Sidste gang Motivation Definitioner Approximations-algoritme for knudeoverdækning Approximations-algoritme for TSP med trekantsulighed

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "Sidste gang Motivation Definitioner Approximations-algoritme for knudeoverdækning Approximations-algoritme for TSP med trekantsulighed"

Transkript

1 Approximations-algoritmer Sidste gang Motivation Definitioner Approximations-algoritme for knudeoverdækning Approximations-algoritme for TSP med trekantsulighed Negativt resultat om generel TSP Approximations-algoritme for SET-COVERING Denne gang Fuldt polynomiel-tids approximations skema (FPTAS) for SUBSET-SUM Motivation Faglig indsigt: trods NP -fuldstændighed kan vi finde vilkårligt god tilnærmet løsning i polynomiel tid. Eksamensrelevant! 1

2 Approximations-algoritmer Ikke-eksakte løsningsmetoder, der giver garanti for hvor tæt på optimum man kommer. C algoritmens løsningsværdi C problemets optimale løsningsværdi Minimeringsproblem C C Mål: gør C C så lille som muligt Maximeringsproblem C C Mål: gør C C så lille som muligt Generelt krav Gør så lille som mulig max max C C C C C C C C ρ n hvor ρ n er ratio bound. Bemærk ρ n 1 2

3 Betegnelser A Approximations-algoritme PTA Polynoimel-Tids Approximations-algoritme AS Approximations Skema PTAS Polynomiel-Tids Approximations Skema FPTAS Fuldt Polynomiel-Tids Approximations Skema Heuristik Ingen garanti for løsningskvalitet 3

4 Subset-sum Problem Subset-sum problem (delmængde sum): Givet mængde af heltal S Find en delmængde S er størst mulig j S S så x j x 1 x 2 x n samt t t For eksempel S t 3754 har løsning S Fuldt polynomiel-tids approximations skema 4

5 Eksponentiel algoritme Dynamisk programmering-lignende algoritme. Lister over tal som kan opnås med en delmængde af S Liste L af positive heltal, f.eks. L Lad x positivt heltal, f.eks. x 2 L x P i tal, der kan opnås som sum af x 1 x i så gælder recursionsligningen P i P i 1 P i 1 x i Her kan foreningsmængden L 1 L 2 udregnes i lineær tid da begge lister er sorterede i voksende orden (MERGE- LISTS). Eksempel Lad S 4 5 7, t 14 P 1 P 2 P

6 Eksponentiel algoritme Algoritme EXACT-SUBSET-SUM S t 1 n S 2 L for i 1 to n do 4 L i MERGE-LISTS L i 1 L i 1 x i 5 remove from L i every element that is greater than t 6 return the largest element in L n Total køretid: nt. Eksponentiel i input størrelsen n logt. F.eks: t 2 n, køretid n2 n O 2 n, input n 2. Idé til forbedring fjern elementer i P i som ligger tæt på hinanden behold det mindste af to tal tæt på hinanden TRIM liste L 6

7 Trimining trim parameter δ med 0 δ 1 L δ L Fjern så mange elementer tæt på hinanden som muligt For ethvert fjernet element y L eksisterer L med y så y 1 δ y 1 δ y 1 δ Eksempel: δ 0 1 L L

8 Trimining Algoritme: TRIM L δ 1 m L 2 L y 1 3 last y 1 3 for i 2 to m do 4 if y i last 1 δ then 5 append y i onto the end of L 5 last y i 6 return L Køretid: lineær. 8

9 Approximations algoritme Givet instans S t, tilladt fejl ε. vælg trimningsfaktor δ ε 2n APPROX-SUBSET-SUM S t ε 1 n S 2 L for i 1 to n do 4 L i MERGE-LISTS L i 1 L i 1 x i 5 L i TRIM L i ε 2n 6 remove from L i every element that is greater than t 7 return A given by the largest element in L n (Bogen kalder returnerede værdi, hvilket ikke harmonerer med at angiver optimal løsning) Sætning Fuldt polynomiel-tids approximations skema 1 Finder en lovlig løsning A 2 Relative fejl er mindre end ε A ε 3 Algoritmen kører i polynomiel tid i n og 1 ε Vi kan antage ε 1, da 2-approximation nem (overvej!) 9

10 Eksempel Instans: S , t 308, ε 0 40 Vælger δ ε 2n Forløb: line 2: L 0 0 line 4: L line 5: L line 6: L line 4: L line 5: L line 6: L line 4: L line 5: L line 6: L line 4: L line 5: L line 6: L Approximativ løsning: A 302 Optimal løsning: 307, (faktisk afvigelse 2%) 10

11 Finder en lovlig løsning Kun lovlige summer i L, alle Naturligvis lovlig sum i sidste iteration Relativ fejl mindre end ε For ethvert fjernet element y P eksisterer L så y 1 δ y Ved induktion i i kan det vises at efter i iterationer gælder: For ethvert fjernet element y P i eksisterer L i så y 1 δ y i Gælder specielt for P n, dvs. der findes L n så 1 δ n Må også gælde for A som er den største værdi i L n så eller 1 δ n A 1 δ n A Vil vise at 1 δ n 1 ε når δ ε 2n 11 t

12 Relativ fejl mindre end ε Betragter f n ε ε 1 n 2n. Formel (3.13) side 53 siger at x lim 1 n og da d dn f n ε n n e x 0 er f voksende. ε n 1 2n e ε 2 Formel (3.12) side 53 siger e x 1 x x 2 for x 1 så n 1 ε 2 og da ε 1 1 får vi: ε 2n 1 ε 2n n 1 ε ε 2 2 Kombineret med formlen forrige side fås 1 ε A og dermed A 1 A ε 1 ε 1 1 ε ε 12

