Almen Helsefysik. Formelsamling DD-R-18(DA)

Størrelse: px
Starte visningen fra side:

Download "Almen Helsefysik. Formelsamling DD-R-18(DA)"

Transkript

1 DD-R-18(DA) Almen Helsefysik Formelsamling Per Hedemann Jensen, Thommy Ingemann Larsen, Bente Lauridsen, Jens Søgaard-Hansen, Erik Thorn, Lisbeth Warming Dansk Dekommissionering, Roskilde Januar 2009

2

3 DD-R-18(DA) Almen Helsefysik Formelsamling Per Hedemann Jensen, Thommy Ingemann Larsen, Bente Lauridsen, Jens Søgaard-Hansen, Erik Thorn, Lisbeth Warming Dansk Dekommissionering, Roskilde Januar 2009

4 Forfatter: Per Hedemann Jensen, Thommy Ingemann Larsen, Bente Lauridsen, Jens Søgaard-Hansen, Erik Thorn, Lisbeth Warming Titel: Almen Helsefysik - Formelsamling Sektion: Strålings- og Nuklear Sikkerhed DD-R-18(DA) Januar 2009 Resumé: Denne rapport udgør en formelsamling til lærebogen Almen Helsefysik, der anvendes i uddannelsen af helseassistenter og i undervisningen i helsefysik af andet teknisk personale ved Dansk Dekommissionering. ISBN ISBN (Internet) Journal: Strålings- og Nuklear Sikkerhed/Undervisning Sider: 41 Tabeller: Figurer: Referencer: Dansk Dekommissionering Postboks Roskilde Print: Pitney Bowes Management Services Denmark A/S 2009 Tlf: Fax: dd@dekom.dk Web:

5 Indhold 1 Forord 1 2 Atomernes verden 2 3 Spontane kerneomdannelser 4 4 Ioniserende strålings vekselvirkning med stof 7 5 Strålingsfelter og strålingsdoser - begreber og enheder 12 6 Eksterne og interne strålingsdoser 15 7 Menneskets strålingsmiljø 20 8 Strålings biologiske virkninger 21 9 Systemet for strålingsbeskyttelse Strålingsafskærmning Helsefysisk arbejdshygiejne Strålingsdetektering Prøvetagning, måling og resultatvurdering Reaktorer og andre strålingsmaskiner Konsekvenser af radioaktive udslip Uheldseksponering 33 Appendiks 35 A Græske bogstaver, præfikser og SI-enheder 35 B Naturkonstanter 36 C Omregningsfaktorer og SI-enheder 37 Indeks 38 DD-R-18(DA) i

6

7 1 Forord Denne formelsamling er opbygget med de samme kapitelnumre som kapitlerne i lærebogen Almen Helsefysik, der er udarbejdet specielt til brug ved uddannelsen af Dansk Dekommissionerings helseassistenter. Uddannelsen giver en bred indføring i helsefysikken, fra den fysiske beskrivelse af radioaktivitet og ioniserende stråling over strålingens biologiske virkninger til beskyttelsesforanstaltninger og -principper. Bogen giver en bred og samlet indføring i helsefysikkens mange discipliner. Bogen er beskrivende i sin form og anvender kun simpel matematik, og den kan derfor læses uden detaljerede matematiske forkundskaber. Bogen benyttes også som en del af pensum i uddannelsen af Dansk Dekommissionerings helsefysikere samt inden for andre områder af den helsefysiske undervisning i Dansk Dekommissionering. Dele af bogen kan med fordel anvendes ved undervisning i helsefysik på gymnasier og universiteter. Forord 1

8 2 Atomernes verden Z Atomnummer - grundstofnummer. Antallet af protoner i en atomkerne kaldes atomnummeret, og det betegnes Z. Atomnummeret angiver også kernens samlede positive ladning målt i elementarladninger. N A u Neutrontal. Antallet af neutroner i en atomkerne kaldes neutrontallet, og det betegnes N. Atomvægt eller massetal. Antallet af nukleoner (protoner + neutroner) i kernen kaldes nukleontallet, og det betegnes A. Da A tilnærmelsesvis er størrelsen af massen, når denne måles i atommasseenheder, kaldes A også for massetallet eller atomvægten (A = Z + N). Atommasseenhed. Massen af atomer angives lettest i atommasseenheden, u. Betegnelsen stammer fra det engelske ord unit, der betyder enhed. Størrelsen af 1 u er defineret som 1/12 af massen af et kulstof 12 atom. Herved bliver 1 u = 1, kg. Massen af protonen og neutronen er ca. 1 u, mens elektronens masse er 0,00055 u. e Elementarladning. Elementarladningen, e, er den mindste enhed af elektrisk ladning, der kan eksistere selvstændigt. Elementarladningen er 1, C (coulomb). En elektron har én negativ og en proton én positiv elementarladning. Hvis en elektron bevæges igennem et spændingsfald på 1 volt modtager den en energi på 1 ev (elektronvolt), der er lig med 1, joule. A Z X A Z X Nuklid. Den enkelte atomtype (kerneopbygning) med et bestemt antal protoner og neutroner i kernen kaldes for en nuklid. Ennuklid angives ved at skrive grundstofsymbolet, X, og i øverste venstre hjørne af dette at skrive nuklidens massetal, A. Atomnummeret, Z, kan eventuelt anføres i nederste venstre hjørne af grundstofsymbolet. Isotop. Hvis to nuklider har samme atomnummer, Z, men forskelligt massetal, A, kaldes de isotoper af grundstoffet X. De får derfor den samme placering i Det Periodiske System. 2 Kapitel 2 - Atomernes verden

9 N A = 6, atomer/mol N A A Avogadros tal. Tallet angiver antallet af atomer (molekyler) pr. mol. En nuklid, A Z X, med massetallet eller atomvægten, A, vejer A gram pr. mol. Antal atomer i ét gram af en nuklid. Da antallet af atomer pr. mol af en given A nuklid, Z X, med atomvægten A er lig med Avogadros tal, N A, og vægten af denne nuklid er A gram pr. mol, beskriver forholdet N A /A antallet af atomer pr. gram af denne nuklid. Eksempel: 1 gram brint ( 1 1H) og 238 gram uran ( U) indeholder begge N A atomer, men U indeholder langt færre atomer pr. gram, fordi uran-atomerne er meget større end brint-atomerne. Kapitel 2 - Atomernes verden 3

10 3 Spontane kerneomdannelser A Z X A 4 Z 2 G α++ α-henfald. Ved udsendelse af en α-partikel omdannes atomkernen af et givet grundstof, X, til en ny kerne af grundstoffet, G, der har to protoner og to neutroner færre i kernen. Den nye atomkerne får derfor et massetal, A, der er fire mindre, og et atomnummer, Z, der er to mindre, end før omdannelsen. A Z X A Z X Z+1 A G + 1β ν e β -henfald. Ved β -henfaldet omdannes en neutron (n) i kernen til en proton (p), en β -partikel og en anti-elektron-neutrino (ν e ). Protonen forbliver i kernen, mens β -partiklen og anti-neutrinoen udsendes fra kernen. Herved er kernen af et givet grundstof, X, blevet til en ny kerne med samme massetal, A, som den oprindelige kerne, men af et grundstof, G, der er ét atomnummer, Z, større, end før omdannelsen. Z 1 A G β ν β + -henfald. Ved β + -henfaldet omdannes en e proton (p) i kernen til en neutron (n), en β + -partikel og en elektron-neutrino (ν e ). Neutronen forbliver i kernen, mens β + -partiklen og neutrinoen udsendes fra kernen. Herved er kernen af et givet grundstof, X, blevet til en ny kerne, der har det samme massetal, A, som før omdannelsen, men af et grundstof, G, der er ét atomnummer, Z, mindre, end før omdannelsen. 0 1 e + A Z X λ A Z 1 G ν e Electron Capture (EC) (elektronindfangning). Ved EC-henfald indfanger kernen en elektron (e) fra elektronskyen uden om kernen. Denne elektron omdannes sammen med en proton i kernen til en neutron under udsendelse af en neutrino fra kernen. Atomkernen af et givet grundstof, X, bliver ved EC-henfaldet omdannet til en kerne af et grundstof, G, der er ét atomnummer, Z, lavere, men massen af kernen, A, er ikke ændret. Henfaldskonstant. Omdannelse af en ustabil atomkerne er en stokastisk (tilfældig) proces. Det betyder, at der for den enkelte atomkerne er en given konstant sandsynlighed for omdannelse pr. tidsenhed, λ. Denne sandsynlighed er uafhængig af omgivelsernes tryk, temperatur og af kernens alder. λ kaldes for henfaldskonstanten. SI-enheden for henfaldskonstanten er s 1. 4 Kapitel 3 - Spontane kerneomdannelser

11 T 1/2 = ln(2) λ Q = λ N N(t 2 ) = N(t 1 ) e λ (t2 t1) Q(t 2 ) = Q(t 1 ) e λ (t2 t1) Q(t) = Q 0 e λ t S m = ln(2) T 1/2 S v = ln(2) T 1/2 NA A ρ N A A Q A (t) =Q A0 e λa t Q B (t) = λ B Q A0 λ B λ A (e λa t Q B (t) Q A (t) = e λb t ) λ B λ B λ A (1 e (λb λa) t ) Halveringstid. Den tid der forløber, indtil antallet af atomer af en given radionuklid er halveret. Sammenhængen mellem halveringstiden, T 1/2, og henfaldskonstanten, λ, for en given radionuklid er: λ T 1/2 =ln(2). Aktiviteten i N radioaktive atomer. Aktiviteten i N radioaktive atomer af en given radionuklid beregnes som produktet af henfaldskonstanten, λ, for nukliden og antallet af radioaktive atomer, N. Da aktiviteten skal angives i becquerel (Bq), skal henfaldskonstanten, λ, indsættes i enheden s 1. Henfaldsloven for radioaktive atomer. Antallet af radioaktive atomer, N, henfalder eksponentielt med tiden. Da aktiviteten, Q, er lig med produktet af henfaldskonstanten, λ, og antallet af radioaktive atomer, N, henfalder aktiviteten, Q, også eksponentielt med tiden. For t 1 =0ogQ(t 1 =0)=Q 0 kan henfaldsloven i dette specialtilfælde udtrykkes ved Q(t) og Q 0. Specifik aktivitet. Den nuklidspecifikke aktivitet, S, af en given radionuklid er defineret som aktiviteten af nukliden pr. masseenhed, S m, eller pr. volumenenhed, S v,afdetaktive materiale. Den totale aktivitet fås ved at gange den massespecifikke aktivitet med massen af det aktive materiale og den volumenspecifikke aktivitet med volumenet af det aktive materiale. N A er her Avogadros tal. Henfaldskæder. Betragt en henfaldskæde med tre led, hvor A-atomer henfalder til B-atomer, der igen henfalder til stabile C-atomer (A B C). Lad der til tiden t =0 kun være A-atomer. Umiddelbart efter tiden t = 0 vil antallet af B-atomer øges pga. henfald af A-atomer. Denne opvoksning vil dog stoppe, i takt med at antallet af A-atomer falder, og at B-atomerne henfalder til C-atomer. Når tiden bliver meget større end halveringstiden for både A- og B-atomerne, vil antallet af A- og B-atomer være tæt på nul, da disse atomer alle er henfaldet, mens antallet af C-atomer vil være næsten lig med det oprindelige antal af A-atomer, N A0. Kapitel 3 - Spontane kerneomdannelser 5

12 Q B λ B = 1 Q A λ B λ A Henfaldskæder i ligevægt. Når henfaldskonstanten, λ B, for datterproduktet B, i en henfaldskæde er meget større end henfaldskonstanten, λ A, for moderproduktet A, og når λ B t 1, bliver Q A = Q B. Det betyder, at der henfalder et B-atom, hver gang der henfalder et A- atom. Denne situation kaldes sekular ligevægt. 6 Kapitel 3 - Spontane kerneomdannelser

