Normalfordelingen. Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: 1 2πσ

Størrelse: px
Starte visningen fra side:

Download "Normalfordelingen. Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: 1 2πσ"

Transkript

1 Normalfordelingen Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: f(x) = ( ) 1 exp (x µ)2 2πσ 2 σ 2 Frekvensen af observationer i intervallet [a, b] er integralet b a f(x)dx Parametrene µ og σ 2 er middelværdien og variansen (σ er spredningen). p. 1/27

2 Organisering af uafhængige målinger En gruppe. Alle observationer har samme middelværdi og varians. T-test: Er middelværdien 0 (eller µ 0 )? To grupper. Middelværdien afhænger af gruppen. T-test: Er middelværdien ens i de to grupper? Flere grupper. Alle observationer har samme varians, middelværdien afhænger af gruppen. Ensidet variansanalyse: Er middelværdien ens i grupperne. To inddelingskriterier (faktorer). Samme varians, middelværdi afhænger af inddelingskriterierne (cellerne). Tosidet variansanalyse: Vekselvirker faktorerne og har de hver især nogen betydning for middelværdien. p. 2/27

3 Organisering af uafhængige målinger Flere inddelingskriterier (faktorer). Samme varians, middelværdi afhænger af inddelingskriterierne (cellerne). Flerfaktoranalyser: Hvorledes vekselvirker faktorerne (om de vekselvirker) og hvilke faktorer betyder noget for middelværdien. Kontinuert inddelingskriterium. Samme varians, middelværdien afhænger lineært af en kontinuert variabel (den uafhængige variabel). Lineær regressionsanalyse: Estimation af hældning og intercept. Har den afhængige variabel nogen effekt på middelværdien (er hældningen 0)? p. 3/27

4 Simpleste situation X 1,...,X n er uafhængige gentagne målinger under samme vilkår, dvs. samme middelværdi µ og varians σ 2 for hver måling. Gennemsnittet er estimatet for µ og X = 1 n i X i s 2 = 1 n 1 (X i X) 2 i er estimatet for σ 2. p. 4/27

5 T-test Er µ = µ 0 (f.eks. µ = 0) for en given værdi af µ 0? Det formuleres som en hypotese: H 0 : µ = µ 0 H A : µ µ 0 Vi tester H 0 med teststørrelsen (nulhypotesen) (alternativet) t = X µ 0 s 2 n }{{} s X der under H 0 er T -fordelt med n 1 frihedsgrader. Konklusion ved (tosidet) test på niveau α: t > t α(2),n 1 t < t α(2),n 1 Hypotesen forkastes Hypotesen accepteres p. 5/27

6 Konfidensinterval for µ Hvilke µ 0 fører til et godkendt test på niveau α? t α(2),n 1 X µ 0 s X t α(2),n 1 µ 0 [ X s Xt α(2),n 1, X + s Xt α(2),n 1 ] Vi kalder intervallet ovenfor for 1 α-konfidensintervallet for µ. For α = 0.05 er t α(2),n 1 2 i hvert fald for n større end 20. p. 6/27

7 Tosidet variansanalyse organisering Krydsede, proportionale (specielt balancerede) design: Data X ijk, i og j giver inddelingskriterium (celle), k = 1,...n ij angiver antal gentagelser i celle (i, j). Det totale antal observationer er N = ij n ij. B 1... j... b 1 X 111,...,X 11n11 X 1b1,...,X 1bn1b. A i X ij1,...,x ijnij. a X a11,...,x a1na1 X ab1,...,x abnab p. 7/27

8 Tosidet variansanalyse modeller Hieraki af modeller: Notation Middelværdi estimat Beskrivelse I µ ijk X ijk Hver observation har sin egen middelværdi. Intet variansestimat. A B µ ij X ij Vekselvirkning mellem A og B. Hver celle har egen middelværdi. A + B µ A i + µ B j X i + X j X Additiv model ingen vekselvirkning A µ A i X i Ingen effekt af B. A bestemmer middelværdien B µ B j X j Ingen effekt af A. B bestemmer middelværdien. 1 µ X Ingen effekt af A og B. Alle celler har samme middelværdi. p. 8/27

9 Kvadratsumsafvigelser È SS afvigelse frihedsgrader (DF) Error SS = SS I,A B = ijk (X ijk X ij ) 2 N ab SS I,A+B = ijk (X ijk X i X j + X) 2 N a b + 1 A B interaktion SS ab a b 1 = SS I,A+B SS I,A B = (a 1)(b 1) SS I,A = ijk (X ijk X i ) 2 N a È faktor B SS a + b 1 a = SS I,A SS I,A+B = b 1 SS I,B = ijk (X ijk X j ) 2 N b È faktor A SS a + b 1 b = SS I,B SS I,A+B = a 1 Total SS = SS I,1 = ijk (X ijk X) 2 N 1 p. 9/27

10 Tosidet variansanalyse faktordiagram I } Error SS A B } A B interaktion SS faktor B SS { A + B } faktor A SS faktor A SS { A B } faktor B SS 1 p. 10/27

11 Testteori (ANOVA) Generelt defineres for alle SS-størrelser den tilhørende MS = SS DF. Error MS er et estimat for σ 2 under modellen A B. Test af en model (hypotese) mod en større model (jf. faktordiagram) udføres ved at sammenligne modellens MS-størrelse med Error MS. Forholdet Model MS Error MS er under hypotesen F -fordelt med (model DF, Error DF) frihedsgrader. p. 11/27

12 Eksempel Modellen A + B testes mod A B ved F -teststørrelsen F = A B interaktion MS Error MS. Test på 5%-niveau er givet ved F > F 0.05(1),(a 1)(b 1),N ab F < F 0.05(1),(a 1)(b 1),N ab Hypotesen forkastes Hypotesen accepteres p. 12/27

13 Poolede varianser Godkendes f.eks hypotesen A + B er pooled MS = SS I,A+B N a b + 1 = Error SS + A B interaktion SS Error DF + A B interaktion DF også et estimat for σ 2 under A + B-modellen. F -teststørrelse Kritisk værdi (niveau α) faktor A SS pooled MS faktor A SS Error MS faktor B SS pooled MS faktor B SS Error MS F α(1),a 1,N a b+1 F α(1),a 1,N ab F α(1),b 1,N a b+1 F α(1),b 1,N ab p. 13/27

14 Specielle/vigtige forhold ANOVA-analyser er baseret på antagelsen om ens varianser. Med gentagelser i hver celle kan vi undersøge antagelsen (Bartlett s test). Vi tester om muligt altid for vekselvirkninger før virkninger af enkelte faktorer. Ikke-proportionale designs kan også håndteres f.eks. ved SAS. En observation i hver celle (ingen gentagelser). Model I og A B falder sammen. Ikke muligt at teste for vekselvirkning. Ikke muligt at teste for varianshomogenitet. p. 14/27

