Tredimensional grafik

Størrelse: px
Starte visningen fra side:

Download "Tredimensional grafik"

Transkript

1 Teimensionl gfi 6 Ksten Juul

2 Inhol I Homogene oointsæt og gngning f mtie sie Vi vil fose og eje figue i ummet og æne ees støelse Defo inføe vi homogene oointsæt og gngning f mtie II th sie Et olsninge om hvon th n uges III RumFig sie Hvon n th-oumentet RumFig uges til nemt t tegne og fltte D-figue? IV Pllelfosning sie Hv e en llelfosning? Hvilen oointfomel sl mn uge fo t llelfose? Hvilen mti sl mn uge fo t llelfose? Esemel å ug f mti til t llelfose en figu å sæmen V Animtion sie 7 Ve et esemel vises hvon mn n lve en nimtion å sæmen VI Kommnoen "stel" i RumFig sie 8 Ve et esemel vises hvon mn nemt n lve en figu e estå f mnge esemle f en given figu VII ultilition u f unt sie 9 Hv e en multilition u f et unt? Hvilen oointfomel sl mn uge fo t multiliee u f et unt? Hvilen mti sl mn uge fo t multiliee u f et unt? Esemel å ug f mti til t fostøe en figu å sæmen VIII Dejning om oointse sie Hvilen oointfomel sl uges fo t eje? Esemel å ug f mti til t eje en figu å sæmen IX Smmensætte llelfosninge multilitione og ejninge sie Hvon gnge mn to -mtie? En sætning om gngning f mtie smt et esemel å hvon sætningen n uges til t lve en figu å sæmen X Dejning om vilålig linje sie En teni til t lve en mti svene til en ejning om en hvilen som helst linje Teimensionl gfi ugve 6 Ksten Juul Dette hæfte n ownloes f wwwmt Hæftet må enttes i unevisningen hvis læeen me et smme sene en e-mil til som els olse t ette hæfte enttes els olse om hol læe og sole

3 I Homogene oointsæt og gngning f mtie Vi vil få omuteen til t æne figue i ummet ve t fose eje og/elle æne støelse Så må vi unne eegne oointsættet til et unt som et givet unt føes ove i Dette hæfte gå u å t inføe en teni til ette Figu På figu e vist untet A ( I en eegningsteni vi vil uge sive mn A sån: ( He e e te øveste tl A 's oointe Det neeste tl sl lti væe Definition Nomliseet homogent oointsæt Det nomliseee homogene oointsæt fo et unt P ( e mtien Unset hvon vi fose eje og/elle æne støelse vil vi eegne et unt A føes ove i ve t gnge søjlemtien me en vtis mti Følgene efinition vise hvon mn gnge Teimensionl gfi Sie 6/-6 Ksten Juul

4 Teimensionl gfi Sie 6/-6 Ksten Juul Definition Gnge oointsæt f venste me mti o n m l j i h g f e o n m l j i h g f e Resulttet f gngningen e ltså en søjlemti Hvet f e fie tl i enne søjle e femommet ve slmultiliee -søjlen me en æe i en vtise mti Vi vil uge efinition til t gnge A's oointsæt ( me en mti: ( 7 Altså føes A ove i untet (7 A Figu vise åe A og A Figu Hvis vi i ( esttte A me et vilåligt unt ( P fås: Hef ses t nå et unts oointsæt gnges me enne mti så vil untet live fosut stet i -sens etning

5 Teimensionl gfi Sie 6/-6 Ksten Juul II th tien vi gngee me ovenfo n vi f le P I th n ette sives sån: : P Bemæ: Ineset SKAL sives ve t tste et untum fo t ungå unøige oleme Heefte n vi få uegnet A 's oointsæt sån: 7 P Umielt n et vie utis t sulle uføe ette fo t få lgt til - oointen Tenien e og en sto foel i nogle tilfæle f hvis mn siftevis eje og fose III RumFig I ette hæfte uges th-oumentet RumFig som n ownloes f wwwmt Figu I RumFig n mn få tegnet en L-fomee figu ABC å figu ve t tste : D

6 De te søjle i enne mti e untene A B og C Det føste unt foines me et net og et net me et teje Hvis mn også vil hve C founet me A så e femomme en tent må mn tilføje en fjee søjle e inehole A 's oointsæt Det e ie un ogstvet D e å en måe n uges til t få tegnet en figu n n uge følgene ogstve D E F G H N Disse 7 figue h lotnumene -9 Nå u oeltlie å figuen og vælge et elevnte lotnumme n u l æne fve og stegtelse Figu vise en figu Figu A B C e femomme nå L'et ABC llelfoses i -sens etning Fo t få tegnet A B C sl vi hve en mti hvo søjlene e oointsættene til A B og C Disse oointsæt fås ve t gnge søjlene i D me P I oumentet RumFig n ette gøes ve t sive E : gng( P D D E e en f e ogstve e n uges til t få tegnet en figu vil figuen A B C utomtis live tegnet Hvis vi tste E eftefulgt f et lighestegn n vi se æen f oointsøjle i E: IV Pllelfosning Definition Pllelfosning E En "llelfosning me en veto h " føe ethvet unt Q ove i et unt som e estemt ve t QQ h Q Teimensionl gfi Sie 6/-6 Ksten Juul

7 Figu vise en llelfosning me en veto h Figu Sætning Koointfomel fo llelfosning Ve en llelfosning me en veto h s føes et unt P ( ove i et t unt Q ( u v w hvis oointe n uegnes sån: u v s w t Bevis fo sætning At P føes ove i Q ve llelfosning me vetoen h ete ifølge efinition t PQ h Hef fås t OQ OP PQ OP h s s w vu t t vs e te ligninge i sætningen gæle Sætning ti fo llelfosning tien svene til en llelfosning me en veto s P h t h s t e Teimensionl gfi Sie 6/-6 Ksten Juul

8 Teimensionl gfi Sie 6 6/-6 Ksten Juul Bevis fo sætning Vi uge efinition til t uegne oointsættet til et unt som et unt ( P føes ove i nå et gnges me h P : t s t s t s Ifølge sætning e ette et unt som ( P føes ove i ve en llelfosning me vetoen t s h Figu 6 I RumFig n mn få tegnet tenten å figu 6 ve t tste : D Søjlene i enne mti e e e unte som sl foines fo t tegne tenten Føste unt foines me net net me teje og teje me fjee Vetoen å figuen e v I RumFig tste vi mtien svene til llelfosningen me enne veto: : v P Deefte tste vi gng( : D P E v

9 Søjlene i E e ltså femommet ve t gnge søjlene i D me P v vs ve t llelfose untene i D Altså e E e en tent e fås ve t llelfose tenten D me vetoen v Nu tste vi F : gng( P E vs F e tenten e fås nå E llelfoses me vetoen v På figu 7 e vist tentene D E og F v Figu 7 V Animtion En nimtion estå f en æe illee e vises hutigt efte hinnen I Rumfig n vi lve en nimtion ve føst t tste : FRAE D : gng( P Dstt D stt : P : og eefte vælge Vætøj/Animtion/Otg tæe me musen fo t mee hv e sl me le FRAE løe f til 9 og lie å Anime (Søg fo t en ositive el f -sen h længen 7 elle mee og søg fo t oome u så hele figuen ses FRAE FRAE FRAE 9 Figu 8 Teimensionl gfi Sie 7 6/-6 Ksten Juul