13 4 Ioniserende strålings vekselvirkning med stof ( S = 0,31 Zeff z 2 ρ A eff β 2 13,84 + ln ( ( S k 0,1535 Z eff ρ = A eff β 2 ln Lineær stoppeevne for tunge, ladede partikler. Den lineære stoppeevne, S, for tunge, ladede partikler beskriver energitabet pr. længdeenhed af partiklens bane i materialet. ( β 2 1 β 2 ) ) β 2 ln(i) Z eff er det effektive atomnummer af atomerne i stoffet, A eff er det effektive massetal for atomerne i stoffet (g/mol), ρ er massefylden af stoffet (g/cm 3 ), I er den gennemsnitlige energi til excitation eller ionisation i stoffet (ev), z er antallet af elementarladninger på partiklen, β = 1 (1/(E b /E 0 +1)) 2 og E b og E 0 er henholdsvis partiklens bevægelsesenergi og hvileenergi i samme energienhed. Enheden for den lineære stoppeevne, S, bliver MeV/cm. Masse-stoppeevnen, S/ρ, i enheden MeV cm 2 /g, er et makroskopisk tværsnit, der fås ved division med ρ på begge sider af lighedstegnet. Lineær kollisions-stoppeevne for elektroner og positroner. Den lineære kollisionsstoppeevne for elektroner og positroner, S k, beskriver energitabet pr. banelængdeenhed, der skyldes ionisering og excitation. τ 2 (τ +2) 2 (I/511000) 2 ) +1 β 2 + τ 2 /8 (2 τ +1) ln(2) (τ +1) 2 Z eff er det effektive atomnummer af atomerne i stoffet, A eff er det effektive massetal for atomerne i stoffet (g/mol), ρ er massefylden af stoffet (g/cm 3 ), I er den gennemsnitlige energi til excitation eller ionisation i stoffet (ev), τ = E b /E 0,hvorE b og E 0 er henholdsvis elektronens bevægelsesenergi og hvileenergi, og β 2 =1 (1/(τ +1)) 2. Enheden for den lineære kollisions-stoppeevne, S k, bliver MeV/cm. Masse-kollisions-stoppeevnen, S k /ρ, i enheden MeV cm 2 /g, er et makroskopisk tværsnit, der fås ved division med ρ på begge sider af lighedstegnet. ) Kapitel 4 - Ioniserende strålings vekselvirkning med stof 7

14 S bs Z 2 = 0,35 eff ρ ( ) Lineær bremsestrålings-stoppeevne for E b + 0,511 A eff elektroner og positroner. Den lineære f(e b, Z eff ) bremsestrålings-stoppeevne for elektroner og positroner, S bs, beskriver energitabet pr. banelængdeenhed, der skyldes omdannelse af bevægelsesenergi til bremsestråling (bremsestrålingstab). Z eff er det effektive atomnummer af atomerne i stoffet, A eff er det effektive massetal for atomerne i stoffet (g/mol), ρ er massefylden af stoffet (g/cm 3 ), E b er elektronens bevægelsesenergi (MeV), og f(e b, Z eff ) er en svagt varierende funktion af E b og Z eff. For bevægelsesenergier op til 1 MeV kan værdien af f tilnærmet sættes til 5, mens den er ca. 12 ved 10 MeV og ca. 15 ved 100 MeV. Enheden for den lineære bremsestrålings-stoppeevne, S bs, bliver kev/cm. Masse-bremsestrålings-stoppeevnen, S bs /ρ, i enheden kev cm 2 /g, er et makroskopisk tværsnit, der fås ved division med ρ på begge sider af lighedstegnet. Rækkevidde for tunge, ladede partikler i luft. Rækkevidden af α-partikler i luft, R α,luft (E α ), afhænger af begyndelsesværdien af α-partiklens bevægelsesenergi, E α. 0,56 E α for E α 4MeV R α, luft (E α )= 1,24 E α 2,64 for 4 MeV <E α < 8MeV Rækkevidden får enheden cm, når energien indsættes i MeV. R α,stof (E α )= 0,56 A1/3 R α, luft (E α ) ρ Z eff = f i Z 2 i i f i Z i i Rækkevidde for tunge, ladede partikler i stof. Rækkevidden af α-partikler i stof, R α,stof (E α ), afhænger af begyndelsesværdien af α-partiklens bevægelsesenergi, E α.aerher massetallet (eventuelt det effektive massetal) for materialets atomer, og ρ er massefylden af materialet i mg/cm 3. Rækkevidden får enheden cm, når energien indsættes i MeV. Effektivt atomnummer for forbindelser og blandinger ved bremsestrålingsproduktion. Det effektive atomnummer, Z eff,for en kemisk forbindelse eller en blanding af stoffer beregnes ud fra den relative forekomst, f i, af det samlede antal atomer i forbindelsens eller blandingens atomer med atomnummer, Z i. 8 Kapitel 4 - Ioniserende strålings vekselvirkning med stof

15 f = 3, MeV 1 Z E β,max Bremsestrålingsproduktion. Brøkdelen, f, af β-partiklers bevægelsesenergi, der omdannes til bremsestråling ved fuldstændig nedbremsning af β-partikler med maksimalenergien, E β,max, i et materiale med atomnummer, Z. ( Z eff = f i Z n i i )1 n Effektivt atomnummer for forbindelser og blandinger ved fotonvekselvirkning. Det effektive atomnummer, Z eff, for en kemisk forbindelse eller en blanding af stoffer beregnes ud fra den relative forekomst, f i, af det samlede antal atomer i forbindelsens eller blandingens atomer med atomnummer, Z i. σ f Zn E 3 γ For den kemiske forbindelse vand (H 2 O) er antallet af H-atomer med atomnummer 1 lig med 2, og antallet af O-atomer med atomnummer 8 lig med 1. Værdien af f i bliver da henholdsvis 2/3 (H) og 1/3 (O). Værdien af n afhænger af, hvilken størrelse, der skal bestemmes. n er værdien af den potens af atomnummeret, Z, der indgår i det fotontværsnit, der skal beregnes (se nedenfor). Er der f.eks. tale om det mikroskopiske tværsnit for pardannelse (se nedenfor), der er proportional med Z 2, bliver det effektive atomnummer for vand: Z eff =[(2/3) 1 2 +(1/3) 8 2 ] 1/2 = 4,69. Det mikroskopiske tværsnit for den fotoelektriske effekt (se nedenfor) er proportional med Z 4. Det effektive atomnummer for vand bliver da: Z eff = [(2/3) 1 4 +(1/3) 8 4 ] 1/4 = 6,08. Det effektive massetal, A eff, beregnes efter den samme metode. Mikroskopisk tværsnit for fotoelektrisk effekt. Tværsnit, σ f, for vekselvirkning med fotoner ved fotoelektrisk effekt. Tværsnittet afhænger af fotonenergien, E γ (skal indsættes i enheden MeV), og atomnummeret, Z, for det materiale, fotonerne vekselvirker med. Parameteren, n, harenværdiiintervallet4-4,6. Enheden for σ f er m 2 /atom. σ c Z E γ Mikroskopisk tværsnit for comptonspredning. Tværsnittet, σ c, for vekselvirkning med fotoner ved comptonspredning. Tværsnittet afhænger af fotonenergien, E γ (skal indsættes i enheden MeV), og atomnummeret, Z, for det materiale, fotonerne vekselvirker med. Enheden for σ c er m 2 /atom. Kapitel 4 - Ioniserende strålings vekselvirkning med stof 9

16 σ p Z 2 (E γ 1,02 MeV) Mikroskopisk tværsnit for pardannelse. Tværsnittet, σ p, for vekselvirkning med fotoner ved pardannelse. Tværsnittet afhænger af fotonenergien, E γ (skal indsættes i enheden MeV), og atomnummeret, Z, for det materiale, fotonerne vekselvirker med. Fotonenergien skal være større end 1,02 MeV, før vekselvirkningen kan finde sted. Enheden for σ p er m 2 /atom. σ tot = σ f + σ c + σ p Total tværsnit for foton-vekselvirkning. Summen af de mikroskopiske tværsnit for de enkelte typer af vekselvirkning. Enheden for de mikroskopiske tværsnit er m 2 /atom. μ m = σ tot NA A Masse-dæmpningskoefficient, μ m. Det makroskopiske tværsnit for alle typer fotonvekselvirkninger benævnes masse-dæmpningskoefficienten med enheden m 2 /kg. Det beregnes ud fra det totale mikroskopiske tværsnit, σ tot, og antallet af atomer pr. masseenhed, N A /A, af stoffet med massetallet, A. N A er Avogadros tal. μ = μ m ρ Lineær dæmpningskoefficient, μ. Det makroskopiske tværsnit for alle typer fotonvekselvirkninger kan også udtrykkes ved den lineære dæmpningskoefficient (se kapitel 10) med enheden (m 2 /kg) (kg/m 3 )(=m 1 ). Den beskriver sandsynligheden for, at en foton vekselvirker pr. længdeenhed i det materiale, den passerer. I(x) =I 0 e μx Den eksponentielle svækkelse af fotoner. Intensiteten af fotoner ved en detektor, I 0, udsendt fra en foton-kilde, vil blive svækket eksponentielt til intensiteten, I(x), når et absorberende materiale med tykkelsen, x, placeres mellem kilde og detektor. Comptonspredte fotoner, der rammer detektoren, er ikke inkluderet i intensiteten, I(x). Bidraget fra compton-spredte fotoner ved detektoren beskrives ved build-up faktoren, B (se kapitel 10). ( ΔE = E 0 1 ( )) 2 A 1 A+1 Neutronspredning. Hurtige og epitermiske (intermediære) neutroner mister energi ved sammenstød med atomer. ΔE er den maksimale energi, en neutron med energien, E 0,kan miste ved et sammenstød med et atom med massetallet A. 10 Kapitel 4 - Ioniserende strålings vekselvirkning med stof

17 A Z X(n,p) A Z 1 Y A Z X(n,α) A 3 Z 2 Y A Z X(n,2n)A 1 Z X A Z X(n,γ) A+1 Z X Neutronabsorption. Neutroner kan absorberes i atomkerner (X), som exciteres og henfalder under udsendelse af følgende partikler: én proton (n,p) én α-partikel (n,α) to neutroner (n,2n) én foton (n,γ) Q = m NA A NF σ a ϕ (1 e λ T ) Tværsnittet afhænger af neutronenergien. For termiske neutroner er tværsnittet for (n,α)-, (n,p)- og (n,2n)-processerne typisk i millibarn-området og for (n,γ)-processen typisk i barn-området. Induceret aktivitet. Når en neutron absorberes i en atomkerne, bliver den nye kerne ofte radioaktiv, f.eks. 59 Co(n,γ) 60 Co. Den inducerede aktivitet, Q, i en neutronbestrålet masse, m, overtiden,t, af et grundstof, der indeholder brøkdelen NF (naturlig forekomst) af den bestrålede nuklid med massetallet, A, kan beregnes, når absorptionstværsnittet, σ a,ogden termiske neutronfluencehastighed, ϕ, kendes. Når bestrålingstiden, T, bliver meget større end 1/λ, opnås maksimal aktivitet (mætningsaktivitet). Σ=σ tot NA A ρ I(x) =I 0 e Σ x Makroskopisk tværsnit for neutron-vekselvirkning. Det makroskopiske tværsnit, Σ, for alle typer af vekselvirkninger beregnes ud fra det totale mikroskopiske tværsnit, σ tot (σ 1 + σ 2 + σ ) ogantalletafatomerpr. m 3,(N A /A) ρ. Det har enheden m 1,ogdet svarer til den lineære dæmpningskoefficient, μ, for fotoner. Det beskriver sandsynligheden for, at en neutron vekselvirker pr. længdeenhed i det materiale, den passerer. Den eksponentielle svækkelse af neutroner. Neutroner svækkes ligesom fotoner eksponentielt gennem forskellige materialer. Intensiteten af neutroner ved en detektor, I 0, udsendt fra en neutronkilde, vil blive svækket eksponentielt til intensiteten, I(x), når et absorberende materiale med tykkelsen, x, placeres mellem kilde og detektor. Ligesom for fotoner kan der komme bidrag fra spredte neutroner til intensiteten, I(x). Kapitel 4 - Ioniserende strålings vekselvirkning med stof 11

18 5 Strålingsfelter og strålingsdoser - begreber og enheder ϕ(r) =A y 4 πr 2 Fluencehastighed omkring en punktkilde. Kilden har en styrke på A (Bq). Størrelsen y er fotonudbyttet (fotoner pr. henfald). Formlen for fluencehastigheden i afstanden, r, forudsætter, at ingen fotoner absorberes undervejs. Formlen kan også anvendes til beregning af fluencehastigheden fra en punktformig β-kilde, dog med begrænset gyldighed for afstanden r, fordi β-partikler vekselvirker kraftigt med luft. Fotonudbyttet skal da erstattes af β-partikel-udbyttet, p, iβ-partikler pr. henfald. K = ϕ E μtr ρ = ϕ F Ḋ = ϕ E μen ρ K = Ḋ Ḋ = ϕ S ρ Kermahastighed fra neutroner og fotoner. Kermahastigheden, K, fra monoenergetiske fotoner og neutroner beregnes ud fra fluencehastigheden, ϕ, partikelenergien, E, og masse-energi-overførselskoefficienten, μ tr /ρ for det betragtede stof. Produktet E μ tr /ρ kaldes kermafaktoren, der er vist i tabellerne 2 og 3 i kapitel 5 for henholdsvis monoenergetiske neutroner og fotoner. Absorberet dosishastighed fra fotoner. Ved ladet partikelligevægt (ladningsligevægt) i et bestrålet materiale kan den absorberede dosishastighed fra monoenergetiske fotoner beregnes ud fra fluencehastigheden, fotonenergien og masse-energi-absorptionskoefficienten for det bestrålede materiale, μ en /ρ. Kermahastighed og absorberet dosishastighed. Ved ladet partikelligevægt (ladningsligevægt) i et bestrålet volumen er den samlede energi af de frigjorte ladede partikler, der trænger ind i volumenet lig med den samlede energi af de ladede partikler, der forlader volumenet. I disse tilfælde er kerma/kermahastighed og absorberet dosis/absorberet dosishastighed lige store. Absorberet dosishastighed fra elektroner. For direkte ioniserende stråling som elektroner er den absorberede dosishastighed i et strålingsfelt givet ved produktet af partikelfluencehastigheden, ϕ, og masse-stoppeevnen, S/ρ. I tabel 6 i kapitel 5 er der angivet værdier af S/ρ for elektroner i væv. 12 Kapitel 5 - Strålingsfelter og strålingsdoser - begreber og enheder

