OM KAPITLET DIGITALE VÆRKTØJER. egne svar eller Elevernes egne forklaringer. I disse

Størrelse: px
Starte visningen fra side:

Download "OM KAPITLET DIGITALE VÆRKTØJER. egne svar eller Elevernes egne forklaringer. I disse"

Transkript

1 OM KPITLET I dette kapitel om digitale værktøjer skal eleverne arbejde med anvendelse og vurdering af forskellige digitale værktøjer, som kan bruges til at løse opgaver og matematiske problemstillinger. Eleverne skal også forklare og præsentere matematik ved hjælp af forskellige digitale præsentationsværktøjer. En del opgaver i dette kapitel er formuleret, så der er flere mulige facit, da resultatet på forskellig måde afhænger af elevernes valg. Til disse opgaver anføres eksempelvis Elevernes egne svar eller Elevernes egne forklaringer. I disse tilfælde gives der ofte eksempler.

2 ELEVMÅL FOR KPITLET HUSKELISTE Målet er, at eleverne: kan vælge et passende hjælpemiddel til en opgave, fx et CS-program, et regneark eller et geometriprogram kan kommunikere ved hjælp af digitale værktøjer, fx skærmbilleder, skærmoptagelser og andre præsentationsværktøjer, når de skal forklare noget matematik kan vurdere, hvornår de skal bruge et digitalt værktøj, og hvornår det er bedre fx at regne i hovedet eller tegne i hånden. PRINTRK 1 Sorter ligninger 2 Hvordan løser du bedst opgaven? MTERILER lyant Lineal Lommeregner Papir Passer Saks To almindelige terninger Vinkelmåler DIGITLE VÆRKTØJER Geometriprogram Funktionstegneprogram Regneark CS-program Præsentationsværktøjer FGLIGE EGREER FÆLLES MÅL I kapitlet arbejdes med følgende centrale fagord og begreber: På MULTIs hjemmeside er der en oversigt over, hvilke Fælles Mål der er sat op for arbejdet med kapitlet. Geometriprogram Funktionstegneprogram Regneark CS-program Skærmbillede, skærmoptager og præsentationsværktøj.

3 UDDYENDE VEJLEDNING OG FCITLISTE OPGVE 1 Elevernes eksempler på tidligere brug af digitale værktøjer i forbindelse med forskellige faglige aktiviteter. Elevernes egne svar. OPGVE 2 Diskussion af brug af digitale værktøjer. Diskussion af kendetegn ved matematikopgaver i relation til anvendelse af digitale værktøjer.

4 OPGVE 5 Elevtegning af graf, der lever op til mindst to af de fire krav. Eleverne kan eksempelvis tegne følgende grafer: Funktionsforskrift: ff(xx) = 1,5xx 2 UDDYENDE VEJLEDNING OG FCITLISTE KTIVITET: SORTER LIGNINGER Intet facit. Elevernes egne sorteringer. C Elevernes egne svar. Diskussion af brugen af et digitalt værktøj. Diskussion af kendetegn ved elevernes inddeling af ligningerne. Denne graf lever op til alle fire krav. Funktionsforskrift: ff(xx) = xx 2 OPGVE 3 real (trapez) = 1 24 (7 + 13) = = 1 h (7 + 8) h = 6 2 C 5 = 1 0,5 (1 + bb) b = 19 2 D E = 1 h (aa + bb) aa = 2 bb 2 h emærk, at ved ombytning af a og b kan den samme formel bruges til beregning af siden b. Formelsammenligning med et andet makkerpar. Denne graf lever op til alle fire krav. OPGVE 4 Elevernes egne skærmoptagelser. Eleverne tegner en trekant med areal 10, b = 4 og c = 5. De måler siden a til ca. 6,14. (Trekant C er retvinklet med = 90. Den eksakte værdi af a er 41.) Siden a bestemmes med et CS-værktøj til 41. C Diskussion af forskelle på løsningsmetoder. D Eleverne kan næppe løse opgaven uden brug af digitale værktøjer. OPGVE 6 Eleverne opstiller i alt mindst 8 ligninger, mindst 2 for hvert af de 4 krav. Eleverne kan eksempelvis opstille følgende ligninger: Krav 1: Tallet 45 skal indgå i ligningen x = x = 45 5

5 Krav 2: ½ skal indgå i ligningen: x = ½ = ½ x Krav 3: Der skal være x på begge sider af lighedstegnet: x = 4x 2x + 10 = 3x 40 Krav 4: Der skal være mindst tre led på hver side af lighedstegnet: 2x = 4x x = 2x Forklaring af brug af digitale værktøjer. OPGVE 7 Forventet målhøjde for den pågældende dreng er ,5 = 188,5. 2 Drengens højdeinterval er derfor [180; 197]. Når pigens højdeinterval er [159; 176] er hendes målhøjde lig med ,5 = 176 8,5 = 167,5 cm. Dette tal skal være gennemsnittet af moderens og faderens højde. For ethvert reelt tal k vil et talpar af formen (167,5 k ; 167,5 + k) havde gennemsnittet 167,5, men tallet k må selvfølgelig vælges, så der er realisme i svaret, dvs. både det ene og det andet af de to tal må kunne tænkes at være højden af et voksent menneske. C Diskussion af metoden. D Elevgæt på Eas fars højde. E Eas fars højde x er løsning til ligningen xx+165 6,5 = 2 163,5. Faderens højde bliver da 175 cm. F Eas forventede højdeinterval er [155; 172]. G Udtryk 1 er det rigtige.

6 OPGVE 9 Elevskitse af pladen med mål på de enkeltdele, den skal udskæres i. Eleverne kan eksempelvis tegne følgende skitse: UDDYENDE VEJLEDNING OG FCITLISTE KTIVITET: HVORDN LØSER DU EDST OPGVEN? Intet facit. C Intet facit. Diskussion af fordele og ulemper ved de to meto- D E der. Intet facit. Diskussion af fordele og ulemper ved brug af digitale værktøjer til geometriopgaver. C Undersøgelse af maksimalmål. Det er klart, at der er (uendeligt) mange muligheder. Elevforklaring på valg eller fravalg af digitale værktøjer. OPGVE 8 Diskussion af om opgaverne løses bedst med eller uden brug af et digitalt værktøj. Herunder er givet forslag til, hvad eleverne vurderer. Opgaven kan med fordel løses med et digitalt værktøj. Opgaven kan med fordel løses med et digitalt værktøj. C Opgaven kan med fordel løses med et digitalt værktøj. D Opgaven kan med fordel løses med et digitalt værktøj. E Opgaven kan med fordel løses uden brug af et digitalt værktøj. OPGVE 10 Omkreds = 24. Da rektanglets areal er 27, fås den vandrettes sides længde x af ligningen 3x = 27 til x = 9. = 36, 87 (=, da trekanten er ligebenet). C = = 135. D Centervinklen er 0,3 360 = 108. E Områdets areal er 8π 16, som eleverne formentlig vil foretrække at måle til 9,13. F Den 5-takkede stjerne kaldes et pentagram. Når den regulære femkant (pentagon) har sidelængden 5, vil arealet af pentagrammet med 4 decimaler være 20,3075. realet kan naturligvis beregnes, men eleverne har ikke andre muligheder end at måle i et geometriprogram. G Samtale mellem makkerpar om valg af hjælpemidler.