10 Det ses t D stt e tenten til venste å figu 8 og t P e mtien svene til en llelfosning stet i -sens etning På illee n i nimtionen e FRAE lig så e D e ltså en figu e fås ve t llelfose tenten D stet i -sens etning stt På figu 8 e vist illee n illee n og illee n 9 VI Kommnoen "stel" i RumFig På sie 7 fosø vi en tent D Deefte fosø vi en femomne tent E (se figu 7 Vi unne hve fotst me t fose en teje tent F så e femom en fjee tent Hvis vi vil nne mnge tente ve t live ve me t fose å enne måe n et væe tis (og unetien nøvenigt t smle lle tentene i én figu så ét lotnumme f e figuen eståene f lle tentene Dette n i RumFig gøes ve hjæl f stel-ommnoen Hvis D stt e tenten til venste å figu 8 og P e mtien svene til en llelfosning stet i -sens etning så vil ommnoen D : stel( P Dstt evie t D live figuen til venste å figu 9 Tllet til sist i stel-ommnoen ngive hvo mnge tente figuen sl estå f Hvis mn sive tegnes figuen til høje å figu 9 E : stel( P Dstt D E Figu 9 Hvis mn sive D eftefulgt f et lighestegn n mn se en æe unte som D estå f: D De føste søjle i D e en neeste tent De næste e en miteste f e te tente Siste unt i føste tent og føste unt i nen tent stå ve sien f hinnen i D så e to unte foines me en steg Teimensionl gfi Sie 8 6/-6 Ksten Juul

11 Teimensionl gfi Sie 9 6/-6 Ksten Juul VII ultilition u f unt Definition ultilition u f unt En "multilition me et tl u f et unt F " føe ethvet unt P ove i et unt Q som e estemt ve t FP FQ Figu vise en multilition u f untet F me tllet Tenten ABC føes ove i tenten m m m C B A De to tente e ligennee og fostøelsesftoen e Figu Sætning Koointfomel fo multilition u f unt Ve en multilition me et tl u f et unt ( F føes et unt ( P ove i et unt ( w v u Q hvis oointe n uegnes sån: u ( v ( w ( Bevis fo sætning At P føes ove i Q ve multilition me et tl u f et unt F ete ifølge efinition t FP FQ Hef fås t FP OF FQ OF OQ w v u ( ( ( ( ( ( vs e te ligninge i sætningen gæle

12 Teimensionl gfi Sie 6/-6 Ksten Juul Den lille tent å figu føes ove i en stoe ve en multilition u f untet ( F me tllet Ifølge sætning vil oointfomlen fo enne multilition væe ( u ( v ( w vs u v w Figu Sætning ti fo multilition tien svene til en multilition u f et unt ( F me et tl e ( ( ( Bevis fo sætning Vi uge efinition til t uegne oointsættet til et unt som et unt ( P føes ove i nå et gnges me : ( ( ( ( ( ( ( ( ( Ifølge sætning e ette et unt som ( P føes ove i ve en multilition u f et unt ( F me et tl

13 Fo t få figu fem i RumFig n vi tste D : : E : gng( D hvo D e en lille tent E e en stoe tent og e mtien svene til multilitionen u f F ( me tllet VIII Dejning om oointse Definition Dejning om oointse Nå ummet ejes om en f oointsene så ngive et ositivt gtl en ejning e ses t væe mo uet nå mn se f sens sis in mo egnelsesuntet Et negtivt gtl ngive en ejning i en mostte etning Sætning Koointfomel fo ejning om -sen Nå ummet ejes en vinel t om -sen så føes et unt P ( ove i et unt Q ( u v w hvis oointe n uegnes sån: u v os( t sin( t w sin( t os( t Bevis fo sætning Figu Ve en ejning om -sen e et lt t hvis P ( føes ove i Q ( v w så vil P ( føes ove i Q ( u v w hvo u Teimensionl gfi Sie 6/-6 Ksten Juul

14 På figuen e vist untet P ( og et unt Q ( v w som P føes ove i nå ummet ejes vinlen t om -sen Ve enne ejning føes vetoene j og ove i hhv e os( t og os( f t 9 sin( sin( t sin( t 9 os( tt D OP j e OQ e f Defo e os( t sin( t os( t sin( t w v sin( t os( t sin( t os( t Sætning 6 Koointfomel fo ejning om -sen Nå ummet ejes en vinel t om -sen så føes et unt P ( ove i et unt Q ( u v w hvis oointe n uegnes sån: u os( t sin( t v w sin( t os( t Sætning 7 Koointfomel fo ejning om -sen Nå ummet ejes en vinel t om -sen så føes et unt P ( ove i et unt Q ( u v w hvis oointe n uegnes sån: u v os( t sin( t w sin( t os( t U f sætningene -7 n e tilsvene mtie uen viee osives F vil mtien svene til t eje vinlen t om -sen væe X t os( t sin( t sin( t os( t Teimensionl gfi Sie 6/-6 Ksten Juul

15 Figu Retnglet D å figu femomme nå vi tste D : Ve en ejning å 9 om -sen vil D føes ove i E og E vil føes ove i F tien svene til en ejning å 9 om -sen e os(9 eg sin(9 eg X 9 : sin(9 eg os(9 eg D os( 9 og sin( 9 unne vi også hve tstet X 9 : Retnglene E og F femomme nå vi tste E : gng( X 9 D F : gng( X 9 E Teimensionl gfi Sie 6/-6 Ksten Juul

16 Teimensionl gfi Sie 6/-6 Ksten Juul IX Smmensætte llelfosninge multilitione og ejninge Definition 6 Gngning f mtie Poutet f to mie og f f f f e e e e e en mti som e fstlgt ve t søjle i fås ve t gnge søjle i me f venste søjle i fås ve t gnge søjle i me f venste Osv Sætning 8 Fo mtiene og f f f f e e e e gæle ( ( Bevis fo sætning 8 Vi få th til t foetge en smols uegning f iffeensen mellem e to søjlemtie ( og ( Det vise sig t esulttet live Heme e sætningen evist (n n få foetget uegningen ve t efinee og som ngivet i sætningen og eefte tste ( ( og vælge "enel" å smolsletten Ve en ejning å 8 om -sen føes et unt A ove i et unt B og ve en llelfosning stet i -sens etning føes B ove i et unt C

17 L Y m8 væe mtien e sve til en ejning å 8 om -sen og l P væe mtien e sve til en llelfosning stet i -sens etning L esuen S væe outet P Y m 8 Hvis vi gnge A's oointsøjle me Y m8 f venste og gnge esulttet me P f venste må vi få C's oointsøjle Ifølge sætning 8 n vi efo også få C ve t gnge A me S Figu Hvis D stt e mtien svene til et venste etngel å figu n vi få tegnet et næste etngel ve t tste D : gng( S Dstt En gngning me S sve til en ejning eftefulgt f en llelfosning Det ses t hvet etngel å figu n fås f et foegåene ve gngning me S Vi n efo få hele figuen fem ve t tste D stel( S D 6 : stt X Dejning om vilålig linje L A og B væe to fosellige unte å en linje l Vi vil nu ngive hvon mn n fine mtien e sve til t eje vinlen v om l sån t ositivt v sve til en ejning mo uet nå mn se f B mo A D vi ie h fomle fo t eje om ne linje en oointsene vil vi fltte l ove i en oointse eje om enne og eefte fltte l tilge Fltningen f l må foegå i en æe tin hvo hvet tin sve til en mti vi ene Til sist n vi gnge lle mtiene fo t få en mti e sve til ejningen om l Den søgte ejning n f fås fem å følgene måe: ( Pllelfos me en veto så A føes ove i oointsstemets egnelsesunt ( Dej en vinel s om -sen så B omme til t ligge i -lnen ( Dej en vinel t om -sen så B omme til t ligge å -sens ositive el ( Dej vinlen v om -sen ( Dej vinlen t om -sen (6 Dej vinlen s om -sen (7 Pllelfos me vetoen Teimensionl gfi Sie 6/-6 Ksten Juul

