Økonometri: Lektion 5. Multipel Lineær Regression: Interaktion, log-transformerede data, kategoriske forklarende variable, modelkontrol

Størrelse: px
Starte visningen fra side:

Download "Økonometri: Lektion 5. Multipel Lineær Regression: Interaktion, log-transformerede data, kategoriske forklarende variable, modelkontrol"

Transkript

1 Økonometri: Lektion 5 Multipel Lineær Regression: Interaktion, log-transformerede data, kategoriske forklarende variable, modelkontrol 1 / 35

2 Veksekvirkning: Motivation Vi har set på modeller som Price = β 0 + β 1 Sqft + β 2 Bedrooms + u Vi har fundet at β Fortolkning: Hvert ekstra rum sænker prisen med det samme uanset om det er første rum eller syvende rum. Undren: Effekten af et ekstra rum er den samme uanset størrelsen på huset. Er det rimligt? Løsning?:Det virker rimligt, at effekten af et ekstra rum afhænger af husets størrelse. Vi mangler en vekselvirkning/interaktion mellem Sqft og Bedrooms. 2 / 35

3 Veksekvirkning: Eksempel Oprindelige model: Price = β 0 + β 1 Sqft + β 2 Bedrooms + u Hvis vi ændrer Bedroom med Bedrooms (og holder andre fast), så ændres Price med: Price = β 2 Bedrooms Modificeret model med interaktion: Price = β 0 + β 1 Sqft + β 2 Bedrooms + β 3 Sqft Bedrooms + u Hvis vi ændrer Bedroom med Bedrooms (og holder andre fast), så ændres Price med: Price = (β 2 + β 3 Sqft) Bedrooms 3 / 35

4 Vekselvirkning I R Modellen uden interaktion skrives defineres som model = lm(price ~ SQFT + BEDROOMS, data = homes) Modellen med interaktion skrives defineres som model = lm(price ~ SQFT + BEDROOMS + SQFT:BEDROOMS, data = homes) Det ekstra led SQFT:BEDROOMS er interaktionsleddet. For os dovne kan gøres endnu simplere: model = lm(price ~ SQFT*BEDROOMS, data = homes) En model på formen A+B+A:B er præcis den samme som en på formen A*B. 4 / 35

5 Resultater Model: Price = β 0 + β 1 Sqft + β 2 Bedrooms + β 3 Sqft Bedrooms + u Udrag af summary(model): Coefficients: Estimate Std. Error t value Pr(> t ) (Intercept) SQFT e-12 *** BEDROOMS SQFT:BEDROOMS Estimerede model: Price = Sqft Bedrooms Sqft Bedrooms 5 / 35

6 Fortolkning af interaktion Estimerede model: Price = Sqft Bedrooms Sqft Bedrooms = Sqft + ( Sqft) Bedrooms Dvs. prisen for et ekstra værelse, dvs. Bedroom = 1, er Price = Sqft 6 / 35

7 Andre modifikationer Logaritme-transformerede variable Price = β 0 + β 1 log(sqft) + u I R: lm(price ~ log(sqft),data=homes) I R: log(price) = β 0 + β 1 log(sqft) + u lm(log(price) ~ log(sqft), data=homes) Polynomier I R: Price = β 0 + β 1 log(sqft) + β 2 Sqft 2 + u lm(price ~ SQFT + I(SQFT^2), data=homes) Bemærk: Det er vigtigt at huske I(...)!!! PRICE ~ SQFT + SQFT^2 er det samme som PRICE ~ SQFT... 7 / 35

8 Kvalitative forklarende variable Kvalitative variable beskriver (typisk) ting man ikke kan måle. En kvalitativ variabel kaldes ofte en kategorisk variabel eller faktor. En kvalitativ variabel kan kun tage et endeligt antal værdier. Ofte er der ingen rækkefølge på værdierne. Fx. Køn, Favoritfarve, Beskæftigelse. 8 / 35

9 Eksempel: Hvordan afhænger løn af beskæftigelse? Vi har variable Wage og Sector, hvor Sector er en kvalitativ variabel, der kan tage værdierne Construction, Manufacturing og Other. Spørgsmål: Hvordan afhænger løn af sektor? Ide: Hver beskæftigelse har sit niveau: Wage = β Sector + u, Dvs. den forvetede løn for folk, der arbejder med produktion er E[Wage Sector = Manufacturing] = β Manufacturing vi har altså tre β værdier. Problem: Passer ikke så godt ind i vores generelle ramme: y = β 0 + β 1 x 1 + β 2 x β k x k + u 9 / 35