7 Eleverne kan eksempelvis lave følgende spilleplade, hvor hvert felt har sandsynligheden 6 36 = UDDYENDE VEJLEDNING OG FCITLISTE KTIVITET: SIMULERING F TERNINGESPIL Eleverne spiller 10 runder og noterer point. Eleverne udfylder tælletabel, der viser udfaldene ved kast med to almindelige terninger, hvor summen noteres. C Elevhypotese. Hvilket felt er godt? Sandsynlighederne for at vinde på de forskellige felter er: RØD HVID GUL LÅ Eleverne simulerer 100 kast med de to terninger. Elevernes egne skærmoptagelser. Spillepladerne testes ved at simulere. Vær opmærksom på, at simuleringerne oftest vil variere lidt fra den statistiske sandsynlighed, som disse spilleplader er lavet ud fra. C Eleverne sammenligner og afprøver hinandens spilleplader. D Samtale om løsningsmetoder og brugen af digitale værktøjer. OPGVE 11 Variationsbredde V = 23. Middeltal µ = 5,04. Eleven vælger og tegner fordelingsdiagram, fx et pindediagram. C Medianen (3) fortæller, at halvdelen af eleverne har fanget 3 eller færre Pokémons. D Elevernes egne beskrivelser. E Elevens stillingtagen, med begrundelse, til Johans påstand. F Elevernes egne forklaringer. OPGVE 12 DEL 3 Elevernes egne spilleplader. Eleverne kan eksempelvis lave følgende spilleplade, hvor hvert felt har sandsynligheden 9 36 = Elevernes egne datasæt. Eleverne kan eksempelvis lave følgende datasæt: Datasæt 1: Medianen er 7 02, 02, 7, 7, 7, 10. Dette datasæt kunne eksempelvis passe til en undersøgelse af, hvilke karakterer seks elever har fået i en matematikopgave. Datasæt 2: Størsteværdien er , 50, 100, 100, 150, 150, 200, 250. Dette datasæt kunne eksempelvis passe til en undersøgelse af, hvor mange lommepenge otte elever får om måneden. Datasæt 3: Middeltallet er 0,2 0, 0, 0, 0, 1. Dette datasæt kunne eksempelvis passe til en undersøgelse af, hvor mange mål en fodboldspiller scorede i fem kampe.

8 Datasæt 4: Variationsbredden er 31 5, 6, 10, 14, 20, 25, 30, 32, 33, 35, 36. Dette datasæt kunne eksempelvis passe til en undersøgelse af, hvor mange minutter 11 elever bruger på at komme fra deres hjem til skolen en morgen. Datasæt 5: Typetallet er 2,5 Elevernes egne forklaringer om brugen af digitale værktøjer.

9 Inges mark: UDDYENDE VEJLEDNING OG FCITLISTE UNDERSØGELSE: HVORDN MON MRKEN SER UD? irgittes mark: Elevernes egne tegninger. Eleverne kan eksempelvis tegne følgende marker, som alle er udarbejdet i GeoGebra: ents mark: Elevernes egne angivelser. Se eksempler på areal-, længde- og vinkelmål på tegningerne ovenfor. - C Elevernes egne skærmoptagelser. Der er uendeligt mange muligheder i alle tre tilfælde. En god besvarelse argumenterer for dette. Lasses mark: ents mark er den eneste, der er helt fastlagt et rektangel med sidelængderne 710 m og 1400 m. For Lasses, Inges og irgittes vedkommende er der uendeligt mange rigtige muligheder, så svarene må bedømmes individuelt.

10 UNDERSØGELSE: KONKV-TRPEZER Elevdiskussion. Kravene kunne eksempelvis være: En femkant med netop ét par parallelle sider. En femkant hvor mindst én af vinklerne er større end 180. Elevernes egne tegninger, som afhænger af, hvilke krav de vælger at stille i punkt. Ud fra forslagene til krav kan følgende eksempler gives: C Ifølge punkt er vinkelsummen i en konkav-trapez mindst lig med 540 (vinkelsummen i en femkant). D Elevernes egne tegninger og redegørelser. E Elevernes egne fremstillinger af opgaver. DEL 3 - E Elevernes egne sammenligninger af hinandens opgaver. C Elevernes egne definitioner, hvor de sprogligt formidler de krav, de har opstillet i punkt. Der skal mindst være fem sider ellers er det ikke muligt både at have to parallelle sider og at sørge for, at polygonen er konkav. Der er ingen øvre grænse for antallet af sider i en konkav-trapez.

11 REFLEKSION Intet facit. Elevernes egne eksempler. C Intet facit. UDDYENDE VEJLEDNING OG FCITLISTE UNDERSØGELSE: HVD KOSTER EN TEENGER OM ÅRET? - Elevernes egne beslutninger og budgetter. - C Elevernes egne præsentationer, sammenligninger og diskussioner. UNDERSØGELSE: JERES EGEN UNDERSØGELSE Elevernes egne undersøgelser. - Elevernes egne præsentationer. Elevernes egne forklaringer. Det ville være en fordel at anvende regneark til at løse denne opgave. Elevernes egne forklaringer. Det ville være en fordel at anvende tabeller eller diagrammer til at præsentere resultaterne i denne opgave. DEL 3 Elevernes egne forklaringer. Det ville være en fordel at anvende regneark til at lægge budgettet i denne opgave. Elevernes egne forklaringer. DEL 4 Elevernes egne forklaringer. Det ville være en fordel at anvende et CS-værktøj til denne opgave. Elevernes egne forklaringer. DEL 5 Elevernes egne forklaringer. Det ville være en fordel at anvende et geometriprogram og regneark til denne opgave. Elevernes egne forklaringer.

Digitale værktøjer FORHÅNDSVIDEN

Digitale værktøjer FORHÅNDSVIDEN Digitale værktøjer Når du i matematik arbejder med digitale værktøjer, kan det enten være fordi, du benytter et digitalt værktøj som hjælp til at løse et matematisk problem eller fordi, du bruger et digitalt

Læs mere

OM KAPITLET FLYTNINGER OG MØNSTRE. Elevernes egne svar eller Elevernes egne forklaringer. I

OM KAPITLET FLYTNINGER OG MØNSTRE. Elevernes egne svar eller Elevernes egne forklaringer. I OM KPITLET I dette kapitel om flytninger og mønstre skal eleverne undersøge forskellige egenskaber og sammenhænge ved flytningerne: spejling, drejning og parallelforskydning. Eleverne skal tillige analysere

Læs mere

Geometri i plan og rum

Geometri i plan og rum INTRO I kapitlet arbejder eleverne med plane og rumlige figurers egenskaber og med deres anvendelse som geometriske modeller. I den forbindelse kommer de bl.a. til at beskæftige sig med beregninger af

Læs mere

dynamisk geometriprogram regneark Fælles mål På MULTIs hjemmeside er der en oversigt over, hvilke Fælles Mål der er sat op for arbejdet med kapitlet.