15 Ensidet variansanalyse En faktor (gruppe-faktor), observationer X ij med i = 1,...,k grupper og j = 1,...,n i observationer i gruppe i. Totale antal observationer er N = i n i. Notation Middelværdi estimat Beskrivelse I µ ij X ij Hver observation har sin egen middelværdi. Intet variansestimat. Gruppe µ i Xi Forskellig middelværdi i hver gruppe 1 µ X Ingen gruppe-effekt. Alle observationer har samme middelværdi. Hypotesen af interesse er ingen gruppe-effekt, der kan formuleres som H 0 : µ 1 = µ 2 =... = µ k. p. 15/27

16 Kvadratsumsafvigelser SS afvigelse Error SS = SS I,Gruppe = È ij (X ij X i ) 2 frihedsgrader (DF) N k Total SS = SS I,1 = È ij (X ij X) 2 N 1 Gruppe SS N 1 (N k) = SS I,1 SS I,Gruppe = k 1 = È k i=1 n i( X i X) 2 Test for H 0 : µ 1 =... = µ k : F -teststørrelse Kritisk værdi (niveau α) F = Gruppe MS Error MS Gruppe SS Error DF = Error SS Gruppe DF = Gruppe SS (N-k) Error SS (k-1) F α(1),k 1,N k. Multiple sammenligninger: Hvis nul-hypotesen om ens middelværdier i alle grupper forkastes kan man undersøge hvilke grupper der er forskel på f.eks. ved Tukeys test. p. 16/27

17 To grupper T-test Hvis k = 2 er Error MS = s 2 p (det poolede variansestimat) og X = n 1 X 1 + n 2 X2 n 1 + n 2. Gruppe MS Error MS = n 1( X 1 X) 2 + n 2 ( X 2 X) 2 s 2 p = n 1 n 2 n 1 +n 2 ( X 1 X 2 ) 2 s 2 p = ( X 1 X 2 ) 2 = t 2 s 2 p n 1 + s2 p n 2 hvor t = X 1 X 2. s 2 p + s2 p n 1 n 2 }{{} s X1 X 2 og F α(1),1,n 2 = t 2 α(2),n 2 = t2 α(2),n 1 +n 2 2. p. 17/27

18 T -test For to grupper er ensidet variansanalyse og F -test for H 0 : µ 1 = µ 2 ækvivalent med T-test for ens gruppemiddelværdier under forudsætningen om varianshomogenitet. Vi kan med T -testet også teste hypotesen H 0 : µ 1 µ 2 = µ 0 ved t = X 1 X 2 µ 0 s X1 X 2. Og man kan (i princippet) teste hypotesen H 0 : µ 1 = µ 2 uden antagelse om ens varianser med t = X 1 X 2. s 2 1 n 1 + s2 2 n 2 Formel (8.12) giver det relevante antal frihedsgrader til den approksimative t-fordeling. p. 18/27

19 Ikke-parametriske metoder Er man bekymret for normalfordelingsantagelsen kan man teste hypotesen: H 0 : Fordelingen i de to grupper er den samme med et Mann-Whitney rangsumstest. Med R 1 og R 2 rangsummene for de to grupper er U = n 1 n 2 + n 1(n 1 + 1) 2 og teststørrelsen R 1 U = n 1 n 2 + n 2(n 2 + 1) 2 max{u, U } R 2 sammenlignes med den kritiske værdi U α(2),n1,n 2 for test på niveau α. p. 19/27

20 Generelle faktorforsøg Mulighed for mere end to inddelingskriterier (faktorer). Mulighed for komplicerede interaktioner og hovedvirkninger. En væsentlig model er den additive model. Her er betydningen af de enkelte faktorer let fortolkelig. Ordnede faktorer. En faktor kan forekommer som en underinddeling af en anden faktor. Man kan ikke teste for vekselvirkning mellem ordnede faktorer. p. 20/27

21 Eksempel , opg. 2 I Error SS Køn Sted + Patient Køn Sted Køn Sted SS Sted + Patient Køn + Sted Sted Sted SS Patient Køn 1 Patient SS Køn SS p. 21/27

22 Regressionsanalyse Middelværdien for den afhængige variabel, Y, er givet som en lineær funktion af den uafhængige variabel: Y = βx + α + ɛ. En interessant hypotese er H 0 : β = 0 (ingen effekt af inddelingskriteriet givet ved X-variablen, sammenlign med ensidet variansanalyse). Hypotesen testes ved et T -test. Hvis vi har replikationer for hver X-værdi, så kan vi også teste hypotesen om linearitet mod en generel ensidet variansanalysemodel. Hypotesen testes ved et F -test formel (17.46). p. 22/27

23 Generelt om T -test Hypoteser kan til tider formuleres i termer af en restriktion af en parameter, lad os sige µ, dvs. H 0 : µ = µ 0. Hvis m er en estimator for µ, så kan vi opskrive teststørrelsen t = m µ 0 s m hvor s m er et estimat for spredningen på m. Eksempel: Hypotesen om ens hældning for to regressionslinjer, H 0 : β 1 β 2 = 0. t = b 1 b 2 È (s2 Y X ) p i (X 1i X 1 ) 2 + (s2 Y X ) p Èi (X 2i X 2 ) 2 hvor den poolede varians er (s 2 Y X) p = (Residual SS) 1 + (Residual SS) 2 n 1 + n 2 4. p. 23/27

24 Konfidensintervaller For hvert T -test for H 0 : µ = µ 0 er der en metode til at konstruere et 1 α-konfidensinterval for µ. Hvis m er estimatet for µ er det givet ved m ± t α(2),ν s m hvor ν er det relevante antal frihedsgrader og s m er den estimerede spredning af m. p. 24/27

25 Modelkontrol Residual-analyse: Undersøg residualerne X ijk X ij (tosidet variansanalyse), X ij X i (ensidet variansanalyse), Y i βx i α (regressionsanalyse). Residual-plottet, hvor man plotter residualerne mod de estimerede middelværdier, kan afslører diverse fejl såsom variansinhomogenitet og outliers. Man kan også sammenligne residualerne med normalfordelingen. Med replikationer i hver celle (faktorforsøg eller regressionsanalyse med replikationer) kan man også undersøge normalitet indenfor celler og varianshomogenitet mellem celler (bartlett s test). p. 25/27

26 Styrke og niveau Ethvert test foretages på et niveau α, der er sandsynligheden for at forkaste hypotesen selv om den er sand (fejl af type I). Sandsynligheden for at forkaste hypotesen, når den er forkert, kaldes testets styrke og betegnes 1 β. Sandsynligheden for at acceptere hypotesen, når den er forkert (fejl af type II), er β. Værdien af β afhænger af i hvilken forstand hypotesen er forkert. Jo mere forkert jo større styrke 1 β. Jo lavere vi sætter α jo mindre bliver styrken 1 β. p. 26/27