18 Som et esemel å enne metoe vil vi fine mtien svene til en ejning om linjen m e gå gennem untene A ( og B ( 6 Dejningen sl væe å og set f B mo A sl en foegå mo uet Punt ( Føst sl llelfoses så A føes ove i O ( vs me vetoen tien svene til enne llelfosning e P Punt ( Ve llelfosningen me vetoen føes B ove i untet B ( Vi sl eje om -sen så B føes ove i -lnen Af B 's oointe ses t ejnings- vinlen e s tn tien svene til enne ejning e os( s sin( s Y sin( s os( s Punt ( Ve ejningen om -sen føes B ove i untet B ( hvo e uegnet som fstnen f B til -sen vs til C ( Vi sl nu foetge en ejning om -sen som føe ositive el Af B 's oointe ses t ejningsvinlen må væe tien svene til enne ejning e os( t sin( t X sin( t os( t B ove i et unt å -sens t tn Teimensionl gfi Sie 6 6/-6 Ksten Juul

19 Punt ( Heefte sl vi eje om -sen tien svene til enne ejning e os( sin( sin( os( Z Punt ( Vi sl eje vinlen t om -sen D os( t os( t og sin( t sin( t e mtien svene til enne ejning os( t sin( t X sin( t os( t Punt (6 Vi sl eje vinlen s om -sen tien svene til enne ejning e os( s sin( s Y sin( s os( s Punt (7 Til sist sl vi llelfose me vetoen P tien svene hetil e Den søgte mti tien svene til ejningen å om m n nu eegnes sån: P Y X Z X Y P Teimensionl gfi Sie 7 6/-6 Ksten Juul

Kort om. Potenssammenhænge. 2011 Karsten Juul

Kort om. Potenssammenhænge. 2011 Karsten Juul Kot om Potenssmmenhænge 011 Ksten Juul Dette hæfte indeholde pensum i potenssmmenhænge, heunde popotionle og omvendt popotionle vible, fo gymnsiet og hf. Indhold 1. Ligning og gf fo potenssmmenhænge...

Læs mere

Trigonometri. teori mundtlig fremlæggelse C 2. C v. B v. A v

Trigonometri. teori mundtlig fremlæggelse C 2. C v. B v. A v Tigonometi teoi mundtlig femlæggelse 2 v v B v B Indhold 1. Sætning om ensvinklede teknte og målestoksfohold (uden bevis)... 2 2. Vinkelsummen i en teknt... 2 3. Pythgos sætning om ETVINKLEDE TEKNTE...

Læs mere

Krydsprodukt. En introduktion Karsten Juul

Krydsprodukt. En introduktion Karsten Juul Kydspodut En ntoduton 5 Ksten Juul Bugsnvsnng Du sl se de fuldt optune mme fo t fnde defntone og sætnnge De e st punteet mme om esemple og evse Indhold Rmme Sde Defnton f ydspodut Esempel på ug f defntonen

Læs mere

BEVISER TIL SÆTNINGER I BOGEN

BEVISER TIL SÆTNINGER I BOGEN MTEMK Mtemtik o hh C-iveu BEVISER TIL SÆTNINGER I BOGEN Dette e e smlig ove lle e sætige og evise e e i oge. Det e met som suppleee mteile isæ til e eleve, e skl hve mtemtik på B- elle -iveu. ee i ku metget

Læs mere

( ) ( ) ( ) Størrelsesorden for funktionerne a x, x a og ln(x) (opgaveforløb v/ Bjørn Grøn og John Schächter) > ( )

( ) ( ) ( ) Størrelsesorden for funktionerne a x, x a og ln(x) (opgaveforløb v/ Bjørn Grøn og John Schächter) > ( ) Støelsesoden fo funktionene, og ln() Side f 5 Støelsesoden fo funktionene, og ln() (opgvefoløb v/ Bjøn Gøn og John Schächte) Intoduktion I dette foløb vil vi dels få et edskb til t smmenligne, hvo hutigt

Læs mere

Matematik på Åbent VUC

Matematik på Åbent VUC Matematik på Åent VUC Lektion 8 Geometi Indoldsfotegnelse Indoldsfotegnelse... Længdemål og omegning mellem længdemål... Omkeds og aeal af ektangle og kvadate... Omkeds og aeal af ande figue... Omegning

Læs mere

Mat. B (Sådan huskes fomlerne) Formler, som skal kunnes til prøven uden hjælpemidler

Mat. B (Sådan huskes fomlerne) Formler, som skal kunnes til prøven uden hjælpemidler Mt. B (Sån huskes fomlerne) Formler, som skl kunnes til prøven uen hjælpemiler Inhol Her er tilføjet emærkninger til nogle f formlerne BRØKER... PARENTESER... EKSPONENTER... LOGARITMER... GEOMETRI... Arel

Læs mere

TALTEORI x-klasserne Gammel Hellerup Gymnasium

TALTEORI x-klasserne Gammel Hellerup Gymnasium TALTEORI x-lssene Gmmel Helleup Gymnsium Inholsfotegnelse FORORD... 3 INDLEDNING... 3 Kpitel : DIVISION (hele tl)... 4 Kpitel : RESTKLASSER (hele tl)... 7 Kpitel 3: FÆLLES DIVISORER (hele tl)... 8 Kpitel

Læs mere

Annuiteter og indekstal

Annuiteter og indekstal Annuitete og indekstal 1 Opspaing og lån Mike Auebach Odense 2010 Hvis man betale til en opspaingskonto i en bank, kan man ikke buge entefomlen til at beegne, hvo mange penge, de vil stå på kontoen. På

Læs mere

Projekt 0.5 Euklids algoritme, primtal og primiske tal

Projekt 0.5 Euklids algoritme, primtal og primiske tal Pojekt 0.5 Euklids algoitme, pimtal og pimiske tal Betegnelse. Mængden af hele tal (positive, negative og nul) betegnes. At et tal a e et helt tal angives med: aî, de læses a tilhøe. Nå vi ha to vilkålige

Læs mere

Bogstavregning. for gymnasiet og hf Karsten Juul. a a

Bogstavregning. for gymnasiet og hf Karsten Juul. a a Bogstvregning for gymnsiet og hf 010 Krsten Juul Til eleven Brug lynt og viskelæder når du skriver og tegner i hæftet, så du får et hæfte der er egenet til jævnligt t slå op i under dit videre rejde med

Læs mere

Arealet af en sfærisk trekant m.m.

Arealet af en sfærisk trekant m.m. ealet af en sfæisk tekant m.m. Tillæg til side 103 104 i Matematik højniveau 1 fa TRI, af Eik Vestegaad. Sfæisk tokant Givet en kugle. En plan, de passee igennem kuglens centum, skæe kuglen i en såkaldt

Læs mere

Annuiteter og indekstal

Annuiteter og indekstal Annuitete og indekstal Mike Auebach Odense, 2010 1 OPSPARING OG LÅN Hvis man betale til en opspaingskonto i en bank, kan man ikke buge entefomlen til at beegne, hvo mange penge, de vil stå på kontoen.

Læs mere

Kortfattet vejledning Gallery 100

Kortfattet vejledning Gallery 100 Kortfttet vejlening Gllery 100 75517500 04.01 OFF ON Beskrivelse f ispenserens komponenter Venstre ør Låg til ingreienseholer Ingreienseholer Sikkerheskontkt Sipleholer Uløstu Grumseholer Kneholer (= rist

Læs mere

Privatøkonomi og kvotientrækker KLADDE. Thomas Heide-Jørgensen, Rosborg Gymnasium & HF, 2017

Privatøkonomi og kvotientrækker KLADDE. Thomas Heide-Jørgensen, Rosborg Gymnasium & HF, 2017 Pivatøkonomi og kvotientække KLADDE Thomas Heide-Jøgensen, Rosbog Gymnasium & HF, 2017 Indhold 1 Endelige kvotientække 3 1.1 Hvad e en ække?............................ 3 1.2 Kvotientække..............................