10 Simpelt eksempel: Kvalitativ variabel med to niveauer Hvordan påvirker længe af uddannelse og køn ens løn? Vi skal se på tre variable Wage: Timeløn i $ Sex: Køn, kvalitativ variabel med værdierne Female og Male Education: Længden af uddannelse målt i år Overblik: Vi starter med et plot / 35

11 Scatter plot library(car) ## Henter car pakken wage = read.table("wage3.dat",header=t) ## Henter data ind scatterplot(wage~education SEX, data=wage, smooth=f) ## Plotter 11 / 35

12 Model med dummy-variabel Vi vil gerne have en model, med struktur som Wage = Konst. + Effekt af Education + Effekt af Sex For at få Sex med introducerer vi en ny binær variabel Male: Male = 1 hvis Sex = Male Male = 0 hvis Sex = Female Male er en såkaldt dummy variabel, der indikerer værdien af Sex Model (på sædvanlig form): Wage = β 0 + β 1 Education + β 2 Male + u Dummy variable bruges generelt til at omkode kvalitative variable til en eller flere binære variable. 12 / 35

13 Fortolkning Model Wage = β 0 + β 1 Education + β 2 Male + u Fortolkning: For kvinder har vi Male = 0 og Wage = β 0 + β 1 Education For mænd har vi Male = 1 og Wage = β 0 + β 1 Education + β 2 Dvs. to rette linjer med samme hældning (β 1 ), men forskellige skæringspunkter (hhv. β 0 og β 0 + β 2 ). Da β 2 angiver hvordan mænd er forskellige fra kvinder, så kalder vi Female for reference-kategorien. 13 / 35

14 Analyse i R ## Tilføjer en variabel MALE der 1 når SEX er male og 0 ellers: wage$male = 1*(wage$SEX == "male") ## Definer model model = lm(wage ~ EDUCATION + MALE, data = wage) Uddrag af summary(model): Coefficients: Estimate Std. Error t value Pr(> t ) (Intercept) EDUCATION < 2e-16 *** MALE e-07 *** Konklusion: Begge forklarende variable er signifikante (når der er taget højde for den anden). Længden på uddannelsen har en positiv indvikrning på lønnen. Mænd tjener mere end kvinder. 14 / 35

15 Interaktion Kunne det tænkes at kønnet har inflydselse på effekten af uddannelsens længde? Model med interaktio mellem køn og års uddannelse: Wage = β 0 + β 1 Education + β 2 Male + β 3 Education Male Male er en binær dummy variabel som før. Fortolkning: For kvinder har vi Male = 0 og For mænd har vi Male = 1 og Wage = β 0 + β 1 Education Wage = β 0 + β 1 Education + β 2 + β 3 Education = (β 0 + β 2 ) + (β 1 + β 3 )Education 15 / 35

16 Resultat af interaktion Model: Wage = β 0 + β 1 Education + β 2 Male + β 3 Education Male + u Call: lm(formula = WAGE ~ EDUCATION * MALE, data = wage) Coefficients: Estimate Std. Error t value Pr(> t ) (Intercept) * EDUCATION e-12 *** MALE * EDUCATION:MALE Estimeret model: Ŵage = Education+4.37 Male 0.17 Education Male Konklusion: Hovedeffekterne af uddannelseslænge og køn er signifikante, men vekselvirkningen ikke er. Der er med andre ord ikke en signifikant forskel i effekten af uddannelseslængen mellem de to køn. 16 / 35

17 Smart skal det være Det er lidt trælst at skulle kode dummy variable hver gang... R kan (selvfølgelig) lave dummy variable automatisk. Først skal vi kontrollere at SEX faktisk er en kategorisk variabel: > is.factor(wage$sex) [1] TRUE Svaret TRUE betyder at SEX er en kategorisk variabel. Havde svaret være FALSE kunne vi tvinge SEX til at være en kategorisk variabel: wage$sex = as.factor(wage$sex) 17 / 35