27 Styrkeberegning - to grupper Under alternativet H A : µ 1 µ 2 = δ > 0 er t = X 1 X 2 δ s X 1 X 2 = t δ s X 1 X 2 t-fordelt med ν = n 1 + n 2 2 frihedsgrader. Vi forkaster, når t > t α(2),ν. δ Slå t α(2),ν s (omvendt) op i t X1 β(1),ν -fordelingenstabellen og beregn X 2 derfra styrken β(1). p. 27/27

Eksempel , opg. 2

Eksempel , opg. 2 Faktorer En faktor er en gruppering/inddeling af målinger/observationer pga. Tilsigtede variationer i en eller flere forsøgsparametre Nødvendige (potentielle) blok-effekter såsom gentagne målinger på samme

Læs mere

Eksamen i Statistik for biokemikere. Blok

Eksamen i Statistik for biokemikere. Blok Eksamen i Statistik for biokemikere. Blok 2 2007. Vejledende besvarelse 22-01-2007, Niels Richard Hansen Bemærkning: Flere steder er der givet en argumentation (f.eks. baseret på konfidensintervaller)

Læs mere

Kapitel 12 Variansanalyse

Kapitel 12 Variansanalyse Kapitel 12 Variansanalyse Peter Tibert Stoltze stat@peterstoltzedk Elementær statistik F2011 Version 7 april 2011 1 / 43 Indledning Sammenligning af middelværdien i to grupper indenfor en stikprøve kan

Læs mere

Kapitel 12 Variansanalyse

Kapitel 12 Variansanalyse Kapitel 12 Variansanalyse Peter Tibert Stoltze stat@peterstoltzedk Elementær statistik F2011 Version 7 april 2011 1 Indledning 2 Ensidet variansanalyse 3 Blokforsøg 4 Vekselvirkning 1 Indledning 2 Ensidet

Læs mere

1 Hb SS Hb Sβ Hb SC = , (s = )

1 Hb SS Hb Sβ Hb SC = , (s = ) PhD-kursus i Basal Biostatistik, efterår 2006 Dag 6, onsdag den 11. oktober 2006 Eksempel 9.1: Hæmoglobin-niveau og seglcellesygdom Data: Hæmoglobin-niveau (g/dl) for 41 patienter med en af tre typer seglcellesygdom.

Læs mere

Program. 1. ensidet variansanalyse. 2. forsøgsplanlægning: blocking. 1/12

Program. 1. ensidet variansanalyse. 2. forsøgsplanlægning: blocking. 1/12 Program 1. ensidet variansanalyse. 2. forsøgsplanlægning: blocking. 1/12 Ensidet variansanalyse: analyse af grupperede data Nedbrydningsrate for tre typer af opløsningsmidler (opgave 13.8 side 523) Sorption

Læs mere

Vejledende besvarelse af eksamen i Statistik for biokemikere, blok

Vejledende besvarelse af eksamen i Statistik for biokemikere, blok Opgave 1 Vejledende besvarelse af eksamen i Statistik for biokemikere, blok 2 2006 Inge Henningsen og Niels Richard Hansen Analysevariablen i denne opgave er variablen forskel, der for hver af 10 kvinder

Læs mere

Tema. Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse.

Tema. Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. Tema Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. (Fx. x. µ) Hypotese og test. Teststørrelse. (Fx. H 0 : µ = µ 0 ) konfidensintervaller

Læs mere

Modul 11: Simpel lineær regression

Modul 11: Simpel lineær regression Forskningsenheden for Statistik ST01: Elementær Statistik Bent Jørgensen Modul 11: Simpel lineær regression 11.1 Regression uden gentagelser............................. 1 11.1.1 Oversigt....................................

Læs mere

Modelkontrol i Faktor Modeller

Modelkontrol i Faktor Modeller Modelkontrol i Faktor Modeller Julie Lyng Forman Københavns Universitet Afdeling for Anvendt Matematik og Statistik Statistik for Biokemikere 2003 For at konklusionerne på en ensidet, flersidet eller hierarkisk

Læs mere

Dagens Emner. Likelihood-metoden. MLE - fortsat MLE. Likelihood teori. Lineær regression (intro) Vi har, at

Dagens Emner. Likelihood-metoden. MLE - fortsat MLE. Likelihood teori. Lineær regression (intro) Vi har, at Likelihood teori Lineær regression (intro) Dagens Emner Likelihood-metoden M : X i N(µ,σ 2 ) hvor µ og σ 2 er ukendte Vi har, at L(µ,σ 2 1 ) = ( 2πσ 2)n/2 e 1 2 P n (xi µ)2 er tætheden som funktion af

Læs mere

Module 12: Mere om variansanalyse

Module 12: Mere om variansanalyse Module 12: Mere om variansanalyse 12.1 Parreded observationer.................. 1 12.2 Faktor med 2 niveauer (0-1 variabel)......... 3 12.3 Tosidig variansanalyse med tilfældig virkning..... 9 12.3.1 Uafhængighedsbetragtninger..........

Læs mere

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA) Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:

Læs mere

Modul 12: Regression og korrelation

Modul 12: Regression og korrelation Forskningsenheden for Statistik ST01: Elementær Statistik Bent Jørgensen Modul 12: Regression og korrelation 12.1 Sammenligning af to regressionslinier........................ 1 12.1.1 Test for ens hældning............................

Læs mere

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA) Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:

Læs mere

Module 4: Ensidig variansanalyse

Module 4: Ensidig variansanalyse Module 4: Ensidig variansanalyse 4.1 Analyse af én stikprøve................. 1 4.1.1 Estimation.................... 3 4.1.2 Modelkontrol................... 4 4.1.3 Hypotesetest................... 6 4.2

Læs mere

Tema. Dagens tema: Indfør centrale statistiske begreber.

Tema. Dagens tema: Indfør centrale statistiske begreber. Tema Dagens tema: Indfør centrale statistiske begreber. Model og modelkontrol Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. konfidensintervaller Vi tager udgangspunkt i Ex. 3.1 i

Læs mere

Lineær regression. Simpel regression. Model. ofte bruges følgende notation:

Lineær regression. Simpel regression. Model. ofte bruges følgende notation: Lineær regression Simpel regression Model Y i X i i ofte bruges følgende notation: Y i 0 1 X 1i i n i 1 i 0 Findes der en linie, der passer bedst? Metode - Generel! least squares (mindste kvadrater) til

Læs mere

To-sidet varians analyse

To-sidet varians analyse To-sidet varians analyse Repetition En-sidet ANOVA Parvise sammenligninger, Tukey s test Model begrebet To-sidet ANOVA Tre-sidet ANOVA Blok design SPSS ANOVA - definition ANOVA (ANalysis Of VAriance),

Læs mere

Analysestrategi. Lektion 7 slides kompileret 27. oktober 200315:24 p.1/17

Analysestrategi. Lektion 7 slides kompileret 27. oktober 200315:24 p.1/17 nalysestrategi Vælg statistisk model. Estimere parametre i model. fx. lineær regression Udføre modelkontrol beskriver modellen data tilstrækkelig godt og er modellens antagelser opfyldte fx. vha. residualanalyse