dynamisk geometriprogram regneark Fælles mål På MULTIs hjemmeside er der en oversigt over, hvilke Fælles Mål der er sat op for arbejdet med kapitlet. Algebra og ligninger - Facitliste Om kapitlet I dette kapitel om algebra og ligninger skal eleverne lære at regne med variable, få erfaringer med at benytte variable Elevmål for kapitlet Målet er, at eleverne:

Læs mere

GEOMETRI I PLAN OG RUM

GEOMETRI I PLAN OG RUM LÆRERVEJLEDNING GEOMETRI I PLN OG RUM Kopiark Indhold og kommentarer Vejledende sværhedsgrad Tilknytning til Kolorit 9 matematik grundbog Navne på figurer På siden arbejder eleverne med navnene på forskellige

Læs mere

Foreløbig udgave af læringsmål til: Kapitel 1 Regn med store tal Fælles Mål Læringsmål Forslag til tegn på læring

Foreløbig udgave af læringsmål til: Kapitel 1 Regn med store tal Fælles Mål Læringsmål Forslag til tegn på læring Foreløbig udgave af læringsmål til: Kapitel 1 Regn med store tal Fælles Mål Læringsmål Forslag til tegn på læring udføre beregninger med de fire regningsarter inden for naturlige tal, herunder beregninger

Læs mere

I kapitlet arbejdes med følgende centrale matematiske objekter og begreber:

I kapitlet arbejdes med følgende centrale matematiske objekter og begreber: INTRO Efter mange års pause er trigonometri med Fælles Mål 2009 tilbage som fagligt emne i grundskolens matematikundervisning. Som det fremgår af den følgende sides udpluk fra faghæftets trinmål, er en

Læs mere

GEOMETRISK TEGNING. to- og tredimensionale figurer. Eleverne har i MULTI på mellemtrinnet arbejdet med:

GEOMETRISK TEGNING. to- og tredimensionale figurer. Eleverne har i MULTI på mellemtrinnet arbejdet med: OM KPITLET ELEVFORUDSÆTNINGER I dette kapitel om geometrisk tegning skal eleverne undersøge og gengive to- og tredimensionale figurer fra omverdenen. Eleverne skal, med og uden digitale værktøjer, tegne,

Læs mere

Årsplan matematik 7.klasse 2014/2015

Årsplan matematik 7.klasse 2014/2015 Årsplan matematik 7.klasse 2014/2015 Emne Indhold Mål Tal og størrelser Arbejde med brøktal som repræsentationsform på omverdenssituationer. Fx i undersøgelser. Arbejde med forskellige typer af diagrammer.

Læs mere

Undersøgelser af trekanter

Undersøgelser af trekanter En rød tråd igennem kapitlet er en søgen efter svar på spørgsmålet: Hvordan kan vi beregne os frem til længder, vi ikke kan komme til at måle?. Hvordan kan vi fx beregne højden på et træ eller et hus,

Læs mere

Oversigt over Forenklede Fælles Mål i forbindelse med kapitlerne i MULTI. Problembehandling. Modellering

Oversigt over Forenklede Fælles Mål i forbindelse med kapitlerne i MULTI. Problembehandling. Modellering MULTI 5 Forenklede Fælles Mål Oversigt over Forenklede Fælles Mål i forbindelse med kapitlerne i MULTI Kapitel 1 Faglig læsning Opmærksomhedspunkt Eleven kan anvende ræsonnementer i undersøgende arbejde

Læs mere

Opgave Du skal undersøge, hvad der gælder for andre størrelser af rektangler i en taltavlen.

Opgave Du skal undersøge, hvad der gælder for andre størrelser af rektangler i en taltavlen. Problembehandlingskompetence handler om at kunne opstille og løse matematiske problemer. Et matematisk problem er i denne forbindelse et problem, som ikke kan løses med rutineprægede færdigheder, men kræver

Læs mere

Oversigt over Forenklede Fælles Mål i forbindelse med kapitlerne i MULTI. Problembehandling. Modellering

Oversigt over Forenklede Fælles Mål i forbindelse med kapitlerne i MULTI. Problembehandling. Modellering MULTI 4 Forenklede Fælles Mål Oversigt over Forenklede Fælles Mål i forbindelse med kapitlerne i MULTI Kapitel 1 Faglig læsning undersøgende arbejde Eleven kan læse og skrive enkle tekster med og om matematik

Læs mere

MULTI 7 A1 LÆS MATEMATIK FØR UNDER EFTER

MULTI 7 A1 LÆS MATEMATIK FØR UNDER EFTER LÆS OG SKRIV MATEMATIK A1 LÆS MATEMATIK Brug de tre rammer i modellen, når du skal løse en matematikopgave. Det er ikke sikkert, du skal bruge alle punkter i hver ramme til alle opgaver. Find ud af, hvilke

Læs mere

Mattip om. Arealer 2. Tilhørende kopi: Arealer 4 og 5. Du skal lære om: Repetition af begreber og formler. Arealberegning af en trekant

Mattip om. Arealer 2. Tilhørende kopi: Arealer 4 og 5. Du skal lære om: Repetition af begreber og formler. Arealberegning af en trekant Mattip om Arealer 2 Du skal lære om: Repetition af begreber og formler Kan ikke Kan næsten Kan Arealberegning af en trekant Arealberegning af en trapez Tilhørende kopi: Arealer 4 og 5 2016 mattip.dk 1

Læs mere

Huskeliste Printark. U4 Tastetider U5 Hvor hurtigt regner du? E4 Begreber og fagord - Statistik. Materialer. Mobiltelefon Stopur

Huskeliste Printark. U4 Tastetider U5 Hvor hurtigt regner du? E4 Begreber og fagord - Statistik. Materialer. Mobiltelefon Stopur Statistik - Lærervejledning Om kapitlet I dette kapitel om statistik skal eleverne arbejde med statistik og lære at indsamle, beskrive, bearbejde og præsentere store mængder af tal og data. I kapitlet

Læs mere

OM KAPITLET ALGEBRA, LIGNINGER OG ULIGHEDER. Elevernes egne svar eller Elevernes egne forklaringer. I

OM KAPITLET ALGEBRA, LIGNINGER OG ULIGHEDER. Elevernes egne svar eller Elevernes egne forklaringer. I OM KPITLET I dette kapitel om algebra, ligninger og uligheder skal eleverne undersøge og udvikle metoder og regler til at løse ligninger og uligheder både algebraisk og grafisk. Eleverne skal opstille

Læs mere

fx 8 Sandsynligheden for at slå en 4 er med en 6-sidet 1 terning 2

fx 8 Sandsynligheden for at slå en 4 er med en 6-sidet 1 terning 2 Logik Udsagn Reduktion Ligninger Uligheder Regnehistorier I en trekant er den største vinkel 0 større end den næststørste og denne igen 0 større end den mindste. Find vinklernes gradtal. = og Lig med og

Læs mere

Rettevejledning, FP10, endelig version

Rettevejledning, FP10, endelig version Rettevejledning, FP10, endelig version I forbindelse med FP9, Matematik, Prøven med hjælpemidler, maj 2016, afholdes forsøg med en udvidet rettevejledning. I forbindelse med FP10 fremstiller opgavekommissionen