13 Kører i polynomiel tid i n og 1 ε TRIM sletter et element hvis 1 δ Så på ethvert tidspunkt vil elementerne i L i overholde 1 δ α α 1 δ afstands-faktor Den tættest mulige liste ser ud som 0 1 α α 2 α 3 α k t Antal elementer er k 2, hvor k findes som: α k t k lnα lnt k Formel (3.16) side 54 siger at for δ δ 1 δ ln 1 δ lnt lnα 1 ln 1 δ 1 gælder så 1 δ lnt 1 ε 2n lnt k δ ε 2n Da ε 1 gælder at 1 ε 2n 2 så 4nlnt k ε Køretid: O n k 2 O 1 ε n2 lnt 13 lnt ln 1 δ 1 δ δ

14 Indsigt Approximabilitet og reduktion af problemer Da SUBSET-SUM er NP -fuldstændigt gælder f.eks. TSP p SUBSET-SUM Vi kan approximere SUBSET-SUM vilkårligt godt i polynomiel tid Gælder tilsvarende resultat for TSP? Reduktion gælder kun for afgørlighedsproblemer Såfremt vi vil løse SUBSET-SUM-DECISION skal ε 0 14

15 Branch-and-bound som Approximations Skema Minimeringsproblem: (givet ε 0) For ethvert underproblem (knude) lad grænseværdi Lad være hidtil bedste løsning Forkast underproblem hvis 1 ε være en nedre Eksempel: ε 0 1, 11, 12. Forkast knude Approximations skema. Relativ afvigelse ε. Køretid:??? Branch-and-bound i Polynomiel tid Undersøg kun et polynomielt antal knuder M Best-first søgning Stop efter M knuder Køretid polynomiel. Løsningskvalitet:??? n k 15

Tirsdag 18. december David Pisinger

Tirsdag 18. december David Pisinger Videregående Algoritmik, DIKU 00-08 Tirsdag 8. december David Pisinger Approximations-algoritmer Motivation Definitioner Approximations-algoritme for knudeoverdækning Approximations-algoritme for TSP trekantsulighed)

Læs mere

Approximations-algoritmer. Løsningsmetoder for NP -hårde opt.problemer

Approximations-algoritmer. Løsningsmetoder for NP -hårde opt.problemer Motivation Definitioner Approximations-algoritme for nudeoverdæning Approximations-algoritme for TSP med treantsulighed Negativt resultat om generel TSP Approximations-algoritme for SET-OVERING Fuldt polynomiel-tids

Læs mere

Tirsdag 12. december David Pisinger

Tirsdag 12. december David Pisinger Videregående Algoritmik, DIKU 2006/07 Tirsdag 12. december David Pisinger Resume sidste to gang Sprog L : mængden af instanser for et afgørlighedsproblem hvor svaret er 1. P = {L : L genkendes af en algoritme

Læs mere

Løs til optimalitet i eksponentiel tid Find tilnærmet løsning i polynomiel tid

Løs til optimalitet i eksponentiel tid Find tilnærmet løsning i polynomiel tid 6 april Løsning af N P -hårde problemer Løs til optimalitet i eksponentiel tid Find tilnærmet løsning i polynomiel tid Oversigt Grænseværdier (repetition) Branch-and-bound algoritmens komponenter Eksempler

Læs mere

16. december. Resume sidste gang

16. december. Resume sidste gang 16. december Resume sidste gang Abstrakt problem, konkret instans, afgørlighedsproblem Effektiv kodning (pol. relateret til binær kodning) Sprog L : mængden af instanser for et afgørlighedsproblem hvor

Læs mere

16. marts P NP. Essentielle spørgsmål: NP P? Et problem Q kaldes NP -fuldstændigt 1 Q NP 2 R NP : R pol Q. Resume sidste gang

16. marts P NP. Essentielle spørgsmål: NP P? Et problem Q kaldes NP -fuldstændigt 1 Q NP 2 R NP : R pol Q. Resume sidste gang 16. marts Resume sidste gang Abstrakt problem konkret instans afgørlighedsproblem Effektiv kodning (pol. relateret til binær kodning) Sprog L : mængden af instanser for et afgørlighedsproblem hvor svaret

Læs mere

Symmetrisk Traveling Salesman Problemet

Symmetrisk Traveling Salesman Problemet Symmetrisk Traveling Salesman Problemet Videregående Algoritmik, Blok 2 2008/2009, Projektopgave 2 Bjørn Petersen 9. december 2008 Dette er den anden af to projektopgaver på kurset Videregående Algoritmik,

Læs mere

Sprog L : mængden af instanser for et afgørlighedsproblem

Sprog L : mængden af instanser for et afgørlighedsproblem 26. marts Resume sidste to gang Sprog L : mængden af instanser for et afgørlighedsproblem hvor svaret er 1. P NP L : L genkendes af en algoritme i polynomiel tid L : L verificeres af en polynomiel tids

Læs mere

Løs til optimalitet i eksponentiel tid Find tilnærmet løsning i polynomielt tid Optimeringsproblemer kan ikke altid verificeres i polynomiel

Løs til optimalitet i eksponentiel tid Find tilnærmet løsning i polynomielt tid Optimeringsproblemer kan ikke altid verificeres i polynomiel I dag Løsning af NP -hårde optimeringsproblemer Repetition: branch-and-bound Flere begreber Konkret eksempel: TSP Lagrange relaxering Parallel branch-and-bound 1 Opsummering Løsning af NP -hårde optimeringsproblemer

Læs mere

Hamilton-veje og kredse:

Hamilton-veje og kredse: Hamilton-veje og kredse: Definition: En sti x 1, x 2,...,x n i en simpel graf G = (V, E) kaldes en hamiltonvej hvis V = n og x i x j for 1 i < j n. En kreds x 1, x 2,...,x n, x 1 i G kaldes en hamiltonkreds

Læs mere

.. if L(u) + w(u, v) < L(v) then.. begin... L(v) := L(u) + w(u, v)... F (v) := u.. end. med længde L(z)}

.. if L(u) + w(u, v) < L(v) then.. begin... L(v) := L(u) + w(u, v)... F (v) := u.. end. med længde L(z)} Procedure Dijkstra(G = (V, E): vægtet sh. graf,. a, z: punkter) { Det antages at w(e) > 0 for alle e E} For alle v V : L(v) := L(a) := 0, S := while z / S begin. u := punkt ikke i S, så L(u) er mindst