19 RBE R (p) = D ref (p) D R (p) Relativ biologisk effektivitet. Den relative biologiske effektivitet (RBE) af forskellige strålingstyper, eksempelvis α- eller neutronstråling, beskriver, hvor effektiv denne strålingstype er til at frembringe en biologisk skade i forhold til en referencestråling (røntgen- eller γ-stråling). D R (p) og D ref (p) er den absorberede dosis for henholdsvis strålingstype, R, og referencestrålingen, der begge med sandsynligheden, p, frembringer den samme effekt, dvs. en biologisk skade af både samme type og samme alvor ved givne strålingsudsættelser. RBE er defineret for både deterministiske og stokastiske skader af forskellig art. RBE er større end eller lig med 1. RBE R,stokastisk w R Strålingsvægtfaktor. Strålingsvægtfaktorer anvendes for stokastiske skader. De er fremkommet ved en syntese af mange RBE-værdier. Strålingsvægtfaktorerne anvendes til beregning af ækvivalent dosis, der kun kan bruges til at vurdere risikoen for stokastiske skader. H T,R = w R D T,R Ækvivalent dosis. Sammenhængen mellem en eventuel strålingsskade og den absorberede middeldosis, D, er ikke entydig. Den absorberede dosis skal derfor vægtes eller modificeres med strålingsvægtfaktoren, w R, for den pågældende strålingstype, R, når det drejer sig om risikoen for stokastiske skader som følge af lave doser. Denne modificerede absorberede dosis, som kaldes ækvivalent dosis, H, beskriver bedre risikoen for en senskade, end den absorberede dosis gør alene. w T = = r T r T T r T r helkrop Vævsvægtfaktor. Kroppens organer har forskellig strålingsfølsomhed mht. udvikling af stokastiske skader i form af kræftsygdomme og genetiske skader. Sandsynligheden for en senskadevirkning pr. ækvivalent dosisenhed kan beskrives ved vægtfaktorerne, w T, for organer eller væv, T (tissue), og risikoen fra en helkropsbestråling, r helkrop,somw T r helkrop. Summen af risikofaktorerne for organerne, r T, er lig med risikofaktoren for en homogen helkropsbestråling, r helkrop, fordi alle organdoserne ved en sådan bestråling stort set er lig med helkropsdosen. Kapitel 5 - Strålingsfelter og strålingsdoser - begreber og enheder 13

20 E = H 1 w 1 + H 2 w 2 + = T H T w T Effektiv dosis. Hvis bestrålingen af kroppens organer er inhomogen, som det vil være tilfældet ved de fleste interne bestrålinger fra indtagne radionuklider (og for visse eksterne bestrålinger), er det nødvendigt med yderligere en størrelse for at angive den samlede risiko fra bestrålingen. Til dette formål har ICRP defineret regnestørrelsen effektiv dosis, E. Effektiv dosis er defineret som summen af produkterne af ækvivalent dosis til de enkelte organer, H T, og deres respektive vævsvægtfaktorer, w T (tabel 10 i kapitel 5). Hvis organerne alene bestråles internt eller bestråles samtidigt både internt og eksternt, er der tale om en committet effektiv dosis, E(50). S = N i=1 E i Kollektiv dosis. Den kollektive dosis, S, til en gruppe personer, N, er defineret som summen af de enkelte personers individdoser, E i, (effektive doser). Den kollektive dosis kan bruges til at beregne den gennemsnitlige individdosis, E = S/N. 14 Kapitel 5 - Strålingsfelter og strålingsdoser - begreber og enheder

21 6 Eksterne og interne strålingsdoser Ḣ γ (r) =Γ A r 2 Ḋ β (r) =B(r) A r 2 [ ] Gy m 2 h Bq [ ] Gy m 2 h Bq Gamma-konstanten, Γ. Beregning af ækvivalent-dosishastigheden til hele kroppen fra en punktformet radionuklid med aktiviteten, A, der udsender γ-fotoner, og som befinder sig i afstanden, r, fra personen. Formlen kan også bruges til at beregne kermahastigheden, K γ, den absorberede dosishastighed, Ḋ γ, eller eksponeringshastigheden, Ẋ, i luft, afhængig af værdi og enhed for Γ. Gamma-konstanten, Γ, udtrykker derfor ækvivalent-dosishastigheden (eller - afhængig af værdi og enhed - kermahastigheden, den absorberede dosishastighed eller eksponeringshastigheden i luft) i 1 meters afstand fra 1 Bq. I tabel 2 i kapitel 6 angiver gamma-konstanten eksponeringshastigheden iluftfra1bqienafstand på 1 meter fra nukliden (1 R (i luft) 0,01 Gy (i luft) 0,01 Sv (i væv)). Beta-dosishastighedsfunktionen, B(r). Beregning af den absorberede β-dosishastighed i luft fra en punktformet radionuklid med aktiviteten, A, der udsender β-partikler, og som befinder sig i afstanden, r, fra målepunktet. Formlen kan ikke bruges for afstande, der er større end β-partiklernes rækkevidde i luft. Beta-dosishastighedsfunktionen er vist på figur 5ikapitel6forenrækkeβ-emittere. Ḣ β = ḣβ q Dosis fra forurenet hud. Hud, der er kontamineret med β-aktive stoffer, udsættes for usvækket β-stråling som følge af den tætte kontakt. Tabel 3 i kapitel 6 indeholder værdier af ækvivalent-dosishastigheden, ḣβ, tildet følsomme hudlag pr. overfladekoncentration, q. 14 Gy Ḋ β 6 10 m3 s Bq C i E β,i p i dis MeV Beta-dosishastighed fra ophold i forurenet luft. Hvis man er omgivet af radioaktivt forurenet luft, bestråles legemet fra alle sider. Den resulterende absorberede dosishastighed fra β-strålingen, Ḋ β, er en øje- og huddosishastighed. C er aktivitetskoncentrationen, E β er middelenergien pr. β-partikel, og p er antallet af β-partikler pr. henfald. Kapitel 6 - Eksterne og interne strålingsdoser 15

22 14 Gy Ḋ γ 6 10 m3 s Bq C eller i dis MeV E γ,i y i (1 e μi R ) Ḋ γ = 1800 m C Γ (1 e μ R ) Gamma-dosishastighed fra ophold i forurenet luft. Hvis man er omgivet af radioaktivt forurenet luft, bestråles legemet fra alle sider. Den resulterende absorberede dosishastighed fra γ-strålingen, Ḋ γ, er en helkropsdosishastighed, der afhænger af volumenstørrelsen. Formlerne gælder for en sky med endelig udstrækning, der kan tilnærmes med en halvkugle med radius, R. Størrelsen μ i er her den lineære dæmpningskoefficient (se kapitel 10), der for fotonenergier på 0,5-1 MeV kan sættes til 0,01 m 1.Hvisμ i R 1(ogμ R 1), er der tale om en såkaldt halv- uendelig sky. C er aktivitetskoncentrationen i Bq/m 3, E γ er energien i MeV/foton, y er antallet af fotoner pr. henfald, Γ er kermahastighedskonstanten i Gy s 1 m 2 Bq 1,ogμ er middelværdien af den lineære dæmpningskoefficient over de i indgående fotonenergier og -udbytter. Tilbageholdelsesberegninger m 0,m(t),q 0,q(t),R(t) Udskillelsesberegninger m 0,q 0,U m (t),u(t),y(t),c u (t),u,f u Parametre til intern dosimetri. Beregningen af interne doser omfatter: - m 0 er masseindtaget til tiden t =0(g) - m(t) er indholdet i kroppen til tiden t efter indtaget (g) - q 0 er aktivitetsindtaget til tiden t =0(Bq) - q(t) er indholdet i kroppen til tiden t efter indtaget (Bq) - R(t) er tilbageholdelsesfunktionen, der beskriver forholdet mellem kropsindholdet, m(t), til tiden t efter indtaget og indtaget m 0 til tiden t =0 - U m (t) er udskillelsesraten fra kroppen via alle udskillelsesveje (urin, afføring, sved, udånding) til tiden t efter indtaget (g/d) - U(t) er udskillelsesraten fra kroppen via alle udskillelsesveje (urin, afføring, sved, udånding) til tiden t efter indtaget (Bq/d) - Y (t) er udskillelsesfunktionen, der beskriver forholdet mellem udskillelsesraten fra kroppen til tiden t efter indtaget, U m (t), og indtaget m 0 til tiden t =0(d 1 ) - C u (t) er aktivitetskoncentrationen i urin til tiden t efter indtaget (Bq/l) - u er den daglige afgivelse af urin (l/d) - F u er den brøkdel af udskillelsesraten fra kroppen, U(t),derskerviaurin 16 Kapitel 6 - Eksterne og interne strålingsdoser

23 R(t) = m(t) m 0 R(t) e λ f t = q(t) q 0 Y (t) = U m(t) m 0 Y (t) e λ f t = U(t) q 0 [ ] gram gram [ gram/d gram [ Bq/d Bq [ ] Bq Bq =d 1 =d 1 ] ] Tilbageholdelsesfunktionen, R(t), er et matematisk udtryk for den stofmængde, m(t), der er tilbageholdt i kroppen til et givet tidspunkt efter et indtag, divideret med indtaget m 0 af stoffet til tiden t =0.R(t) kan ofte udtrykkes som en sum af eksponentialfunktioner: R(t) =A 1 e λb1 t +A 2 e λb2 t +A 3 e 1λb3 t +.. hvor λ b1,λ b2,λ b3,.. er biologiske henfaldskonstanter, og A 1,A 2,A 3,..er konstanter. Summen af disse konstanter er 1. Er der tale om radioaktive stoffer, skal der tages hensyn til radioaktivt henfald. Derfor skal R(t) multipliceres med faktoren e λ f t,når den tilbageholdte aktivitet i kroppen til et givet tidspunkt, q(t), skal beregnes efter et aktivitetsindtag på q 0 til tiden t =0. Udskillelsesfunktionen, Y (t), er et matematisk udtryk for den stofmængde, U m (t), der pr. tidsenhed udskilles fra kroppen til et givet tidspunkt efter et indtag, divideret med indtaget m 0 af stoffet til tiden t =0.Y (t) kan ofte udtrykkes som en sum af eksponentialfunktioner: Y (t) =B 1 e λb1t + B 2 e λb2t + B 3 e λb3t +.. hvor λ b1,λ b2,λ b3,... er biologiske henfaldskonstanter, og B 1,B 2,B 3,... er konstanter. Disse konstanter kan udtrykkes ved A-konstanterne i den tilhørende tilbageholdelsesfunktion:: B 1 = λ b1 A 1,B 2 = λ b2 A 2, B 3 = λ b3 A 3,... Summen af B-konstanterne er - modsat summen af A-konstanterne - ikke lig med 1. Jo større B-konstant, jo hurtigere udskillelseshastighed. Er der tale om radioaktive stoffer, skal der tages hensyn til radioaktivt henfald. Derfor skal Y (t) multipliceres med faktoren e λ f t,når udskillelseshastigheden fra kroppen til et givet tidspunkt, U(t), skal beregnes efter et aktivitetsindtag på q 0 til tiden t =0. Tilbageholdelses- og udskillelsesfunktioner for forskellige stoffer. Disse funktioner gælder for grundstoffer uanset om de er radioaktive eller stabile. Tritieret vand: R(t) =e 0,07 t 0,07 d 1 t Y (t) = 0,07 e [d 1 ] Kapitel 6 - Eksterne og interne strålingsdoser 17