Læs mere

Program. Residualanalyse Flersidet variansanalyse. Opgave BK.15. Modelkontrol: residualplot

Program. Residualanalyse Flersidet variansanalyse. Opgave BK.15. Modelkontrol: residualplot Program Residualanalyse Flersidet variansanalyse Helle Sørensen Modelkontrol (residualanalyse) i tosidet ANOVA med vekselvirkning. Test og konklusion i tosidet ANOVA (repetition) Tresidet ANOVA: the works

Læs mere

Dagens Emner. Likelihood teori. Lineær regression (intro) p. 1/22

Dagens Emner. Likelihood teori. Lineær regression (intro) p. 1/22 Dagens Emner Likelihood teori Lineær regression (intro) p. 1/22 Likelihood-metoden M : X i N(µ,σ 2 ) hvor µ og σ 2 er ukendte Vi har, at L(µ,σ 2 ) = ( 1 2πσ 2)n/2 e 1 2σ 2 P n (x i µ) 2 er tætheden som

Læs mere

Konfidensintervaller og Hypotesetest

Konfidensintervaller og Hypotesetest Konfidensintervaller og Hypotesetest Konfidensinterval for andele χ -fordelingen og konfidensinterval for variansen Hypoteseteori Hypotesetest af middelværdi, varians og andele Repetition fra sidst: Konfidensintervaller

Læs mere

Løsning til eksamen d.27 Maj 2010

Løsning til eksamen d.27 Maj 2010 DTU informatic 02402 Introduktion til Statistik Løsning til eksamen d.27 Maj 2010 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition, 7th edition]. Opgave I.1

Læs mere

02402 Vejledende løsninger til Splus-opgaverne fra hele kurset

02402 Vejledende løsninger til Splus-opgaverne fra hele kurset 02402 Vejledende løsninger til Splus-opgaverne fra hele kurset Vejledende løsning SPL3.3.1 Der er tale om en binomialfordeling med n =10ogp=0.6, og den angivne sandsynlighed er P (X =4) som i bogen også

Læs mere

Ensidet eller tosidet alternativ. Hypoteser. tosidet alternativ. nul hypotese testes mod en alternativ hypotese

Ensidet eller tosidet alternativ. Hypoteser. tosidet alternativ. nul hypotese testes mod en alternativ hypotese Kursus 02402 Introduktion til Statistik Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6 Per Bruun Brockhoff DTU Compute, Statistik Bygning 305/324 Danmarks Tekniske Universitet

Læs mere

Side 1 af 19 sider. Danmarks Tekniske Universitet. Skriftlig prøve: 15. december 2007 Kursus navn og nr: Introduktion til Statistik, 02402

Side 1 af 19 sider. Danmarks Tekniske Universitet. Skriftlig prøve: 15. december 2007 Kursus navn og nr: Introduktion til Statistik, 02402 Danmarks Tekniske Universitet Side 1 af 19 sider. Skriftlig prøve: 15. december 2007 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (studienummer)

Læs mere

Uge 43 I Teoretisk Statistik, 21. oktober Forudsigelser

Uge 43 I Teoretisk Statistik, 21. oktober Forudsigelser Uge 43 I Teoretisk Statistik,. oktober 3 Simpel lineær regressionsanalyse Forudsigelser Fortolkning af regressionsmodellen Ekstreme observationer Transformationer Sammenligning af to regressionslinier

Læs mere

Oversigt. Kursus Introduktion til Statistik. Forelæsning 9: Inferens for andele (kapitel 10) Per Bruun Brockhoff

Oversigt. Kursus Introduktion til Statistik. Forelæsning 9: Inferens for andele (kapitel 10) Per Bruun Brockhoff Kursus 02402 Introduktion til Statistik Forelæsning 9: Inferens for andele (kapitel 10) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

(studienummer) (underskrift) (bord nr)

(studienummer) (underskrift) (bord nr) Danmarks Tekniske Universitet Side 1 af 21 sider. Skriftlig prøve: 27. maj 2010 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (studienummer)

Læs mere

3.600 kg og den gennemsnitlige fødselsvægt kg i stikprøven.

3.600 kg og den gennemsnitlige fødselsvægt kg i stikprøven. PhD-kursus i Basal Biostatistik, efterår 2006 Dag 1, onsdag den 6. september 2006 Eksempel: Sammenhæng mellem moderens alder og fødselsvægt I dag: Introduktion til statistik gennem analyse af en stikprøve

Læs mere

Forelæsning 9: Inferens for andele (kapitel 10)

Forelæsning 9: Inferens for andele (kapitel 10) Kursus 02402 Introduktion til Statistik Forelæsning 9: Inferens for andele (kapitel 10) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Program: 1. Repetition: fordeling af observatorer X, S 2 og t. 2. Konfidens-intervaller, hypotese test, type I og type II fejl, styrke.

Program: 1. Repetition: fordeling af observatorer X, S 2 og t. 2. Konfidens-intervaller, hypotese test, type I og type II fejl, styrke. Program: 1. Repetition: fordeling af observatorer X, S 2 og t. 2. Konfidens-intervaller, hypotese test, type I og type II fejl, styrke. 1/23 Opsummering af fordelinger X 1. Kendt σ: Z = X µ σ/ n N(0,1)

Læs mere

Opgave I.1 II.1 II.2 II.3 III.1 IV.1 IV.2 IV.3 V.1 VI.1 Spørgsmål (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) Svar

Opgave I.1 II.1 II.2 II.3 III.1 IV.1 IV.2 IV.3 V.1 VI.1 Spørgsmål (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) Svar Danmarks Tekniske Universitet Side 1 af 19 sider. Skriftlig prøve: 30. maj 2006 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (navn) (underskrift)

Læs mere

Indhold. 2 Tosidet variansanalyse Additive virkninger Vekselvirkning... 9

Indhold. 2 Tosidet variansanalyse Additive virkninger Vekselvirkning... 9 Indhold 1 Ensidet variansanalyse 2 1.1 Estimation af middelværdier............................... 3 1.2 Estimation af standardafvigelse............................. 3 1.3 F-test for ens middelværdier...............................