Læs mere

Branch-and-bound. David Pisinger. Videregående algoritmik, DIKU (2007-08) 1 Introduktion 5 1.1 Gennemgående eksempler... 7. 2 Brute-force metoder 10

Branch-and-bound. David Pisinger. Videregående algoritmik, DIKU (2007-08) 1 Introduktion 5 1.1 Gennemgående eksempler... 7. 2 Brute-force metoder 10 Branch-and-bound David Pisinger Videregående algoritmik, DIKU (2007-08) Indhold 1 Introduktion 5 1.1 Gennemgående eksempler..................... 7 2 Brute-force metoder 10 3 Divide and Conquer 11 4 Grænseværdier

Læs mere

Dynamisk programmering

Dynamisk programmering Dynamisk programmering Dynamisk programmering Optimeringsproblem: man ønsker at finde bedste den kombinatoriske struktur blandt mange mulige. Dynamisk programmering Optimeringsproblem: man ønsker at finde

Læs mere

Hamiltonkreds, den handelsrejsendes problem, delmængdesum-problemet

Hamiltonkreds, den handelsrejsendes problem, delmængdesum-problemet , den handelsrejsendes problem, delmængdesum-problemet Videregående algoritmik Cormen et al. 34.5.3 34.5.5 Fredag den 19. december 2008 1 N P-fuldstændige problemer 1 N P-fuldstændige problemer 2 Reduktion

Læs mere

Skriftlig Eksamen Algoritmer og Datastrukturer (DM507)

Skriftlig Eksamen Algoritmer og Datastrukturer (DM507) Skriftlig Eksamen Algoritmer og Datastrukturer (DM507) Institut for Matematik og Datalogi Syddansk Universitet, Odense Onsdag den 0. juni 009, kl. 9 Alle sædvanlige hjælpemidler (lærebøger, notater, osv.)

Læs mere

28 Algoritmedesign. Noter. PS1 -- Algoritmedesign

28 Algoritmedesign. Noter. PS1 -- Algoritmedesign 28 Algoritmedesign. Algoritmeskabelon for Del og Hersk. Eksempler på Del og Hersk algoritmer. Binær søgning i et ordnet array. Sortering ved fletning og Quicksort. Maksimal delsums problem. Tætteste par

Læs mere

Dynamisk programmering

Dynamisk programmering Dynamisk programmering Dynamisk programmering Et algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Har en hvis lighed med divide-and-conquer: Begge opbygger løsninger til større problemer

Læs mere

Bevisteknikker. Bevisteknikker (relevant både ved design og verifikation) Matematisk induktion. Matematisk induktion uformel beskrivelse

Bevisteknikker. Bevisteknikker (relevant både ved design og verifikation) Matematisk induktion. Matematisk induktion uformel beskrivelse Bevisteknikker Bevisteknikker (relevant både ved design og verifikation) Bevisførelse ved modstrid (indirekte bevis) Antag, at det givne teorem er falsk Konkluder, at dette vil føre til en modstrid Teorem:

Læs mere

Klasserne af problemer, der kan løses i deterministisk og i ikke-deterministisk polynomiel tid; polynomiel reduktion; N P-fuldstændighed

Klasserne af problemer, der kan løses i deterministisk og i ikke-deterministisk polynomiel tid; polynomiel reduktion; N P-fuldstændighed Klasserne af problemer, der kan løses i deterministisk og i ikke-deterministisk polynomiel tid; polynomiel reduktion; N P-fuldstændighed Videregående algoritmik Cormen et al. 34.1 34.3 Fredag den 12. december

Læs mere

M=3 kunde forbindelse. oprettet lokation Steinerkant

M=3 kunde forbindelse. oprettet lokation Steinerkant M=3 åben facilitet kunde forbindelse lukket facilitet oprettet lokation Steinerkant v Connected facility location-problemet min i f i y i + d j c ij x ij + M c e z e (1) j i e hvorom gælder: x ij 1 j (2)

Læs mere

Algoritmer og invarianter

Algoritmer og invarianter Algoritmer og invarianter Iterative algoritmer Algoritmen er overordnet set een eller flere while eller for-løkker. Iterative algoritmer Algoritmen er overordnet set een eller flere while eller for-løkker.

Læs mere

Bevisteknikker (relevant både ved design og verifikation)

Bevisteknikker (relevant både ved design og verifikation) Bevisteknikker 1 Bevisteknikker (relevant både ved design og verifikation) Bevisførelse ved modstrid (indirekte bevis) Antag, at det givne teorem er falsk Konkluder, at dette vil føre til en modstrid Teorem:

Læs mere

Ugeseddel 12(10.12 14.12)

Ugeseddel 12(10.12 14.12) Ugeseddel (..) Matematisk Programmering Niels Lauritzen..7 FORELÆSNINGER I ugen. 7. gennemgik vi algoritmer til løsning af heltalsprogrammer ved hjælp af simplex algoritmen. Dette er heltalsprogrammeringsugesedlen

Læs mere

Perspektiverende Datalogikursus

Perspektiverende Datalogikursus Perspektiverende Datalogikursus Uge 1 - Algoritmer og kompleksitet Gerth Stølting Brodal 27. august 2004 1 Indhold Mere om Eksempler på beregningsproblemer Algoritmer og deres analyse Korrekthed af algoritmer

Læs mere

Kalkulus 2 - Grænseovergange, Kontinuitet og Følger

Kalkulus 2 - Grænseovergange, Kontinuitet og Følger Kalkulus - Grænseovergange, Kontinuitet og Følger Mads Friis 8. januar 05 Indhold Grundlæggende uligheder Grænseovergange 3 3 Kontinuitet 9 4 Følger 0 5 Perspektivering 4 Grundlæggende uligheder Sætning