24 Cæsium: R(t) =0,1 e 0,3465 d 1 t 0,00693 d 1 t +0,9 e Y (t) = 0,03465 e 0,3465 d 1 t 0,00693 d 1 t + 0,0062 e [d 1 ] Cobolt: R(t) =0,5 e 1,386 d 1 t +0,3 e 0,116 d 1 t 0,0116 d 1 t +0,1 e 0, d 1 t + 0,1 e Y (t) = 0,693 e 1,386 d 1 t + 0,0348 e 0,116 d 1 t 0,0116 d 1 t + 0,00116 e 0, d 1 t + 0, e [d 1 ] q 0 = q(t) R(t) eλ f t Bestemmelse af indtag ved helkropsmåling. Måles kropsindholdet, q(t), i en helkropstæller til tiden, t, efter et indtag, q 0, kan dette indtag beregnes ved hjælp af tilbageholdelsesfunktionen, R(t). Faktoren e λ f t kan udelades, når λ f λ b,dvs.når den fysiske halveringstid, T f, er meget større end den biologiske halveringstid, T b. q 0 = C u(t) Y (t) u e λ f t F u C u (t) =q 0 Y (t) Fu u e λ f t q 0 = I C T Bestemmelse af indtag ved udskillelsesmåling. Måles koncentrationen, C u (t), af en given nuklid i urinen t dage efter et indtag på q 0, kan dette indtag beregnes ved hjælp af udskillelsesfunktionen, Y (t), og den daglige urinudskillelse, u. Størrelsen F u er den brøkdel, der udskilles via urinen. Faktoren e λ f t kan udelades, når λ f λ b,dvs.når den fysiske halveringstid, T f, er meget større end den biologiske halveringstid, T b. Aktivitetskoncentration i urinprøver. Efter et aktivitetsindtag, q 0,tiltident =0kan aktivitetskoncentrationen, i urin, C u (t), til tiden, t, efter indtaget beregnes ved hjælp af udskillelsesfunktionen, Y (t), og den daglige urinudskillelse u. Størrelsen F u er den brøkdel, der udskilles via urinen. Faktoren e λ f t kan udelades, når λ f λ b,dvs.når den fysiske halveringstid, T f, er meget større end den biologiske halveringstid, T b. Bestemmelse af indtag ved koncentrationsmåling. Måles koncentrationen af en given nuklid i luften, C, kan indtaget ved indånding med indåndingshastigheden, I (1,2 m 3 /h), i opholdstiden, T, bestemmes som produktet af de tre størrelser. 18 Kapitel 6 - Eksterne og interne strålingsdoser

25 T e = T b T f Effektiv halveringstid. Hvis den fysiske T b + T f halveringstid, T f er meget større end den biologiske halveringstid, T b, bliver T e = T b. Omvendt, hvis den fysiske halveringstid er meget mindre end den biologiske halveringstid, bliver T e = T f. Begrebet effektiv halveringstid gælder principielt kun for stoffer med en tilbageholdelsesfunktion med ét led. E(50) = q 0 e(50) Committet effektiv dosis fra indtag. Den committede effektive dosis, E(50), fra et indtag, q 0, af en given nuklid beregnes på grundlag af den committede effektive dosis pr. enhedsindtag, e(50), af denne nuklid. Værdier af e(50) ervistitabel6ikapitel6.værdierforalle nuklider er indeholdt i Basic Safety Standard (IAEA Safety Series No. 115). E(50) 1 μsv kbq/l Sammenhæng mellem begyndelseskoncentration af tritium i urin og committet effektiv dosis. Den committede effektive dosis fra et tritiumindtag er omkring 1 μsv pr. kbq/l tritium, der måles i en urinprøve kort tid efter indtaget. Kapitel 6 - Eksterne og interne strålingsdoser 19

26 7 Menneskets strålingsmiljø Ė(h) = 0,030 e a h+b h2 +c h 3 +d h 4 [μsv/h] a = 5, [km 1 ] b = 4, [km 2 ] c = 1, [km 3 ] d = 4, [km 4 ] Kosmisk stråling. Den effektive eksterne dosishastighed fra den kosmiske stråling vokser med højden, h, over havoverfladen - tilnærmelsesvis eksponentielt med højden op til 6000 meter. I større højder vokser den effektive dosishastighed lidt mindre end eksponentielt med højden. Den gennemsnitlige effektive dosishastighed under en jetflyrejse kan sættes til 2 μsv/h, svarende til den effektive dosishastighed i en højde på 8 km. Højden, h, skali formlen indsættes i enheden km, og formlen gælder op til en højde på 20kmoverhavoverfladen. 20 Kapitel 7 - Menneskets strålingsmiljø

27 8 Strålings biologiske virkninger S(D) =e (α D+β D2 ) Celleoverlevelse. Celleoverlevelse defineres som evnen til vedvarende vækst, dvs. evnen hos en overlevende celle til at danne datterceller. Antallet af overlevende celler i bestrålet væv vil aftage som funktion af stigende dosis. Overlevelsesfunktionen, S (engelsk: survival), for lav-let stråling kan beskrives ved en eksponentialfunktion. D er her den absorberede dosis, og α og β er konstanter, der afhænger af celletypen. D akut D frak N a T b D akut 0,8 dag Ḋ T 0,71 Dosis-fraktionering. Når en dosis opdeles i flere korttidsdoser, f.eks. ti korttidsdoser med et døgns mellemrum, taler man om en fraktioneret dosis. Fraktionerede eller udstrakte doser over længere tid er normalt mindre skadelige mht. deterministiske skader end doser af samme størrelse givet over kort tid (akut dosis). En af de mest brugte formler beskriver forholdet mellem den fraktionerede dosis, D frak,i N fraktioner i løbet af T dage, der giver den samme effekt som den akutte dosis, D akut. Konstanterne a og b afhænger af vævstypen. For tidlige hudreaktioner som erythem er a blevet bestemt til 0,24 og b til 0,11. Formlen anses for at være gyldig for et antal fraktioner på mellem 4 og 30. Tiden, T, skal indsættes i dage. Akut og kontinuerlig bestråling. Kirk har opstillet en formel, der kan tilpasses kontinuerlige helkropsbestrålinger med dosishastigheden, Ḋ, over tidsrummet T dage, og som giver samme deterministiske skade som en akut dosis, D akut.tiden,t,skalindsættesidage. ( ) 1/6 Aref Bestråling af huden. Alvorligheden af en D D ref A deterministisk skade til huden fra en given absorberet dosis afhænger primært af størrelsen af det bestrålede hudareal. Hvis det bestrålede areal, A, er lille, skal der en større dosis, D, til for at frembringe en hudskade, end hvis et større areal bliver bestrålet. D ref er den dosis, som giver en given skadevirkning på et hudareal med størrelsen A ref. Hvis eksempelvis en huddosis har medført en given skade på et bestrålet hudareal på 100 cm 2, skulle dosis have været 1,5 gange så stor for at give den samme skade på et10cm 2 hudareal på samme sted. Kapitel 8 - Strålings biologiske virkninger 21

28 9 Systemet for strålingsbeskyttelse α = BNPP R L Q = Y = α S DAC = 0,02 Sv/år e(50) = Q L 0,02 Sv/år e(50) L T 2000 DAC C Omkostning pr. sparet kollektiv dosisenhed, α. Kan bestemmes på grundlag af risikofaktoren, R ( 0,05 cancerdødsfald/sv), og det forventede levetidstab pr. cancerdødsfald, L (omkring 15 år/cancerdødsfald i gennemsnit). Det gennemsnitlige levetidstab, l, pr. dosisenhed er givet ved l = R L medenværdipå omkring 1 år/sv. En mulig værdi af α kan beregnes, hvis samfundet vil ofre, hvad der svarer til bruttonationalproduktet pr. person pr. år, BNPP, til at undgå et statistisk levetidstab på 1år. Dosisomkostning. Omkostningen, Y,afden forventede skadevirkning af den kollektive dosis, S, i form af tabte leveår kan beregnes som produktet af den kollektive dosis og omkostningen pr. sparet kollektiv dosisenhed, α. Sekundær grænseværdi. Når radioaktive stoffer indtages i organismen enten via indånding, via munden eller via huden, vil dosisgrænsen for effektiv dosis på 0,02Sv/år være overholdt, hvis det årlige indtag er mindre end Q Bq/år. Dosisgrænsen er den primære grænseværdi, og Q er den sekundære grænseværdi. Størrelsen, e(50), er den committede effektive dosis pr. enhedsindtag via den givne indtagsvej (indånding eller oralt). Afledt luftkoncentration, DAC. Af dosisgrænsen for effektiv dosis kan man beregne den luftkoncentration, der - hvis man opholder sig i denne i et helt arbejdsår på 2000 timer ( 50 uger á 40 timer/uge) - ville medføre et samlet indtag ved indånding, der ville give en committet, effektiv dosis lig med dosisgrænsen for den effektive dosis på 0,02Sv/år. Over et helt arbejdsår indåndes en samlet luftmængde, L, på 2400 m 3 /år. Hvis DAC-værdien således ikke overskrides over et helt arbejdsår, sikrer man, at dosisgrænsen ikke overskrides. Vurdering af opholdstid i forhold til dosisgrænse. For at sikre at dosisgrænsen for effektiv dosis ikke overskrides, skal denne relation mellem opholdstid, T, og luftkoncentration, C, overholdes. Eksempelvis vil dosisgrænsen ikke overskrides, hvis man opholder sig i en luftkoncentration, C, af en given radionuklid på 1 DAC i 2000 h/år eller 10 DAC i 200 h/år. 22 Kapitel 9 - Systemet for strålingsbeskyttelse

29 10 Strålingsafskærmning R a E α + k (E α ) n ρ R k (E β,max ) 1,32 ρ f β,spektrum Z E β,max 3000 Z E β 1000 f elek,mono Z E elek 800 Rækkevidde for α-partikler. Rækkevidden, R, for α-partikler i et stof kan tilnærmet udtrykkes ved hjælp af α-energien, E α, massefylden, ρ og konstanter a, k og n, der afhænger af det stof, α-partiklerne gennemtrænger. Energien, E α, og massefylden, ρ, skaliformlen indsættes i henholdsvis MeV og g/cm 3. Værdier af disse konstanter er givet i tabel 1 i kapitel 10 for forskellige materialer. Rækkevidde for β-partikler. Rækkevidden, R, for β-partikler i et stof kan tilnærmet udtrykkes ved hjælp af den maksimale β-energi, E β,max, massefylden, ρ og konstanten, k, der afhænger af det stof, β-partiklerne gennemtrænger. Energien, E β,max, og massefylden, ρ, skal i formlen indsættes i henholdsvis MeV og g/cm 3.Værdier af konstanten, k, ergivetitabel 2 i kapitel 10 for forskellige materialer. Bremsestråling fra nedbremsning af β- partikler. Ved fuldstændig nedbremsning af alle β-partiklerne i et materiale med atomnummer Z udsendes brøkdelen, f β,spektrum,af β-partiklernes energi som bremsestråling (se kapitel 4). Energien, E β,max, skal i formlen indsættes i MeV. Bremsestråling fra nedbremsning af monoenergetiske elektroner. For monoenergetiske elektroner (elektroner med samme energi) gælder ovenstående ligning ikke. I stedet kan denne tilnærmede ligning anvendes for den brøkdel, f elek,mono, der ved total nedbremsning udsendes som bremsestråling. Energien, E elek, skal i formlen indsættes i MeV. ϕ brems A 4 π r 2 f β,spektrum A 4 π r 2 Z E β,max 3000 Fluencehastighed fra bremsestråling. Forudsættes det, at der for hver β-partikel bliver dannet f β,spektrum bremsestrålingsfotoner, kan fotonfluencehastigheden fra bremsestrålingen beskrives ved dette udtryk. Energien, E β,max skal i formlen indsættes i MeV. Kapitel 10 - Strålingsafskærmning 23

30 Ė med =e μ x Transmission af kollimeret γ-strålingsfelt. Hvis et snævert og ensrettet (kollimeret) Ė uden γ-strålingsfelt fra en radioaktiv kilde, der udsender monoenergetiske fotoner, afskærmes med et materiale med tykkelsen, x, kan forholdet mellem den effektive dosishastighed med afskærmning, Ė med, og den effektive dosishastighed uden afskærmning, Ė uden, beskrives ved dette udtryk. Størrelsen μ kaldes den lineære dæmpningskoefficient, som afhænger af både fotonenergi og afskærmningsmaterialets atomnummer, Z. Ė med Ė uden B e μ x Transmission af bredt γ-strålingsfelt. Hvis strålingsfeltet ikke er kollimeret, men bredt eller isotropt, bliver forholdet Ėmed/Ėuden større end exp( μ x). Det skyldes, at fotoner, der vekselvirker med afskærmningsmaterialet og omgivelserne, spredes og rammer detektoren. Den dominerende process er spredning i afskærmningen, og denne process kaldes build-up, der kan beskrives ved build-up faktoren, B. Ligesom μ afhænger B af fotonenergien og afskærmningsmaterialets atomnummer, Z. TF = Ėmed Transmissionsfaktor for γ-stråling. Et Ė uden afskærmningsmateriales transmissionsfaktor, TF, for en given radionuklid og en given kildegeometri (punktkilde, liniekilde etc.) er defineret som forholdet mellem den effektive dosishastighed henholdsvis med, Ė med, og uden, Ė uden, afskærmning. x 1/2 = ln(2) μ x mid = 1 μ Halveringstykkelse for fotoner. Halveringstykkelsen er den afskærmningstykkelse, x 1/2, der er nødvendig for at halvere dosishastigheden fra de primære (ikke-spredte) fotoner i et givet punkt i et strålingsfelt af fotoner. Middelvejlængde for fotoner. Middelvejlængden er defineret som den vejlængde, x mid, en foton i gennemsnit tilbagelægger, inden den vekselvirker i det materiale, den bevæger sig i. f = 1 ( ) 2 A 1 Elastisk sammenstød for neutroner. Neutronstråling svækkes ved sammenstød med A +1 atomkerner - enten ved spredning eller ved absorption (se kapitel 4). For hurtige neutroner er det især spredning, der har betydning for neutronernes energitab. Sammenstødet kan enten være elastisk eller inelastisk. 24 Kapitel 10 - Strålingsafskærmning

