Projekt 5.9. Geometriske fraktaler og fraktale dimensioner

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "Projekt 5.9. Geometriske fraktaler og fraktale dimensioner"

Transkript

1 Projekt 5.9. Geometriske fraktaler og fraktale dimensioner Indhold 1. Fraktaler og vækstmodeller Kløverøen Fraktal dimension Skridtlængdemetoden Netmaskemetoden Dimensionsbegrebet Fraktal-øvelse: Koch-øen Koch-øens areal, omkreds og dimension

2 Projekt 5.9. Geometriske fraktaler og fraktale dimensioner 1. Fraktaler og vækstmodeller Geometriske figurer med uendelig små mikrostrukturer kaldes for fraktaler. Det var den franskamerikanske matematiker Benoit Mandelbrot, der i 1975 indførte denne betegnelse efter det latinske ord for "brud" for at minde om de uregelmæssige brudflader, der ofte opstår, hvis man knækker en gren eller flækker en sten, jf. fraktur = benbrud. Fraktaler er derfor velegnede, når man skal lave modeller af naturens former og ønsker at fremhæve deres uregelmæssige struktur. Fx er kystlinjer fulde af bugter og sving af alle mulige størrelser. Ligegyldigt hvor tæt man kommer på en kyst, vil der dukke stadig mindre bugter og sving op, indtil vi kommer så tæt på, at mikrostrukturen drukner i havet, der skyller frem og tilbage i vandkanten. 2. Kløverøen Vi vil nu lave en model af en kystlinje, idet vi vil konstruere en fraktal ø. Som så mange andre simple matematiske modeller er modellen ikke specielt realistisk, men den er nyttig, fordi den på en enkel måde formår at gengive et væsentligt træk ved virkelige kyster: deres mikrostruktur. Forestil dig, at øen starter som et kvadrat. Hver dag kommer havet og gnaver sig ind på øen, samtidig med at det aflejrer det frigjorte materiale rundt langs øen. Øen ændrer derfor langsomt udseende efter nogle simple regler, som vi nu vil fastlægge. Vi dele. kvadratet i 16 lige store delkvadrater. Disse nummereres fra 1 til 16 som vist på figuren. Når havet gnaver sig ind på øen, fjerner det langs hver af siderne det tredje randkvadrat og aflejrer det ud for nabokvadratet. Den første dag fjerner havet altså randkvadraterne 3, 6, 9 og 12 og aflejrer dem ud for kvadraterne 2, 5, 8 og 11. Efter den første dag ser øen derfor således ud: Kløverøen efter 1. dag. De 16 delkvadrater deles nu i 16 nye kvadrater, der kan nummereres på samme måde som før. De yderste randkvadrater omfordeles som før. Havet gnaver sig ind på øen og fjerner hvert tredje randkvadrat og aflejrer det ved siden af. Efter den anden dag ser øen derfor således ud: 2

3 Havet gnaver sig ind på øen. Kløverøen efter 2. dag. Sådan fortsætter det dag efter dag! Kløverøen efter 3. dag. Den yderste dag! Efter den femte dag er de nye bugter og sving så små, at vi ikke længere kan se dem på ovenstående figurer, men i princippet kan vi fortsætte processen i det uendelige. Hver dag gnaver havet nye og endnu mindre bugter ud, og når der er gået uendelig mange dage (på "den yderste dag"), har havet så fået frembragt en fraktal ø, Kløverøen. Vi kan nemt finde arealet af Kløverøen. Hver eneste dag fjernes der nemlig ikke noget materiale fra øen. Der sker blot en omfordeling af materialet. Arealet er derfor uændret fra dag til dag, og på den yderste dag må Kløverøen derfor have præcis samme areal, som da den startede. Arealet har altså en konstant vækst. Anderledes forholder det sig med kystlængden. For hver dag der går, bliver ethvert vandret linjestykke erstattet af otte nye linjestykker, fire vandrette, der tilsammen har samme længde som det oprindelige 3

4 linjestykke, og fire lodrette, der tilsvarende tilsammen har samme længde som det oprindelige linjestykke. Det samme sker med de lodrette linjestykker. For hver dag bliver kystlængden derfor dobbelt så stor: Dag nr. x Kystlængden y Kystlængden y vokser altså eksponentielt med antallet af dage x ifølge forskriften y 4 2 x. Men heraf følger, at kysten på den yderste dag er blevet uendelig lang. 3. Fraktal dimension I eksemplet med Kløverøen så vi, at kystlængden blev dobbelt så stor for hver dag, der gik. Kløverøens kyst er derfor uendelig lang. I almindelighed giver det ingen mening at tale om længden af en fraktal kyst. I stedet vil vi prøve at finde et mål for, hvor "krøllet" den fraktale kyst er. Når vi zoomer ind på en kystlinje, dukker der for hver forstørrelse flere og flere bugter og sving op. Vi søger et mål for, hvor detaljeret denne mikrostruktur er. 3.1 Skridtlængdemetoden Vi kan undersøge, hvordan nye detaljer dukker op således: Hvis vi skal måle længden af en kystlinje (eller længden af en grænse mellem to lande, eller...) skal vi vælge en skridtlængde/målestok og derefter tælle, hvor mange skridt vi skal tage for at komme rundt langs kysten henholdsvis hvor mange målestokke vi skal lægge i forlængelse af hinanden for at komme hele øen rundt. Hvis kysten var en pæn glat kurve, fx en cirkelbue, ville vi nu umiddelbart forvente, at skridtlængden og det samlede antal skridt var omvendt proportionale. Hver gang vi gør skridtlængden 4 gange så lille, skulle antallet af skridt blive ca. fire gange så stort. Men sådan går det ikke i tilfældet med Kløverøen: Jo mindre skridt/målestokke vi tager, jo flere detaljer får vi med. Det samlede antal skridt/målestokke rundt langs Kløverøen bliver denne gang 8 gange så stort, for hver gang vi gør skridtlængden 4 gange så lille

5 Skridtlængde 1 1/4 1/16 1/64 Samlet antal skridt Jo mindre skridtlængde/målestok vi benytter, jo flere detaljer får vi som nævnt med i vores opmåling. Vi kan derfor knytte en forstørrelsesgrad til skridtlængden/målestokken. Forstørrelsesgraden angiver, hvor mange gange skridtlængden/målestokken går op i enhedsstykket. Hvis skridtlængden fx er 1/16, bliver forstørrelsesgraden 16. Vi kan så tælle antallet af skridt som funktion af forstørrelsesgraden: Forstørrelsesgrad x Antal skridt y Som vi har set, vil antallet af skridt y stige med en faktor 8, for hver gang forstørrelsesgraden x vokser med faktoren 4. Antallet af skridt y vokser derfor som en potensfunktion af forstørrelsesgraden x. Vi kan også finde den mere præcise sammenhæng ved at se på simple potenser af x og y. Da y-værdien vokser hurtigst må vi forvente at vi skal bruge en højere potens af x for at få 'ligevægt' i form af en simpel direkte proportionalitet: 1/