Læs mere

Grundlæggende køretidsanalyse af algoritmer

Grundlæggende køretidsanalyse af algoritmer Grundlæggende køretidsanalyse af algoritmer Algoritmers effektivitet Størrelse af inddata Forskellige mål for køretid Store -notationen Klassiske effektivitetsklasser Martin Zachariasen DIKU 1 Algoritmers

Læs mere

Ja! det beviste vi uge 16+17

Ja! det beviste vi uge 16+17 Ugens emner Lukketheds- og afgørlighedsegenskaber [5.3-5.5] lukkethed under,,,, * lukkethed under homomorfi og invers homomorfi pumping -lemmaet beslutningsproblemer: membership, emptiness, finiteness

Læs mere

MASO Uge 1. Relle tal Følger. Jesper Michael Møller. 7. september Department of Mathematics University of Copenhagen

MASO Uge 1. Relle tal Følger. Jesper Michael Møller. 7. september Department of Mathematics University of Copenhagen MASO Uge 1 Relle tal Jesper Michael Møller Department of Mathematics University of Copenhagen 7. september 2016 Formålet med MASO Integer sequences Oversigt Relle tal Notation Tal Overtal og undertal Største

Læs mere

Funktion af flere variable

Funktion af flere variable Funktion af flere variable Preben Alsholm 6. oktober 2008 1 Funktion af flere variable 1.1 Punktmængder i R k : Definitioner Punktmængder i flerdimensionale rum: Definitioner q Normen af x 2 R k er kxk

Læs mere

P (n): rekursiv beregning af f n kræver f n beregninger af f 1. P (n) er sand for alle n 2.

P (n): rekursiv beregning af f n kræver f n beregninger af f 1. P (n) er sand for alle n 2. P (n): rekursiv beregning af f n kræver f n beregninger af f 1. P (n) er sand for alle n 2. Bevis ved stærk induktion. Basisskridt: P (2) er sand og P (3) er sand. Induktionsskridt: Lad k 2 og antag P

Læs mere

Teoretiske Øvelsesopgaver:

Teoretiske Øvelsesopgaver: Teoretiske Øvelsesopgaver: TØ-Opgave 1 Subtraktion division i legemer: Er subtraktion division med elementer 0 i legemer veldefinerede, eller kan et element b have mere end ét modsat element -b eller mere

Læs mere

Operationsanalyse MØK

Operationsanalyse MØK Operationsanalyse MØK 2015II Eksamensopgave, Rettevejledning, side 1 Operationsanalyse MØK Eksamensopgave, 4. januar 2016 Rettevejledning 1. Vi har at gøre med et transportproblem, der kan skrives på formen

Læs mere

Grådige algoritmer. Et algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer.

Grådige algoritmer. Et algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Grådige algoritmer Grådige algoritmer Et algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Grådige algoritmer Et algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer.

Læs mere

Divide-and-Conquer algoritmer

Divide-and-Conquer algoritmer Divide-and-Conquer algoritmer Divide-and-Conquer algoritmer Det samme som rekursive algoritmer. Divide-and-Conquer algoritmer Det samme som rekursive algoritmer. 1. Opdel problem i mindre delproblemer

Læs mere

6. december. Motivation. Internettet: Login til DIKU (med password) Handel med dankort Fortrolig besked Digital signatur

6. december. Motivation. Internettet: Login til DIKU (med password) Handel med dankort Fortrolig besked Digital signatur 6. december Talteoretiske algoritmer, RSA kryptosystemet, Primtalstest Motivation Definitioner Euclids algoritme Udvidet Euclid RSA kryptosystemet Randominserede algoritmer Rabin-Miller primtalstest Svært

Læs mere

Algorithms and Architectures I Rasmus Løvenstein Olsen (RLO) Mm2: Rekursive algoritmer og rekurrens - October 12, 2010

Algorithms and Architectures I Rasmus Løvenstein Olsen (RLO) Mm2: Rekursive algoritmer og rekurrens - October 12, 2010 Algorithms and Architectures I Rasmus Løvenstein Olsen (RLO) Mm2: Rekursive algoritmer og rekurrens - October 12, 2010 1 Algorithms and Architectures II 1. Introduction to analysis and design of algorithms

Læs mere

Elementær sandsynlighedsregning

Elementær sandsynlighedsregning Elementær sandsynlighedsregning Sandsynlighedsbegrebet Et udfaldsrum S er mængden af alle de mulige udfald af et eksperiment. En hændelse A er en delmængde af udfaldsrummet S. Den hændelse, der ikke indeholder

Læs mere

Algorithms and Architectures I Rasmus Løvenstein Olsen (RLO), Jimmy Jessen Nielsen (JJE) Mm2: Rekursive algoritmer og rekurrens - October 10, 2008

Algorithms and Architectures I Rasmus Løvenstein Olsen (RLO), Jimmy Jessen Nielsen (JJE) Mm2: Rekursive algoritmer og rekurrens - October 10, 2008 Algorithms and Architectures I Rasmus Løvenstein Olsen (RLO), Jimmy Jessen Nielsen (JJE) Mm2: Rekursive algoritmer og rekurrens - October 10, 2008 1 Algorithms and Architectures II 1. Introduction to analysis

Læs mere

Matematisk modellering og numeriske metoder. Lektion 16

Matematisk modellering og numeriske metoder. Lektion 16 Matematisk modellering og numeriske metoder Lektion 16 Morten Grud Rasmussen 6. november, 2013 1 Interpolation [Bogens afsnit 19.3 side 805] 1.1 Interpolationspolynomier Enhver kontinuert funktion f på

Læs mere

Perspektiverende Datalogikursus

Perspektiverende Datalogikursus Perspektiverende Datalogikursus Uge 1 - Algoritmer og kompleksitet Gerth Stølting Brodal 2. september 2005 1 Afleveringsopgaver... /\.. // \\ / \ / [] \ \\_// / \ / \ []._. ---------------- _ 2 Øvelse

Læs mere

MM502+4 forelæsningsslides

MM502+4 forelæsningsslides MM502+4 forelæsningsslides uge 11+12 1, 2009 Produceret af Hans J. Munkholm, delvis på baggrund af lignende materiale udarbejdet af Mikael Rørdam 1 I nærværende forbindelse er 11 + 12 23 1 Egenskaber for

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Eksamen 005, F0 side af sider Danmarks Tekniske Universitet Skriftlig prøve, den 6. maj 00. Kursusnavn Algoritmik og datastrukturer I Kursus nr. 005. Tilladte hjælpemidler: Alle skriftlige hjælpemidler.

