kommaet to pladse mod veste 5%=0,05 0,1%=0,001

Læs mere

Kapitel 10 KALIBRERING AF STRØMNINGSMODEL

Kapitel 10 KALIBRERING AF STRØMNINGSMODEL Kapitel 0 KALIBRERING AF STRØMNINGSMODEL Torbe Obel Soeborg Hydrologisk afdelig, GEUS Nøglebegreber: Kalibrerigsprotokol, observatiosdata, kalibrerigskriterier, idetificerbarhed, etydighed, parameterestimatio,

Læs mere

Introduktion til optimering og operationsanalyse. Asymmetric Traveling Salesman Problem

Introduktion til optimering og operationsanalyse. Asymmetric Traveling Salesman Problem Itroduktio til optimerig og operatiosaalyse Asymmetric Travelig Salesma Problem David Pisiger, Efterår 2003 Dette er de ade obligatoriske projektopgave på kurset Itroduktio til optimerig og operatiosaalyse.

Læs mere

Den grådige metode 2

Den grådige metode 2 Algoritmedesig 1 De grådige metode De grådige metode Et problem løses ved at foretage e række beslutiger Beslutigere træffes e ad gage i e eller ade rækkefølge Hver beslutig er baseret på et grådighedskriterium

Læs mere

EGA Vejledning om EGA og monotont arbejde

EGA Vejledning om EGA og monotont arbejde EGA og mootot arbejde 04/09/02 14:27 Side 1 Orgaisatioer repræseteret i Idustries Brachearbejdsmiljøråd: Arbejdstagerside: Arbejdsgiverside: Dask Metal Specialarbejderforbudet Kvideligt Arbejderforbud

Læs mere

Forsøg del 1: Beregning af lysets bølgelængde

Forsøg del 1: Beregning af lysets bølgelængde Forsøg del 1: Beregning af lysets bølgelængde Formål Formålet med denne forsøgsrække er, at vise mange aspekter inden for emnet lys med udgangspunkt i begrænset materiale. Formålet med forsøget er at beregne

Læs mere

og Fermats lille sætning

og Fermats lille sætning Projekter: Kaitel 0. Projekt 0. Modulo-regig, restklassegruer og Fermats lille sætig Projekt 0. Modulo-regig, restklassegruere ( { 0 }, ) og Fermats lille sætig Vi aveder moduloregig og restklasser mage

Læs mere

Kompendie Komplekse tal

Kompendie Komplekse tal Kompedie Komplekse tal Prebe Holm 08-06-003 "!#!%$'&($)+*-,. cos(s + t) )0/ si(s + t) Trigoometri er måske ikke så relevat, år ma såda umiddelbart sakker om komplekse tal. Me faktisk avedes de trigoometriske

Læs mere

Sandsynlighedsregning

Sandsynlighedsregning Sadsylighedsregig E ote om sadsylighedsregig. Via basal sadsylighedsregig gøres læsere klar til forstå biomialfordelige. Herik S. Hase, Sct. Kud Versio 5.0 Opgaver til hæftet ka hetes her. PDF Facit til

Læs mere

BIKE COMPUTER. >> Kilometers. >> Heart Rate. >> Cadence. >> Altitude ROX 9.0 DANSK

BIKE COMPUTER. >> Kilometers. >> Heart Rate. >> Cadence. >> Altitude ROX 9.0 DANSK BIKE COMPUTER >> Kilometers >> Heart Rate >> Altitude >> Cadece ROX 9.0 Istallatios og betjeigsvejledig DANSK INDEHOLD 1 Emballage ideholder... 4 2 Moterig af SIGMA ROX 9.0 og des tilbehør... 5 2.1 Moterig

Læs mere

Indholdsfortegnelse Generelt Diskrete stokastiske variable: Kontinuerte stokastiske variable: Regneregler for stokastiske variable

Indholdsfortegnelse Generelt Diskrete stokastiske variable: Kontinuerte stokastiske variable: Regneregler for stokastiske variable Idholdsfortegelse Geerelt:...3 Stokastisk variabel:...3 Tæthedsfuktio/sadsylighedsfuktio for stokastisk variabel:...3 Fordeligsfuktio/sumfuktio for stokastisk variabel:...3 Middelværdi:...4 Geemsit:...4

Læs mere

Facilitering ITU 15. maj 2012

Facilitering ITU 15. maj 2012 Faciliterig ITU 15. maj 2012 Facilitatio is like movig with the elemets ad sailig the sea Vejvisere Velkomst de gode idflyvig Hvad er faciliterig? Kedeteg ved rolle som facilitator Facilitatores drejebog

Læs mere

Sejladsbestemmelser for Columbus Marine 1+2 STAR CUP 2017

Sejladsbestemmelser for Columbus Marine 1+2 STAR CUP 2017 Sejladsbestemmelser for Columbus Marie 1+2 STAR CUP 2017 Lørdag de 17. jui 2017 Arr. Middelfart Sejlklub. 1 Regler 1.1 Sejladse sejles efter de i Kapsejladsreglere defierede regler ikl. Skadiavisk Sejlerforbuds

Læs mere

Opsparing og afvikling af gæld

Opsparing og afvikling af gæld Opspaig og afviklig af gæld Opspaig Eksempel 1 Lad os state med at se på et eksempel. 100 Euo idbetales å i tæk på e koto, de foetes med 3 % p.a. Vi ha tidligee beeget e såda kotos udviklig skidt fo skidt:

Læs mere

Sandsynlighedsteori 1.2 og 2 Uge 5.

Sandsynlighedsteori 1.2 og 2 Uge 5. Istitut for Matematiske Fag Aarhus Uiversitet De 27. jauar 25. Sadsylighedsteori.2 og 2 Uge 5. Forelæsiger: Geemgage af emere karakteristiske fuktioer og Mometproblemet afsluttes, og vi starter på afsittet

Læs mere

Bekendtgørelse om takstændringer i offentlig servicetrafik i trafikselskaber og hos jernbanevirksomheder m.v. (takststigningsloftet)

Bekendtgørelse om takstændringer i offentlig servicetrafik i trafikselskaber og hos jernbanevirksomheder m.v. (takststigningsloftet) Oversigt (idholdsfortegelse) Bilag 1 Bilag 2 Bilag 3 De fulde tekst Bekedtgørelse om takstædriger i offetlig servicetrafik i trafikselskaber og hos jerbaevirksomheder m.v. (takststigigsloftet) I medfør

Læs mere