6 x x x y/ y 2 / Vi bemærker da at x 3 og y 2 er ligefrem proportionale, idet der gælder sammenhængen: y 16 x dvs. y 4 x 2. Konklusion: Antallet af skridt/målestokke vokser altså med eksponenten 3/2 i forhold til forstørrelsesgraden. Bemærkning: Hvis du er fortrolig med brugen af dobbeltlogaritmiske koordinatsystemer kan vi også afsætte sammenhørende værdier af forstørrelsesgraden x og antallet af skridt y i et dobbeltlogaritmisk koordinatsystem, hvorved vi netop får en ret linje: Vi kan da karakterisere mikrostrukturens vækst under forstørrelse ved hældningen af denne linje. I det ovenstående tilfælde finder vi således hældningen 3/2, dvs. eksponenten er igen givet ved 3/2. Dette tal, dvs. eksponenten 3/2, der knytter væksten i forstørrelsesgraden sammen med væksten i antallet af skridt/målestokke kaldes den fraktale dimension af kystlinjen. Det er vores mål for, hvor krøllet kysten er. Bemærkning: Skridtlængden er også god til at måle krølletheden, dvs. den fraktale dimension, for en rigtig kyst (grænse,...). I praksis sker det ved hjælp af geodætiske kort og en stikpasser. 6

7 3.2 Netmaskemetoden Skridtlængdemetoden kan ikke bruges på alle typer fraktaler. Vi vil derfor også skitsere en anden simpel og mere generelt anvendelig metode til udmåling af den fraktale dimension. Denne gang lægger vi et gennemsigtigt net hen over den fraktale figur og forestiller os, at de enkelte masker bliver sorte, hvis de overskæres af genstanden, henholdsvis lyse, hvis de ligger udenfor. Vælger vi nu mindre og mindre netmasker, svarende til større og større forstørrelse, dukker der flere og flere detaljer op. Nedenfor er antydet udseendet af den samme figur ved forskellige størrelser netmasker: Læg mærke til, at det denne gang er netmaskernes størrelse, der afgør, hvor små detaljer vi kan se. Alt hvad der er mindre end en enkelt maske i nettet, bliver ikke registreret. For nu igen at få et mål, et bestemt tal, der kan angive "krølletheden" af den fraktale ø, tæller vi antallet af masker, der gennemskæres af kystlinjen. Så kan vi afsætte sammenhørende værdier af forstørrelsesgraden og antal gennemskårne masker i et dobbeltlogaritmisk koordinatsystem. Hvis den fraktale struktur har en fraktal dimension, så vil de fremkomne punkter med god tilnærmelse ligge på en ret linje. Det er hældningen af denne rette linje, vi bruger som et mål for den fraktale dimension. 7

8 3.3 Dimensionsbegrebet Det kan synes mærkeligt at tale om en dimension på fx halvanden. I daglig tale er vi vant til at betragte dimension som et af de hele tal 0, 1, 2 eller 3. Et punkt har dimensionen 0, en linje dimensionen 1, en plan figur som fx et kvadrat har dimensionen 2, og endelig har en rumlig figur som fx en kasse dimensionen 3: Der er flere måder at begrunde dette intuitive dimensionsbegreb på. Én af dem er følgende: a) Hvis man står i et punkt, kan man slet ikke flytte sig uden at forlade punktet. Et punkt har dimension nul. b) Hvis man står på en linje, kan man bevæge sig i præcis en "retning" (idet vi ikke skelner mellem frem og tilbage), hvis man ikke må forlade linjen. En linje har dimension 1. Det samme gælder fx for en cirkelbue. Hvis man forstørrer buen omkring et punkt på cirkelbuen, kan man til sidst ikke skelne den fra en ret linje. Hvis man befinder sig på en cirkelbue, har man derfor også netop en retning (frem og tilbage i tangentens retning), hvor man kan bevæge sig uden at forlade cirkelbuen. c) Hvis man står inde i et kvadrat, har man altid to på hinanden vinkelrette retninger til rådighed, når man vil bevæge sig rundt i kvadratet. d) En plan figur har dimension 2. I rummet har man tre på hinanden vinkelrette retninger til rådighed. Rummets dimension er derfor 3. Men hvad med denne kystlinje? Den er meget krøllet, og hvis man bevæger sig selv et nok så lille stykke langs den, kan man ligeså vel risikere at være gået i lodret retning som i vandret retning. Den er derfor indrettet som en mellemting mellem en sædvanlig glat kurve og en plan figur. Det er derfor, man kan finde på at tilskrive den en dimension mellem 1 og 2. Man kan også måle dimensionen af en klassisk figur (en ret linje, en trekant, en cirkel osv.) på samme måde som ovenfor ved at lægge kvadratiske net henover figuren. Man finder da de samme resultater som ovenfor: 8

9 a) Et punkt rammes af præcis én maske uafhængigt af forstørrelsesgraden. Masketallet y er altså en konstant funktion af forstørrelsesgraden x: y = x 0. Afsættes masketallet som funktion af forstørrelsesgraden i et dobbeltlogaritmisk koordinatsystem, fås derfor en vandret linje. Denne har hældning 0, og hældningen angiver netop dimensionen som forventet. b) En linje rammer et antal masker, der vokser proportionalt med forstørrelsesgraden. Masketallet y er altså ligefrem proportionalt med forstørrelsesgraden x: y = x 1. Afsætter man sammenhørende værdier af masketal og forstørrelsesgrad i et dobbeltlogaritmisk koordinatsystem, fås derfor en ret linje med hældning 1 i overensstemmelse med dens dimension. c) Et kvadrat rammer et antal masker, der vokser proportionalt med kvadratet på forstørrelsesgraden. Masketallet y er kvadratisk proportionalt med forstørrelsesgraden x: y = x 2. Afsætter man sammenhørende værdier af masketal og forstørrelsesgrad i et dobbeltlogaritmisk koordinatsystem, får man derfor en ret linje med hældning 2 i overensstemmelse med dens dimension. 4. Fraktal-øvelse: Koch-øen 9