Læs mere

Elementær sandsynlighedsregning

Elementær sandsynlighedsregning Elementær sandsynlighedsregning Sandsynlighedsbegrebet Et udfaldsrum S er mængden af alle de mulige udfald af et eksperiment. En hændelse A er en delmængde af udfaldsrummet S. Et sandsynlighedsmål er en

Læs mere

Divide-and-Conquer algoritmer

Divide-and-Conquer algoritmer Divide-and-Conquer algoritmer Divide-and-Conquer algoritmer Det samme som rekursive algoritmer. Divide-and-Conquer algoritmer Det samme som rekursive algoritmer. 1. Opdel problem i mindre delproblemer

Læs mere

Rolf Fagerberg. Forår 2012

Rolf Fagerberg. Forår 2012 Forår 2012 Mål for i dag Dagens program: 1 2 3 4 5 6 Forudsætninger: DM502 og DM503 Timer: 50% forelæsninger, 50% øvelser Forudsætninger: DM502 og DM503 Eksamenform: Skriftlig eksamen: Timer: 50% forelæsninger,

Læs mere

BEVISER TIL KAPITEL 3

BEVISER TIL KAPITEL 3 BEVISER TIL KAPITEL 3 Alle beviserne i dette afsnit bruger følgende algoritme fra side 88 i bogen. Algoritme: Fremgangsmåde til udledning af forskellige regneregler for differentiation af forskellige funktionstyper

Læs mere

Rolf Fagerberg. Forår 2015

Rolf Fagerberg. Forår 2015 Forår 2015 Dagens program 1 2 3 4 5 Underviser:, IMADA Forskningsområde: algoritmer og datastrukturer Underviser:, IMADA Forskningsområde: algoritmer og datastrukturer Deltagere: BA i Datalogi BA i Software

Læs mere

Skriftlig Eksamen Introduktion til lineær og heltalsprogrammering (DM515)

Skriftlig Eksamen Introduktion til lineær og heltalsprogrammering (DM515) Skriftlig Eksamen Introduktion til lineær og heltalsprogrammering (DM55) Institut for Matematik & Datalogi Syddansk Universitet Tirsdag den Juni 009, kl. 9 Alle sædvanlige hjælpemidler (lærebøger, notater

Læs mere

Rolf Fagerberg. Forår 2015

Rolf Fagerberg. Forår 2015 Forår 2015 Dagens program 1 2 3 4 5 Underviser:, IMADA Forskningsområde: algoritmer og datastrukturer Deltagere: BA i Datalogi BA i Software Engineering BA i Matematik-Økonomi BA i Anvendt Matematik BA

Læs mere

FPTAS er for korteste vej med restriktion

FPTAS er for korteste vej med restriktion FPTAS er for korteste vej med restriktion DIKU-opgave i kurset Approksimationsalgoritmer Allan Nordlunde Hjorth Tommy Clausen Kenneth Lyneborg Hvam 18. december 2003 INDHOLD INDHOLD Indhold 1 Forord 3

Læs mere

Minimum udspændende Træer (MST)

Minimum udspændende Træer (MST) Minimum udspændende Træer (MST) Træer Et (frit/u-rodet) træ er en uorienteret graf G = (V, E) som er Sammenhængende: der er en sti mellem alle par af knuder. Acyklisk: der er ingen kreds af kanter. Træer

Læs mere

Søgning og Sortering. Philip Bille

Søgning og Sortering. Philip Bille Søgning og Sortering Philip Bille Plan Søgning Linæer søgning Binær søgning Sortering Indsættelsesortering Flettesortering Søgning Søgning 1 4 7 12 16 18 25 28 31 33 36 42 45 47 50 1 2 3 4 5 6 7 8 9 10

Læs mere

Skriftlig Eksamen Algoritmer og Datastrukturer (dads)

Skriftlig Eksamen Algoritmer og Datastrukturer (dads) Skriftlig Eksamen Algoritmer og Datastrukturer (dads) Datalogisk Institut Aarhus Universitet Tirsdag den 27. maj 2003, kl. 9.00 3.00 Opgave (25%) For konstanten π = 3.4592... gælder identiteten π 2 6 =

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Eksamen 02105, F14 side 1 af 14 Danmarks Tekniske Universitet Skriftlig prøve, den 22. maj 2014. Kursusnavn: Algoritmer og datastrukturer 1 Kursusnummer: 02105 Hjælpemidler: Skriftlige hjælpemidler. Det

Læs mere

Datalogisk indsigt Der findes problemer som kan løses effektivt (polynomiel

Datalogisk indsigt Der findes problemer som kan løses effektivt (polynomiel 9. marts NP -fuldstændighed Datalogisk indsigt Der findes problemer som kan løses effektivt (polynomiel tid) Der findes problemer som ikke kan løses effektivt Der findes problemer som slet ikke kan løses

Læs mere

Sortering i lineær tid

Sortering i lineær tid Sortering i lineær tid Nedre grænse for sammenligningsbaseret sortering Nedre grænser kræver en præcis beregningsmodel. Nedre grænse for sammenligningsbaseret sortering Nedre grænser kræver en præcis beregningsmodel.

Læs mere

Introduktion til DM507

Introduktion til DM507 Introduktion til DM507 Rolf Fagerberg Forår 2017 1 / 20 Hvem er vi? Underviser: Rolf Fagerberg, IMADA Forskningsområde: algoritmer og datastrukturer 2 / 20 Hvem er vi? Underviser: Rolf Fagerberg, IMADA

Læs mere

Videregående Algoritmik. Version med vejledende løsninger indsat!