Læs mere

Rettevejledning, FP9, Prøven med hjælpemidler, endelig version

Rettevejledning, FP9, Prøven med hjælpemidler, endelig version Rettevejledning, FP9, Prøven med hjælpemidler, endelig version I forbindelse med FP9, Matematik, Prøven med hjælpemidler, maj 2016, afholdes forsøg med en udvidet rettevejledning. Den udvidede rettevejledning

Læs mere

Opgave 1 A. Opgave 2 A m 2 B. 125,66 m 2 C m 2 D m 2

Opgave 1 A. Opgave 2 A m 2 B. 125,66 m 2 C m 2 D m 2 Opgave 1 Opgave 2 21 000 m 2 B. 125,66 m 2 C. 1200 m 2 D. 185 540 m 2 Opgave 3 Det betyder, at en centimeter på tegningen svarer til 100 cm i virkeligheden B. 22m 2 C. D. E. Hvis længdeforholdet ændres

Læs mere

Elevbog s. 14-25 Vi opsummerer hvad vi ved i. kendskab til geometriske begreber og figurer.

Elevbog s. 14-25 Vi opsummerer hvad vi ved i. kendskab til geometriske begreber og figurer. Årsplan 5. LH. Matematik Lærer Pernille Holst Overgaard (PHO) Lærebogsmateriale. Format 5 Tid og fagligt Aktivitet område Uge 33-37 Tal Uge 38-41 (efterårsferie uge 42) Figurer Elevbog s. 1-13 Vi opsummerer

Læs mere

Årsplan 4. Årgang

Årsplan 4. Årgang Årsplan 4. Årgang 2016-2017 Ved denne plan skal der tage der tages højde for at ændringer kan forekomme i løbet af året. Eleverne går fra engangsmaterialer til Grundbog med skrivehæfte. Det kan være en

Læs mere

Årsplan for matematik i 5.kl. på Herborg Friskole

Årsplan for matematik i 5.kl. på Herborg Friskole Årsplan for i 5.kl. på Herborg Friskole Uge Emne Kompetenceområder/mål 32 Opstartsuge 33- Regn med store 36 tal Færdigheds-og vidensmål Læringsmål Aktiviteter og materialer Eleven kan gennemføre enkle

Læs mere

Årsplan 9. klasse matematik 2014-2015 Uge Emne Faglige mål Trinmål Materialer/ systemer 33-34

Årsplan 9. klasse matematik 2014-2015 Uge Emne Faglige mål Trinmål Materialer/ systemer 33-34 Årsplan 9. klasse matematik 2014-2015 33-34 Årsprøve og rettevejledledning 34-36 Årsprøven i matematik Talmængder og regnemetoder 37 Fordybelses uge 38-39 40 Termins-prøve 41 Studieturen 42 Efterårsferie

Læs mere

Årsplan 9. klasse matematik 2013-2014 Uge Emne Faglige mål Trinmål Materialer/ systemer 33 Årsprøven i matematik

Årsplan 9. klasse matematik 2013-2014 Uge Emne Faglige mål Trinmål Materialer/ systemer 33 Årsprøven i matematik Årsplan 9. klasse matematik 2013-2014 33 Årsprøven i matematik Årsprøve og rettevejledledning 34-35 36 og løbe nde Talmængder og regnemetoder Mundtlig matematik 37 Fordybelses uge 38-39 Procent - Gennemgå

Læs mere

Matematisk argumentation

Matematisk argumentation Kapitlets omdrejningspunkt er matematisk argumentation, der især bruges i forbindelse med bevisførelse altså, når det drejer sig om at overbevise andre om, at matematiske påstande er sande eller falske.

Læs mere

MATEMATIK, MUNDTLIG PRØVE TEMA: SEFTON PARK PALM HOUSE

MATEMATIK, MUNDTLIG PRØVE TEMA: SEFTON PARK PALM HOUSE MATEMATIK, MUNDTLIG PRØVE TEMA: SEFTON PARK PALM HOUSE I den midtengelske by Liverpool ligger bydelen Sefton med Sefton Park - et parkanlæg, der bl.a. er kendt for det ottekantede palmehus, hvor man kan

Læs mere

Oversigt over Forenklede Fælles Mål i forbindelse med kapitlerne i MULTI. Ræsonnement og tankegang. Modellering

Oversigt over Forenklede Fælles Mål i forbindelse med kapitlerne i MULTI. Ræsonnement og tankegang. Modellering MULTI 6 Forenklede Fælles Mål Oversigt over Forenklede Fælles Mål i forbindelse med kapitlerne i MULTI Kapitel 1 Faglig læsning og skrivning Eleven kan anvende forskellige strategier til matematisk problemløsning

Læs mere

7 Trekanter. Faglige mål. Linjer i trekanter. Ligedannethed. Pythagoras. Trigonometri

7 Trekanter. Faglige mål. Linjer i trekanter. Ligedannethed. Pythagoras. Trigonometri 7 Trekanter Faglige mål Kapitlet Trekanter tager udgangspunkt i følgende faglige mål: Linjer i trekanter: kende til højde, vinkelhalveringslinje, midtnormal og median, kunne tegne indskrevne og omskrevne

Læs mere

Flytninger og mønstre

Flytninger og mønstre Flytninger og mønstre KTIVITET ESKRIV MØNSTRE FLYTNINGER OG MØNSTRE 7 I dette kapitel skal du arbejde med flytninger og mønstre i planen. Der findes mønstre overalt omkring os. Det er indenfor kunst og

Læs mere

Oversigt over Forenklede Fælles Mål i forbindelse med kapitlerne i MULTI. Modellering

Oversigt over Forenklede Fælles Mål i forbindelse med kapitlerne i MULTI. Modellering MULTI 7 Forenklede Fælles Mål Oversigt over Forenklede Fælles Mål i forbindelse med kapitlerne i MULTI Kapitel 1 Læs og skriv matematik Eleven kan kommunikere mundtligt og skriftligt med og om matematik

Læs mere

MaxiMat og de forenklede Fælles mål

MaxiMat og de forenklede Fælles mål MaxiMat og de forenklede Fælles mål Dette er en oversigt over hvilke læringsmål de enkelte forløb indeholder. Ikke alle forløb er udarbejdet endnu, men i skemaet kan man se alle læringsmålene også de,

Læs mere

Geometriske eksperimenter

Geometriske eksperimenter I kapitlet arbejder eleverne med nogle af de egenskaber, der er knyttet til centrale geometriske figurer og begreber (se listen her under). Set fra en emneorienteret synsvinkel handler kapitlet derfor

Læs mere

Hvad siger statistikken?