Læs mere

Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19

Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19 Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19 For test med signifikansniveau α: p < α forkast H 0 2/19 p-værdi Betragt tilfældet med test for H 0 : µ = µ 0 (σ kendt). Idé: jo større

Læs mere

Statistik og Sandsynlighedsregning 2. Repetition og eksamen. Overheads til forelæsninger, mandag 7. uge

Statistik og Sandsynlighedsregning 2. Repetition og eksamen. Overheads til forelæsninger, mandag 7. uge Statistik og Sandsynlighedsregning 2 Repetition og eksamen Overheads til forelæsninger, mandag 7. uge 1 Normalfordelingen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange

Læs mere

Oversigt. 1 Gennemgående eksempel: Højde og vægt. 2 Korrelation. 3 Regressionsanalyse (kap 11) 4 Mindste kvadraters metode

Oversigt. 1 Gennemgående eksempel: Højde og vægt. 2 Korrelation. 3 Regressionsanalyse (kap 11) 4 Mindste kvadraters metode Kursus 02402 Introduktion til Statistik Forelæsning 11: Kapitel 11: Regressionsanalyse Oversigt 1 Gennemgående eksempel: Højde og vægt 2 Korrelation 3 Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse

Læs mere

Program. 1. Flersidet variansanalyse 1/11

Program. 1. Flersidet variansanalyse 1/11 Program 1. Flersidet variansanalyse 1/11 To-sidet variansanalyse Eksempel: (opgave 14.2 side 587) vitamin indhold i frossen juice målt for ialt 9 kombinationer af mærke (Rich food, Sealed-sweet, Minute

Læs mere

men nu er Z N((µ 1 µ 0 ) n/σ, 1)!! Forkaster hvis X 191 eller X 209 eller

men nu er Z N((µ 1 µ 0 ) n/σ, 1)!! Forkaster hvis X 191 eller X 209 eller Type I og type II fejl Type I fejl: forkast når hypotese sand. α = signifikansniveau= P(type I fejl) Program (8.15-10): Hvis vi forkaster når Z < 2.58 eller Z > 2.58 er α = P(Z < 2.58) + P(Z > 2.58) =

Læs mere

Hypoteser om mere end to stikprøver ANOVA. k stikprøver: (ikke ordinale eller højere) gælder også for k 2! : i j

Hypoteser om mere end to stikprøver ANOVA. k stikprøver: (ikke ordinale eller højere) gælder også for k 2! : i j Hypoteser om mere end to stikprøver ANOVA k stikprøver: (ikke ordinale eller højere) H 0 : 1 2... k gælder også for k 2! H 0ij : i j H 0ij : i j simpelt forslag: k k 1 2 t-tests: i j DUER IKKE! Bonferroni!!

Læs mere

Anvendt Statistik Lektion 8. Multipel Lineær Regression

Anvendt Statistik Lektion 8. Multipel Lineær Regression Anvendt Statistik Lektion 8 Multipel Lineær Regression 1 Simpel Lineær Regression (SLR) y Sammenhængen mellem den afhængige variabel (y) og den forklarende variabel (x) beskrives vha. en SLR: ligger ikke

Læs mere

Statistik og Sandsynlighedsregning 2. IH kapitel 12. Overheads til forelæsninger, mandag 6. uge

Statistik og Sandsynlighedsregning 2. IH kapitel 12. Overheads til forelæsninger, mandag 6. uge Statistik og Sandsynlighedsregning 2 IH kapitel 12 Overheads til forelæsninger, mandag 6. uge 1 Fordelingen af én (1): Regressionsanalyse udfaldsvariabel responsvariabel afhængig variabel Y variabel 2

Læs mere

Sidste gang: One-way(ensidet)/one-factor ANOVA I dag: Two-factor ANOVA (Analysis of variance) Two-factor ANOVA med interaktion

Sidste gang: One-way(ensidet)/one-factor ANOVA I dag: Two-factor ANOVA (Analysis of variance) Two-factor ANOVA med interaktion VARIANSANALYSE 2 Sidste gang: One-way(ensidet)/one-factor ANOVA I dag: (Analysis of variance) med interaktion Problem: Hvordan håndterer vi forsøg, hvor effekten er forårsaget af to faktorer og en evt.

Læs mere

Side 1 af 17 sider. Danmarks Tekniske Universitet. Skriftlig prøve: 25. maj 2007 Kursus navn og nr: Introduktion til Statistik, 02402

Side 1 af 17 sider. Danmarks Tekniske Universitet. Skriftlig prøve: 25. maj 2007 Kursus navn og nr: Introduktion til Statistik, 02402 Danmarks Tekniske Universitet Side 1 af 17 sider. Skriftlig prøve: 25. maj 2007 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (navn) (underskrift)

Læs mere

Forelæsning 11: Kapitel 11: Regressionsanalyse

Forelæsning 11: Kapitel 11: Regressionsanalyse Kursus 02402 Introduktion til Statistik Forelæsning 11: Kapitel 11: Regressionsanalyse Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Hvad er danskernes gennemsnitshøjde? N = 10. X 1 = 169 cm. X 2 = 183 cm. X 3 = 171 cm. X 4 = 113 cm. X 5 = 174 cm

Hvad er danskernes gennemsnitshøjde? N = 10. X 1 = 169 cm. X 2 = 183 cm. X 3 = 171 cm. X 4 = 113 cm. X 5 = 174 cm Kon densintervaller og vurdering af estimaters usikkerhed Claus Thorn Ekstrøm KU Biostatistik ekstrom@sund.ku.dk Marts 18, 2019 Slides @ biostatistics.dk/talks/ 1 Population og stikprøve 2 Stikprøvevariation

Læs mere

Statistik II 4. Lektion. Logistisk regression

Statistik II 4. Lektion. Logistisk regression Statistik II 4. Lektion Logistisk regression Logistisk regression: Motivation Generelt setup: Dikotom(binær) afhængig variabel Kontinuerte og kategoriske forklarende variable (som i lineær reg.) Eksempel:

Læs mere

Program. 1. Varianskomponent-modeller (Random Effects) 2. Transformation af data. 1/12

Program. 1. Varianskomponent-modeller (Random Effects) 2. Transformation af data. 1/12 Program 1. Varianskomponent-modeller (Random Effects) 2. Transformation af data. 1/12 Dæktyper og brændstofforbrug Data fra opgave 10.43, side 360: cars 1 2 3 4 5... radial 4.2 4.7 6.6 7.0 6.7... belt

Læs mere

Løsning eksamen d. 15. december 2008

Løsning eksamen d. 15. december 2008 Informatik - DTU 02402 Introduktion til Statistik 2010-2-01 LFF/lff Løsning eksamen d. 15. december 2008 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition, 7th

Læs mere

I dag. Statistisk analyse af en enkelt stikprøve med kendt varians Sandsynlighedsregning og Statistik (SaSt) Eksempel: kobbertråd

I dag. Statistisk analyse af en enkelt stikprøve med kendt varians Sandsynlighedsregning og Statistik (SaSt) Eksempel: kobbertråd I dag Statistisk analyse af en enkelt stikprøve med kendt varians Sandsynlighedsregning og Statistik SaSt) Helle Sørensen Først lidt om de sidste uger af SaSt. Derefter statistisk analyse af en enkelt

Læs mere

Statikstik II 2. Lektion. Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression

Statikstik II 2. Lektion. Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression Statikstik II 2. Lektion Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression Sandsynlighedsregningsrepetition Antag at Svar kan være Ja og Nej. Sandsynligheden for at Svar Ja skrives

Læs mere

Basal statistik Esben Budtz-Jørgensen 4. november Forsøgsplanlægning Stikprøvestørrelse