10 Hvis man tegner en ligesidet trekant og lægger en anden ligesidet trekant omvendt over den første, får man konstrueret en sekstakket stjerne: davidsstjernen. Takkerne består af seks nye ligesidede trekanter. Oven på disse lægger vi nu seks andre ligesidede trekanter omvendt på. Man får herved konstrueret seks nye davidsstjerner. De nye takker danner 36 endnu mindre ligesidede trekanter osv. osv. Fortsætter vi på denne måde i det uendelige, får vi frembragt en fraktal figur, den triadiske kurve, der blev opdaget og undersøgt af den svenske matematiker Koch i Davidsstjernen: Den klassiske geometris forløber for den triadiske kurve Den triadiske kurve (Koch, 1904). Kvinde med mandolin (Picasso 1911) Kubismen er et eksempel på en kunstretning, der fortrinsvis udtrykker sig ved hjælp af klassiske geometriske figurer som rette linjer, trekanter og cirkler i overensstemmelse med Cezannes manifest: "Alle former i naturen kan føres tilbage til kuglen, keglen og cylinderen" (ca. 1900). Cesaro: "Denne uendelige indlejring af dens form i sig selv giver os en fornemmelse for det, som Tennyson et sted har kaldt den indre uendelighed, der jo til syvende og sidst er den eneste slags uendelighed, vi kan opleve i naturen. En sådan lighed mellem helheden og dens dele, selv i de uendelig små dele, får den triadiske Koch kurve til at fremstå som noget enestående. Kunne den vækkes til live, ville vi kun kunne slippe af med den igen ved at ødelægge den fuldstændigt, for den ville kunne opstå igen og igen fra dens mindste dele, på samme måde som livet selv gør det i Universet" (1905). 4.1 Koch-øens areal, omkreds og dimension 10

11 Ligesom kløverøen kan Koch-øen frembringes ved en iterativ proces, hvor vi 'dag for dag' tilføjer nye mikrostrukturer til øen. I dette tilfælde tilføjes nye ligesidede trekanter ovenpå siden af de eksisterende. Vi aflejrer altså stedse nyt materiale: Koch-øen den 0'te dag Koch-øen den 1. dag Koch-øen den 2. dag. Koch-øen den 3. dag Koch-øen den 4. dag Koch-øen i alle detaljer. Hvordan udvikler kystlængden sig som funktion af antallet af dage? Hvor lang er kystlængden på den yderste dag? Hvordan udvikler arealet sig som funktion af antallet af dage? Hvor stort er arealet på den yderste dag? Hvordan udvikler antallet af skridt sig som funktion af forstørrelsesgraden? Hvad bliver den fraktale dimension af kysten på Koch-øen? 11

Fraktaler. Vejledning. Et snefnug

Fraktaler. Vejledning. Et snefnug Fraktaler Vejledning Denne note kan benyttes i gymnasieundervisningen i matematik i 1g, eventuelt efter gennemgangen af emnet logaritmer. Min hensigt har været at give en lille introduktion til en anderledes

Læs mere

Projekt 1.4 Tagrendeproblemet en instruktiv øvelse i modellering med IT.

Projekt 1.4 Tagrendeproblemet en instruktiv øvelse i modellering med IT. Projekt 1.4 Tagrendeproblemet en instruktiv øvelse i modellering med IT. Projektet kan bl.a. anvendes til et forløb, hvor en af målsætningerne er at lære om samspillet mellem værktøjsprogrammernes geometriske

Læs mere

Hvad er matematik? C, i-bog ISBN

Hvad er matematik? C, i-bog ISBN Man kan nøjes med at gennemføre første del af projektet, som er den spiralkonstruktion, der er omtalt i kapitel 10. Eller man kan udvide med anden del, der giver en mere elegant, men også mere kompliceret

Læs mere

Projekt 1.5: Tagrendeproblemet en modelleringsøvelse!

Projekt 1.5: Tagrendeproblemet en modelleringsøvelse! Projekt 1.5: Tagrendeproblemet en modelleringsøvelse! Det er velkendt at det største rektangel med en fast omkreds er et kvadrat. Man kan nemt illustrere dette i et værktøjsprogram ved at tegne et vilkårligt

Læs mere

Projekt 2.1: Parabolantenner og parabelsyning

Projekt 2.1: Parabolantenner og parabelsyning Projekter: Kapitel Projekt.1: Parabolantenner og parabelsyning En af de vigtigste egenskaber ved en parabel er dens brændpunkt og en af parablens vigtigste anvendelser er som profilen for en parabolantenne,

Læs mere

Projekt 2.5 Brændpunkt og ledelinje

Projekt 2.5 Brændpunkt og ledelinje Projekter. Kapitel. Projekt.5 Brændpunkt og ledelinje Projekt.5 Brændpunkt og ledelinje En af de vigtigste egenskaber ved en parabel er dens brændpunkt og en af parablens vigtigste anvendelser er som profilen

Læs mere

π er irrationel Frank Nasser 10. december 2011

π er irrationel Frank Nasser 10. december 2011 π er irrationel Frank Nasser 10. december 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

Fra tilfældighed over fraktaler til uendelighed

Fra tilfældighed over fraktaler til uendelighed Fra tilfældighed over fraktaler til uendelighed Dette undervisningsforløb har jeg lavet til et forløb på UCC Nordsjælland for særligt interesserede elever i 8. klasse. Alt, der står med rødt, er henvendt

Læs mere

Analytisk Geometri. Frank Nasser. 12. april 2011

Analytisk Geometri. Frank Nasser. 12. april 2011 Analytisk Geometri Frank Nasser 12. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk: Dette er

Læs mere

Analytisk Geometri. Frank Nasser. 11. juli 2011

Analytisk Geometri. Frank Nasser. 11. juli 2011 Analytisk Geometri Frank Nasser 11. juli 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

Mandatfordelinger ved valg

Mandatfordelinger ved valg Mandatfordelinger ved valg I denne note vil vi prøve at beskrive et nyttigt diagram når man skal analysere problemstillinger vedrørende mandatfordelinger. For at holde diagrammet enkelt ser man på den

Læs mere

Start pä matematik. for gymnasiet og hf. 2010 (2012) Karsten Juul

Start pä matematik. for gymnasiet og hf. 2010 (2012) Karsten Juul Start pä matematik for gymnasiet og hf 2010 (2012) Karsten Juul Til eleven Brug blyant og viskelåder när du skriver og tegner i håftet, sä du fär et håfte der er egnet til jåvnligt at slä op i under dit