18 Samme historie en gang til... Resultat: Analyse hvor vi har brugt SEX i stedet for MALE Call: lm(formula = WAGE ~ EDUCATION * SEX, data = wage) Coefficients: Estimate Std. Error t value Pr(> t ) (Intercept) * EDUCATION e-12 *** SEXmale * EDUCATION:SEXmale Når der står SEXmale, så svarer det til β for dummy-variablen MALE. SEXfemale mangler da denne kategori er reference-kategorien for SEX. Konklusion: 18 / 35

19 Mere end to kategorier Vi vil undersøge betydninge af beskæftigelse på løn. Vi har variablen Sector: Kvalitativ variabel med kategorierne Manufacturing, Production og Other Vi indfører tre dummy-variable: Manufacturing = 1, hvis Sector = Manufacturing og = 0 ellers Production = 1, hvis Sector = Production og = 0 ellers Other = 1, hvis Sector = Other og = 0 ellers Model: Wage = β 0 + β 1 Manufacturing + β 2 Production + β 3 Other + u Fortolkning: E[Wage Sector = Production] = β 0 + β 2 19 / 35

20 Overparametrisering Vores model er overparametriseret: Det giver uendelig mange lige gode OLS estimater!!! Løsning: Vælg en reference-kategori og fjern den tilsvarede dummy variabel fra modellen. Bemærk: Dette er den generelle årsag til at reference-kategorien altid mangler. Vi vælger Production som reference-kategori: Fortolkning: Wage = β 0 + β 1 Manufacturing + β 2 Other + u E[Wage Sector = Production] = β 0 E[Wage Sector = Manufaturing] = β 0 + β 1 20 / 35

21 Analyse i R Model: Wage = β 0 + β 1 Manufacturing + β 2 Other + u Vi definerer modelle: model = lm(wage~sector,data=wage) Uddrag af summary(model): Coefficients: Estimate Std. Error t value Pr(> t ) (Intercept) <2e-16 *** SECTORmanufacturing SECTORother Estimerede model: Ŵage = Manufacturing 0.35 Other Fortolkning: Hvad er effekten af SECTOR? Er den signifikant? 21 / 35

22 Test for betydning af SECTOR Model: Wage = β 0 + β 1 Manufacturing + β 2 Other + u Vi vil gerne teste hypotesen H 0 : β 1 = β 2 = 0 H 1 : β 1 0og/eller β 2 0 Dvs. Sector har ingen effekt på Wage I dette tilfælde svarer det til testet af om modellen er besværet værd. Sidst i output et fra R får vi F-statistic: on 2 and 520 DF, p-value: Konklusion: 22 / 35

23 Mere generelt Hvis vi vil teste en betydningen af en kategorisk variabel er bkvemt at bruge anova kommanoden: > anova(model) Analysis of Variance Table Response: WAGE Df Sum Sq Mean Sq F value Pr(>F) SECTOR Residuals Her har vi testet effekten af SECTOR. Konklusion præcis som før. 23 / 35

24 Et mere kompliceret eksempel Las os analysere en mere kompliceret model! Modellen i R-notation: I formel notation bliver det WAGE ~ SECTOR + EDUCATION*SEX Wage = β 0 + β 1 Manufacturing + β 2 Other + β 3 Education + β 4 Male + β 5 Education Male, hvor Manufacturing, Other og Male er binære dummy-variable. Reference kategorierne er altså Production og Female. Hvilken struktur påstår modellen? 24 / 35

25 Estimerede model Definer model: > model = lm(wage ~ SECTOR + EDUCATION*SEX, data=wage) Uddrag af summary(model): Coefficients: Estimate Std. Error t value Pr(> t ) (Intercept) SECTORmanufacturing SECTORother EDUCATION e-12 *** SEXmale * EDUCATION:SEXmale Signif. codes: 0 *** ** 0.01 * Residual standard error: 4.61 on 517 degrees of freedom Multiple R-squared: ,Adjusted R-squared: F-statistic: on 5 and 517 DF, p-value: < 2.2e / 35

26 Hvilke led er signifikante? > anova(model) Analysis of Variance Table Response: WAGE Df Sum Sq Mean Sq F value Pr(>F) SECTOR EDUCATION < 2.2e-16 *** SEX e-07 *** EDUCATION:SEX Residuals Signif. codes: 0 *** ** 0.01 * Konklusion: 26 / 35