Basal statistik Esben Budtz-Jørgensen 4. november Forsøgsplanlægning Stikprøvestørrelse Basal statistik Esben Budtz-Jørgensen 4. november 2008 Forsøgsplanlægning Stikprøvestørrelse 1 46 Planlægning af et studie Videnskabelig hypotese Endpoints Instrumentelle/eksponerings variable Variationskilder

Læs mere

(studienummer) (underskrift) (bord nr)

(studienummer) (underskrift) (bord nr) Danmarks Tekniske Universitet Side 1 af 18 sider. Skriftlig prøve: 14. december 2009 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (studienummer)

Læs mere

Kapitel 7 Forskelle mellem centraltendenser

Kapitel 7 Forskelle mellem centraltendenser Kapitel 7 Forskelle mellem centraltendenser Peter Tibert Stoltze stat@peterstoltze.dk Elementær statistik F2011 1 / 29 Indledning 1. z-test for ukorrelerede data 2. t-test for ukorrelerede data med ens

Læs mere

Løsning til eksaminen d. 29. maj 2009

Løsning til eksaminen d. 29. maj 2009 DTU Informatik 02402 Introduktion til Statistik 20-2-01 LFF/lff Løsning til eksaminen d. 29. maj 2009 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition, 7th

Læs mere

Løsning til eksaminen d. 14. december 2009

Løsning til eksaminen d. 14. december 2009 DTU Informatik 02402 Introduktion til Statistik 200-2-0 LFF/lff Løsning til eksaminen d. 4. december 2009 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition,

Læs mere

Trin 1: Formuler hypotese Spørgsmål der ønskes testet vha. data H 0 : Nul hypotese Formuleres som en ligheds hændelse

Trin 1: Formuler hypotese Spørgsmål der ønskes testet vha. data H 0 : Nul hypotese Formuleres som en ligheds hændelse Statistik 7. gang 9. HYPOTESE TEST Hypotesetest ved 6 trins raket! : Trin : Formuler hypotese Spørgsmål der ønskes testet vha. data H 0 : Nul hypotese Formuleres som en ligheds hændelse H eller H A : Alternativ

Læs mere

Opgave 11.4 side 316 (7ed: 11.4, side 352 og 6ed: 11.2, side 345)

Opgave 11.4 side 316 (7ed: 11.4, side 352 og 6ed: 11.2, side 345) Kursus 4: Besvarelser til øvelses- og hjemmeopgaver i uge 11 Opgave 11.4 side 316 (7ed: 11.4, side 35 og 6ed: 11., side 345) Opgaven består i at foretage en regressionsanalse. Først afbildes data som i

Læs mere

To-sidet variansanalyse

To-sidet variansanalyse Program 1. To-sidet variansanalyse 2. Hierarkisk princip 3. Tre (og flere) sidet variansanalyse 4. Variansanalyse med blocking 5. Flersidet variansanalyse med tilfældige faktorer 6. En oversigtsslide til

Læs mere

Muligheder: NB: test for µ 1 = µ 2 i model med blocking ækvivalent med parret t-test! Ide: anskue β j som stikprøve fra normalfordeling.

Muligheder: NB: test for µ 1 = µ 2 i model med blocking ækvivalent med parret t-test! Ide: anskue β j som stikprøve fra normalfordeling. Eksempel: dæktyper og brændstofforbrug (opgave 25 side 319) Program: cars 1 2 3 4 5... radial 4.2 4.7 6.6 7.0 6.7... belt 4.1 4.9 6.2 6.9 6.8... Muligheder: 1. vi starter med at gennemgå opgave 7 side

Læs mere

1 Ensidet variansanalyse(kvantitativt outcome) - sammenligning af flere grupper(kvalitativ

1 Ensidet variansanalyse(kvantitativt outcome) - sammenligning af flere grupper(kvalitativ Indhold 1 Ensidet variansanalyse(kvantitativt outcome) - sammenligning af flere grupper(kvalitativ exposure) 2 1.1 Variation indenfor og mellem grupper.......................... 2 1.2 F-test for ingen

Læs mere

t-fordeling Boxplot af stikprøve (n=20) fra t(2)-fordeling Program ( ): 1. repetition: fordeling af observatorer X, S 2 og t.

t-fordeling Boxplot af stikprøve (n=20) fra t(2)-fordeling Program ( ): 1. repetition: fordeling af observatorer X, S 2 og t. t-fordeling Boxplot af stikprøve (n=20) fra t(2)-fordeling Program (8.15-10): 1. repetition: fordeling af observatorer X, S 2 og t. 2. konfidens-intervaller, hypotese test, type I og type II fejl, styrke,

Læs mere

grupper(kvalitativ exposure) Variation indenfor og mellem grupper F-test for ingen effekt AnovaTabel Beregning af p-værdi i F-fordelingen

grupper(kvalitativ exposure) Variation indenfor og mellem grupper F-test for ingen effekt AnovaTabel Beregning af p-værdi i F-fordelingen 1 Ensidet variansanalyse(kvantitativt outcome) - sammenligning af flere grupper(kvalitativ exposure) Variation indenfor og mellem grupper F-test for ingen effekt AnovaTabel Beregning af p-værdi i F-fordelingen

Læs mere

Økonometri: Lektion 6 Emne: Heteroskedasticitet

Økonometri: Lektion 6 Emne: Heteroskedasticitet Økonometri: Lektion 6 Emne: Heteroskedasticitet 1 / 32 Konsekvenser af Heteroskedasticitet Antag her (og i resten) at MLR.1 til MLR.4 er opfyldt. Antag MLR.5 ikke er opfyldt, dvs. vi har heteroskedastiske

Læs mere

Oversigt. Kursus Introduktion til Statistik. Forelæsning 12: Variansanalyse. Per Bruun Brockhoff. Envejs variansanalyse - eksempel

Oversigt. Kursus Introduktion til Statistik. Forelæsning 12: Variansanalyse. Per Bruun Brockhoff. Envejs variansanalyse - eksempel Kursus 02402 Introduktion til Statistik Forelæsning 12: Variansanalyse Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail:

Læs mere

Rettevejledning til eksamen i Kvantitative metoder 1, 2. årsprøve 2. januar 2007

Rettevejledning til eksamen i Kvantitative metoder 1, 2. årsprøve 2. januar 2007 Rettevejledning til eksamen i Kvantitative metoder 1,. årsprøve. januar 007 I rettevejledningen henvises der til Berry and Lindgren "Statistics Theory and methods"(b&l) hvis ikke andet er nævnt. Opgave

Læs mere

Resumé: En statistisk analyse resulterer ofte i : Et estimat θˆmed en tilhørende se

Resumé: En statistisk analyse resulterer ofte i : Et estimat θˆmed en tilhørende se Epidemiologi og biostatistik. Uge, torsdag 5. februar 00 Morten Frydenberg, Institut for Biostatistik. Type og type fejl Statistisk styrke Nogle speciale metoder: Normalfordelte data : t-test eksakte sikkerhedsintervaller