Læs mere

Kapitel 2 Tal og variable

Kapitel 2 Tal og variable Tal og variable Uden tal ingen matematik - matematik handler om tal og anvendelse af tal. Matematik beskæftiger sig ikke udelukkende med konkrete problemer fra andre fag, og de konkrete tal fra andre fagområder

Læs mere

Fra tilfældighed over fraktaler til uendelighed

Fra tilfældighed over fraktaler til uendelighed Fra tilfældighed over fraktaler til uendelighed Tilfældighed Hvor tilfældige kan vi være? I skemaet ved siden af skal du sætte 0 er og 1-taller, ét tal i hvert felt. Der er 50 felter. Du skal prøve at

Læs mere

Tip til 1. runde af Georg Mohr-Konkurrencen Geometri

Tip til 1. runde af Georg Mohr-Konkurrencen Geometri Tip til. runde af - Geometri, Kirsten Rosenkilde. Tip til. runde af Geometri Her er nogle centrale principper om og strategier for hvordan man løser geometriopgaver. et er ikke en særlig teoretisk indføring,

Læs mere

FRAKTALER. Hans Fogedby Institut for fysik og astronomi

FRAKTALER. Hans Fogedby Institut for fysik og astronomi FRAKTALER Hans Fogedby Institut for fysik og astronomi OVERSIGT Hvad er en fraktal Lidt historie Fraktaler i matematikken Den fraktale dimension Fraktaler i fysikken Fraktaler i biologien Fraktaler som

Læs mere

Fig. 1 En bue på en cirkel I Geogebra er der adskillige værktøjer til at konstruere cirkler og buer:

Fig. 1 En bue på en cirkel I Geogebra er der adskillige værktøjer til at konstruere cirkler og buer: Euclidean Eggs Freyja Hreinsdóttir, University of Iceland 1 Introduction Ved hjælp af et computerprogram som GeoGebra er det nemt at lave geometriske konstruktioner. Specielt er der gode værktøjer til

Læs mere

Hvad er matematik? C, i-bog ISBN 978 87 7066 499 8

Hvad er matematik? C, i-bog ISBN 978 87 7066 499 8 Introduktion til ovaler: Ovato Tondo fra Rafaels skole En oval er en lukket krum kurve med to vinkelrette symmetriakser, storeaksen og lilleaksen, og dermed også et symmetricentrum. Der findes mange forskellige

Læs mere

Grønland. Matematik A. Højere teknisk eksamen

Grønland. Matematik A. Højere teknisk eksamen Grønland Matematik A Højere teknisk eksamen Onsdag den 12. maj 2010 kl. 9.00-14.00 Matematik A Prøvens varighed er 5 timer. Alle hjælpemidler er tilladt. Ved valgopgaver må kun det anførte antal afleveres

Læs mere

Kommentarer til den ægyptiske beregning Kommentarer til den ægyptiske beregning... 5

Kommentarer til den ægyptiske beregning Kommentarer til den ægyptiske beregning... 5 Hvad er matematik? C, i-bog ISBN 978 87 7066 499 8 Projekter: Kapitel - Projektet er delt i to små projekter, der kan laves uafhængigt af hinanden. Der afsættes fx - timer til vejledning med efterfølgende

Læs mere

Eksponentielle sammenhænge

Eksponentielle sammenhænge Eksponentielle sammenhænge 0 1 2 3 4 5 6 7 8 9 10 11 12 13 Indholdsfortegnelse Variabel-sammenhænge... 1 1. Hvad er en eksponentiel sammenhæng?... 2 2. Forklaring med ord af eksponentiel vækst... 2, 6

Læs mere

Matematikprojekt Belysning

Matematikprojekt Belysning Matematikprojekt Belysning 2z HTX Vibenhus Vejledning til eleven Du skal nu i gang med matematikprojektet Belysning. Dokumentationen Din dokumentation skal indeholde forklaringer mm, således at din tankegang

Læs mere

Undervisningsbeskrivelse Mat A 2007-2010

Undervisningsbeskrivelse Mat A 2007-2010 Undervisningsbeskrivelse Mat A 2007-2010 Termin Maj 2010 Institution HTX-Sukkertoppen Uddannelse HTX Fag og Niveau Matematik A Lærer Reza Farzin Hold HTX 3.L / science Titel 1 Titel 2 Titel 4 Titel 5 Titel

Læs mere

Lektion 7 Funktioner og koordinatsystemer

Lektion 7 Funktioner og koordinatsystemer Lektion 7 Funktioner og koordinatsystemer Brug af grafer og koordinatsystemer Lineære funktioner Andre funktioner lignnger med ubekendte Lektion 7 Side 1 Pris i kr Matematik på Åbent VUC Brug af grafer

Læs mere

Konstruktion. d: En cirkel med diameter 7,4 cm. e: En trekant med grundlinie på 9,6 cm og højde på 5,2 cm. (Der er mange muligheder)

Konstruktion. d: En cirkel med diameter 7,4 cm. e: En trekant med grundlinie på 9,6 cm og højde på 5,2 cm. (Der er mange muligheder) 1: Tegn disse figurer: a: Et kvadrat med sidelængden 3,5 cm. b: En cirkel med radius 4,. c: Et rektangel med sidelængderne 3,6 cm og 9,. d: En cirkel med diameter 7,. e: En trekant med grundlinie på 9,6

Læs mere

Om opbygningen af en geometrisk model for mandatfordelinger

Om opbygningen af en geometrisk model for mandatfordelinger Om opbygningen af en geometrisk model for mandatfordelinger I denne note vil vi prøve at beskrive et nyttigt diagram når man skal analysere problemstillinger vedrørende mandatfordelinger. For at holde

Læs mere

Du skal lave en tegning af bordet set lige på fra alle sider (fra langsiden, den korte side, fra oven og fra neden - 4 tegninger i alt).

Du skal lave en tegning af bordet set lige på fra alle sider (fra langsiden, den korte side, fra oven og fra neden - 4 tegninger i alt). Mit bord. Tegn det bord, du sidder ved. Du skal lave en tegning af bordet set lige på fra alle sider (fra langsiden, den korte side, fra oven og fra neden - 4 tegninger i alt). Tegningerne skal laves på

Læs mere

Trekanter. Frank Villa. 8. november 2012

Trekanter. Frank Villa. 8. november 2012 Trekanter Frank Villa 8. november 2012 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser for brug her. Indhold 1 Introduktion 1 1.1

Læs mere

Det er en af de hyppigst forekommende udregninger i den elementære talbehandling at beregne gennemsnit eller middeltal af en række tal.