Hvad siger statistikken? Eleverne har tidligere (fx i Kolorit 7, matematik grundbog) arbejdet med især beskrivende statistik (deskriptiv statistik). I dette kapitel fokuseres i højere grad på, hvordan datamateriale kan tolkes

Læs mere

Tip til 1. runde af Georg Mohr-Konkurrencen Geometri

Tip til 1. runde af Georg Mohr-Konkurrencen Geometri Tip til. runde af - Geometri, Kirsten Rosenkilde. Tip til. runde af Geometri Her er nogle centrale principper om og strategier for hvordan man løser geometriopgaver. et er ikke en særlig teoretisk indføring,

Læs mere

fsa 1 For lidt eller for meget søvn? 2 Til sundhedsplejerske 3 Erobre flaget 4 På efterskole 5 Sammenhænge i kvadrater Matematisk problemløsning

fsa 1 For lidt eller for meget søvn? 2 Til sundhedsplejerske 3 Erobre flaget 4 På efterskole 5 Sammenhænge i kvadrater Matematisk problemløsning fsa Folkeskolens Afgangsprøve Matematisk problemløsning Maj 2011 Som bilag til dette opgavesæt er vedlagt et svarark 1 For lidt eller for meget søvn? 2 Til sundhedsplejerske 3 Erobre flaget 4 På efterskole

Læs mere

LÆS OG SKRIV MATEMATIK OM KAPITLET

LÆS OG SKRIV MATEMATIK OM KAPITLET LÆS OG SKRIV MATEMATIK OM KAPITLET Eleverne bliver i dette kapitel introduceret til, hvordan MULTI 7 er opbygget, og hvilke elementer kapitlerne indeholder. Eleverne kan efterfølgende i arbejdet med bogen

Læs mere

MULTI PRINTARK CAROLINE KREIBERG ANETTE SKIPPER-JØRGENSEN RIKKE TEGLSKOV GYLDENDAL

MULTI PRINTARK CAROLINE KREIBERG ANETTE SKIPPER-JØRGENSEN RIKKE TEGLSKOV GYLDENDAL 8 MULTI PRINTARK CAROLINE KREIBERG ANETTE SKIPPER-JØRGENSEN RIKKE TEGLSKOV GYLDENDAL DIGITALE VÆRKTØJER A1.1 SORTER LIGNINGER 2x + 3 = 15 x 17 = 25 61 x = 37 2x + 11 = 5x 10 x 2 = 2x + 3 4x + 1 5 = 9 4x

Læs mere

Mødet. 6 Geometri. Begreb Eksempel Navn. Parallel. Vinkelret. Linjestykke. Polygon. Cirkelperiferi. Midtpunkt. Linje. Diagonal. Radius.

Mødet. 6 Geometri. Begreb Eksempel Navn. Parallel. Vinkelret. Linjestykke. Polygon. Cirkelperiferi. Midtpunkt. Linje. Diagonal. Radius. 6.01 Mødet Begreb Eksempel Navn Parallel Vinkelret Linjestykke Polygon Cirkelperiferi Midtpunkt Linje Diagonal Radius Ret vinkel 6.02 Fire på stribe Regler Hver spiller får en spilleplade (6.03). Alle

Læs mere

Opgave 1 Til denne opgave anvendes bilag 1.

Opgave 1 Til denne opgave anvendes bilag 1. Opgave 1 Til denne opgave anvendes bilag 1. a) Undersøg figur 1. Mål og noter vinklerne Mål og noter længderne b) Undersøg figur 2. Mål og noter vinklerne Mål og noter længderne c) Undersøg figur 3. Mål

Læs mere

Webinar - Matematik. 1. Fælles Mål 2014. 2. Relationsmodellen og et forløbsplanlægningsskema

Webinar - Matematik. 1. Fælles Mål 2014. 2. Relationsmodellen og et forløbsplanlægningsskema Webinar - Matematik 1. Fælles Mål 2014 2. Relationsmodellen og et forløbsplanlægningsskema 3. Et eksempel på et forløb om areal og omkreds på mellemtrinnet 4. Relationsmodellen som refleksionsmodel Alle

Læs mere

KonteXt +5, Kernebog

KonteXt +5, Kernebog 1 KonteXt +5, Lærervejledning/Web Facit til KonteXt +5, Kernebog Kapitel 3: Vinkler og figurer Version september 2015 Facitlisten er en del af KonteXt +5; Lærervejledning/Web KonteXt +5, Kernebog Forfattere:

Læs mere

Kapitel 1: Tal. Tegn på læring. Delforløb Fælles mål Læringsmål

Kapitel 1: Tal. Tegn på læring. Delforløb Fælles mål Læringsmål 4. klasse Årsplan Kapitel 1: Tal Eleven Talsystem Regnestrategier!!!* Fase 1: Eleven kan udføre beregninger med de fire regningsarter inden for naturlige tal, herunder beregninger vedrørende hverdagsøkonomi

Læs mere

Navn:&& & Klasse:&& STATISTIK - Fase 1

Navn:&& & Klasse:&& STATISTIK - Fase 1 Navn: Klasse: STATISTIK - Fase 1 Vælge relevante deskriptorer og diagrammer til sammenligning af datasæt Vurdering fra 1 til 5 (hvor 5 er højst) Læringsmål Selv Lærer Beviser og forslag til forbedring

Læs mere

Matematik interne delprøve 09 Tesselering

Matematik interne delprøve 09 Tesselering Frederiksberg Seminarium Opgave nr. 60 Matematik interne delprøve 09 Tesselering Line Købmand Petersen 30281023 Hvad er tesselering? Tesselering er et mønster, der består af en eller flere figurer, der

Læs mere

Eleven kan handle med overblik i sammensatte situationer med matematik. Eleven kan anvende rationale tal og variable i beskrivelser og beregninger

Eleven kan handle med overblik i sammensatte situationer med matematik. Eleven kan anvende rationale tal og variable i beskrivelser og beregninger Kompetenceområde Efter klassetrin Efter 6. klassetrin Efter 9. klassetrin Matematiske kompetencer handle hensigtsmæssigt i situationer med handle med overblik i sammensatte situationer med handle med dømmekraft

Læs mere

Flytninger og mønstre

Flytninger og mønstre Flytninger og mønstre KTIVITET ESKRIV MØNSTRE FLYTNINGER OG MØNSTRE 9 I dette kapitel skal du arbejde med flytninger og mønstre i planen. Der findes mønstre overalt omkring os. Det er indenfor kunst og

Læs mere

Årsplan. Der tages udgangspunkt i forenklede fælles ma l fra UVM for matematik pa 7-9. Klasse.

Årsplan. Der tages udgangspunkt i forenklede fælles ma l fra UVM for matematik pa 7-9. Klasse. Årsplan Der tages udgangspunkt i forenklede fælles ma l fra UVM for matematik pa 7-9. Klasse. Eleverne arbejder med grundbogen Matematrix 9. I undervisningen inddrages digitale undervisningsredskaber såsom

Læs mere

Ideer: centicubes og tal

Ideer: centicubes og tal centicubes og tal Ideer: T Hvor mange forskellige rektangler kan I bygge eller tegne, hvis I skal bruge 3 centicubes? 10 centicubes? 12 centicubes? 23 centicubes? 36 centicubes? Fremstil en tabel, der

Læs mere

Dagens program. Velkommen og præsentation.