27 Modelkontrol Vores konklusioner baserer sig på parameter-estimater og p-værdier. Korrektheden af p-værdien afhænger af at MLR.1 til MLR.6 er opfyldt. Specielt antagelserne om varianshomogene og normalfordelt fejlled. Vi skal med andre have styr på om vi med rimelighed kan antage at disse antagelser er opfyldt. I det følgende vil vi se på eksempler på grafisk modelkontrol. 27 / 35

28 Modelkontrol model = lm(wage ~ SECTOR + EDUCATION*SEX, data=wage) par(mfrow=c(2,2)) ## Inddeler vinduet i 2 x 2 underplot. plot(model) Fitted values Residuals Residuals vs Fitted Theoretical Quantiles Standardized residuals Normal Q Q Fitted values Standardized residuals Scale Location Leverage Standardized residuals Cook's distance 0.5 Residuals vs Leverage / 35

29 Mellemregning: Lidt linear algebra Residualerne û bliver nogle gange omtalt som de rå residualer. Vi vil nu se på de standardiserede residualer. Vore model kan formuleres vha. linear algebra som og estimatoren for β er givet ved y = Xβ + u ˆβ = (X X) 1 X y og de prædikterede værdier er givet ved hvor H = X(X X) 1 X. Bemærk: H = H og HH = H. ŷ = X ˆβ = X(X X) 1 X y = Hy, 29 / 35

30 Standardiserede residualer Da vi har Var(u) = σ 2 I kan man vise, at Var(ŷ) = σ 2 H. Dvs. Var(ŷ i ) = σ 2 h ii, hvor h ii er det i te element i H s diagonal. Dvs. et 95% konfidens interval for ŷ i er ŷ i ± 1.96σh ii y x 30 / 35

31 Standardiserede residualer Da vi har Var(u) = σ 2 I kan man vise, at Var(û) = σ 2 (I H). Konsekvens: Variansen på residualet ikke er konstant: Var(û i ) = σ 2 (1 h ii ), hvor h ii er det i te element i H s diagonal. En standardisering giver ( ) û i Var σ = 1. 1 h ii De standardiserede residualer er derfor givet ved ˆr i = û i σ 1 h ii. h ii kaldes også leverage ( vægtstang ). 31 / 35

32 Modelkontrol: Middelværdi = nul Plot af de rå residualer (û erne) mod de fittede værdier (ŷ erne). Vi har antaget at E[u x] = 0. Det svarer til E[u ŷ] = 0. û erne skal altså være nul i gennemsnit uanset ŷ. Den røde linje er en glidende gennemsnit, der ideelt set skulle være nul hele vejen Fitted values Residuals lm(wage ~ SECTOR + EDUCATION * SEX) Residuals vs Fitted / 35

33 Modelkontrol: Normalfordeling Vi har antaget at u N (0, σ 2 ) Grafisk kontrol: QQ-plot af de standardiserede residualer (ˆr i erne, da de rå residualer ikke er varianshomogene) Hvis residualerne virkelig er normalfordelte, så skal prikkerne ligge usystematisk omkring den stiplede linje Theoretical Quantiles Standardized residuals lm(wage ~ SECTOR + EDUCATION * SEX) Normal Q Q / 35

34 Modelkontrol: Konstant varians Antag z N (0, σ 2 ). Da gælder E [ z ] σ. Hvis fejlledene er normalfordelte og med konstant varians, så bør E[ ˆr i ] være konstant. Grafisk kontrol: Den røde linje viser en glidende gennemsnit af ˆr erne. Bør være konstant, hvis variansen er konstant Fitted values Standardized residuals lm(wage ~ SECTOR + EDUCATION * SEX) Scale Location / 35

35 Modelkontrol Husk: Var(u i ) = σ 2 (1 h ii ), dvs. jo større h ii, jo mindre varians. Dvs. jo større h ii jo mere indflydelsesrig er den observation potentielt. Cook s distance: Lad ŷ være de prædikterede værdier og lad ŷ (i) være de prædikterede værdier, hvis den i te observation udelades. Cook s distance for den i te observation er da forskellen mellem de prædikterede værdier: D i = ŷ ŷ (i) 2. Jo større D i jo mere påvirker den i te observation resultatet Leverage Standardized residuals lm(wage ~ SECTOR + EDUCATION * SEX) Cook's distance 0.5 Residuals vs Leverage Leverage = h ii 35 / 35