Det er en af de hyppigst forekommende udregninger i den elementære talbehandling at beregne gennemsnit eller middeltal af en række tal. Tre slags gennemsnit Allan C. Malmberg Det er en af de hyppigst forekommende udregninger i den elementære talbehandling at beregne gennemsnit eller middeltal af en række tal. For mange skoleelever indgår

Læs mere

Asymptoter. for standardforsøgene i matematik i gymnasiet. 2003 Karsten Juul

Asymptoter. for standardforsøgene i matematik i gymnasiet. 2003 Karsten Juul Asymptoter for standardforsøgene i matematik i gymnasiet 2003 Karsten Juul Indledning om lodrette asymptoter Lad f være funktionen bestemt ved =, 2. 2 Vi udregner funktionsværdierne i nogle -værdier der

Læs mere

Afstandsformlen og Cirklens Ligning

Afstandsformlen og Cirklens Ligning Afstandsformlen og Cirklens Ligning Frank Villa 19. august 2012 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk.

Læs mere

xxx xxx xxx Potensfunktioner Potensfunktioner... 2 Opgaver... 8 Side 1

xxx xxx xxx Potensfunktioner Potensfunktioner... 2 Opgaver... 8 Side 1 Potensfunktioner Potensfunktioner... Opgaver... 8 Side Potensfunktioner Funktioner der kan skrives på formen y a = b kaldes potensfunktioner. Her er nogle eksempler på potensfunktioner: y = y = y = - y

Læs mere

Tilfældige rektangler: Et matematikeksperiment Variable og sammenhænge

Tilfældige rektangler: Et matematikeksperiment Variable og sammenhænge Tilfældige rektangler: Et matematikeksperiment Variable og sammenhænge Baggrund: I de senere år har en del gymnasieskoler eksperimenteret med HOT-programmet i matematik og fysik, hvor HOT står for Higher

Læs mere

Parameterkurver. Et eksempel på en rapport

Parameterkurver. Et eksempel på en rapport x Parameterkurver Et eksempel på en rapport Parameterkurver 0x MA side af 7 Hypocykloiden A B Idet vi anvender startværdierne for A og B som angivet, er en generel parameterfremstilling for hypocykloiden

Læs mere

Projekt 3.3 Linjer og cirkler ved trekanten

Projekt 3.3 Linjer og cirkler ved trekanten Projekt 3.3 Linjer og cirkler ved trekanten Midtnormalerne i en trekant Konstruer et linjestykke (punkt-menuen) og navngiv endepunkterne A og B (højreklik og vælg: Etiket), dvs. linjestykket betegnes AB.

Læs mere

Matematik A. 5 timers skriftlig prøve. Højere Teknisk Eksamen i Grønland maj 2009 GLT091-MAA. Undervisningsministeriet

Matematik A. 5 timers skriftlig prøve. Højere Teknisk Eksamen i Grønland maj 2009 GLT091-MAA. Undervisningsministeriet Højere Teknisk Eksamen i Grønland maj 2009 GLT091-MAA Matematik A 5 timers skriftlig prøve Undervisningsministeriet Fredag den 29. maj 2009 kl. 9.00-14.00 Matematik A 2009 Prøvens varighed er 5 timer.

Læs mere

for matematik på C-niveau i stx og hf

for matematik på C-niveau i stx og hf VariabelsammenhÄnge generelt for matematik på C-niveau i stx og hf NÅr x 2 er y 2,8. 2014 Karsten Juul 1. VariabelsammenhÄng og dens graf og ligning 1.1 Koordinatsystem I koordinatsystemer (se Figur 1):

Læs mere

i x-aksens retning, så fås ). Forskriften for g fås altså ved i forskriften for f at udskifte alle forekomster af x med x x 0

i x-aksens retning, så fås ). Forskriften for g fås altså ved i forskriften for f at udskifte alle forekomster af x med x x 0 BAndengradspolynomier Et polynomium er en funktion på formen f ( ) = an + an + a+ a, hvor ai R kaldes polynomiets koefficienter. Graden af et polynomium er lig med den højeste potens af, for hvilket den

Læs mere

Forslag til løsning af Opgaver til afsnittet om de naturlige tal (side 80)

Forslag til løsning af Opgaver til afsnittet om de naturlige tal (side 80) Forslag til løsning af Opgaver til afsnittet om de naturlige tal (side 80) Opgave 1 Vi skal tegne alle de linjestykker, der forbinder vilkårligt valgte punkter blandt de 4 punkter. Gennem forsøg finder

Læs mere

Projekt 1.3 Brydningsloven

Projekt 1.3 Brydningsloven Projekt 1.3 Brydningsloven Når en bølge, fx en lysbølge, rammer en grænseflade mellem to stoffer, vil bølgen normalt blive spaltet i to: Noget af bølgen kastes tilbage (spejling), hvor udfaldsvinklen u

Læs mere

Affine transformationer/afbildninger

Affine transformationer/afbildninger Affine transformationer. Jens-Søren Kjær Andersen, marts 2011 1 Affine transformationer/afbildninger Følgende afbildninger (+ sammensætninger af disse) af planen ind i sig selv kaldes affine: 1) parallelforskydning

Læs mere

Dynamik. 1. Kræfter i ligevægt. Overvejelser over kræfter i ligevægt er meget vigtige i den moderne fysik.

Dynamik. 1. Kræfter i ligevægt. Overvejelser over kræfter i ligevægt er meget vigtige i den moderne fysik. M4 Dynamik 1. Kræfter i ligevægt Overvejelser over kræfter i ligevægt er meget vigtige i den moderne fysik. Fx har nøglen til forståelsen af hvad der foregår i det indre af en stjerne været betragtninger

Læs mere

Funktioner generelt. for matematik pä B- og A-niveau i stx og hf. 2014 Karsten Juul

Funktioner generelt. for matematik pä B- og A-niveau i stx og hf. 2014 Karsten Juul Funktioner generelt for matematik pä B- og A-niveau i st og hf f f ( ),8 014 Karsten Juul 1 Funktion og dens graf, forskrift og definitionsmängde 11 Koordinatsystem I koordinatsystemer (se Figur 1): -akse

Læs mere

Analytisk geometri. Et simpelt eksempel på dette er en ret linje. Som bekendt kan en ret linje skrives på formen

Analytisk geometri. Et simpelt eksempel på dette er en ret linje. Som bekendt kan en ret linje skrives på formen Analtisk geometri Mike Auerbach Odense 2015 Den klassiske geometri beskæftiger sig med alle mulige former for figurer: Linjer, trekanter, cirkler, parabler, ellipser osv. I den analtiske geometri lægger

Læs mere

Eksponentielle sammenhænge

Eksponentielle sammenhænge Eksponentielle sammenhænge Udgave 009 Karsten Juul Dette hæfte er en fortsættelse af hæftet "Lineære sammenhænge, udgave 009" Indhold 1 Eksponentielle sammenhænge, ligning og graf 1 Procent 7 3 Hvad fortæller

Læs mere

Hunden kan sige et nyt tal (legen kan selvfølgelig udvides til former) hver dag, men kun det tal.