Læs mere

Naturvidenskabelig Bacheloruddannelse Forår 2006 Matematisk Modellering 1 Side 1

Naturvidenskabelig Bacheloruddannelse Forår 2006 Matematisk Modellering 1 Side 1 Matematisk Modellering 1 Side 1 I nærværende opgavesæt er der 16 spørgsmål fordelt på 4 opgaver. Ved bedømmelsen af besvarelsen vægtes alle spørgsmål lige. Endvidere lægges der vægt på, at det af besvarelsen

Læs mere

Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Institut for Biostatistik. Regressionsanalyse

Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Institut for Biostatistik. Regressionsanalyse Epidemiologi og biostatistik. Uge, torsdag. Erik Parner, Institut for Biostatistik. Lineær regressionsanalyse - Simpel lineær regression - Multipel lineær regression Regressionsanalyse Regressionsanalyser

Læs mere

Multipel Lineær Regression

Multipel Lineær Regression Multipel Lineær Regression Trin i opbygningen af en statistisk model Repetition af MLR fra sidst Modelkontrol Prædiktion Kategoriske forklarende variable og MLR Opbygning af statistisk model Specificer

Læs mere

Nanostatistik: Test af hypotese

Nanostatistik: Test af hypotese Nanostatistik: Test af hypotese JLJ Nanostatistik: Test af hypotese p. 1/50 Repetition n uafhængige gentagne målinger: Fordelingsundersøgelse: Pindediagram / Histogram qq-plot Parameter: egenskab ved fordeling

Læs mere

Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression

Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression Logistisk Regression Repetition Fortolkning af odds Test i logistisk regression Logistisk Regression: Definitioner For en binær (0/) variabel Y antager vi P(Y)p P(Y0)-p Eksempel: Bil til arbejde vs alder

Læs mere

Program. Flersidet variansanalyse og hierarkiske modeller. Eksempel: iltoptag for krabber. Eksempel: iltoptag for krabber.

Program. Flersidet variansanalyse og hierarkiske modeller. Eksempel: iltoptag for krabber. Eksempel: iltoptag for krabber. Program Flersidet variansanalyse og hierarkiske modeller Helle Sørensen E-mail: helle@math.ku.dk StatBK (Uge 50, mandag) Flersidet ANOVA 1 / 19 StatBK (Uge 50, mandag) Flersidet ANOVA 2 / 19 Eksempel:

Læs mere

MLR antagelserne. Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som

MLR antagelserne. Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som MLR antagelserne Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som y = β 0 + β 1 x 1 + β 2 x 2 + + β k x k + u, hvor β 0, β 1, β 2,...,β k er ukendte parametere,

Læs mere

Kursus Introduktion til Statistik. Forelæsning 12: Variansanalyse. Per Bruun Brockhoff

Kursus Introduktion til Statistik. Forelæsning 12: Variansanalyse. Per Bruun Brockhoff Kursus 02402 Introduktion til Statistik Forelæsning 12: Variansanalyse Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail:

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Kvantitative metoder Heteroskedasticitet 11. april 007 KM: F18 1 Oversigt: Heteroskedasticitet OLS estimation under heteroskedasticitet (W.8.1-): Konsekvenser af heteroskedasticitet for OLS Gyldige test

Læs mere

Opgavens formålet er at undersøge variationen mellem to laboratoriers bestemmelse af po 2 i blod.

Opgavens formålet er at undersøge variationen mellem to laboratoriers bestemmelse af po 2 i blod. 1-stikprøve t-test (Eksamen 2005 opgave 1) Opgavens formålet er at undersøge variationen mellem to laboratoriers bestemmelse af po 2 i blod. I nedenstående tabel betragtes blodprøver fra 9 patienter. Hver

Læs mere

Ikke-parametriske metoder. Repetition Wilcoxon Signed-Rank Test Kruskal-Wallis Test Friedman Test Chi-i-anden Test

Ikke-parametriske metoder. Repetition Wilcoxon Signed-Rank Test Kruskal-Wallis Test Friedman Test Chi-i-anden Test Ikkeparametriske metoder Repetition Wilcoxon SignedRank Test KruskalWallis Test Friedman Test Chiianden Test Run Test Er sekvensen opstået tilfældigt? PPPKKKPPPKKKPPKKKPPP Et run er en sekvens af ens elementer,

Læs mere

Plot af B j + ǫ ij (Y ij µ α i )): σ 2 : within blocks variance. σb 2 : between blocks variance

Plot af B j + ǫ ij (Y ij µ α i )): σ 2 : within blocks variance. σb 2 : between blocks variance Plot af B j + ǫ ij (Y ij µ α i )): Program: res 4 2 0 2 B1 B2 B3 B4 B5 1. vi starter med at gennemgå opgave 3 side 513. 2. nyt: to-sidet variansanalyse 1 2 3 4 5 block σ 2 : within blocks variance σb 2

Læs mere

Økonometri 1. Inferens i den lineære regressionsmodel 25. september Økonometri 1: F6 1

Økonometri 1. Inferens i den lineære regressionsmodel 25. september Økonometri 1: F6 1 Økonometri 1 Inferens i den lineære regressionsmodel 25. september 2006 Økonometri 1: F6 1 Oversigt: De næste forelæsninger Statistisk inferens: hvorledes man med udgangspunkt i en statistisk model kan

Læs mere

Institut for Matematiske Fag Matematisk Modellering 1 UGESEDDEL 6

Institut for Matematiske Fag Matematisk Modellering 1 UGESEDDEL 6 Institut for Matematiske Fag Matematisk Modellering 1 Aarhus Universitet Eva B. Vedel Jensen 25. februar 2008 UGESEDDEL 6 Forelæsningerne torsdag den 21. februar og tirsdag den 26. februar. Jeg har gennemgået

Læs mere

Hvis α vælges meget lavt, bliver β meget stor. Typisk vælges α = 0.01 eller 0.05

Hvis α vælges meget lavt, bliver β meget stor. Typisk vælges α = 0.01 eller 0.05 Statistik 7. gang 9. HYPOTESE TEST Hypotesetest ved 6 trins raket! : Trin : Formuler hypotese Spørgsmål der ønskes testet vha. data H : Nul hypotese Formuleres som en ligheds hændelse H eller H A : Alternativ

Læs mere

StatDataN: Test af hypotese

StatDataN: Test af hypotese StatDataN: Test af hypotese JLJ StatDataN: Test af hypotese p. 1/69 Repetition n uafhængige gentagne målinger: Fordelingsundersøgelse: Pindediagram / Histogram qq-plot Parameter: egenskab ved fordeling

Læs mere

NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET.

NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET. NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET. Eksamen i Statistik 1TS Teoretisk statistik Den skriftlige prøve Sommer 2005 3 timer - alle hjælpemidler tilladt Det er tilladt at skrive

Læs mere

Program. Forsøgsplanlægning og tosidet variansanalyse. Eksempel: fuldstændigt randomiseret forsøg. Forsøgstyper

Program. Forsøgsplanlægning og tosidet variansanalyse. Eksempel: fuldstændigt randomiseret forsøg. Forsøgstyper Program Forsøgsplanlægning og tosidet variansanalyse Helle Sørensen E-mail: helle@math.ku.dk I formiddag: Forsøgstyper og forsøgsplanlægning Analyse af data fra fuldstændigt randomiseret blokforsøg: tosidet

Læs mere

Model. k = 3 grupper: hvor ǫ ij uafhængige og normalfordelte med middelværdi nul og varians σi 2, i = 1,2,3.