Videregående Algoritmik. Version med vejledende løsninger indsat! Videregående Algoritmik DIKU, timers skriftlig eksamen, 1. april 009 Nils Andersen og Pawel Winter Alle hjælpemidler må benyttes, dog ikke lommeregner, computer eller mobiltelefon. Opgavesættet består

Læs mere

Rolf Fagerberg. Forår 2014

Rolf Fagerberg. Forår 2014 Forår 2014 Mål for i dag Dagens program: 1 2 3 4 5 6 Forudsætninger: Format: Programmering og Diskret matematik I (forelæsninger), TE (øvelser), S (arbejde selv og i studiegrupper) Eksamenform: Skriftlig

Læs mere

Rolf Fagerberg. Forår 2013

Rolf Fagerberg. Forår 2013 Forår 2013 Mål for i dag Dagens program: 1 2 3 4 5 6 Forudsætninger: DM536 og DM537 Timer: 50% forelæsninger, 50% øvelser Forudsætninger: DM536 og DM537 Eksamenform: Skriftlig eksamen: Timer: 50% forelæsninger,

Læs mere

Perspektiverende Datalogi Klassiske Algoritmer

Perspektiverende Datalogi Klassiske Algoritmer Perspektiverende Datalogi Klassiske Algoritmer Gerth Stølting Brodal 1 Indhold Eksempler på beregningsproblemer Algoritmer og deres analyse Korrekthed af algoritmer Ressourceforbrug for algoritmer Kompleksitet

Læs mere

Geometrisk skæring. Afgørelse af om der findes skæringer blandt geometriske objekter Bestemmelse af alle skæringspunkter

Geometrisk skæring. Afgørelse af om der findes skæringer blandt geometriske objekter Bestemmelse af alle skæringspunkter Planfejning 1 Skæring 2 Geometrisk skæring Afgørelse af om der findes skæringer blandt geometriske objekter Bestemmelse af alle skæringspunkter Løsningsmetoder: Rå kraft Planfejning (eng. plane sweep)

Læs mere

Parallelisering/Distribuering af Genetiske Algoritmer

Parallelisering/Distribuering af Genetiske Algoritmer Parallelisering/Distribuering af Genetiske Algoritmer Hvorfor parallelisere/distribuere? Standard GA algoritme Modeller Embarassing parallel Global (fitness evaluering) Island (subpopulation) Grid/Cellular

Læs mere

Kursusgang Rekursive definitioner. 14. april Mystiske eksempler. Hvad er en rekursiv definition egentlig? Partielle ordninger

Kursusgang Rekursive definitioner. 14. april Mystiske eksempler. Hvad er en rekursiv definition egentlig? Partielle ordninger Kursusgang 15 14. april 2011 1 Rekursive definitioner Hvad er en rekursiv definition egentlig? Partielle ordninger cpo er (fuldstændige partielle) ordninger Monotone og kontinente funktioner Sætning om

Læs mere

02402 Vejledende løsninger til hjemmeopgaver og øvelser i uge 5

02402 Vejledende løsninger til hjemmeopgaver og øvelser i uge 5 02402 Vejledende løsninger til hjemmeopgaver og øvelser i uge 5 Opgave 5.117, side 171 (7ed: 5.116 side 201 og 6ed: 5.116 side 197) I denne opgave skal vi benytte relationen mellem den log-normale fordeling

Læs mere

Skriftlig Eksamen Algoritmer og Datastrukturer (DM507)

Skriftlig Eksamen Algoritmer og Datastrukturer (DM507) Skriftlig Eksamen Algoritmer og Datastrukturer (DM507) Institut for Matematik og Datalogi Syddansk Universitet, Odense Mandag den 7. juni 00, kl. 9 Alle sædvanlige hjælpemidler (lærebøger, notater, osv.)

Læs mere

Approksimationsalgoritmer for k-median og facility location problemer, vha. lokalsøgning

Approksimationsalgoritmer for k-median og facility location problemer, vha. lokalsøgning Approksimationsalgoritmer for k-median og facility location problemer, vha. lokalsøgning Peter Neergaard Jensen, Christian Plum & Mette Gamst 8. januar 2006 1 Indledning I forbindelse med kurset Approkismationsalgoritmer,

Læs mere

Sortering. Sortering ved fletning (merge-sort) Del-og-hersk. Merge-sort

Sortering. Sortering ved fletning (merge-sort) Del-og-hersk. Merge-sort Sortering Sortering ved fletning (merge-sort) 7 2 9 4! 2 4 7 9 7 2! 2 7 9 4! 4 9 7! 7 2! 2 9! 9 4! 4 1 2 Del-og-hersk Merge-sort Del-og-hersk er et generelt paradigme til algoritmedesign Del: opdel input-data

Læs mere

Algorithms & Architectures I 2. lektion

Algorithms & Architectures I 2. lektion Algorithms & Architectures I 2. lektion Design-teknikker: Divide-and-conquer Rekursive algoritmer (Recurrences) Dynamisk programmering Greedy algorithms Backtracking Dagens lektion Case eksempel: Triple

Læs mere

14 Algoritmeanalyse. Noter. Algoritmebegrebet. Hvad er algoritmeanalyse? Problemstørrelse og køretid. Køretid for forskellige kontrolstrukturer.

14 Algoritmeanalyse. Noter. Algoritmebegrebet. Hvad er algoritmeanalyse? Problemstørrelse og køretid. Køretid for forskellige kontrolstrukturer. 14 Algoritmeanalyse. Algoritmebegrebet. Hvad er algoritmeanalyse? Problemstørrelse og køretid. O og Ω. Køretid for forskellige kontrolstrukturer. Eksempler på algoritmeanalyse. Eksponentiel og polynomiel

Læs mere

Søgning og Sortering. Søgning og Sortering. Søgning. Linæer søgning

Søgning og Sortering. Søgning og Sortering. Søgning. Linæer søgning Søgning og Sortering Søgning og Sortering Philip Bille Søgning. Givet en sorteret tabel A og et tal x, afgør om der findes indgang i, så A[i] = x. Sorteret tabel. En tabel A[0..n-1] er sorteret hvis A[0]

Læs mere

Algoritmisk geometri

Algoritmisk geometri Algoritmisk geometri 1 Intervalsøgning 2 Motivation for intervaltræer Lad der være givet en database over ansatte i en virksomhed Ansat Alder Løn Ansættelsesdato post i databasen Antag, at vi ønsker at

Læs mere

Modul 12: Regression og korrelation

Modul 12: Regression og korrelation Forskningsenheden for Statistik ST01: Elementær Statistik Bent Jørgensen Modul 12: Regression og korrelation 12.1 Sammenligning af to regressionslinier........................ 1 12.1.1 Test for ens hældning............................