Dagens program. Velkommen og præsentation. Dagens program Velkommen og præsentation. Evt. udveksling af mailadresser. Forenklede Fælles Mål om geometri og dynamiske programmer. Screencast, hvordan og hvorfor? Opgave om polygoner i GeoGebra, løst

Læs mere

fsa 1 På tryk tryk på 2 På dvd 3 På tv 4 På film 5 I koordinatsystem Matematisk problemløsning Folkeskolens Afgangsprøve December 2011

fsa 1 På tryk tryk på 2 På dvd 3 På tv 4 På film 5 I koordinatsystem Matematisk problemløsning Folkeskolens Afgangsprøve December 2011 fsa Folkeskolens Afgangsprøve Matematisk problemløsning December 2011 Som bilag til dette opgavesæt er vedlagt et svarark 1 På tryk tryk på 2 På dvd 3 På tv 4 På film 5 I koordinatsystem 1 På tryk tryk

Læs mere

Matematikken og naturens kræfter

Matematikken og naturens kræfter INTRO Omdrejningspunktet for dette tema er matematikkens anvendelse som beskrivelsesmiddel i forbindelse med fysiske love. Temaet er inddelt i følgende fire emner: Pendulure Frit fald Bremselængder og

Læs mere

Årsplan for 5. klasse, matematik

Årsplan for 5. klasse, matematik Årsplan for 5. klasse, matematik I matematik bruger vi bogsystemet Sigma som grundmateriale. I systemet er der, ud over også kopiark og tests tilknyttet de enkelte kapitler. Systemet er udarbejdet så det

Læs mere

Decimaltal, brøker og procent Negative tal Potens, rødder og pi Reelle og irrationale tal

Decimaltal, brøker og procent Negative tal Potens, rødder og pi Reelle og irrationale tal Navn: Nr.: Klasse: Prøvedato: mat7 Noter: Kompetencemål efter 9. klassetrin Eleven kan anvende reelle tal og algebraiske udtryk i matematiske undersøgelser Tal og algebra Tal Titalssystem Decimaltal, brøker

Læs mere

bruge en formel-samling

bruge en formel-samling Geometri Længdemål og omregning mellem længdemål... 56 Omkreds og areal af rektangler og kvadrater... 57 Omkreds og areal af andre figurer... 58 Omregning mellem arealenheder... 6 Nogle geometriske begreber

Læs mere

Oversigt over Forenklede Fælles Mål i forbindelse med kapitlerne i MULTI. Problembehandling. Modellering

Oversigt over Forenklede Fælles Mål i forbindelse med kapitlerne i MULTI. Problembehandling. Modellering MULTI 3B Forenklede Fælles Mål Oversigt over Forenklede Fælles Mål i forbindelse med kapitlerne i MULTI Kapitel 1 Andre tal Eleven kan anvende konkrete, visuelle og enkle symbolske repræsentationer (fase

Læs mere

Matematik. Trinmål 2. Nordvestskolen 2006 Forord. Trinmål 2 (4. 6. klasse)

Matematik. Trinmål 2. Nordvestskolen 2006 Forord. Trinmål 2 (4. 6. klasse) Matematik Trinmål 2 Nordvestskolen 2006 Forord Forord For at sikre kvaliteten og fagligheden i folkeskolen har Undervisningsministeriet udarbejdet faghæfter til samtlige fag i folkeskolen med bindende

Læs mere

Matematik - undervisningsplan

Matematik - undervisningsplan I 4. klasse starter man på andet forløb i matematik, der skal lede frem mod at eleverne kan opfylde fagets trinmål efter 6. klasse. Det er dermed det som undervisningen tilrettelægges ud fra og målsættes

Læs mere

Indhold. Indledning 7 Læsevejledning 9

Indhold. Indledning 7 Læsevejledning 9 Indhold Indledning 7 Læsevejledning 9 1 Hvad er åbne opgaver? 13 2 Hvorfor arbejde med åbne opgaver? 17 3 Udfordringer i arbejdet med åbne opgaver 19 4 En ny didaktisk kontrakt 21 5 Et par eksempler 23

Læs mere

cvbnmrtyuiopasdfghjklæøzxcvbnmq wertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwer tyuiopåasdfghjklæøzxcvbnmqwerty

cvbnmrtyuiopasdfghjklæøzxcvbnmq wertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwer tyuiopåasdfghjklæøzxcvbnmqwerty cvbnmrtyuiopasdfghjklæøzxcvbnmq wertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwer tyuiopåasdfghjklæøzxcvbnmqwerty Matematik Den kinesiske prøve uiopåasdfghjklæøzxcvbnmqwertyui 45 min 01 11

Læs mere

Emmas og Frederiks nye værelser - maling eller tapet?

Emmas og Frederiks nye værelser - maling eller tapet? Emmas og Frederiks nye værelser - maling eller tapet? Emmas og Frederiks familie skal flytte til et nyt hus. De har fået lov til at bestemme, hvordan væggene på deres værelser skal se ud. Emma og Frederik

Læs mere

Matematik - Årsplan for 6.b

Matematik - Årsplan for 6.b Matematik - Årsplan for 6.b 2013-2014 Kolorit for 6. klasse består af en grundbog, en rød og en grøn arbejdsbog. Grundbogen er inddelt i 4 forskellige arbejdsformer: Fællessider, gruppesider, alenesider

Læs mere

ØVEHÆFTE FOR MATEMATIK C GEOMETRI

ØVEHÆFTE FOR MATEMATIK C GEOMETRI ØVEHÆFTE FOR MATEMATIK C GEOMETRI Indhold Begreber i klassisk geometri + formelsamling... 2 Pythagoras Sætning... 8 Retvinklede trekanter. Beregn den ukendte side markeret med et bogstav.... 9 Øve vinkler

Læs mere

Kapitlet indledes med en beskrivelse af - og opgaver med - de tre former for sandsynlighed, som er omtalt i læseplanen for 7.- 9.

Kapitlet indledes med en beskrivelse af - og opgaver med - de tre former for sandsynlighed, som er omtalt i læseplanen for 7.- 9. Kapitlet indledes med en beskrivelse af - og opgaver med - de tre former for sandsynlighed, som er omtalt i læseplanen for 7.- 9. klassetrin: statistisk sandsynlighed, kombinatorisk sandsynlighed og personlig

Læs mere

9 Statistik og sandsynlighed

9 Statistik og sandsynlighed 9 Statistik og sandsynlighed Faglige mål Kapitlet Statistik og sandsynlighed tager udgangspunkt i følgende faglige mål: Enkeltobservationer: kunne skabe overblik over statistisk materiale og anvende udvalgte

Læs mere

Uge Emne Materiale Fokus/faglige mål Kompetencer Andre aktiviteter

Uge Emne Materiale Fokus/faglige mål Kompetencer Andre aktiviteter Årsplan Matematik 4.klasse 2016/2017 Undervisningen i matematik tager udgangspunkt i Matematrix 4, som består af en grundbog og en arbejdsbog. Der vil derudover suppleres med opgaver i Pirana 4 samt opgaver

Læs mere

Klassen er sammenlæst, altså 5 og 6 klasse på en og samme tid. Samtidig er klassen pt på ca 11 elever ialt.