Hunden kan sige et nyt tal (legen kan selvfølgelig udvides til former) hver dag, men kun det tal. 4. oktober 9.00-15.00 Tårnby Faglig læsning Program Præsentation Hunden - en aktivitet til at vågne op på Oplæg om begrebsdannelse Aktiviteter hvor kroppen er medspiller Matematikkens særlige sprog Aktiviteter

Læs mere

Computerundervisning

Computerundervisning Frederiksberg Seminarium Computerundervisning Koordinatsystemer og Funktioner Lærervejledning 12-02-2009 Udarbejdet af: Pernille Suhr Poulsen Christina Klitlyng Julie Nielsen Indhold Introduktion... 3

Læs mere

Introduktion til differentialregning 1. Jens Siegstad og Annegrethe Bak

Introduktion til differentialregning 1. Jens Siegstad og Annegrethe Bak Introduktion til differentialregning 1 Jens Siegstad og Annegrete Bak 16. juli 2008 1 Indledning I denne note vil vi kort introduktion til differentilregning, idet vi skal bruge teorien i et emne, Matematisk

Læs mere

Geometri i plan og rum

Geometri i plan og rum INTRO I kapitlet arbejder eleverne med plane og rumlige figurers egenskaber og med deres anvendelse som geometriske modeller. I den forbindelse kommer de bl.a. til at beskæftige sig med beregninger af

Læs mere

Projekt 3.1 Pyramidestub og cirkelareal

Projekt 3.1 Pyramidestub og cirkelareal Projekt. Pyramidestub og cirkelareal - i tilknytning til afsnit., især for A Indhold Rumfanget af en pyramidestub... Moderne metode... Ægyptisk metode... Kommentarer til den ægyptiske beregning... Arealet

Læs mere

På opdagelse i Mandelbrot-fraktalen En introduktion til programmet Mandelbrot

På opdagelse i Mandelbrot-fraktalen En introduktion til programmet Mandelbrot Jørgen Erichsen På opdagelse i Mandelbrot-fraktalen En introduktion til programmet Mandelbrot Hvad er en fraktal? Noget forenklet kan man sige, at en fraktal er en geometrisk figur, der udmærker sig ved

Læs mere

Funktioner generelt. for matematik pä B-niveau i stx. 2013 Karsten Juul

Funktioner generelt. for matematik pä B-niveau i stx. 2013 Karsten Juul Funktioner generelt for matematik pä B-niveau i st f f ( ),8 0 Karsten Juul Funktioner generelt for matematik pä B-niveau i st Funktion, forskrift, definitionsmångde Find forskrift StÇrste og mindste vårdi

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2018 Institution Marie Kruses Skole Uddannelse Fag og niveau Lærer(e) Hold Stx Matematik A Klaus

Læs mere

Lektion 1. Tal. Ligninger og uligheder. Funktioner. Trigonometriske funktioner. Grænseværdi for en funktion. Kontinuerte funktioner.

Lektion 1. Tal. Ligninger og uligheder. Funktioner. Trigonometriske funktioner. Grænseværdi for en funktion. Kontinuerte funktioner. Lektion Tal Ligninger og uligheder Funktioner Trigonometriske funktioner Grænseværdi for en funktion Kontinuerte funktioner Opgaver Tal Man tænker ofte på de reelle tal, R, som en tallinje (uden huller).

Læs mere

Emneopgave: Lineær- og kvadratisk programmering:

Emneopgave: Lineær- og kvadratisk programmering: Emneopgave: Lineær- og kvadratisk programmering: LINEÆR PROGRAMMERING I lineær programmering løser man problemer hvor man for en bestemt funktion ønsker at finde enten en maksimering eller en minimering

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Danmarks Tekniske Universitet Side 1 af 9 sider Skriftlig prøve, lørdag den 13. december, 2014 Kursus navn Fysik 1 Kursus nr. 10916 Varighed: 4 timer Tilladte hjælpemidler: Alle tilladte hjælpemidler på

Læs mere

Gradienter og tangentplaner

Gradienter og tangentplaner enote 16 1 enote 16 Gradienter og tangentplaner I denne enote vil vi fokusere lidt nærmere på den geometriske analyse og inspektion af funktioner af to variable. Vi vil især studere sammenhængen mellem

Læs mere

Funktioner - supplerende eksempler

Funktioner - supplerende eksempler - supplerende eksempler Oversigt over forskellige typer af funktioner... 9b Omvendt proportionalitet og hyperbler... 9c Eksponentialfunktioner... 9e Potensfunktioner... 9g Side 9a Oversigt over forskellige

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin August 2008-juni 2011 Institution Sukkertoppen/Københavns tekniske skole Uddannelse Fag og niveau Lærer(e)

Læs mere

Grundlæggende matematiske begreber del 3

Grundlæggende matematiske begreber del 3 Grundlæggende matematiske begreber del 3 Ligninger med flere variable Ligningssystemer x-klasserne Gammel Hellerup Gymnasium 1 Indholdsfortegnelse LIGNINGER MED FLERE VARIABLE... 3 Ligninger med flere

Læs mere

Papirfoldning. en matematisk undersøgelse til brug i din undervisning.

Papirfoldning. en matematisk undersøgelse til brug i din undervisning. Papirfoldning en matematisk undersøgelse til brug i din undervisning. Når man folder og klipper figurer kan man blive irriteret over at skulle vende og dreje saksen. Hvor få klip kan man mon nøjes med?

Læs mere

Matematik for lærerstuderende klasse Geometri

Matematik for lærerstuderende klasse Geometri Matematik for lærerstuderende 4.-10. klasse Geometri Klassisk geometri (kapitel 6) Deduktiv tankegang Ræsonnementskompetence Mål med kapitlet: Erkender Thales sætning som fundament for afstandsberegning.

Læs mere

Matematiske hjælpemidler. Koordinater. 2.1 De mange bredder.