Læs mere

Bogstavregning. En indledning for stx og hf 2. del. 2008 Karsten Juul

Bogstavregning. En indledning for stx og hf 2. del. 2008 Karsten Juul Bogstvregning En indledning for st og f. del 008 Krsten Juul ) )( ( ) ( ) ( Indold 0. Gnge to prenteser....,, osv... 7. Kvdrtsætninger... 0. Brøer. del... Bogstvregning. En indledning for st og f.. del.

Læs mere

Eksponentielle Sammenhænge

Eksponentielle Sammenhænge Kort om Eksponentielle Smmenhænge 011 Krsten Juul Dette hæfte indeholder pensum i eksponentielle smmenhænge for gymnsiet og hf. Indhold 1. Procenter på en ny måde... 1. Hvd er en eksponentiel smmenhæng?....

Læs mere

Brug af regneark til beregninger, statistik og grafisk afbildning. Excel 97

Brug af regneark til beregninger, statistik og grafisk afbildning. Excel 97 Brug f regnerk til eregninger, sttistik og grfisk filning Exel 97 pril 2003 * St Om vurering f tlmterile sie 1 I Definitioner BLOK En eller flere eller eller rækker eller kolonner MARKER BLOK Peg på øverste

Læs mere

Projekt 0.5 Euklids algoritme og primiske tal

Projekt 0.5 Euklids algoritme og primiske tal Pojekt 0.5 Euklids algoitme og pimiske tal BETEGNELSER. Mængden af hele tal (positive, negative og nul) betegnes. At et tal a e et helt tal angives med: aî, de læses a tilhøe. Nå vi ha to vilkålige hele

Læs mere

Trigonometri. Trigonometri. Sinus og cosinus... 2 Tangens... 6 Opgaver... 9. Side 1

Trigonometri. Trigonometri. Sinus og cosinus... 2 Tangens... 6 Opgaver... 9. Side 1 Trigonometri Sinus og osinus... 2 Tngens... 6 Opgver... 9 Side Sinus og osinus Til lle vinkler hører der to tl, som kldes osinus og sinus. Mn finder sinus og osinus til en vinkel ved t tegne vinklen midt

Læs mere

Potens- sammenhænge. inkl. proportionale og omvendt proportionale variable. 2010 Karsten Juul

Potens- sammenhænge. inkl. proportionale og omvendt proportionale variable. 2010 Karsten Juul Potens- smmenhænge inkl. proportionle og omvendt proportionle vrible 010 Krsten Juul Dette hæfte er en fortsættelse f hæftet "Eksponentielle smmenhænge, udgve ". Indhold 1. Hvd er en potenssmmenhæng?...1.

Læs mere

grib chancen 1/3 sæt ord på din drøm

grib chancen 1/3 sæt ord på din drøm gib chancen sæt od på din døm DR e på mange måde alleede i vedensklasse. Og vi skal væe det hele vejen undt. DR i vedensklasse handle om samab: Hvodan skal vi samab i femtiden? Og hvilke vædie skal vi

Læs mere

Diskriminantformlen. Frank Nasser. 12. april 2011

Diskriminantformlen. Frank Nasser. 12. april 2011 Diskriminantformlen Frank Nasser 12. april 2011 c 2008-2011. Dette okument må kun anvenes til unervisning i klasser som aonnerer på MatBog.k. Se yerligere etingelser for rug her. Bemærk: Dette er en arkiveret

Læs mere

DesignMat Den komplekse eksponentialfunktion og polynomier

DesignMat Den komplekse eksponentialfunktion og polynomier DesignMat Den komlekse eksonentialfunktion og olynomie Peben Alsholm Uge 8 Foå 009 Den komlekse eksonentialfunktion. Definitionen Definitionen Den velkendte eksonentialfunktion x! e x vil vi ofte ligesom

Læs mere

Hvis man vil lægge 15% til 600, så kan det gøres ved at udregne, hvor meget 15% af 600 er lig med og lægge det til det oprindelige beløb:

Hvis man vil lægge 15% til 600, så kan det gøres ved at udregne, hvor meget 15% af 600 er lig med og lægge det til det oprindelige beløb: 0BRetesegig BTæk i femskivigsfaktoe! I dette tillæg skal vi se, at begebet femskivigsfaktoe e yttigt til at fostå og løse foskellige poblemstillige idefo pocet- og etesegig. 3B. Lægge pocet til elle tække

Læs mere

Indhold (med link til dokumentet her) Introduktion til låntyper. Begreber. Thomas Jensen og Morten Overgård Nielsen

Indhold (med link til dokumentet her) Introduktion til låntyper. Begreber. Thomas Jensen og Morten Overgård Nielsen Thomas Jensen og Moten Ovegåd Nielsen Annuitetslån I bogens del 2 kan du læse om Pocent og ente (s. 41-66). Vi vil i mateialet he gå lidt videe til mee kompliceede entebeegninge i fobindelse med annuitetslån.

Læs mere

Opsparing og afvikling af gæld

Opsparing og afvikling af gæld Opspaig og afviklig af gæld Opspaig Eksempel 1 Lad os state med at se på et eksempel. 100 Euo idbetales å i tæk på e koto, de foetes med 3 % p.a. Vi ha tidligee beeget e såda kotos udviklig skidt fo skidt:

Læs mere

Forløb om annuitetslån

Forløb om annuitetslån Matema10k C-niveau, Fdenlund Side 1 af 7 Foløb om annuitetslån Dette mateiale fokusee på den tpe lån de betegnes annuitetslån. Emnet kan buges som en del af det suppleende stof, og mateialet kan anvendes

Læs mere

De dynamiske stjerner

De dynamiske stjerner De dynamiske stjene Suppleende note Kuglesymmetiske gasmasse Figu 1 Betelgeuse (Alfa Oionis) e en ød kæmpestjene i stjenebilledet Oion. Den e så sto, at den anbagt i voes solsystem ville nå næsten ud til

Læs mere

Ny Sigma 9, s Andengradsfunktioner med regneforskrift af typen y = ax + bx + c, hvor a 0.

Ny Sigma 9, s Andengradsfunktioner med regneforskrift af typen y = ax + bx + c, hvor a 0. Ny Sigm 9, s 110 Andengrdsfunktioner med regneforskrift f typen y = x + x + c, hvor 0 Lineære funktioner (førstegrdsfunktioner) med regneforskrift f typen y = αx + β Grfen for funktioner f disse typer

Læs mere

Lektion 7s Funktioner - supplerende eksempler

Lektion 7s Funktioner - supplerende eksempler Lektion 7s Funktioner - supplerende eksempler Oversigt over forskellige tper f funktioner Omvendt proportionlitet og hperler.grdsfunktioner og prler Eksponentilfunktioner Potensfunktioner Lektion 7s Side

Læs mere

Kort om. Andengradspolynomier. 2011 (2012) Karsten Juul

Kort om. Andengradspolynomier. 2011 (2012) Karsten Juul Kort om Anengraspolynomier 11 (1) Karsten Juul Dette häfte ineholer pensum i anengraspolynomier for gymnasiet og hf Inhol 1. Definition Anengraspolynomium... 1. Eksempel Hvilke tal er a, b og c lig?...