Læs mere

Grådige algoritmer. Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer.

Grådige algoritmer. Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Grådige algoritmer Grådige algoritmer Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Grådige algoritmer Et generelt algoritme-konstruktionsprincip ( paradigme ) for

Læs mere

Note om interior point metoder

Note om interior point metoder MØK 2016, Operationsanalyse Interior point algoritmer, side 1 Note om interior point metoder Som det er nævnt i bogen, var simplex-metoden til løsning af LP-algoritmer nærmest enerådende i de første 50

Læs mere

Korteste veje i vægtede grafer. Længde af sti = sum af vægte af kanter på sti.

Korteste veje i vægtede grafer. Længde af sti = sum af vægte af kanter på sti. Korteste veje Korteste veje i vægtede grafer Længde af sti = sum af vægte af kanter på sti. Korteste veje i vægtede grafer Længde af sti = sum af vægte af kanter på sti. δ(u, v) = længden af en korteste

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af sider Danmarks Tekniske Universitet Skriftlig prøve, den. maj 00. Kursusnavn Algoritmer og datastrukturer Kursus nr. 06. Tilladte hjælpemidler: Alle hjælpemidler. Vægtning af opgaverne: Opgave

Læs mere

t a l e n t c a m p d k Kalkulus 1 Mads Friis Anders Friis Anne Ryelund Signe Baggesen 10. januar 2015 Slide 1/54

t a l e n t c a m p d k Kalkulus 1 Mads Friis Anders Friis Anne Ryelund Signe Baggesen 10. januar 2015 Slide 1/54 Slide 1/54 Indhold 1 2 3 4 5 Slide 2/54 Indhold 1 2 3 4 5 Slide 3/54 1) Hvad er et aksiom? Slide 4/54 1) Hvad er et aksiom? 2) Hvorfor har vi brug for aksiomer? The Monty Hall Problem Slide 4/54 1) Hvad

Læs mere

Grådige algoritmer. Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer.

Grådige algoritmer. Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Grådige algoritmer Grådige algoritmer Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Grådige algoritmer Et generelt algoritme-konstruktionsprincip ( paradigme ) for

Læs mere

Sortering ved fletning (merge-sort)

Sortering ved fletning (merge-sort) Sortering 1 Sortering ved fletning (merge-sort) 7 2 9 4 2 4 7 9 7 2 2 7 9 4 4 9 7 7 2 2 9 9 4 4 2 Del-og-hersk Del-og-hersk er et generelt paradigme til algoritmedesign Del: opdel input-data S i to disjunkte

Læs mere

Analyse 2. Gennemgå bevis for Sætning Supplerende opgave 1. Øvelser. Sætning 1. For alle mængder X gælder #X < #P(X).

Analyse 2. Gennemgå bevis for Sætning Supplerende opgave 1. Øvelser. Sætning 1. For alle mængder X gælder #X < #P(X). Analyse 2 Øvelser Rasmus Sylvester Bryder 3. og 6. september 2013 Gennemgå bevis for Sætning 2.10 Sætning 1. For alle mængder X gælder #X < #P(X). Bevis. Der findes en injektion X P(X), fx givet ved x

Læs mere

dks Noter Michael Lind Mortensen, illio 24. juni 2010

dks Noter Michael Lind Mortensen, illio 24. juni 2010 dks Noter Michael Lind Mortensen, illio 24. juni 2010 Indhold 1 P, NP and NPC. 4 1.1 Disposition............................ 4 1.2 Emne detaljer........................... 4 1.2.1 Def. Problemer, Sprog,

Læs mere

DM02 opgaver ugeseddel 2

DM02 opgaver ugeseddel 2 DM0 opgaver ugeseddel af Fiona Nielsen 16. september 003 Øvelsesopgaver 9/9, 10/9 og 11/9 1. Vis, at 1 3 + 3 3 + 5 3 +... + (n 1) 3 = n 4 n. Omskriver til summationsformel: (i 1) 3 = n 4 n Bevis ved induktion

Læs mere

Matematisk induktion

Matematisk induktion Induktionsbeviser MT01.0.07 1 1 Induktionsbeviser Matematisk induktion Sætninger der udtaler sig om hvad der gælder for alle naturlige tal n N, kan undertiden bevises ved matematisk induktion. Idéen bag

Læs mere

Noter til Perspektiver i Matematikken

Noter til Perspektiver i Matematikken Noter til Perspektiver i Matematikken Henrik Stetkær 25. august 2003 1 Indledning I dette kursus (Perspektiver i Matematikken) skal vi studere de hele tal og deres egenskaber. Vi lader Z betegne mængden

Læs mere

Løsninger til kapitel 14

Løsninger til kapitel 14 Opgave 14.1 a) Linjetilpasningsplottet bliver: Løsninger til kapitel 14 Idet datapunkterne ligger tæt på og jævnt fordelt omkring den rette linje, så ser det ud til, at der med rimelighed er tale om en

Læs mere

Approximationsalgoritme giver garanti for løsningskvalitet Heuristik giver ingen garanti for løsningskvalitet

Approximationsalgoritme giver garanti for løsningskvalitet Heuristik giver ingen garanti for løsningskvalitet Generelle optimeringsheuristikker Også kaldet metaheuristikker. Idag gennemgås: Indplacering Lokal søgning Simuleret udgløding Tabusøgning Genetiske algoritmer Løsningsmetoder for NP -hårde opimeringsproblemer