Matematiske hjælpemidler. Koordinater. 2.1 De mange bredder. 2. Matematiske hjælpemidler. Koordinater. 2.1 De mange bredder. 2.1 I Figur 1.1 i kapitel 1 er der vist et ideelt Kartesiske eller Euklidiske koordinatsystem, med koordinater ( X, Y, Z) = ( X 1, X 2, X

Læs mere

Matematik A. Studentereksamen. Tirsdag den 27. maj 2014 kl Digital eksamensopgave med adgang til internettet. 2stx141-MATn/A

Matematik A. Studentereksamen. Tirsdag den 27. maj 2014 kl Digital eksamensopgave med adgang til internettet. 2stx141-MATn/A Matematik A Studentereksamen Digital eksamensopgave med adgang til internettet 2stx141-MATn/A-27052014 Tirsdag den 27. maj 2014 kl. 09.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler

Læs mere

Geometriske konstruktioner: Ovaler og det gyldne snit

Geometriske konstruktioner: Ovaler og det gyldne snit Matematik Geometriske konstruktioner: Ovaler og det gyldne snit Ole Witt-Hansen, Køge Gymnasium Ovaler og det gyldne snit har fundet anvendelse i arkitektur og udsmykning siden oldtiden. Men hvordan konstruerer

Læs mere

Vektorer og lineær regression. Peter Harremoës Niels Brock

Vektorer og lineær regression. Peter Harremoës Niels Brock Vektorer og lineær regression Peter Harremoës Niels Brock April 2013 1 Planproduktet Vi har set, at man kan gange en vektor med et tal. Et oplagt spørgsmål er, om man også kan gange to vektorer med hinanden.

Læs mere

Projekt 3.7. Pythagoras sætning

Projekt 3.7. Pythagoras sætning Projekt 3.7. Pythagoras sætning Flere beviser for Pythagoras sætning... Bevis for Pythagoras sætning ved anvendelse af ensvinklede trekanter... Opgave 1: Et kinesisk og et indisk bevis for Pythagoras sætning...

Læs mere

Oprids over grundforløbet i matematik

Oprids over grundforløbet i matematik Oprids over grundforløbet i matematik Dette oprids er tænkt som en meget kort gennemgang af de vigtigste hovedpointer vi har gennemgået i grundforløbet i matematik. Det er en kombination af at repetere

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2018 Institution Marie Kruses Skole Uddannelse Fag og niveau Lærer(e) Hold Stx Matematik A Klaus

Læs mere

Kompendium i faget. Matematik. Tømrerafdelingen. 2. Hovedforløb. Y = ax 2 + bx + c. (x,y) Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard

Kompendium i faget. Matematik. Tømrerafdelingen. 2. Hovedforløb. Y = ax 2 + bx + c. (x,y) Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard Kompendium i faget Matematik Tømrerafdelingen 2. Hovedforløb. Y Y = ax 2 + bx + c (x,y) X Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard Indholdsfortegnelse for H2: Undervisningens indhold...

Læs mere

Bjørn Grøn. Euklids konstruktion af femkanten

Bjørn Grøn. Euklids konstruktion af femkanten Bjørn Grøn Euklids konstruktion af femkanten Euklids konstruktion af femkanten Side af 17 Euklids konstruktion af femkanten Et uddrag af sætninger fra Euklids Elementer, der fører frem til konstruktionen

Læs mere

Årsplan for matematik i 4. klasse 2014-15

Årsplan for matematik i 4. klasse 2014-15 Årsplan for matematik i 4. klasse 2014-15 Klasse: 4. Fag: Matematik Lærer: Ali Uzer Lektioner pr. uge: 4(mandag, tirsdag, torsdag, fredag) Formål for faget matematik Formålet med undervisningen er, at

Læs mere

Symbolsprog og Variabelsammenhænge

Symbolsprog og Variabelsammenhænge Indledning til Symbolsprog og Variabelsammenhænge for Gymnasiet og Hf 1000 kr 500 0 0 5 10 15 timer 2005 Karsten Juul Brugsanvisning Du skal se i de fuldt optrukne rammer for at finde: Regler for løsning

Læs mere

Undersøgelser af trekanter

Undersøgelser af trekanter En rød tråd igennem kapitlet er en søgen efter svar på spørgsmålet: Hvordan kan vi beregne os frem til længder, vi ikke kan komme til at måle?. Hvordan kan vi fx beregne højden på et træ eller et hus,

Læs mere

Hvad er matematik? C, i-bog ISBN 978 87 7066 499 8

Hvad er matematik? C, i-bog ISBN 978 87 7066 499 8 Et af de helt store videnskabelige projekter i 1700-tallets Danmark var kortlægningen af Danmark. Projektet blev varetaget af Det Kongelige Danske Videnskabernes Selskab og løb over en periode på et halvt

Læs mere

Noter om Bærende konstruktioner. Membraner. Finn Bach, december 2009. Institut for Teknologi Kunstakademiets Arkitektskole

Noter om Bærende konstruktioner. Membraner. Finn Bach, december 2009. Institut for Teknologi Kunstakademiets Arkitektskole Noter om Bærende konstruktioner Membraner Finn Bach, december 2009 Institut for Teknologi Kunstakademiets Arkitektskole Statisk virkemåde En membran er et fladedannende konstruktionselement, der i lighed

Læs mere

Læs selv om UENDELIGHED. Erik Bjerre og Pernille Pind Forlaget Mañana

Læs selv om UENDELIGHED. Erik Bjerre og Pernille Pind Forlaget Mañana Læs selv om UENDELIGHED Erik Bjerre og Pernille Pind Forlaget Mañana Læs selv om UENDELIGHED Erik Bjerre og Pernille Pind Forlaget Mañana 2 Uendelighed - et matematisk symbol Der kan være uendeligt lang

Læs mere

Introducerende undervisningsmateriale til Geogebra

Introducerende undervisningsmateriale til Geogebra Klaus Frederiksen & Christine Hansen Introducerende undervisningsmateriale til Geogebra - Dynamisk geometriundervisning www.bricksite.com/ckgeogebra 01-03-2012 Indhold 1. Intro til programmets udseende...

Læs mere

GrundlÄggende variabelsammenhänge

GrundlÄggende variabelsammenhänge GrundlÄggende variabelsammenhänge for C-niveau i hf 2014 Karsten Juul LineÄr sammenhäng 1. OplÄg om lineäre sammenhänge... 1 2. Ligning for lineär sammenhäng... 1 3. Graf for lineär sammenhäng... 2 4.