31 Ved begge typer af sammenstød indfanges neutronen først i en kerne i afskærmningsmaterialet. Den maksimale del, f, af energien, der kan tabes ved et elastisk sammenstød, kan udtrykkes ved afskærmningsmaterialets massetal, A. TF = Ė med Ė uden e Σ x Transmissionsfaktor for neutroner. Transmissionsfaktoren, TF, er for neutroner defineret på samme måde som for γ-stråling. Σ er det makroskopiske tværsnit (se kapitel 4), og det er stærkt afhængig af afskærmningsmaterialet og neutronenergien. Til simple afskærmningsberegninger antages det, at Σ er konstant inden for hver af de tre energigrupper, termiske, epitermiske og hurtige neutroner. x 1/2 = ln(2) Σ λ = 1 Σ Halveringstykkelse for neutroner. Som for γ-stråling kan man definere en halveringstykkelse, der er den afskærmningstykkelse, x 1/2, der er nødvendig for at halvere dosishastigheden fra neutroner. Relaksationslængde for neutroner. Relaksationslængden, λ, er den vejlængde, en neutron i gennemsnit tilbagelægger, før den ved vekselvirkning fjernes fra beamet, enten ved at energien ændres, og/eller retningen ændres eller den bliver absorberet. Relaksationslængden, λ, for neutronstråling kaldes også den frie middelvejlængde, der svarer til middelvejlængden for γ- stråling. Kapitel 10 - Strålingsafskærmning 25

32 11 Helsefysisk arbejdshygiejne Ė flade,γ Sv h 1 Bq m 2 q μsv h 1 MBq m 2 q Ekstern γ-dosishastighed fra overflader. Ekstern, effektiv γ-dosishastighed, Ė flade,γ,til hele kroppen fra gulv og vægge i et rum af normal størrelse med overfladekontaminationen, q, for radionuklider med nogenlunde de samme γ-strålingsforhold som 137 Cs. Ḣ hud,β 250 μsv h 1 MBq m 2 q Ekstern β-dosishastighed til huden. Ækvivalent dosishastighed, Ḣ hud,β, til det følsomme hudlag fra en hudkontamination af størrelsen q. For radionuklider, der udsender både β- og γ-stråling, vil β-dosis til huden normalt være meget større end den tilsvarende γ-dosis (flere hundrede gange større). Ė β (50) = q 10 5 m 1 7 Sv m ,2 Bq h 2,5 μsv h 1 MBq m 2 q Ė α (50) = q 10 5 m 1 5 Sv m ,2 Bq h 250 μsv h 1 MBq m 2 q Indåndingsdosis fra ophvirvlet β-aktivitet. Den committede effektive indåndingsdosis pr. opholdstidsenhed fra ophvirvlet materiale vil afhænge af både radionuklid og af sammenhængen mellem overfladekoncentrationen, q, og luftkoncentrationen. Denne sammenhæng er bestemt af både overfladebeskaffenhed, form af overfladeforurening (partikelstørrelse etc.) samt måden, overfladen påvirkes på under det daglige arbejde. Formlen gælder for en værdi af ophvirvlingsfaktoren, RF, på10 5 m 1 og en værdi af e(50) for de mest radiotoksiske β-emittere på omkring Sv/Bq. For andre værdier af RF og e(50) kan E β (50) beregnes ved proportionering. Indåndingsdosis fra ophvirvlet α-aktivitet. Formlen gælder for en værdi af ophvirvlingsfaktoren, RF, på10 5 m 1 og en værdi af e(50) for de mest radiotoksiske α-emittere på omkring Sv/Bq. For andre værdier af RF og e(50) kan E α (50) beregnes ved proportionering. 26 Kapitel 11 - Helsefysisk arbejdshygiejne

33 12 Strålingsdetektering D m = W Sm S g ρg ρ m P Bragg-Gray-princippet. Et ionkammer kan bruges til at måle en absorberet dosis eller dosishastighed i et bestemt materiale. Metoden bygger på Bragg-Gray-princippet, som siger, at den absorberede dosis, D m, i et materiale kan findes ud fra den ionisering, der skabes i et lille, gasfyldt hulrum i materialet. W er den gennemsnitlige energi pr. dannet ionpar i gassen, S m /S g er forholdet mellem stoppeevnen for henholdsvis materiale og gas, ρ g /ρ m er forholdet mellem massefylderne af henholdsvis gas og materiale, og P er antallet af ionpar, der dannes pr. masseenhed af gassen. Ionkammerets vægmateriale skal ligne det materiale, i hvilket den absorberede dosis skal måles. Et ionkammer til måling af absorberet dosis opbygges derfor normalt med vægge, der er luft- eller vævsækvivalent. 10 B+n 7 Li + α BF 3 -detektorer. Specielle proportionalkamre anvendes til detektering af neutroner. I disse kan gassen være BF 3 (bor-triflourid), hvor det anvendte bor er beriget i 10 B, der har et stort tværsnit (3800 b) for indfangning af termiske neutroner. Indfangningen medfører udsendelse af en α-partikel (se kapitel 4). Den frigjorte α-partikel vil ionisere BF 3 -gassen, og ioniseringshastigheden er derved et mål for neutrondosishastigheden. ϕ = n(t) =ε abs C F λ Q(T ) σ N (1 e λ T ) (1 e λ t ) = ε abs C F t (når λ t 1) Bestemmelse af neutronfluencehastighed. Neutronfluencehastigheden, ϕ, kan bestemmes ved neutronaktivering af folier. Den inducerede aktivitet, Q(T ), efter endt bestrålingstid, T, bestemmes ved en γ-spektrometrisk analyse. Antallet af atomer i foliet, N, med massen, m, i gram beregnes som m/a, hvor A er atomvægten for den bestrålede nuklid i foliet (f.eks. 197 Au), og λ er henfaldskonstanten for den dannede radioaktive nuklid (f.eks. 198 Au). Tolkning af CAM-visning. Tællehastigheden, n(t), som funktion af tiden, t, påencam med absolut tælleeffektivitet, ε abs,ogflowhastighed, F, gennem filtret fra en koncentration i luft, C, af en radionuklid med henfaldskonstant, λ. Når tælletiden, t, er meget mindre end halveringstiden for den opsamlede aktivitet, stiger tællehastigheden lineært med tiden. Kapitel 12 - Strålingsdetektering 27

34 13 Prøvetagning, måling og resultatvurdering σ(n) = N σ r (N) = 100% N 1 N Absolut usikkerhed på tælletal. På grund af statistiske variationer vil der være usikkerhed på etmålt tælletal, N. Relativ usikkerhed på tælletal. Den relative usikkerhed på et målt tælletal, N, er givet ved den absolutte usikkerhed, σ(n) divideret med tælletallet. Den relative usikkerhed kan angives både i procent eller som decimaltal. σ(n) = N t Absolut usikkerhed på tællehastighed. Tællehastigheden, n, beregnes som tælletallet, N, divideret med tælletiden, t, forudsat at der kan ses bort fra henfaldskorrektion under måletiden. Den absolutte usikkerhed på tællehastigheden er da usikkerheden på tælletallet divideret med tælletiden, under forudsætning af at man kan se bort fra usikkerheden på måletiden. σ(n 1 ± N 2 )= σ(n 1 ) 2 + σ(n 1 ) 2 σ(n) = = N 1 + N 2 N tot TN 2 + N B TB 2 Absolut usikkerhed på sum eller differens mellem to tælletal. Den absolutte usikkerhed på summen eller differencen mellem to tælletal, N 1 og N 2. Absolut usikkerhed på baggrundskorrigeret tællehastighed. En prøve tælles over tiden, T N, til et total antal tællinger (inkl. baggrund), N tot. Baggrunden tælles over tiden, T B, til baggrundstællingerne, N B. Usikkerheden på den baggrundskorrigerede tællehastighed n =(N tot /T N ) (N B /T B )erσ(n). σ r (n) = σ(n) n 100% Relativ usikkerhed på baggrundskorrigeret tællehastighed. Den relative usikkerhed på den baggrundskorrigerede tællehastighed (nettotællehastigheden) findes som forholdet mellem den absolutte usikkerhed på nettotællehastigheden divideret med nettotællehastigheden. C = Q λ T op Korrektion for henfald under opsamling η F T op 1 e λ Top af luftprøver. En konstant koncentration, C, i luft af en radionuklid med en halveringstid sammenlignelig med opsamlingstiden, T op,bestemmes på grundlag af flowhastigheden, F, gennem filtret, opsamlingseffektiviteten, η, af filtret og den opsamlede aktivitet, Q, påfiltret. 28 Kapitel 13 - Prøvetagning, måling og resultatvurdering

Risø-R-677(3. udg.)(da) Kursus i helsefysik. Per Hedemann Jensen, Bente Lauridsen Jens Søgaard-Hansen, Lisbeth Warming

Risø-R-677(3. udg.)(da) Kursus i helsefysik. Per Hedemann Jensen, Bente Lauridsen Jens Søgaard-Hansen, Lisbeth Warming Risø-R-677(3. udg.)(da) Kursus i helsefysik Per Hedemann Jensen, Bente Lauridsen Jens Søgaard-Hansen, Lisbeth Warming Forskningscenter Risø, Roskilde Januar 2001 Risø-R-677(3. udg)(da) Kursus i helsefysik

Læs mere

Grundlæggende helsefysiske begreber og principper

Grundlæggende helsefysiske begreber og principper Risø-R-646(DA) Grundlæggende helsefysiske begreber og principper Per Hedemann Jensen Forskningscenter Risø, Roskilde December 1992 Risø-R-646(DA) Grundlæggende helsefysiske begreber og principper Per Hedemann

Læs mere

Grundlæggende helsefysiske begreber og principper

Grundlæggende helsefysiske begreber og principper DK.Q30OCO 8 Risø-R-646(DA) Grundlæggende helsefysiske begreber og principper Per Hedemann Jensen Forskningscenter Risø, Roskilde December 1992 Grundlæggende helsefysiske begreber og prinapper Per Hedemann

Læs mere

A KURSUS 2014 ATTENUATION AF RØNTGENSTRÅLING. Diagnostisk Radiologi : Fysik og Radiobiologi

A KURSUS 2014 ATTENUATION AF RØNTGENSTRÅLING. Diagnostisk Radiologi : Fysik og Radiobiologi A KURSUS 2014 Diagnostisk Radiologi : Fysik og Radiobiologi ATTENUATION AF RØNTGENSTRÅLING Erik Andersen, ansvarlig fysiker CIMT Medico, Herlev, Gentofte, Glostrup Hospital Attenuation af røntgenstråling

Læs mere

Grundlæggende om radioaktivitet, dosis og lovgivning. Thomas Levin Klausen Rigshospitalet 27 oktober 2005 og Oprindeligt: Søren Holm

Grundlæggende om radioaktivitet, dosis og lovgivning. Thomas Levin Klausen Rigshospitalet 27 oktober 2005 og Oprindeligt: Søren Holm Grundlæggende om radioaktivitet, dosis og lovgivning. Thomas Levin Klausen Rigshospitalet 27 oktober 2005 og Oprindeligt: Søren Holm To slags stråling: Partikler Fotoner (hvor kommer fotonerne fra?) Hvor

Læs mere

fysik fysik HELSE PER HEDEMANN JENSEN THOMMY INGEMANN LARSEN BENTE LAURIDSEN JENS SØGAARD-HANSEN ERIK THORN LISBETH WARMING

fysik fysik HELSE PER HEDEMANN JENSEN THOMMY INGEMANN LARSEN BENTE LAURIDSEN JENS SØGAARD-HANSEN ERIK THORN LISBETH WARMING Rapport Omslagsbog Beskåret format: 175 x 245 mm (b x h) Sideantal: 666 Indbinding: Fræset/limet Papir: 80g Cyclus Offset Resultat Bogblok: 33 mm Rygbredde: 33 mm Totale bredde: 383 mm Total højde: 245

Læs mere

Strålingsintensitet I = Hvor I = intensiteten PS = effekten hvormed strålingen rammer en given flade S AS = arealet af fladen

Strålingsintensitet I = Hvor I = intensiteten PS = effekten hvormed strålingen rammer en given flade S AS = arealet af fladen Strålingsintensitet Skal det fx afgøres hvor skadelig en given radioaktiv stråling er, er det ikke i sig selv relevant at kende aktiviteten af kilden til strålingen. Kilden kan være langt væk eller indkapslet,

Læs mere

Rækkevidde, halveringstykkelse og afstandskvadratloven

Rækkevidde, halveringstykkelse og afstandskvadratloven Rækkevidde, halveringstykkelse og afstandskvadratloven Eval Rud Møller Bioanalytikeruddannelsen VIA University College Marts 008 Program Indledende kommentarer. Rækkevidde for partikelstråling Opbremsning

Læs mere

2 Erik Vestergaard www.matematikfysik.dk

2 Erik Vestergaard www.matematikfysik.dk Erik Vestergaard 2 Erik Vestergaard www.matematikfysik.dk Erik Vestergaard www.matematikfysik.dk 3 Indholdsfortegnelse Kernefysik... 5 1. Facts om kernen i atomet... 5 2. Gammastråling og energiniveauer

Læs mere

Partikler med fart på Ny Prisma Fysik og kemi 9 Skole: Navn: Klasse:

Partikler med fart på Ny Prisma Fysik og kemi 9 Skole: Navn: Klasse: Partikler med fart på Ny Prisma Fysik og kemi 9 Skole: Navn: Klasse: Opgave 1 Et atom har oftest to slags partikler i atomkernen. Hvad hedder partiklerne? Der er 6 linjer. Sæt et kryds ud for hver linje.