Klassen er sammenlæst, altså 5 og 6 klasse på en og samme tid. Samtidig er klassen pt på ca 11 elever ialt. Introduktion til mat i 5/6 klasse Vejle Privatskole 13/14: Klassen er sammenlæst, altså 5 og 6 klasse på en og samme tid. Samtidig er klassen pt på ca 11 elever ialt. Udgangspunktet bliver en blød screening,

Læs mere

Uge / emne Indhold Materiale Mål Evaluering

Uge / emne Indhold Materiale Mål Evaluering Årsplan for skoleåret 2016/2017 5. klasse matematik Uge / emne Indhold Materiale Mål Evaluering 33 36 Store tal og negative tal I gang med nyt bogsystem. Arbejde med store tal og med negative tal. Bruge

Læs mere

Årsplan for matematik 4.kl 2013-2014 udarbejdet af Anne-Marie Kristiansen (RK)

Årsplan for matematik 4.kl 2013-2014 udarbejdet af Anne-Marie Kristiansen (RK) Matematikundervisningen vil i år ændre sig en del fra, hvad eleverne kender fra de tidligere år. vil få en fælles grundbog, hvor de ikke må skrive i, et kladdehæfte, som de skal skrive i, en arbejdsbog

Læs mere

ØVEHÆFTE FOR MATEMATIK C GEOMETRI

ØVEHÆFTE FOR MATEMATIK C GEOMETRI ØVEHÆFTE FOR MATEMATIK C GEOMETRI Indhold Begreber i klassisk geometri + formelsamling... 2 Ensvinklede trekanter... 7 Pythagoras Sætning... 10 Øve vinkler i retvinklede trekanter... 15 Sammensatte opgaver....

Læs mere

Matematiske færdigheder opgavesæt

Matematiske færdigheder opgavesæt Matematiske færdigheder opgavesæt SÆT + 0 :, 0 000 9 0 cm m 0 liter dl ton kg Hvilket år var der flest privatbiler i Danmark? Cirka hvor mange privatbiler var der i 99? 00 0 000 Priser i Tivoli, 00: Turpas

Læs mere

Matematika rsplan for 5. kl

Matematika rsplan for 5. kl Matematika rsplan for 5. kl 2015-2016 Årsplanen tager udgangspunkt i fællesmål (færdigheds- og vidensmål) efter 6. klassetrin. Desuden tilrettelægges undervisningen efter læseplanen for matematik. Formålet

Læs mere

Funktioner generelt. for matematik pä B- og A-niveau i stx og hf. 2014 Karsten Juul

Funktioner generelt. for matematik pä B- og A-niveau i stx og hf. 2014 Karsten Juul Funktioner generelt for matematik pä B- og A-niveau i st og hf f f ( ),8 014 Karsten Juul 1 Funktion og dens graf, forskrift og definitionsmängde 11 Koordinatsystem I koordinatsystemer (se Figur 1): -akse

Læs mere

geometri trin 2 brikkerne til regning & matematik preben bernitt

geometri trin 2 brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik geometri trin 2 preben bernitt brikkerne til regning & matematik geometri, trin 2 ISBN: 978-87-92488-16-9 1. Udgave som E-bog 2003 by bernitt-matematik.dk Kopiering er

Læs mere

Tal og algebra. I kapitlet arbejdes med følgende centrale matematiske begreber: algebra variable. Huskeliste: Tændstikker (til side 146) FRA FAGHÆFTET

Tal og algebra. I kapitlet arbejdes med følgende centrale matematiske begreber: algebra variable. Huskeliste: Tændstikker (til side 146) FRA FAGHÆFTET I kapitlet skal eleverne arbejde med fire forskellige vinkler på algebra de præsenteres på kapitlets første mundtlige opslag. De fire vinkler er algebra som et redskab til at løse matematiske problemer.

Læs mere

Formler, ligninger, funktioner og grafer

Formler, ligninger, funktioner og grafer Formler, ligninger, funktioner og grafer Omskrivning af formler, funktioner og ligninger... 1 Grafisk løsning af ligningssystemer... 1 To ligninger med to ubekendte beregning af løsninger... 15 Formler,

Læs mere

Matematik - undervisningsplan Årsplan 2015 & 2016 Klassetrin: 9-10.

Matematik - undervisningsplan Årsplan 2015 & 2016 Klassetrin: 9-10. Form Undervisningen vil veksle mellem individuelt arbejde, gruppearbejde og tavleundervisning. Materialer Undervisningen tager udgangspunkt i følgende grundbøger og digitale lærings- og undervisningsplatforme.

Læs mere

Kapitel 1: Tal. Tegn på læring. Delforløb Fælles mål Læringsmål

Kapitel 1: Tal. Tegn på læring. Delforløb Fælles mål Læringsmål 5. klasse Årsplan Kapitel 1: Tal Eleven Talsystem Regnestrategier Fase 1: Eleven kan udføre beregninger med de fire regningsarter inden for naturlige tal, herunder beregninger vedrørende hverdagsøkonomi

Læs mere

GUX. Matematik. B-Niveau. August 2015. Kl. 9.00-13.00. Prøveform b GUX152 - MAB

GUX. Matematik. B-Niveau. August 2015. Kl. 9.00-13.00. Prøveform b GUX152 - MAB GUX Matematik B-Niveau August 2015 Kl. 9.00-13.00 Prøveform b GUX152 - MAB 1 Matematik B Prøvens varighed er 4 timer. Delprøven uden hjælpemidler består af opgaverne 1 til 6 med i alt 6 spørgsmål. Besvarelsen

Læs mere

Opgave 1 -Tages kvadrat

Opgave 1 -Tages kvadrat Opgave 1 -Tages kvadrat Den danske matematiker, Tage Werner, fandt på figuren, som ses herunder. Figuren kan laves ved 1) at tegne et kvadrat, 2) markere midtpunkterne på kvadratets sider og 3) tegne linjestykker

Læs mere

OM KAPITLET ELEVFORUDSÆTNINGER FUNKTIONER OG SAMMENHÆNGE. egne svar eller Elevernes egne forklaringer. I disse

OM KAPITLET ELEVFORUDSÆTNINGER FUNKTIONER OG SAMMENHÆNGE. egne svar eller Elevernes egne forklaringer. I disse OM KAPITLET I dette kapitel om funktioner og sammenhænge skal eleverne beskrive forskellige sammenhænge ved hjælp af matematik. Det er primært sammenhænge fra virkeligheden, eleverne arbejder med, fx sammenhængen

Læs mere

FP10. 1 Kan Charlotte få råd til at bo i. 2 Patienter med forbrændinger 3 Antal personer indlagt på. 4 Figurfølger 5 Diofantiske trekanter. lejlighed?

FP10. 1 Kan Charlotte få råd til at bo i. 2 Patienter med forbrændinger 3 Antal personer indlagt på. 4 Figurfølger 5 Diofantiske trekanter. lejlighed? FP10 10.-klasseprøven Matematik Maj 2015 1 Kan Charlotte få råd til at bo i lejlighed? 2 Patienter med forbrændinger 3 Antal personer indlagt på hospitaler i Danmark 4 Figurfølger 5 Diofantiske trekanter

Læs mere

OM KAPITLET ELEVFORUDSÆTNINGER LÆS OG SKRIV MATEMATIK. MULTI 7 er opbygget, og hvilke elementer kapitlerne indeholder.