Model. k = 3 grupper: hvor ǫ ij uafhængige og normalfordelte med middelværdi nul og varians σi 2, i = 1,2,3. Model Program (8.15-10): 1. ensidet variansanalyse. 2. forsøgsplanlægning: blocking. Bruger nu to indices: i = 1,...,k for gruppenr. og j = 1,...,n i for observation indenfor gruppe. k = 3 grupper: µ 1

Læs mere

Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Afdeling for Biostatistik. Eksempel: Systolisk blodtryk

Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Afdeling for Biostatistik. Eksempel: Systolisk blodtryk Eksempel: Systolisk blodtryk Udgangspunkt: Vi ønsker at prædiktere det systoliske blodtryk hos en gruppe af personer. Epidemiologi og biostatistik. Uge, torsdag. Erik Parner, Afdeling for Biostatistik.

Læs mere

Landmålingens fejlteori - Lektion 2. Sandsynlighedsintervaller Estimation af µ Konfidensinterval for µ. Definition: Normalfordelingen

Landmålingens fejlteori - Lektion 2. Sandsynlighedsintervaller Estimation af µ Konfidensinterval for µ. Definition: Normalfordelingen Landmålingens fejlteori Lektion Sandsynlighedsintervaller Estimation af µ Konfidensinterval for µ - rw@math.aau.dk Institut for Matematiske Fag Aalborg Universitet En stokastisk variabel er en variabel,

Læs mere

Motivation. Konfidensintervaller og vurdering af usikkerhed på estimerede størrelser

Motivation. Konfidensintervaller og vurdering af usikkerhed på estimerede størrelser Motivation Konfidensintervaller og vurdering af usikkerhed på estimerede størrelser Rasmus Waagepetersen October 26, 2018 Eksempel: En landmåler får til opgave at måle længden λ fra A til B. Entreprenøren

Læs mere

Statistik Lektion 20 Ikke-parametriske metoder. Repetition Kruskal-Wallis Test Friedman Test Chi-i-anden Test

Statistik Lektion 20 Ikke-parametriske metoder. Repetition Kruskal-Wallis Test Friedman Test Chi-i-anden Test Statistik Lektion 0 Ikkeparametriske metoder Repetition KruskalWallis Test Friedman Test Chiianden Test Run Test Er sekvensen opstået tilfældigt? PPPKKKPPPKKKPPKKKPPP Et run er en sekvens af ens elementer,

Læs mere

Statistik Lektion 4. Variansanalyse Modelkontrol

Statistik Lektion 4. Variansanalyse Modelkontrol Statistik Lektion 4 Variansanalyse Modelkontrol Eksempel Spørgsmål: Er der sammenhæng mellem udetemperaturen og forbruget af gas? Y : Forbrug af gas (gas) X : Udetemperatur (temp) Scatterplot SPSS: Estimerede

Læs mere

Forsøgsplanlægning Stikprøvestørrelse

Forsøgsplanlægning Stikprøvestørrelse Basal statistik Esben Budtz-Jørgensen 8. november 2011 Videnskabelig hypotese Planlægning af et studie Endpoints Forsøgsplanlægning Stikprøvestørrelse 1 51 Instrumentelle/eksponerings variable Variationskilder

Læs mere

Opgaver til ZAR II. Afdeling for Anvendt Matematik og Statistik Michael Sørensen Oktober Opgave 1

Opgaver til ZAR II. Afdeling for Anvendt Matematik og Statistik Michael Sørensen Oktober Opgave 1 Københavns Universitet Afdeling for Anvendt Matematik og Statistik Statistik for biokemikere Inge Henningsen Michael Sørensen Oktober 2003 Opgaver til ZAR II Opgave 1 Et datasæt består af 20 observationer.

Læs mere

12. september Epidemiologi og biostatistik. Forelæsning 4 Uge 3, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Regressionsanalyse

12. september Epidemiologi og biostatistik. Forelæsning 4 Uge 3, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Regressionsanalyse . september 5 Epidemiologi og biostatistik. Forelæsning Uge, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Lineær regressionsanalyse - Simpel lineær regression - Multipel lineær regression

Læs mere

Ovenstående figur viser et (lidt formindsket billede) af 25 svampekolonier på en petriskål i et afgrænset felt på 10x10 cm.

Ovenstående figur viser et (lidt formindsket billede) af 25 svampekolonier på en petriskål i et afgrænset felt på 10x10 cm. Multiple choice opgaver Der gøres opmærksom på, at ideen med opgaverne er, at der er ét og kun ét rigtigt svar på de enkelte spørgsmål. Endvidere er det ikke givet, at alle de anførte alternative svarmuligheder

Læs mere

Program. Tosidet variansanalyse og forsøgsplanlægning. Repetition: ensidet variansanalyse. Eksempel: data fra Collinge et al

Program. Tosidet variansanalyse og forsøgsplanlægning. Repetition: ensidet variansanalyse. Eksempel: data fra Collinge et al Program Tosidet variansanalyse og forsøgsplanlægning Helle Sørensen E-mail: helle@math.ku.dk I formiddag: Ensidet ANOVA: repetition og Collinge eksempel. Additiv tosidet ANOVA (blokforsøg) Tosidet ANOVA

Læs mere

Nanostatistik: Opgavebesvarelser

Nanostatistik: Opgavebesvarelser Nanostatistik: Opgavebesvarelser JLJ Nanostatistik: Opgavebesvarelser p. 1/16 Pakkemaskine En producent hævder at poserne indeholder i gennemsnit 16 ounces sukker. Data: 10 pakker sukker: 16.1, 15.8, 15.8,

Læs mere

Program. Konfidensinterval og hypotesetest, del 2 en enkelt normalfordelt stikprøve I SAS. Øvelse: effekt af diæter

Program. Konfidensinterval og hypotesetest, del 2 en enkelt normalfordelt stikprøve I SAS. Øvelse: effekt af diæter Program Konfidensinterval og hypotesetest, del 2 en enkelt normalfordelt stikprøve Helle Sørensen E-mail: helle@math.ku.dk I formiddag: Øvelse: effekt af diæter. Repetition fra sidst... Parrede og ikke-parrede

Læs mere

Statistik Lektion 16 Multipel Lineær Regression

Statistik Lektion 16 Multipel Lineær Regression Statistik Lektion 6 Multipel Lineær Regression Trin i opbygningen af en statistisk model Repetition af MLR fra sidst Modelkontrol Prædiktion Kategoriske forklarende variable og MLR Opbygning af statistisk

Læs mere