Læs mere

Marie og Pierre Curie

Marie og Pierre Curie N Kernefysik 1. Radioaktivitet Marie og Pierre Curie Atomer består af en kerne med en elektronsky udenom. Kernen er ganske lille i forhold til elektronskyen. Kernens størrelse i sammenligning med hele

Læs mere

Medicinsk fysik. Side 1 af 11 sider

Medicinsk fysik. Side 1 af 11 sider Side 1 af 11 sider Vejledende eksempler på opgaver til den skriftlige prøve i fysik (stx) Fysik i det 21. århundrede Skoleåret 2018-19 Medicinsk fysik Opgaverne Opgave 1 Cyklotron til produktion af tallium

Læs mere

Brush-up Strålehygiejne Radiokemi og cyklotron 23/11/2015

Brush-up Strålehygiejne Radiokemi og cyklotron 23/11/2015 Brush-up Strålehygiejne Radiokemi og cyklotron 23/11/2015 Dagens program 12 15-12 45 Frokost 12 45-13 30 Introduktion. Lynkursus. Diverse observationer, anbefalinger 13 30-14 10 Gruppearbejder 14 10-15

Læs mere

Strålings indvirkning på levende organismers levevilkår

Strålings indvirkning på levende organismers levevilkår Strålings indvirkning på levende organismers levevilkår Niveau: 7.-9. klasse Varighed: 8 lektioner Præsentation: I forløbet Strålingens indvirkning på levende organismer arbejdes der med, hvad bestråling

Læs mere

m: masse i masseprocent : indhold i volumenprocent : indhold

m: masse i masseprocent : indhold i volumenprocent : indhold Kemisk formelsamling (C-niveau s kernestof samt en del formler, der hører hjemme på Kemi B ) Mængdeberegninger m: masse M: molar masse n : stofmængde : volumen ρ : densitet (massetæthed) c : koncentration

Læs mere

Henrik Loft Nielsen og Helge Knudsen HELSEFYSIK

Henrik Loft Nielsen og Helge Knudsen HELSEFYSIK Henrik Loft Nielsen og Helge Knudsen HELSEFYSIK Institut for Fysik og Astronomi Aarhus Universitet 2002 2 Helsefysik INDHOLD: side 1. Indledning... 3 2. Strålingskilder... 5 2.1 Stråling fra radioaktive

Læs mere

Kernefysik og dannelse af grundstoffer. Fysik A - Note. Kerneprocesser. Gunnar Gunnarsson, april 2012 Side 1 af 14

Kernefysik og dannelse af grundstoffer. Fysik A - Note. Kerneprocesser. Gunnar Gunnarsson, april 2012 Side 1 af 14 Kerneprocesser Side 1 af 14 1. Kerneprocesser Radioaktivitet Fission Kerneproces Fusion Kollisioner Radioaktivitet: Spontant henfald ( af en ustabil kerne. Fission: Sønderdeling af en meget tung kerne.

Læs mere

anhattan roject tombomben n n Erik Vestergaard

anhattan roject tombomben n n Erik Vestergaard T M A P anhattan he & roject tombomben 1 235 92 1 U 236 92 94 38 Sr n U* n 1 14 54 n Xe Erik Vestergaard 2 Indholdsfortegnelse 1. Indledning... 5 2. Facts om kernen i atomet... 5 3. Gammastråling og energiniveauer

Læs mere

Bachelorprojekt: Gennemgang af kendte effekter af ioniserende stråling

Bachelorprojekt: Gennemgang af kendte effekter af ioniserende stråling Bachelorprojekt: Gennemgang af kendte effekter af ioniserende stråling Rune Høirup Madsen Afleveringsdato: 15. december 2006. Omfang: 10 ECTS-point. Vejleder: Stig Steenstrup, NBI. INDHOLD 2 Indhold 1

Læs mere

Marie og Pierre Curie

Marie og Pierre Curie N Kernefysik 1. Radioaktivitet Marie og Pierre Curie Atomer består af en kerne med en elektronsky udenom. Kernen er ganske lille i forhold til elektronskyen. Kernens størrelse i sammenligning med hele

Læs mere

Atomets bestanddele. Indledning. Atomer. Atomets bestanddele

Atomets bestanddele. Indledning. Atomer. Atomets bestanddele Atomets bestanddele Indledning Mennesket har i tusinder af år interesseret sig for, hvordan forskellige stoffer er sammensat I oldtiden mente man, at alle stoffer kunne deles i blot fire elementer eller

Læs mere

Christian Søndergaard, Hospitalsfysiker

Christian Søndergaard, Hospitalsfysiker Christian Søndergaard, Hospitalsfysiker!"!" #!$ %&'( ) ) & *'( G. F. Knoll, Radiation Detection and Measurement, 3. udg. (2000) Kapitel 2, Radiation Interactions, s. 29-57. Aspekter Fundamental (fysisk)

Læs mere

Kulstof-14 datering. Første del: Metoden. Isotoper af kulstof

Kulstof-14 datering. Første del: Metoden. Isotoper af kulstof Kulstof-14 datering Første del: Metoden I slutningen af 1940'erne finder et team på University of Chicago under ledelse af Willard Libby ud af, at man kan bruge det radioaktive stof kulstof 14 ( 14 C),

Læs mere

Strålingsbeskyttelse ved accelerationsanlæg

Strålingsbeskyttelse ved accelerationsanlæg Medicinsk fysik p.1/21 Medicinsk fysik Strålingsbeskyttelse ved accelerationsanlæg Søren Weber Friis-Nielsen 3. maj 2005 weber@phys.au.dk Indhold Medicinsk fysik p.2/21 Overblik over strålingstyper Doser

Læs mere

Strålings vekselvirkning med stof

Strålings vekselvirkning med stof Strålings vekselvirkning med stof Forelæsning (25. februar 2008, 15 15-16 00 ) som del af kurset: Moderne acceleratorers fysik og anvendelse Med udgangspunkt i: G. F. Knoll, Radiation Detection and Measurement,

Læs mere

Torben Rosenørn. Aalborg Universitet. Campus Esbjerg

Torben Rosenørn. Aalborg Universitet. Campus Esbjerg Torben Rosenørn Aalborg Universitet Campus Esbjerg 1 Definition af syrer En syre er et stof som kan fraspalte en proton (H + ). H + optræder i vand sammen med et vandmolekyle (H 2 O) som H 3 O + Syrer

Læs mere

Dosis og dosisberegninger

Dosis og dosisberegninger Dosis og dosisberegninger Forskellige dosisbegreber Røntgenstråling er ioniserende elektromagnetisk stråling. Når røntgenstråling propagerer gennem et materiale, vil vekselvirkningen mellem strålingen

Læs mere

Absorption af Gammastråler i Vand og α strålers flyve længde i tågekamre

Absorption af Gammastråler i Vand og α strålers flyve længde i tågekamre Absorption af Gammastråler i Vand og α strålers flyve længde i tågekamre Aarhus Universitet - Institut for Fysik og Astronomi (IFA) 27. august 2018 I hverdagen støder vi på 3 forskellige typer stråling,

Læs mere

Absorption af γ-stråler i vand og α-strålers flyvelængde i et tågekammer

Absorption af γ-stråler i vand og α-strålers flyvelængde i et tågekammer Absorption af γ-stråler i vand og α-strålers flyvelængde i et tågekammer Aarhus Universitet - Institut for Fysik og Astronomi (IFA) 12. november 2018 28 Erik Vestergaard www.matematikfysik.dk I hverdagen

Læs mere

Forløbet består 4 fagtekster, 19 opgaver og 10 aktiviteter. Derudover er der Videnstjek.

Forløbet består 4 fagtekster, 19 opgaver og 10 aktiviteter. Derudover er der Videnstjek. Radioaktivitet Niveau: 9. klasse Varighed: 11 lektioner Præsentation: I forløbet Radioaktivitet arbejdes der med den naturlige og den menneskeskabte stråling. Der arbejdes endvidere med radioaktive stoffers

Læs mere

Nr. 6-2007 Grundstoffernes historie Fag: Fysik A/B/C Udarbejdet af: Michael Bjerring Christiansen, Århus Statsgymnasium, november 2008

Nr. 6-2007 Grundstoffernes historie Fag: Fysik A/B/C Udarbejdet af: Michael Bjerring Christiansen, Århus Statsgymnasium, november 2008 Nr. 6-007 Grundstoffernes historie Fag: Fysik A/B/C Udarbejdet af: Michael Bjerring Christiansen, Århus Statsgymnasium, november 008 Spørgsmål til artiklen. Hvilket grundstof, mente Hans Bethe, var det

Læs mere

Kernereaktioner. 1 Energi og masse

Kernereaktioner. 1 Energi og masse Kernereaktioner 7 1 Energi og masse Ifølge relativitetsteorien gælder det, at når der tilføres energi til et system, vil systemets masse altid vokse. Sammenhængen mellem energitilvæksten og massetilvækstener

Læs mere

Intern dosimeteri. Eval Rud Møller Bioanalytikeruddannelsen VIA University College September 2008

Intern dosimeteri. Eval Rud Møller Bioanalytikeruddannelsen VIA University College September 2008 Intern dosimeteri Eval Rud Møller Bioanalytikeruddannelsen VIA University Indhold Forskelle på intern og ekstern dosimetri. Enkel beregning Nem beregning ved brug af S-tabel Bedre beregning ved hjælp af

Læs mere

HVAD ER RADIOAKTIV STRÅLING

HVAD ER RADIOAKTIV STRÅLING 16. Radioaktiv stråling kaldes i videnskabelige kredse Joniserende stråling Stråling som påvirker alt stof ved at danne joner, som er elektrisk ladede atomer eller molekyler. Joniserende stråling skader

Læs mere

Projekt 4.10. Minamata-katastrofen. En modellering af ligevægt mellem lineær vækst og eksponentiel henfald

Projekt 4.10. Minamata-katastrofen. En modellering af ligevægt mellem lineær vækst og eksponentiel henfald Projekt 4.10. Minamata-katastrofen. En modellering af ligevægt mellem lineær vækst og eksponentiel henfald Der findes mange situationer, hvor en bestemt størrelse ændres som følge af vekselvirkninger med

Læs mere

Dansk Fysikolympiade 2007 Landsprøve. Prøven afholdes en af dagene tirsdag den 9. fredag den 12. januar. Prøvetid: 3 timer

Dansk Fysikolympiade 2007 Landsprøve. Prøven afholdes en af dagene tirsdag den 9. fredag den 12. januar. Prøvetid: 3 timer Dansk Fysikolympiade 2007 Landsprøve Prøven afholdes en af dagene tirsdag den 9. fredag den 12. januar Prøvetid: 3 timer Opgavesættet består af 6 opgaver med tilsammen 17 spørgsmål. Svarene på de stillede

Læs mere

Strålehygiejne, dosimetri, Beredskabsplan og dekontaminering

Strålehygiejne, dosimetri, Beredskabsplan og dekontaminering Strålehygiejne, dosimetri, Beredskabsplan og dekontaminering Thomas Levin Klausen Ansvarlig fysiker Department of Clinical Physiology, Nuclear Medicine & PET Rigshospitalet, University of Copenhagen Denmark

Læs mere

Leverandørbrugsanvisning. for. Risø Demonstrationskilder

Leverandørbrugsanvisning. for. Risø Demonstrationskilder Leverandørbrugsanvisning for Risø Demonstrationskilder Forskningscenter Risø Hevesy Laboratoriet Frederiksborgvej 399 DK-4000 Roskilde 1. Introduktion Denne brugsanvisning gælder for alfa-, beta- og gammademonstrationskilder,

Læs mere

Fysikforløb nr. 6. Atomfysik

Fysikforløb nr. 6. Atomfysik Fysikforløb nr. 6. Atomfysik I uge 8 begynder vi på atomfysik. Derfor får du dette kompendie, så du i god tid, kan begynde, at forberede dig på emnet. Ideen med dette kompendie er også, at du her får en

Læs mere

Hvor mange neutroner og protoner er der i plutonium-isotopen

Hvor mange neutroner og protoner er der i plutonium-isotopen Atomet Tjek din viden om atomet. 3.1 4.1 Atommasse måles i Skriv navnene på partiklerne i atomet. Hvad angiver tallene i den kernefysiske skrivemåde? 4 2 He 13 6 Tegn atomkernen til kulstof-isotopen C.