Læs mere

Eksperimentel matematik Kommentarer til tag-med opgaver

Eksperimentel matematik Kommentarer til tag-med opgaver Eksperimentel matematik Kommentarer til tag-med opgaver Hypotesedannelse I har alle produceret grafer af typen 0.8 0.6 0.4 0.2 0 0. 0.2 0.3 0.4 0.5 (de lilla punkter er fundet ved en strenglængde på 35,

Læs mere

Skriftlig Eksamen Algoritmer og Datastrukturer (dads)

Skriftlig Eksamen Algoritmer og Datastrukturer (dads) Skriftlig Eksamen Algoritmer og Datastrukturer (dads) Datalogisk Institut Aarhus Universitet Onsdag den. august 200, kl. 9.00.00 Opgave (25%) Lad A = A[] A[n] være et array af heltal. Længden af det længste

Læs mere

22 Hobe. Noter. PS1 -- Hobe. Binære hobe. Minimum-hob og maximum-hob. Den abstrakte datatype minimum-hob. Opbygning af hobe. Operationen siv-ned.

22 Hobe. Noter. PS1 -- Hobe. Binære hobe. Minimum-hob og maximum-hob. Den abstrakte datatype minimum-hob. Opbygning af hobe. Operationen siv-ned. 22 Hobe. Binære hobe. Minimum-hob og maximum-hob. Den abstrakte datatype minimum-hob. Opbygning af hobe. Operationen siv-ned. Indsættelse i hobe. Sletning af minimalt element i hobe. Repræsentation. 327

Læs mere

Institut for Matematiske Fag Aalborg Universitet Specielt: Var(aX) = a 2 VarX 1/40. Lad X α, X β og X γ være stokastiske variable (vinkelmålinger) med

Institut for Matematiske Fag Aalborg Universitet Specielt: Var(aX) = a 2 VarX 1/40. Lad X α, X β og X γ være stokastiske variable (vinkelmålinger) med Repetition: Varians af linear kombination Landmålingens fejlteori Lektion 5 Fejlforplantning - rw@math.aau.dk Antag X 1, X,..., X n er uafhængige stokastiske variable, og Y er en linearkombination af X

Læs mere

Grafer og graf-gennemløb

Grafer og graf-gennemløb Grafer og graf-gennemløb Grafer En mængde V af knuder (vertices). En mængde E V V af kanter (edges). Dvs. ordnede par af knuder. Grafer En mængde V af knuder (vertices). En mængde E V V af kanter (edges).

Læs mere

Grafer og graf-gennemløb

Grafer og graf-gennemløb Grafer og graf-gennemløb Grafer En mængde V af knuder (vertices). En mængde E V V af kanter (edges). Dvs. ordnede par af knuder. Grafer En mængde V af knuder (vertices). En mængde E V V af kanter (edges).

Læs mere

Noget om en symmetrisk random walks tilbagevenden til udgangspunktet

Noget om en symmetrisk random walks tilbagevenden til udgangspunktet Random Walk-kursus 2014 Jørgen Larsen 14. oktober 2014 Noget om en symmetrisk random walks tilbagevenden til udgangspunktet Dette notat giver et bevis for at en symmetrisk random walk på Z eller Z 2 og

Læs mere

Opgave 1 - Eksponentiel funktion/procent og renter

Opgave 1 - Eksponentiel funktion/procent og renter Alle beregninger er, hvis ikke andet angivet, udført med WordMat. Opgave 1 - Eksponentiel funktion/procent og renter Jeg vil nu finde ud af hvor stort et beløb der står på kontoen efter 1 år med en starts

Læs mere

Vektorer og lineær regression. Peter Harremoës Niels Brock

Vektorer og lineær regression. Peter Harremoës Niels Brock Vektorer og lineær regression Peter Harremoës Niels Brock April 2013 1 Planproduktet Vi har set, at man kan gange en vektor med et tal. Et oplagt spørgsmål er, om man også kan gange to vektorer med hinanden.

Læs mere

Søgning og Sortering. Søgning Linæer søgning Binær søgning Sortering Indsættelsessortering Flettesortering. Philip Bille

Søgning og Sortering. Søgning Linæer søgning Binær søgning Sortering Indsættelsessortering Flettesortering. Philip Bille Søgning og Sortering Søgning Linæer søgning Binær søgning Sortering Indsættelsessortering Flettesortering Philip Bille Søgning og Sortering Søgning Linæer søgning Binær søgning Sortering Indsættelsessortering

Læs mere

Taylorudvikling I. 1 Taylorpolynomier. Preben Alsholm 3. november Definition af Taylorpolynomium

Taylorudvikling I. 1 Taylorpolynomier. Preben Alsholm 3. november Definition af Taylorpolynomium Taylorudvikling I Preben Alsholm 3. november 008 Taylorpolynomier. Definition af Taylorpolynomium Definition af Taylorpolynomium Givet en funktion f : I R! R og et udviklingspunkt x 0 I. Find et polynomium

Læs mere

Matematisk modellering og numeriske metoder. Lektion 8

Matematisk modellering og numeriske metoder. Lektion 8 Matematisk modellering og numeriske metoder Lektion 8 Morten Grud Rasmussen 18. oktober 216 1 Fourierrækker 1.1 Periodiske funktioner Definition 1.1 (Periodiske funktioner). En periodisk funktion f er

Læs mere

En karakteristik af de regulære sprog. Ugens emner. FA minimering [5.1-5.2] MyHill-Nerode-sætningen en algoritme til minimering af FA er

En karakteristik af de regulære sprog. Ugens emner. FA minimering [5.1-5.2] MyHill-Nerode-sætningen en algoritme til minimering af FA er Ugens emner FA minimering [.-.] MyHill-Nerode-sætningen en algoritme til minimering af FA er En karakteristik af de regulære sprog Et sprog L er regulært hvis og kun hvis L beskrives af et regulært udtryk

Læs mere