OM KAPITLET ELEVFORUDSÆTNINGER LÆS OG SKRIV MATEMATIK. MULTI 7 er opbygget, og hvilke elementer kapitlerne indeholder. OM KAPITLET Eleverne bliver i dette kapitel introduceret til, hvordan MULTI 7 er opbygget, og hvilke elementer kapitlerne indeholder. Eleverne kan efterfølgende i arbejdet med bogen genkende de forskellige

Læs mere

Inspirationsforløb i faget matematik i 4. - 6. klasse. Sammenligning af data et inspirationsforløb om statistik og sandsynlighed i 6.

Inspirationsforløb i faget matematik i 4. - 6. klasse. Sammenligning af data et inspirationsforløb om statistik og sandsynlighed i 6. Inspirationsforløb i faget matematik i 4. - 6. klasse Sammenligning af data et inspirationsforløb om statistik og sandsynlighed i 6. klasse Indhold Indledning 3 Undervisningsforløbet 4 Mål for forløbet

Læs mere

Årsplan 8. Klasse Matematik Skoleåret 2016/17

Årsplan 8. Klasse Matematik Skoleåret 2016/17 Hovedformål Der arbejdes med følgende 3 matematiske emner: 1. tal og algebra, 2. geometri samt 3. statistik og sandsynlighed. Derudover skal der arbejdes med matematik i anvendelse samt de matematiske

Læs mere

FP9. 1 Esters fritidsjob 2 Katrine maler 3 Backgammon 4 Halvmaratonløb 5 Babyloniernes formel for arealet af en firkant.

FP9. 1 Esters fritidsjob 2 Katrine maler 3 Backgammon 4 Halvmaratonløb 5 Babyloniernes formel for arealet af en firkant. FP9 9.-klasseprøven Matematisk problemløsning December 2014 Et svarark er vedlagt til dette opgavesæt 1 Esters fritidsjob 2 Katrine maler 3 Backgammon 4 Halvmaratonløb 5 Babyloniernes formel for arealet

Læs mere

Årsplan 9. Klasse Matematik Skoleåret 2015/16

Årsplan 9. Klasse Matematik Skoleåret 2015/16 Årsplan 9 Klasse Matematik Skoleåret 2015/16 Hovedformål Årsplanen for 9 Klasse i Matematik tager udgangspunkt i Forenklede Fællesmål (Undervisningsministeriet) Formålet med undervisningen er, at eleverne

Læs mere

6. klasse matematik. Årsplan for skoleåret 2016/2017. Uge / emne Indhold Materiale Mål Evaluering Regn med tallene

6. klasse matematik. Årsplan for skoleåret 2016/2017. Uge / emne Indhold Materiale Mål Evaluering Regn med tallene Årsplan for skoleåret 2016/2017 6. klasse matematik Uge / emne Indhold Materiale Mål Evaluering 33 36 Regn med tallene Arbejde med færdigheds og problemregning med de fire regnearter og potenser. Kontext

Læs mere

Årsplan Matematik 3.klasse 2016/2017

Årsplan Matematik 3.klasse 2016/2017 Årsplan Matematik 3.klasse 2016/2017 Undervisningen i matematik tager udgangspunkt i Trix 3A og 3B, som består af 2 grundbøger og en. Der vil derudover suppleres med opgaver i Pirana 3 samt opgaver på

Læs mere

Gratisprogrammet 27. september 2011

Gratisprogrammet 27. september 2011 Gratisprogrammet 27. september 2011 1 Brugerfladen: Små indledende øvelser: OBS: Hvis et eller andet ikke fungerer, som du forventer, skal du nok vælge en anden tilstand. Dette ses til højre for ikonerne

Læs mere

Årsplan matematik 5 kl 2015/16

Årsplan matematik 5 kl 2015/16 Årsplan matematik 5 kl 2015/16 I matematik bruger vi bogsystemet Sigma som grundmateriale, og har matematikfessor som suplerende materiale, samt kopisider. I systemet er der,ud over grundbogen, også kopiark

Læs mere

Ens eller forskellig?

Ens eller forskellig? Ens eller forskellig? Geometri i 5./6. klasse Niels Kristen Kirk, Christinelystskolen Kaj Østergaard, VIA UC Plan Didaktisk design - modellen Fra model til praksis indledende overvejelser En konkret udmøntning

Læs mere

FP9. 1 Esters fritidsjob 2 Katrine maler 3 Backgammon 4 Halvmaratonløb 5 Babyloniernes formel for arealet af en firkant.

FP9. 1 Esters fritidsjob 2 Katrine maler 3 Backgammon 4 Halvmaratonløb 5 Babyloniernes formel for arealet af en firkant. FP9 9.-klasseprøven Matematisk problemløsning December 2014 Et svarark er vedlagt til dette opgavesæt 1 Esters fritidsjob 2 Katrine maler 3 Backgammon 4 Halvmaratonløb 5 Babyloniernes formel for arealet

Læs mere

Studentereksamen i Matematik B 2012

Studentereksamen i Matematik B 2012 Studentereksamen i Matematik B 2012 (Gammel ordning) Besvarelse Ib Michelsen Ib Michelsen stx_121_b_gl 2 af 11 Opgave 1 På tegningen er gengivet 3 grafer for de nævnte funktioner. Alle funktionerne er

Læs mere

Funktioner og ligninger

Funktioner og ligninger Eleverne har både i Kolorit på mellemtrinnet og i Kolorit 7 matematik grundbog arbejdet med funktioner. I 7. klasse blev funktionsbegrebet defineret, og eleverne arbejdede med forskellige måder at beskrive

Læs mere

Digitale prøver i matematisk problemløsning muligheder og udfordringer

Digitale prøver i matematisk problemløsning muligheder og udfordringer Digitale prøver i matematisk problemløsning muligheder og udfordringer Odense den 22/11 2016 https://goo.gl/r9kbyy 21-11-2016 Niels Jacob Hansen - UCSJ 1 Status på brug af digitale værktøjer ved fsa fp9

Læs mere

Emne Mål Brug af IT Materialer Evaluering Timetal

Emne Mål Brug af IT Materialer Evaluering Timetal Årsplan 10 E KJ Generelt er der i klassen stor sprednig, men der er god arbejdsmoral Arbejdet organiseres som en blanding af klasseundervisning, gruppearbejde og pararbejde med hovedvægt på sidstnævnte.

Læs mere

Modellering med Målskytten

Modellering med Målskytten Modellering med Målskytten - Et undervisningsforløb i WeDo med udgangspunkt i matematiske emner og kompetencer Af Ralf Jøker Dohn Henrik Dagsberg Målskytten - et modelleringsprojekt i matematik ved hjælp

Læs mere

Der er ikke væsentlig niveauforskel i opgaverne inden for de fire emner, men der er fokus på forskellige matematiske områder.

Der er ikke væsentlig niveauforskel i opgaverne inden for de fire emner, men der er fokus på forskellige matematiske områder. Dette tema lægger forskellige vinkler på temaet biografen. Udgangspunktet er således ikke et bestemt matematisk område, men et stykke virkelighed, der bl.a. kan beskrives ved hjælp af matematik. I dette

Læs mere