Læs mere

Matematisk formelsamling til A-niveau - i forsøget med netadgang til skriftlig eksamen 1

Matematisk formelsamling til A-niveau - i forsøget med netadgang til skriftlig eksamen 1 Mtemtisk fomelsmling til A-niveu - i fosøget med netdgng til skiftlig eksmen Food Mtemtisk fomelsmling til A-niveu e udejdet fo t give et smlet ovelik ove de fomle og det symolspog, de knytte sig til kenestoffet

Læs mere

AKTUEL ANALYSE. Nye tider på boligmarkedet 24. januar 2007

AKTUEL ANALYSE. Nye tider på boligmarkedet 24. januar 2007 AKTUEL ANALYSE Nye tie på boligmakeet 24. janua 2007 De høje pisstigningstakte på boligmakeet e løjet af, og meget tale fo en fotsat afæmpning i en kommene ti. Sien boligmakeet vente i 1993, e pisene vokset

Læs mere

Alt hvad du nogensinde har ønsket at vide om... Del 2. Frank Nasser 2006-2007

Alt hvad du nogensinde har ønsket at vide om... Del 2. Frank Nasser 2006-2007 Alt hvad du nogensinde ha ønsket at vide om... VEKTORER Del 2 Fank Nasse 2006-2007 - 1 - Indledning Vi skal i denne lille note gennemgå det basale teoi om vektoe i planen og i ummet. Stoffet e pæcis det

Læs mere

Projekt 5.2. Anvendelse af Cavalieris princip i areal- og rumfangsberegninger

Projekt 5.2. Anvendelse af Cavalieris princip i areal- og rumfangsberegninger Hvad e matematik? B, i-bog Pojekte: Kapitel 5. Pojekt 5.. Anvendelse af Cavalieis pincip i aeal- og umfangsbeegninge Pojekt 5.. Anvendelse af Cavalieis pincip i aeal- og umfangsbeegninge Den gundlæggende

Læs mere

, idet der jo af ovenstående udregninger (hvor vi har regnet ensbetydende, dvs vi kan slutte begge veje) følger at > K.

, idet der jo af ovenstående udregninger (hvor vi har regnet ensbetydende, dvs vi kan slutte begge veje) følger at > K. Hvd e mtemtik? A ISBN 978-87-766-497-4 Pojekte: Kpitel 2. Pojekt 2.4 Støelsesoden fo funktione Pojekt 2.4. Støelsesoden fo funktionene Intoduktion, og ln( ) I dette foløb vil vi dels få et edskb til t

Læs mere

3D-grafik Karsten Juul

3D-grafik Karsten Juul 3D-grafik 2005 Karsten Juul Når der i disse noter står at du skal få tegnet en figur, så er det meningen at du skal få tegnet den ved at taste tildelinger i Mathcad-dokumentet RumFig2 Det er selvfølgelig

Læs mere

Integralregning. 2. del. 2006 Karsten Juul

Integralregning. 2. del. 2006 Karsten Juul Integrlregning del ( ( 6 Krsten Juul Indhold 6 Uestemt integrl8 6 Sætning om eksistens stmunktioner 8 6 Oplæg til "regneregler or integrl"8 6 Regneregler or uestemt integrl 9 68 Foreredelse til "integrtion

Læs mere

Med disse betegnelser gælder følgende formel for en annuitetsopsparing:

Med disse betegnelser gælder følgende formel for en annuitetsopsparing: Matema10k C-iveau, Fydelud Side 1 af 10 Auitetsopspaig De fides mage måde at spae op på. Vi vil he se på de såkaldte auitetsopspaig. Emet ka buges som e del af det suppleede stof, og det ka avedes som

Læs mere

TAL OG REGNEREGLER. Vi ser nu på opbygningen af et legeme og noterer os samtidig, at de reelle tal velkendte regneoperationer + og er et legeme.

TAL OG REGNEREGLER. Vi ser nu på opbygningen af et legeme og noterer os samtidig, at de reelle tal velkendte regneoperationer + og er et legeme. TAL OG REGNEREGLER Inden for lgeren hr mn indført egreet legeme. Et legeme er en slgs konstruktion, hvor mn fstsætter to regneregler og nogle sætninger (ksiomer), der gælder for disse. Pointen med en sådn

Læs mere

Kap. 1: Logaritme-, eksponential- og potensfunktioner. Grundlæggende egenskaber.

Kap. 1: Logaritme-, eksponential- og potensfunktioner. Grundlæggende egenskaber. - 4 - Kap. : Logaitme-, eksponential- og potensfunktione. Gundlæggende egenskabe... Logaitmefunktione. Definition... Ved en logaitmefunktion fostå vi en funktion f, som opfylde følgende te kav: ) Dm(f)

Læs mere

Formelsamling Mat. C & B

Formelsamling Mat. C & B Formelsmling Mt. C & B Indhold BRØER... PARENTESER...3 PROCENT...4 RENTE...5 INDES...6 GEOMETRI... Arel f treknt... Vinkelsum i en treknt... Ens- vinklede treknter... Vilkårlig treknt... Ret- vinklet treknt...8

Læs mere

MOGENS ODDERSHEDE LARSEN MATEMATIK

MOGENS ODDERSHEDE LARSEN MATEMATIK MOGENS ODDERSHEDE LARSEN MATEMATIK fa C- til A- niveau. udgave FORORD Denne bog e beegnet fo studeende, som ha behov fo at epetee elle opgadee dees matematiske viden fa C elle B- niveau til A-niveau Bogen

Læs mere

Januar2003/ AM Rentesregning - LÅN & OPSPARING 1/8. Aftager med...% Gange med (1...%) r:=...% Før aftager med...% og bliver til Efter, dvs.

Januar2003/ AM Rentesregning - LÅN & OPSPARING 1/8. Aftager med...% Gange med (1...%) r:=...% Før aftager med...% og bliver til Efter, dvs. Jaua2003/ AM Retesegig - LÅN & OPSPARING 1/8 PROCENT Po cet betyde p. 100" altså hudededele p% = p 100 Decimaltal Ved omskivig fa pocet til decimaltal flyttes kommaet to pladse mod veste 5%=0,05 0,1%=0,001

Læs mere

Formelsamling Matematik C Indhold

Formelsamling Matematik C Indhold Formelsmling Mtemtik C Indhold Eksempler på besvrelser, lin, eksp, pot, geo... Tl, regneopertioner og ligninger... 6 Ligninger... 7 Geometri... 0 Funktioner og modeller... 3 Lineær funktion... 3 Procentregning...

Læs mere

Retningsbestemt lydgiver

Retningsbestemt lydgiver Retningsbestemt lygive Intouktion Ve uenøs musik e et isæ e ybe tone, e høes i sto afstan fa scenen, og et kan væe geneene fo en kunstneiske ufolelse på en naboscene elle fo beboelse i en vis afstan fa

Læs mere

Kort om Potenssammenhænge

Kort om Potenssammenhænge Øvelser til hæftet Kort om Potenssmmenhænge 2011 Krsten Juul Dette hæfte indeholder bl.. mnge småspørgsmål der gør det nemmere for elever t rbejde effektivt på t få kendskb til emnet. Indhold 1. Ligning

Læs mere

Matematikkens sprog INTRO

Matematikkens sprog INTRO Mtemtikkens sprog Mtemtik hr sit eget sprog, der består f tl og symboler fx regnetegn, brøkstreger bogstver og prenteser På mnge måder er det ret prktisk - det giver fx korte måder t skrive formler på.