Læs mere

Afleveringsopgaver i fysik

Afleveringsopgaver i fysik Afleveringsopgaver i fysik Opgavesættet skal regnes i grupper på 2-3 personer, helst i par. Hver gruppe afleverer et sæt. Du kan finde noget af stoffet i Orbit C side 165-175. Opgave 1 Tegn atomerne af

Læs mere

Fysik A. Studentereksamen

Fysik A. Studentereksamen Fysik A Studentereksamen stx132-fys/a-15082013 Torsdag den 15. august 2013 kl. 9.00-14.00 Side 1 af 9 sider Side 1 af 9 Billedhenvisninger Opgave 1 U.S. Fish and wildlife Service Opgave 2 http://stardust.jpl.nasa.gov

Læs mere

Løsninger til udvalgte opgaver i opgavehæftet

Løsninger til udvalgte opgaver i opgavehæftet V3. Marstal solvarmeanlæg a) Den samlede effekt, som solfangeren tilføres er Solskinstiden omregnet til sekunder er Den tilførte energi er så: Kun af denne er nyttiggjort, så den nyttiggjorte energi udgør

Læs mere

TEORETISKE MÅL FOR EMNET:

TEORETISKE MÅL FOR EMNET: TEORETISKE MÅL FOR EMNET: Kende forskel på grundstof, ion og isotop samt kunne redegøre for, hvori forskellene består Kende de forskellige strålingstyper (α, β, γ og evt. ε) samt kunne redegøre for, hvori

Læs mere

Teknikken er egentlig meget simpel og ganske godt illustreret på animationen shell 4-5.

Teknikken er egentlig meget simpel og ganske godt illustreret på animationen shell 4-5. Fysikken bag Massespektrometri (Time Of Flight) Denne note belyser kort fysikken bag Time Of Flight-massespektrometeret, og desorptionsmetoden til frembringelsen af ioner fra vævsprøver som er indlejret

Læs mere

Eksamen i fysik 2016

Eksamen i fysik 2016 Eksamen i fysik 2016 NB: Jeg gør brug af DATABOG fysik kemi, 11. udgave, 4. oplag & Fysik i overblik, 1. oplag. Opgave 1 Proptrækker Vi kender vinens volumen og masse. Enheden liter omregnes til kubikmeter.

Læs mere

Absorption af Gammastråler i Vand og α strålers flyve længde i tågekamre

Absorption af Gammastråler i Vand og α strålers flyve længde i tågekamre Absorption af Gammastråler i Vand og α strålers flyve længde i tågekamre Aarhus Universitet - Institut for Fysik og Astronomi (IFA) 27. august 2018 I hverdagen støder vi på 3 forskellige typer stråling,

Læs mere

Atomer er betegnelsen for de kemisk mindste dele af grundstofferne.

Atomer er betegnelsen for de kemisk mindste dele af grundstofferne. Atomets opbygning Atomer er betegnelsen for de kemisk mindste dele af grundstofferne. Guldatomet (kemiske betegnelse: Au) er f.eks. det mindst stykke metal, der stadig bærer navnet guld, det kan ikke yderlige

Læs mere

Folkeskolens afgangsprøve Maj-juni 2006 Fysik / kemi - Facitliste

Folkeskolens afgangsprøve Maj-juni 2006 Fysik / kemi - Facitliste Folkeskolens afgangsprøve Maj-juni 2006 1/25 Fk5 Opgave 1 / 20 (Opgaven tæller 5 %) I den atommodel, vi anvender i skolen, er et atom normalt opbygget af 3 forskellige partikler: elektroner, neutroner

Læs mere

Atom og kernefysik Radioaktive atomkerner. Hvor stort er et atom? Niels Bohr. Elementarpartikler. Opdagelsen af de radioaktive atomkerner

Atom og kernefysik Radioaktive atomkerner. Hvor stort er et atom? Niels Bohr. Elementarpartikler. Opdagelsen af de radioaktive atomkerner Atom og kernefysik Radioaktive atomkerner Opdagelsen af de radioaktive atomkerner På jorden har de radioaktive stoffer altid eksisteret. Først opdagende Wilhelm Conrad Röntgen (845-923) røntgenstrålerne

Læs mere

A KURSUS 2014 Diagnostisk Radiologi : Fysik og Radiobiologi DANNELSE AF RØNTGENSTRÅLING

A KURSUS 2014 Diagnostisk Radiologi : Fysik og Radiobiologi DANNELSE AF RØNTGENSTRÅLING A KURSUS 2014 Diagnostisk Radiologi : Fysik og Radiobiologi DANNELSE AF RØNTGENSTRÅLING Erik Andersen, ansvarlig fysiker CIMT Medico Herlev, Gentofte, Glostrup Hospital Røntgenstråling : Røntgenstråling

Læs mere

Strålings vekselvirkning med stof

Strålings vekselvirkning med stof Forelæsning (7. december 2015, 08 15-9 00 ) som del af kurset: Moderne acceleratorers fysik og anvendelse Strålings vekselvirkning med stof Christian Skou Søndergaard Hospitalsfysiker Medicinsk Fysik Aarhus

Læs mere

Måling af niveau og densitet med radioaktiv stråling.

Måling af niveau og densitet med radioaktiv stråling. www.insatech.com Det radiometriske måleprincip Fordele ved det radiometriske system: Sikker og pålidelig måling Berøringsløs måling Minimal vedligeholdelse Ingen bevægelige dele Uafhængig af ændringer

Læs mere

Sikkerhedskursus ved MBG

Sikkerhedskursus ved MBG Sikkerhedskursus ved MBG Laboratorieadfærd 2013 Kurset består af 3 moduler Laboratorieadfærd Brandbekæmpelse (august 2013) Grundkursus i førstehjælp (21-22.august 2013) 1 Kurset består af 3 moduler Laboratorieadfærd

Læs mere

Dosis til øjets linse

Dosis til øjets linse Dosis til øjets linse Ny nedsat grænse for dosis til øjets linse Den 6. februar 2018 trådte ny lovgivning om ioniserende stråling og strålebeskyttelse i kraft 1. Lovgivningen betyder bl.a., at dosisgrænsen

Læs mere

Fysik og kemi i 8. klasse

Fysik og kemi i 8. klasse Fysik og kemi i 8. klasse Teori til fysik- og kemiøvelserne ligger på nettet: fysik8.dk Udgivet af: Beskrivelser af elevforsøg Undervisningsforløb om atomfysik, mål & vægt, hverdagskemi, sæbe, metaller,

Læs mere

Sammenligning af risikoen ved stråling og cigaretrygning

Sammenligning af risikoen ved stråling og cigaretrygning Sammenligning af risikoen ved stråling og cigaretrygning PER HEDEMANN JENSEN 1 Risiko Risiko er et udtryk for sandsynlighed for en uønsket hændelse. Sandsynligheden eller hyppigheden udtrykkes ved antallet

Læs mere

Formelsamling. til nuklearmedicinsk isotopteknik og kinetik

Formelsamling. til nuklearmedicinsk isotopteknik og kinetik Formelsamling til nuklearmedicinsk isotopteknik og kinetik 2 Formelsamling Indholdsfortegnelse Forord... 5 Del 1: Isotopkurser... 6 Absorberet dosis... 6 Absorption og attenuation (α)... 6 Absorption og

Læs mere

Strålebeskyttelse helsefysik

Strålebeskyttelse helsefysik Forelæsning (7. december 2015, 9 15-10 00 ) som del af kurset: Moderne acceleratorers fysik og anvendelse Strålebeskyttelse helsefysik Christian Skou Søndergaard Hospitalsfysiker Medicinsk Fysik Aarhus

Læs mere

Radon den snigende dræber. Bjerringbro 28. nov. 2018

Radon den snigende dræber. Bjerringbro 28. nov. 2018 Radon den snigende dræber Bjerringbro 28. nov. 2018 Indhold Syv linjer. Det er sket i virkeligheden Mindmap Nedslag 1: Baggrundsstålingen Nedslag 2: Radon kortet/danmarks undergrund Nedslag 3: Boringsdatabasen

Læs mere

Densitet (også kendt som massefylde og vægtfylde) hvor

Densitet (også kendt som massefylde og vægtfylde) hvor Nogle begreber: Densitet (også kendt som massefylde og vægtfylde) Molekylerne er tæt pakket: høj densitet Molekylerne er langt fra hinanden: lav densitet ρ = m V hvor ρ er densiteten m er massen Ver volumen

Læs mere

Theory Danish (Denmark)

Theory Danish (Denmark) Q3-1 Large Hadron Collider (10 point) Læs venligst de generelle instruktioner fra den separate konvolut, før du starter på denne opgave. Denne opgave handler om fysikken bag partikelacceleratorer LHC (Large

Læs mere

Vikar-Guide. Den elektriske ladning af en elektron er -1 elementarladning, og den elektriske ladning af protonen er +1 elementarladning.

Vikar-Guide. Den elektriske ladning af en elektron er -1 elementarladning, og den elektriske ladning af protonen er +1 elementarladning. Vikar-Guide Fag: Klasse: OpgaveSæt: Fysik/Kemi 9. klasse Atomernes opbygning 1. Fælles gennemgang: Eleverne skal løse opgaverne i små grupper på 2-3 personer. De skal bruge deres grundbog, og alternativt

Læs mere

Røntgenøvelser på SVS

Røntgenøvelser på SVS Røntgenøvelser på SVS Øvelsesvejledning Endelig vil du se hvordan radiograferne kan styre kvaliteten af billedet ved hjælp af mængden af stråling og energien af strålingen. Ved CT-scanneren vil du kunne

Læs mere

Udledning af den barometriske højdeformel. - Beregning af højde vha. trykmåling. af Jens Lindballe, Silkeborg Gymnasium

Udledning af den barometriske højdeformel. - Beregning af højde vha. trykmåling. af Jens Lindballe, Silkeborg Gymnasium s.1/5 For at kunne bestemme cansatsondens højde må vi se på, hvorledes tryk og højde hænger sammen, når vi bevæger os opad i vores atmosfære. I flere fysikbøger kan man læse om den Barometriske højdeformel,

Læs mere

Big Bang Modellen. Varmestråling, rødforskydning, skalafaktor og stofsammensætning.

Big Bang Modellen. Varmestråling, rødforskydning, skalafaktor og stofsammensætning. Big Bang Modellen Varmestråling, rødforskydning, skalafaktor og stofsammensætning. Jacob Nielsen 1 Varmestråling spiller en central rolle i forståelsen af universets stofsammensætning og udvikling. Derfor

Læs mere

Teoretiske Øvelser Mandag den 28. september 2009

Teoretiske Øvelser Mandag den 28. september 2009 Hans Kjeldsen hans@phys.au.dk 21. september 2009 Teoretiske Øvelser Mandag den 28. september 2009 Øvelse nr. 10: Solen vor nærmeste stjerne Solens masse-lysstyrkeforhold meget stort. Det vil sige, at der

Læs mere

Eksponentielle funktioner for C-niveau i hf

Eksponentielle funktioner for C-niveau i hf Eksponentielle funktioner for C-niveau i hf 2017 Karsten Juul Procent 1. Procenter på en ny måde... 1 2. Bestem procentvis ændring... 2 3. Bestem begyndelsesværdi... 2 4. Bestem slutværdi... 3 5. Vækstrate...

Læs mere

Til at beregne varmelegemets resistans. Kan ohms lov bruges. Hvor R er modstanden/resistansen, U er spændingsfaldet og I er strømstyrken.

Til at beregne varmelegemets resistans. Kan ohms lov bruges. Hvor R er modstanden/resistansen, U er spændingsfaldet og I er strømstyrken. I alle opgaver er der afrundet til det antal betydende cifre, som oplysningen med mindst mulige cifre i opgaven har. Opgave 1 Færdig Spændingsfaldet over varmelegemet er 3.2 V, og varmelegemet omsætter

Læs mere

Berøringsfri måling med radiometrisk måling niveau- og densitetsmåling INSA 1 / 14

Berøringsfri måling med radiometrisk måling niveau- og densitetsmåling INSA 1 / 14 Berøringsfri måling med radiometrisk måling niveau- og densitetsmåling INSA 1 / 14 Måleprincip 1 4 Niveau switch (1) Kontinuert niveau (2) Densitet og koncentration (3) Interface (4) 2 3 INSA 2 / 14 Fordele

Læs mere

Manhattan Projektet. 1. Grundlæggende kernefysik. Atombomben 1945. 1. Grundlæggende kernefysik. 1. Grundlæggende kernefysik. AT1 i 1z, marts 2011

Manhattan Projektet. 1. Grundlæggende kernefysik. Atombomben 1945. 1. Grundlæggende kernefysik. 1. Grundlæggende kernefysik. AT1 i 1z, marts 2011 Manhattan Projektet AT1 i 1z, marts 2011 Manhattan Projektet Foregik under 2. verdenskrig Projektet mål var at opfinde og fremstille atombomben Skulle være før tyskerne! Fysikere, som var flygtet fra nazisterne

Læs mere

Når enderne af en kobbertråd forbindes til en strømforsyning, bevæger elektronerne i kobbertråden sig (fortrinsvis) i samme retning.