Læs mere

Mere om differentiabilitet

Mere om differentiabilitet Mere om differentiabilitet En uddybning af side 57 i Spor - Komplekse tal Kompleks funktionsteori er et af de vigtigste emner i matematikken og samtidig et af de smukkeste I bogen har vi primært beskæftiget

Læs mere

Matematik Basis. Faglige mål. Kernestof. Supplerende stof

Matematik Basis. Faglige mål. Kernestof. Supplerende stof Matematik Basis Undervisningens mål er, at kursisten kan: a) forstå tallenes opbygning i positionssystemet samt gange og dividere med et multiplum af 10 b) forstå de fire regningsarter og vælge hensigtsmæssige

Læs mere

Matematik for stx C-niveau

Matematik for stx C-niveau Thomas Jensen og Morten Overgård Nielsen Matematik for stx C-niveau Frydenlund Nu 2. reviderede, udvidede og ajourførte udgave Nu 2. reviderede, udvidede og ajourførte udgave Matema10k Matematik for stx

Læs mere

2 Erik Vestergaard www.matematikfysik.dk

2 Erik Vestergaard www.matematikfysik.dk Erik Vestergaard www.matematikfysik.dk Erik Vestergaard www.matematikfysik.dk 3 Lineære funktioner En vigtig type funktioner at studere er de såkaldte lineære funktioner. Vi skal udlede en række egenskaber

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni 200/2010 Institution Herning HF og VUC Uddannelse Fag og niveau Lærer(e) Hf Matematik C, HF Johnny

Læs mere

Decimaltal, brøker og procent Negative tal Potens, rødder og pi Reelle og irrationale tal

Decimaltal, brøker og procent Negative tal Potens, rødder og pi Reelle og irrationale tal Navn: Nr.: Klasse: Prøvedato: mat6 Noter: Kompetencemål efter 6. klassetrin Eleven kan anvende reelle tal og algebraiske udtryk i matematiske undersøgelser Tal og algebra Tal Titalssystem Decimaltal, brøker

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj-juni 2015 Københavns

Læs mere

Matematik for malere. praktikopgaver. Geometri Regneregler Areal Procent. Tilhører:

Matematik for malere. praktikopgaver. Geometri Regneregler Areal Procent. Tilhører: Matematik for malere praktikopgaver 2 Geometri Regneregler Areal Procent Tilhører: 2 Indhold: Geometri... side 4 Regneregler... side 10 Areal... side 12 Procent... side 16 Beregninger til praktikopgave

Læs mere

Kaos og fraktaler i dynamiske systemer. Bodil Branner Institut for Matematik Danmarks Teniske Universitet (DTU)

Kaos og fraktaler i dynamiske systemer. Bodil Branner Institut for Matematik Danmarks Teniske Universitet (DTU) Kaos og fraktaler i dynamiske systemer Bodil Branner Institut for Matematik Danmarks Teniske Universitet (DTU) UNF Matematik Camp 2010 Oversigt tre simple eksempler på klassiske fraktaler deterministiske

Læs mere

Variabelsammenhænge og grafer

Variabelsammenhænge og grafer Variabelsammenhænge og grafer Indhold Variable... 1 Funktion... 1 Grafen for en funktion... 2 Proportionalitet... 4 Ligefrem proportional eller blot proportional... 4 Omvendt proportionalitet... 4 Intervaller...

Læs mere

Værktøjskasse til analytisk Geometri

Værktøjskasse til analytisk Geometri Værktøjskasse til analytisk Geometri Frank Villa. september 04 Dette dokument er en del af MatBog.dk 008-0. IT Teaching Tools. ISBN-3: 978-87-9775-00-9. Se yderligere betingelser for brug her. Indhold

Læs mere

gl. Matematik A Studentereksamen Torsdag den 14. august 2014 kl gl-stx142-mat/a

gl. Matematik A Studentereksamen Torsdag den 14. august 2014 kl gl-stx142-mat/a gl. Matematik A Studentereksamen gl-stx142-mat/a-14082014 Torsdag den 14. august 2014 kl. 9.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål.

Læs mere

Geometri Følgende forkortelser anvendes:

Geometri Følgende forkortelser anvendes: Geometri Følgende forkortelser anvendes: D eller d = diameter R eller r = radius K eller k = korde tg = tangent Fig. 14 Benævnelser af cirklens liniestykker Cirkelperiferien inddeles i grader Cirkelperiferien

Læs mere

Geogebra Begynder Ku rsus

Geogebra Begynder Ku rsus Navn: Klasse: Matematik Opgave Kompendium Geogebra Begynder Ku rsus Kompendiet indeholder: Mål side længder Mål areal Mål vinkler Vinkelhalveringslinje Indskrevne cirkel Midt normal Omskrevne cirkel Trekant

Læs mere

2.1 Euklidisk konstruktion af nogle regulære polygoner

2.1 Euklidisk konstruktion af nogle regulære polygoner Geometri og bilhjul Miroslava Sovičová, Štefan Havrlent, Ľubomír Rybanský Constantine the Philosopher University Nitra, Slovakia 1 Introduktion En matematiklærer der vil præsentere eleverne for noget nyt

Læs mere

Spor Matematiske eksperimenter. Komplekse tal af Michael Agermose Jensen og Uwe Timm.

Spor Matematiske eksperimenter. Komplekse tal af Michael Agermose Jensen og Uwe Timm. Homografier Möbius transformationer Følgende tema, handler om homografier, inspireret af professor Børge Jessens noter, udgivet på Københavns Universitet 965-66. Noterne er herefter blevet bearbejdet og

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Juni 2017 Institution HANSENBERG Gymnasium Uddannelse Fag og niveau Lærer(e) Hold htx Matematik A Irina Kristensen

Læs mere

De fire elementers kostbare spejl

De fire elementers kostbare spejl Projekt.6 Lineær algebra moderne og klassisk kinesisk De fire elementers kostbare spejl "Som bekendt anses matematikken for at være en meget vigtig videnskab. Denne bog om matematik vil derfor være af

Læs mere

Studieretningsopgave

Studieretningsopgave Virum Gymnasium Studieretningsopgave Harmoniske svingninger i matematik og fysik Vejledere: Christian Holst Hansen (matematik) og Bodil Dam Heiselberg (fysik) 30-01-2014 Indholdsfortegnelse Indledning...

Læs mere

Oversigt. funktioner og koordinatsystemer

Oversigt. funktioner og koordinatsystemer Et koordinatsystem er et diagramsystem, der har to akser, en vandret akse og en lodret akse - den vandrette kaldes x-aksen, og den lodrette kaldes y-aksen. (2,4) (5,6) (8,6) Et punkt skrives altid som

Læs mere

Løsning af simple Ligninger

Løsning af simple Ligninger Løsning af simple Ligninger Frank Nasser 19. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk:

Læs mere