Læs mere

Procent og eksponentiel vækst - supplerende eksempler

Procent og eksponentiel vækst - supplerende eksempler Eksemple til iveau F, E og D Pocet og ekspoetiel vækst - suppleede eksemple Pocete og decimaltal... b Vækst-fomle... d Fa side f og femefte vises eksemple på bug af vækstfomle. Fomle skives omalt på dee

Læs mere

Matematik B-A. Trigonometri og Geometri. Niels Junge

Matematik B-A. Trigonometri og Geometri. Niels Junge Mtemtik B-A Trigonometri og Geometri Niels Junge Indholdsfortegnelse Indledning...3 Trigonometri...3 Sinusreltionen:...6 Cosinusreltionen...7 Dobbeltydighed...7 Smmendrg...8 Retvinklede treknter...8 Ikke

Læs mere

Matematik. Kompendium i faget. Tømrerafdelingen. 1. Hovedforløb. a 2 = b 2 + c 2 2 b c cos A. cos A = b 2 + c 2 - a 2 2 b c

Matematik. Kompendium i faget. Tømrerafdelingen. 1. Hovedforløb. a 2 = b 2 + c 2 2 b c cos A. cos A = b 2 + c 2 - a 2 2 b c Kompendium i fget Mtemtik Tømrerfdelingen 1. Hovedforlø. Trigonometri nvendes til eregning f snd længde og snd vinkel i profiler. Sinus Cosinus Tngens 2 2 + 2 2 os A os A 2 + 2-2 2 Svendorg Erhvervsskole

Læs mere

Hvad ved du om mobning?

Hvad ved du om mobning? TEST: Hvd ved du om moning? I testen her kn du fprøve, hvor meget du ved om moning på rejdspldsen. Testen estår f tre dele: Selve testen, hvor du skl sætte ét kryds for hvert f de ti spørgsmål. Et hurtigt

Læs mere

Metode til beregning af varmetransmissionskoefficient (U-værdi) for ovenlys

Metode til beregning af varmetransmissionskoefficient (U-værdi) for ovenlys Metode til beenin af vametansmissionskoefficient (U-vædi) fo oven Nævæende notat beskive en metode til beenin af vametansmissionskoefficienten fo oven. Pincippet i beeninspoceduen tae udanspunkt i beeninsmetoden

Læs mere

Beregningsgrundlag. Forsikringsselskab Alm. Brand Liv og Pension A/S. Beregningsgrundlag Side 1 af 53

Beregningsgrundlag. Forsikringsselskab Alm. Brand Liv og Pension A/S. Beregningsgrundlag Side 1 af 53 Beegigsgulg Fosikigsselskb Alm. B Liv og Pesio A/S Beegigsgulg Sie f 53 Ihol.0.0. Risikoelemete... 3.0.0. Rete... 6 3.0.0. Nettogulg... 7 4.0.0. Buttogulg... 8 5.0.0. Nettopssive fo etlivsfosikige... 0

Læs mere

1,0. sin(60º) 1,0 cos(60º) I stedet for cosinus til 60º og sinus til 60º skriver man cos(60º) og sin(60º).

1,0. sin(60º) 1,0 cos(60º) I stedet for cosinus til 60º og sinus til 60º skriver man cos(60º) og sin(60º). Mtemtik på VU Eksempler til niveu F, E og D Til lle vinkler hører der to tl, som kldes osinus og sinus. Mn finder sinus og osinus ved først t tegne vinklen i et koordint-system som vist til venstre. Derefter

Læs mere

Eksempel 9.1. Areal = (a 1 + b 1 )(a 2 + b 2 ) a 1 a 2 b 1 b 2 2a 2 b 1 = a 1 b 2 a 2 b 1 a 1 a 2 = b 1 b 2. Eksempel = ( 1) = 10

Eksempel 9.1. Areal = (a 1 + b 1 )(a 2 + b 2 ) a 1 a 2 b 1 b 2 2a 2 b 1 = a 1 b 2 a 2 b 1 a 1 a 2 = b 1 b 2. Eksempel = ( 1) = 10 Oversigt [LA] 9 Nem vej til rel Nøgleord og begreber Helt simple determinnter Determinnt defineret Effektive regneregler Genkend determinnt nul determinnt nul Produktreglen Inversreglen inversregel og

Læs mere

Elementær Matematik. Rumgeometri

Elementær Matematik. Rumgeometri Elementær Mtemtik Rumgeometri Ole Witt-Hnsen Køge Gmnsium 8 Inhol. Koorintsstem i rummet.... Vektorer i rummet.... Sklrproukt.... Prmeterfremstilling for en linie i rummet...5. Krsproukt f to vektorer...6.

Læs mere

Opgave 1 ( Toppunktsformlen )

Opgave 1 ( Toppunktsformlen ) Opgve 1 ( Toppunktsformlen ) Et nengrspolynomium er givet ve f x x 2 b x c. For t fine toppunktet vil vi først ifferentiere f x Derefter løser vi ligningen f ' x x b f ' x 0 x b 0 x b D f ' x x b er en

Læs mere

Regneregler. 1. Simple regler for regning med tal.

Regneregler. 1. Simple regler for regning med tal. Regneregler. Simple regler for regning med tl. Vi rejder l.. med følgende fire regningsrter: plus (), minus ( ), gnge () og dividere (: eller røkstreg, se senere), eller med fremmedord : ddition, sutrktion,

Læs mere

Mdt. lse ved renoveri altanudvidelse

Mdt. lse ved renoveri altanudvidelse Ejefeningen Slettehageej 23, 25, ZT Ekstadinæ genealfsamling d. 26111 200S BLAG A2 Side 1 af 3 'e Mdt. lse ed enei altanudidelse Fælleslån (Banktån) ndiiduel Realkediilån Entepisesum Ansl. Stiftelsesmk.

Læs mere

... ... ... ... ... ... ... b > 0 og x > 0, vil vi kalde en potensfunktion. 492 10. Potensfunktioner

... ... ... ... ... ... ... b > 0 og x > 0, vil vi kalde en potensfunktion. 492 10. Potensfunktioner POTENSFUNKTIONER 0 49 0. Potensfunktioner POTENSFUNKTIONER DEFINITION En funktion med forskriften f( )= b hvor b > 0 og > 0 vil vi klde en potensfunktion. I MAT C kpitel så vi t hvis skl være et vilkårligt

Læs mere

At score mål på hjørnespark

At score mål på hjørnespark At scoe ål på hjønespk Ole Witt Hnsen, lekto eeitus undevisningens udvikling i gnsiet Indtil 988 hvilede fsikundevisningen i gnsiet på det teoetiske, so n søgte t bekæfte genne deonsttionsfosøg elle fsikøvelse,

Læs mere

Formelsamling Matematik C Indhold

Formelsamling Matematik C Indhold Formelsmling Mtemtik C Indhold Eksempler på esvrelser, lin, eksp, pot, geo... Tl, regneopertioner og ligninger... 6 Ligninger... 7 Geometri... 9 Funktioner og modeller... Lineær funktion... Procentregning...

Læs mere

MATEMATIK på Søværnets officerskole

MATEMATIK på Søværnets officerskole MOGENS ODDERSHEDE LARSEN MATEMATIK på Søvænets officeskole (opeativ linie). udgave 9 FORORD Bogen gennemgå det pensum, som e beskevet i fagplanen af 9. Det e en foudsætning, at de studeende ha et solidt

Læs mere

Geometrinoter 2. Brahmaguptas formel Arealet af en indskrivelig firkant ABCD kan tilsvarende beregnes ud fra firkantens sidelængder:

Geometrinoter 2. Brahmaguptas formel Arealet af en indskrivelig firkant ABCD kan tilsvarende beregnes ud fra firkantens sidelængder: Geometrinoter 2, jnur 2009, Kirsten Rosenkilde 1 Geometrinoter 2 Disse noter omhndler sætninger om treknter, trekntens ydre røringscirkler, to cirklers rdiklkse smt Simson- og Eulerlinjen i en treknt.