Når enderne af en kobbertråd forbindes til en strømforsyning, bevæger elektronerne i kobbertråden sig (fortrinsvis) i samme retning. E2 Elektrodynamik 1. Strømstyrke Det meste af vores moderne teknologi bygger på virkningerne af elektriske ladninger, som bevæger sig. Elektriske ladninger i bevægelse kalder vi elektrisk strøm. Når enderne

Læs mere

Dansk Fysikolympiade 2009 Landsfinale fredag den 21. november Teoretisk prøve. Prøvetid: 3 timer

Dansk Fysikolympiade 2009 Landsfinale fredag den 21. november Teoretisk prøve. Prøvetid: 3 timer Dansk Fysikolympiade 2009 Landsfinale fredag den 21. november 2008 Teoretisk prøve Prøvetid: 3 timer Opgavesættet består af 6 opgaver med i alt 17 spørgsmål. Bemærk at de enkelte spørgsmål ikke tæller

Læs mere

Kapitel 7 Matematiske vækstmodeller

Kapitel 7 Matematiske vækstmodeller Matematiske vækstmodeller I matematik undersøger man ofte variables afhængighed af hinanden. Her ser man, at samme type af sammenhænge tit forekommer inden for en lang række forskellige områder. I kapitel

Læs mere

1. ATOMET. Elementarpartikel Ladning Masse (u) Antalsbetegnelse PROTON +1 1,0073 Z NEUTRON 0 1,0087 N ELEKTRON -1 0,00055. 1u = ét C-12 atoms masse

1. ATOMET. Elementarpartikel Ladning Masse (u) Antalsbetegnelse PROTON +1 1,0073 Z NEUTRON 0 1,0087 N ELEKTRON -1 0,00055. 1u = ét C-12 atoms masse 1. ATOMET Elementarpartikel Ladning Masse (u) Antalsbetegnelse PROTON +1 1,0073 Z NEUTRON 0 1,0087 N ELEKTRON -1 0,00055 A = antal nukleoner (nukleontallet, massetallet). Z = antal protoner (protontallet,

Læs mere

Partiklers energitab i boblekammer. Mads Sørensen, Jacob Svensmark og Rune Boas 27. marts 2006

Partiklers energitab i boblekammer. Mads Sørensen, Jacob Svensmark og Rune Boas 27. marts 2006 Partiklers energitab i boblekammer Mads Sørensen, Jacob Svensmark og Rune Boas 27. marts 2006 1 Indhold 1 Indledning 3 2 Boblekammeret 3 2.1 Boblekammeret............................ 3 2.2 SHIVA.................................

Læs mere

Stråling. Strålebiologi og strålehygiejne. Stråling. Stråling. Stråling. Ioniserende stråling 28-03-2011

Stråling. Strålebiologi og strålehygiejne. Stråling. Stråling. Stråling. Ioniserende stråling 28-03-2011 Strålebiologi og strålehygiejne er en energiform, som er karakteriseret ved, at energien forplanter sig bort fra det sted, hvorfra den udgår. Hanne Hintze Afd. for Oral Radiologi Århus Tandlægeskole senergi

Læs mere

Løsninger til eksamensopgaver på fysik A-niveau maj 2015

Løsninger til eksamensopgaver på fysik A-niveau maj 2015 Løsninger til eksamensopgaver på fysik A-niveau 2015 26. maj 2015 Opgave 1: Sous vide a) Når man regner med, at varmelegemet er en simpel modstand, gælder Ohms 1. lov U RI også, når det er vekselstrøm,

Læs mere

Eksponentielle sammenhænge

Eksponentielle sammenhænge Eksponentielle sammenhænge 0 1 2 3 4 5 6 7 8 9 10 11 12 13 Indholdsfortegnelse Variabel-sammenhænge... 1 1. Hvad er en eksponentiel sammenhæng?... 2 2. Forklaring med ord af eksponentiel vækst... 2, 6

Læs mere

A KURSUS 2014 Diagnostisk Radiologi : Fysik og Radiobiologi GRUNDLÆGGENDE DOSIMETRI

A KURSUS 2014 Diagnostisk Radiologi : Fysik og Radiobiologi GRUNDLÆGGENDE DOSIMETRI A KURSUS 2014 Diagnostisk Radiologi : Fysik og Radiobiologi GRUNDLÆGGENDE DOSIMETRI Erik Andersen, ansvarlig fysiker CIMT Medico, Herlev, Gentofte, Glostrup Hospital Fysiske størrelser og enheder : Fysisk

Læs mere

Eksperimentelle øvelser, øvelse nummer 3 : Røntgenstråling målt med Ge-detektor

Eksperimentelle øvelser, øvelse nummer 3 : Røntgenstråling målt med Ge-detektor Modtaget dato: (forbeholdt instruktor) Godkendt: Dato: Underskrift: Eksperimentelle øvelser, øvelse nummer 3 : Røntgenstråling målt med Ge-detektor Kristian Jerslev, Kristian Mads Egeris Nielsen, Mathias

Læs mere

En lille verden Ny Prisma Fysik og kemi 8. Skole: Navn: Klasse:

En lille verden Ny Prisma Fysik og kemi 8. Skole: Navn: Klasse: En lille verden Ny Prisma Fysik og kemi 8 Skole: Navn: Klasse: For at løse nogle af opgaverne skal du benytte Nuklidtabel A og B på kopiark 6.4 og 6.5 i Kopimappe B, Ny Prisma 8. Opgave 1 Et atom består

Læs mere

Øvelse 2: Myonens levetid

Øvelse 2: Myonens levetid Øvelse 2: Myonens levetid Det er en almindelig opfattelse at rigtigheden af relativitetsteorien nødvendigvis er vanskelig at eftervise eksperimentelt. Det er den faktisk ikke. Et lille eksperiment (og,

Læs mere

MODUL 5 ELLÆRE: INTRONOTE. 1 Basisbegreber

MODUL 5 ELLÆRE: INTRONOTE. 1 Basisbegreber 1 Basisbegreber ellæren er de mest grundlæggende størrelser strøm, spænding og resistans Strøm er ladningsbevægelse, og som det fremgår af bogen, er strømmens retning modsat de bevægende elektroners retning

Læs mere

Sæt GM-tællererne til at tælle impulser i 10 sekunder. Sørg for at alle kendte radioaktive kilder er placeret langt væk fra målerøret.

Sæt GM-tællererne til at tælle impulser i 10 sekunder. Sørg for at alle kendte radioaktive kilder er placeret langt væk fra målerøret. Forsøge med stråling fra radioaktive stoffer Stråling fra radioaktive stoffer. Den stråling, der kommer fra radioaktive stoffer, kaldes for ioniserende stråling. Den kan måles med en Geiger-Müler-rør koblet

Læs mere

september 2005 Stråling, Beskyttelse, Hygiejne & Håndtering af radioaktive isotoper

september 2005 Stråling, Beskyttelse, Hygiejne & Håndtering af radioaktive isotoper september 2005 Stråling, Beskyttelse, Hygiejne & Håndtering af radioaktive isotoper 1 Del A: Stråling og Radioaktivitet...7 1.1 Fysik principper...7 1.1.1 Hvad er.? Vigtig terminologi kort sagt...7 Stråling:...7

Læs mere

Medicinsk Fysik. Fysiklærerdag på Aarhus Universitet 23. Januar 2004

Medicinsk Fysik. Fysiklærerdag på Aarhus Universitet 23. Januar 2004 Medicinsk Fysik Fysiklærerdag på Aarhus Universitet 23. Januar 2004 Hospitalsfysiker Mette Skovhus Thomsen Afdeling for Medicinsk Fysik Århus Sygehus Menu Medicinsk Fysik Grundlæggende begreber Fotoners

Læs mere

Naturkræfter Man skelner traditionelt set mellem fire forskellige naturkræfter: 1) Tyngdekraften Den svageste af de fire naturkræfter.

Naturkræfter Man skelner traditionelt set mellem fire forskellige naturkræfter: 1) Tyngdekraften Den svageste af de fire naturkræfter. Atomer, molekyler og tilstande 3 Side 1 af 7 Sidste gang: Elektronkonfiguration og båndstruktur. I dag: Bindinger mellem atomer og molekyler, idet vi starter med at se på de fire naturkræfter, som ligger

Læs mere

Universets opståen og udvikling

Universets opståen og udvikling Universets opståen og udvikling 1 Universets opståen og udvikling Grundtræk af kosmologien Universets opståen og udvikling 2 Albert Einstein Omkring 1915 fremsatte Albert Einstein sin generelle relativitetsteori.

Læs mere

December Appendiks 2 Retningslinjer om anvendelse af ioniserende stråling i sundhedsvidenskabelige forsøg

December Appendiks 2 Retningslinjer om anvendelse af ioniserende stråling i sundhedsvidenskabelige forsøg December 2011 Appendiks 2 Retningslinjer om anvendelse af ioniserende stråling i sundhedsvidenskabelige forsøg Almindelige bestemmelser Enhver anvendelse af ioniserende stråling fra røntgenkilder eller

Læs mere

Formelsamling i astronomi. November 2015.

Formelsamling i astronomi. November 2015. Formelsamling i astronomi. November 015. Formelsamlingen er ikke komplet det bliver den nok aldrig. Men måske kan alligevel være til en smule gavn. Sammenhæng mellem forskellige tidsenheder: Jordens sideriske

Læs mere

Radiohalos. Af Finn Lykke Nielsen Boelsmand, cand. polyt. med speciale i Radioaktive dateringsmetoder 12

Radiohalos. Af Finn Lykke Nielsen Boelsmand, cand. polyt. med speciale i Radioaktive dateringsmetoder 12 Radiohalos Af Finn Lykke Nielsen Boelsmand, cand. polyt. med speciale i Radioaktive dateringsmetoder 12 Robert V. Gentry Den forsker der mere end nogen anden har gjort radiohalos berømte er Robert V. Gentry.

Læs mere

Guldbog Kemi C Copyright 2016 af Mira Backes og Christian Bøgelund.

Guldbog Kemi C Copyright 2016 af Mira Backes og Christian Bøgelund. Guldbog Kemi C Copyright 2016 af Mira Backes og Christian Bøgelund. Alle rettigheder forbeholdes. Mekanisk, fotografisk eller elektronisk gengivelse af denne bog eller dele heraf er uden forfatternes skriftlige

Læs mere

Massespektrometri og kulstof-14-datering

Massespektrometri og kulstof-14-datering Massespektrometri og kulstof-14-datering Opgavehæfte AMS 14 C Daterings Center Institut for Fysik og Astronomi, Aarhus Universitet JO\ AUG 2004 BP\FEB 2010 Opgaverne 5,6 og 7 er hentet eller modificeret

Læs mere

Big Bang og universets skabelse (af Jeanette Hansen, Toftlund Skole)

Big Bang og universets skabelse (af Jeanette Hansen, Toftlund Skole) Big Bang og universets skabelse (af Jeanette Hansen, Toftlund Skole) Har du nogensinde tænkt på, hvordan jorden, solen og hele universet er skabt? Det er måske et af de vigtigste spørgsmål, man forsøger

Læs mere

Formelsamling i astronomi. Februar 2016

Formelsamling i astronomi. Februar 2016 Formelsamling i astronomi. Februar 016 Formelsamlingen er ikke komplet det bliver den nok aldrig. Men måske kan alligevel være til en smule gavn. Sammenhæng mellem forskellige tidsenheder Jordens sideriske

Læs mere

SDU og DR. Sådan virker en atombombe... men hvorfor er den så kraftig? + + Atom-model: - -

SDU og DR. Sådan virker en atombombe... men hvorfor er den så kraftig? + + Atom-model: - - SDU og DR Sådan virker en atombombe... men hvorfor er den så kraftig? Atom-model: - - - + + - + + + + + - - - Hvad er et atom? Alt omkring dig er bygget op af atomer. Alligevel kan du ikke se et enkelt

Læs mere

Kompendium i fysik. 5. udgave - oktober 2003. Uddannelsesstyrelsen

Kompendium i fysik. 5. udgave - oktober 2003. Uddannelsesstyrelsen Kompendium i fysik 5. udgave - oktober 003 Uddannelsesstyrelsen Kompendium i fysik 5. udgave - oktober 003 Udgivet af Uddannelsesstyrelsen Redaktion Bjarning Grøn Carsten Claussen Gert Hansen Elsebeth

Læs mere

Form bølgelængde ( frekvens (hertz = bølger/sekund)

Form bølgelængde ( frekvens (hertz = bølger/sekund) Ti fundamentale punkter 9. klasse elever skal lære om stråling Stråling er et af de emner som bedst viser sammenhængen mellem den fysiske og den kemiske del af faget fysik/kemi, såvel som den teoretiske

Læs mere

Opdagelsen af radioaktivitet

Opdagelsen af radioaktivitet Opdagelsen af radioaktivitet I 1896 opdagede franskmanden Henri Becquerel, at mineraler bestående af Uransalte udsendte en usynlig stråling, der kunne påvirke de lysfølsomme plader, der anvendtes til fotografering,

Læs mere