Læs mere

Matematisk Formelsamling

Matematisk Formelsamling . Udgve 00 Alle ettighede foeholdes Jic Schmidt og eè Agd Pedese Mtemtis Fomelsmlig fo de eis- Ntuvideselige Bsisuddelse . Udgve 00 Alle ettighede foeholdes Jic Schmidt og eé Agd Pedese FOOD Dee mtemtise

Læs mere

Differentiation af potensfunktioner

Differentiation af potensfunktioner Hvd er mtemti? B, i-bog ISBN 978 87 766 494 3 Hjemmesideevisig: Differetitio f potesfutioer, Kpitel 4, side 76 Differetitio f potesfutioer. Pscls tret og biomilformle Vi strter med t mide om t poteser

Læs mere

Hvad ved du om mobning?

Hvad ved du om mobning? TEST: Hvd ved du om moning? I testen her kn du fprøve, hvor meget du ved om moning på rejdspldsen. Testen estår f tre dele: Selve testen, hvor du skl sætte ét kryds for hvert f de ti spørgsmål. Et hurtigt

Læs mere

Afdeling for Virksomhedsledelse. Uge 47

Afdeling for Virksomhedsledelse. Uge 47 B4 - egnsab og Fnanseng -. del Efteå 005 Esben Kolnd Laustu (mal@ezben.d Afdelng fo Vsomhedsledelse Uge 47 Fnancal Maets and Cooate Stategy af Ma Gnblatt og Shedan Ttman (G&T e en sædeles god læebog, som

Læs mere

Potens regression med TI-Nspire

Potens regression med TI-Nspire Potensvækst og modellering - Mt-B/A 2.b 2007-08 Potens regression med TI-Nspire Vi tger her udgngspunkt i et eksempel med tovværk, hvor mn får oplyst en tbel over smmenhængen mellem dimeteren (xdt) i millimeter

Læs mere

Formelsamling Mat. C LINEÆR VÆKST... 11 EKSPONENTIEL VÆKST... 11 POTENS-VÆKST... 11

Formelsamling Mat. C LINEÆR VÆKST... 11 EKSPONENTIEL VÆKST... 11 POTENS-VÆKST... 11 Formelsmling Mt. C BRØER... LIGNINGER... PARENTESER... RENTE... 5 INDES... 6 GEOMETRI... Arel f treknt... Vinkelsum i en treknt... Ens- vinklede treknter... VILÅRLIG TREANT... Sinusreltionerne:... Cosinusreltionerne:...

Læs mere

Matematisk formelsamling. Hf C-niveau

Matematisk formelsamling. Hf C-niveau Mtemtisk fomelsmling Hf C-niveu Denne udgve f Mtemtisk fomelsmling Hf C-niveu e udgivet f Undevisningsministeiet og gjot tilgængelig på uvm.dk. Fomelsmlingen e udejdet i et smejde mellem Mtemtiklæefoeningen

Læs mere

Beregningsprocedure for de energimæssige forhold for forsatsvinduer

Beregningsprocedure for de energimæssige forhold for forsatsvinduer Beeninspocedue fo de eneimæssie fohold fo fosatsvindue Nævæende dokument beskive en pocedue til bestemmelse, af de eneimæssie fohold fo fosatsvindue. Det skal notees, at beeninen e baseet på en foeløbi

Læs mere

LØSNINGER FRA OMSNØRINGSMASKINER LIMPISTOLER STRÆKFILMSOMVIKLERE KRYMPEPISTOLER PAPIRFYLDNINGSMASKINER PAL-CUT MASKINER

LØSNINGER FRA OMSNØRINGSMASKINER LIMPISTOLER STRÆKFILMSOMVIKLERE KRYMPEPISTOLER PAPIRFYLDNINGSMASKINER PAL-CUT MASKINER MASKIN- LØSNINGER FRA He finde du voes sotiment f mskine OMSNØRINGSMASKINER LIMPISTOLER STRÆKFILMSOMVIKLERE KRYMPEPISTOLER PAPIRFYLDNINGSMASKINER PAL-CUT MASKINER 94 Omsnøingsmskine og stækfilmsomviklee

Læs mere

GrundlÄggende funktioner

GrundlÄggende funktioner GrundlÄggende funktioner for B-niveu i hf Udgve 014 Krsten Juul GrundlÄggende funktioner for B-niveu i hf Procent 1. Procenter på en ny måde... 1. VÄkstrte.... Gennemsnitlig procent... LineÄr väkst 4.

Læs mere

ÅRSBERETNING F O R SKAGEN KOMMUNALE SKOLEVÆSEN 1955-1956 VED. Stadsskoleinspektør Aage Sørensen

ÅRSBERETNING F O R SKAGEN KOMMUNALE SKOLEVÆSEN 1955-1956 VED. Stadsskoleinspektør Aage Sørensen ÅRSBERETNING F O R SKAGEN KOMMUNALE SKOLEVÆSEN 1955-1956 VED Stadsskoleinspektør Aage Sørensen S k a g e n s k o le k o m m is s io n : (d.» / s 1956) P r o v s t W a a g e B e c k, f o r m a n d F r u

Læs mere

HTX Holstebro Jacob Østergaard 20. oktober 2008 3. A Fysik A Accelererede Roterende Legemer 19:03:00

HTX Holstebro Jacob Østergaard 20. oktober 2008 3. A Fysik A Accelererede Roterende Legemer 19:03:00 1 Fomål 1. At bestemme acceleationen fo et legeme med et kendt inetimoment, nå det ulle ned ad et skåplan - i teoi og paksis.. I teoi og paksis at bestemme acceleationen fo et legeme med kendt inetimoment,

Læs mere

Regneregler for brøker og potenser

Regneregler for brøker og potenser Regneregler for røker og potenser Roert Josen 4. ugust 009 Indhold Brøker. Eksempler......................................... Potenser 7. Eksempler......................................... 8 I de to fsnit

Læs mere

SAMPLE. Potpourri over sange af Carl Nielsen for blandet kor og klaver. œ œ œ j œ J œ. œ œ œ j œ. œ J œ. . j. J œ J œ. œ œ œ J. œ œ. œ œ. œ œ œ.

SAMPLE. Potpourri over sange af Carl Nielsen for blandet kor og klaver. œ œ œ j œ J œ. œ œ œ j œ. œ J œ. . j. J œ J œ. œ œ œ J. œ œ. œ œ. œ œ œ. otoui ove sange a Cal Nielsen o landet ko klave Klave Bedt mildt c c n a Lasse Tot Eiksen, 2015 S A T B A 1 Den 2 Så 1 Den 2 Så danske sang e en ung lond ige, hun gå nyn i Danmaks hus, syng da, Danmak,

Læs mere

PotenssammenhÄnge. 2009 Karsten Juul

PotenssammenhÄnge. 2009 Karsten Juul PotenssmmenhÄnge y b y k k 009 Krsten Juul Dette häfte er en fortsättelse f häftet "Eksponentielle smmenhänge, 009". Indhold 4. Hvd er en potens-smmenhäng?... 83 5. Hvordn ser grfen ud for en potens-smmenhäng...

Læs mere

Bogstavregning. for gymnasiet og hf (2012) Karsten Juul

Bogstavregning. for gymnasiet og hf (2012) Karsten Juul Bogstvregning for gymnsiet og hf 010 (01) Krsten Juul Til eleven Brug lynt og viskeläder når du skriver og tegner i häftet, så du får et häfte der er egenet til jävnligt t slå op i under dit videre rejde

Læs mere

Impulsbevarelse ved stød

Impulsbevarelse ved stød Iulsbevaelse ved stød Iulsbevaelse ved stød Indhold Iulsbevaelse ved stød.... Centalt stød.... Elastisk stød... 3. Uelastisk stød... 4. Iulsbevaelse ved stød...3 5. Centalt elastisk stød...4 6. Centalt

Læs mere

3.0 Rørberegninger. VIDENSYSTEM.dk Bygningsinstallationer Varme Fordelingssystem 3.0 Rørberegning. 3.1 Rørberegningers forudsætninger

3.0 Rørberegninger. VIDENSYSTEM.dk Bygningsinstallationer Varme Fordelingssystem 3.0 Rørberegning. 3.1 Rørberegningers forudsætninger VIDENSYSTEM.dk Bygningsinstallatione Vae Fodelingssyste 3.0 Røbeegning 3.0 Røbeegninge 3.1 Røbeegningens foudsætninge 3. Tyktabsbeegning geneelt 3.3 Paktiske hjælpeidle 3.4 Beegningspincip fo tostengsanlæg

Læs mere

ALGEBRA. symbolbehandling). Der arbejdes med hjælpemiddelkompetencen,

ALGEBRA. symbolbehandling). Der arbejdes med hjælpemiddelkompetencen, INTRO Alger er lngt mere end ogstvregning. Alger kn være t omskrive ogstvtrk, men lger er f også t generlisere mønstre og smmenhænge, t eskrive smmenhænge mellem tlstørrelse f i forindelse med funktioner

Læs mere

Retningslinjer for bedømmelsen Georg Mohr-Konkurrencen runde

Retningslinjer for bedømmelsen Georg Mohr-Konkurrencen runde Retningslinjer for bedømmelsen Georg Mohr-Konkurrencen 016. runde Besvrelser som flder uden for de løsninger som ligger til grund for pointskemerne, bedømmes ved nlogi så skridt med tilsvrende vægt i den

Læs mere

UDLEJNINGSAFTALE MELLEM BOLIGFORENINGEN 3B & BALLERUP KOMMUNE

UDLEJNINGSAFTALE MELLEM BOLIGFORENINGEN 3B & BALLERUP KOMMUNE UDLEJNINGSAFTALE MELLEM BOLIGFORENINGEN 3B & BALLERUP KOMMUNE 017-019 3B og Bllerup Kommune hr ingået ftle om ulejning f 3B s oliger i Bllerup Fleksiel ulejning i Bllerup Kommune Aftlen ineærer lnt net,

Læs mere

Grafregner-projekt om differentiation.

Grafregner-projekt om differentiation. Grafregner-projekt om ifferentiation. Motivation: Når nu ifferentieret giver, og e ifferentieret giver e, hvorfor får man så ikke e når man ifferentiere e? Formål: ) At opnå kenskab til, og forståelse

Læs mere

Lektion 6 Bogstavregning

Lektion 6 Bogstavregning Lektion Bogstvregning Formler... Reduktion... Ligninger... Lektion Side 1 Formler En formel er en slgs regne-opskrift, hvor mn med bogstver viser, hvorledes noget skl regnes ud. F.eks. formler til beregning

Læs mere

rekommandation overspændingsafledere til højspændingsnet. Member of DEHN group Udarbejdet af: Ernst Boye Nielsen & Peter Mathiasen,

rekommandation overspændingsafledere til højspændingsnet. Member of DEHN group Udarbejdet af: Ernst Boye Nielsen & Peter Mathiasen, ekommandation ovespændingsafledee til højspændingsnet Udabejdet af: Enst Boye Nielsen & Pete Mathiasen, DESITEK A/S Denne publikation e en ekommandation fo valg af ovespændingsafledee til højspændingsnet

Læs mere

Projekt 1.8 Design en optimal flaske

Projekt 1.8 Design en optimal flaske ISBN 978-87-7066-9- Pojekte: Kapitel Vaiabelsammenænge. Pojekt.8 Design en optimal flaske Pojekt.8 Design en optimal flaske Fimaet PatyKids ønske at elancee dees enegidik Enegize. Den skal ave et nyt navn

Læs mere

TAL OG BOGSTAVREGNING

TAL OG BOGSTAVREGNING TAL OG BOGSTAVREGNING De elementære regnerter I mtemtik kn vi regne med tl, men vi kn også regne med bogstver, som gør det hele en smugle mere bstrkt. Først skl vi se lidt på de fire elementære regnerter,

Læs mere

TEORETISK OPGAVE 3. Hvorfor er stjerner så store?

TEORETISK OPGAVE 3. Hvorfor er stjerner så store? TEORETISK OPGAVE 3 Hvofo e stjene så stoe? En stjene e en kuglefomet samling vam gas De fleste stjene skinne pga fusion af hydogen til helium i dees entale omåde I denne opgave skal vi anvende klassisk

Læs mere

Fra udsat til ansat. Medieinfo. Socialrådgiveren. job til udsatte unge. dgmedia.dk. ds advarer mod at spare i psykiatrien

Fra udsat til ansat. Medieinfo. Socialrådgiveren. job til udsatte unge. dgmedia.dk. ds advarer mod at spare i psykiatrien Socialådgiveen Medieinfo 2015 socialådgiveen 11/14 Læs mee om voes mange ande medie på Fa udsat til ansat viksomhedspaktik skaffe job til udsatte unge dgmedia.dk ds advae mod at spae i psykiatien Kommunalt

Læs mere

Grafisk design. Workflow. Hvordan blev det lavet?

Grafisk design. Workflow. Hvordan blev det lavet? Grafisk esign Workflow Hvoran blev et lavet? Workflow af forsie For at påbegyne en kreative process best muligt startee jeg me at lave en brainstorm. Det gjore jeg for at få et overblik over hvilket slags

Læs mere

Gravitationsfeltet. r i

Gravitationsfeltet. r i Gavitationsfeltet Den stoe bitiske fysike Isaac Newton opdagede i 600-tallet massetiltækningsloven, som sige, at to masse m og i den indbydes afstand påvike hinanden med en kaft af følgende støelse, hvo

Læs mere

ØVEHÆFTE FOR MATEMATIK C POTENS-SAMMENHÆNG

ØVEHÆFTE FOR MATEMATIK C POTENS-SAMMENHÆNG ØVEHÆFTE FOR MATEMATIK C POTENS-SAMMENHÆNG INDHOLDSFORTEGNELSE 1 Formelsmling... side 2 Uddbning f visse formler... side 3 2 Grundlæggende færdigheder... side 5 2 Finde konstnterne og b i en formel...

Læs mere

Wear&Care Brugervejledning. A change for the better

Wear&Care Brugervejledning. A change for the better A change fo the bette Intoduktion Wea&Cae e en smat løsning, de give mulighed fo at følge fugtniveauet i bleen, så den kan skiftes efte behov. Infomationen gå fa en sende på bleen til modtageens smatphone

Læs mere

3. Vilkårlige trekanter

3. Vilkårlige trekanter 3. Vilkårlige treknter 3. Vilkårlige treknter I dette fsnit vil vi beskæftige os med treknter, der ikke nødvendigvis er retvinklede. De formler, der er omtlt i fsnittet om retvinklede treknter, kn ikke

Læs mere

Test grafisk afledede Højere partielle afledede Differentiationsordenen er ligegyldig Partielle differentialligninger Test Laplaces ligning

Test grafisk afledede Højere partielle afledede Differentiationsordenen er ligegyldig Partielle differentialligninger Test Laplaces ligning Oversigt [S] 2.7, 3.1, 3.4, 11.3 Nøgleor og begreber Differentiabel funktion i en variabel Partielle afleee i flere variable Notation og regneregler for partielle afleee Test partielle afleee Grafisk afleee

Læs mere