Økonometri: Lektion 6 Emne: Heteroskedasticitet

Økonometri: Lektion 6 Emne: Heteroskedasticitet Økonometri: Lektion 6 Emne: Heteroskedasticitet 1 / 32 Konsekvenser af Heteroskedasticitet Antag her (og i resten) at MLR.1 til MLR.4 er opfyldt. Antag MLR.5 ikke er opfyldt, dvs. vi har heteroskedastiske

Læs mere

Økonometri Lektion 1 Simpel Lineær Regression 1/31

Økonometri Lektion 1 Simpel Lineær Regression 1/31 Økonometri Lektion 1 Simpel Lineær Regression 1/31 Simpel Lineær Regression Mål: Forklare variablen y vha. variablen x. Fx forklare Salg (y) vha. Reklamebudget (x). Statistisk model: Vi antager at sammenhængen

Læs mere

Statistik Lektion 4. Variansanalyse Modelkontrol

Statistik Lektion 4. Variansanalyse Modelkontrol Statistik Lektion 4 Variansanalyse Modelkontrol Eksempel Spørgsmål: Er der sammenhæng mellem udetemperaturen og forbruget af gas? Y : Forbrug af gas (gas) X : Udetemperatur (temp) Scatterplot SPSS: Estimerede

Læs mere

Lagrange multiplier test. Økonometri: Lektion 6 Håndtering ad heteroskedasticitet. Konsekvenser af Heteroskedasticitet

Lagrange multiplier test. Økonometri: Lektion 6 Håndtering ad heteroskedasticitet. Konsekvenser af Heteroskedasticitet Lagrange multiplier test Et alternativ til F -testet af en eller flere parametre. Økonometri: Lektion 6 Håndtering ad heteroskedasticitet Antag vi har model: y = β 0 + β 1 x 2 + + β k x k + u. Vi ønsker

Læs mere

Multipel Lineær Regression

Multipel Lineær Regression Multipel Lineær Regression Trin i opbygningen af en statistisk model Repetition af MLR fra sidst Modelkontrol Prædiktion Kategoriske forklarende variable og MLR Opbygning af statistisk model Specificer

Læs mere

Økonometri: Lektion 4. Multipel Lineær Regression: F -test, justeret R 2 og aymptotiske resultater

Økonometri: Lektion 4. Multipel Lineær Regression: F -test, justeret R 2 og aymptotiske resultater Økonometri: Lektion 4 Multipel Lineær Regression: F -test, justeret R 2 og aymptotiske resultater 1 / 35 Hypotesetest for én parameter Antag vi har model y = β 0 + β 1 x 2 + β 2 x 2 + + β k x k + u. Vi

Læs mere

Statistik Lektion 16 Multipel Lineær Regression

Statistik Lektion 16 Multipel Lineær Regression Statistik Lektion 6 Multipel Lineær Regression Trin i opbygningen af en statistisk model Repetition af MLR fra sidst Modelkontrol Prædiktion Kategoriske forklarende variable og MLR Opbygning af statistisk

Læs mere

Tænk på a og b som to n 1 matricer. a 1 a 2 a n. For hvert i = 1,..., n har vi y i = x i β + u i.

Tænk på a og b som to n 1 matricer. a 1 a 2 a n. For hvert i = 1,..., n har vi y i = x i β + u i. Repetition af vektor-regning Økonometri: Lektion 3 Matrix-formulering Fordelingsantagelse Hypotesetest Antag vi har to n-dimensionelle (søjle)vektorer a 1 b 1 a 2 a =. og b = b 2. a n b n Tænk på a og

Læs mere

MLR antagelserne. Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som

MLR antagelserne. Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som MLR antagelserne Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som y = β 0 + β 1 x 1 + β 2 x 2 + + β k x k + u, hvor β 0, β 1, β 2,...,β k er ukendte parametere,

Læs mere

Reminder: Hypotesetest for én parameter. Økonometri: Lektion 4. F -test Justeret R 2 Aymptotiske resultater. En god model

Reminder: Hypotesetest for én parameter. Økonometri: Lektion 4. F -test Justeret R 2 Aymptotiske resultater. En god model Reminder: Hypotesetest for én parameter Antag vi har model Økonometri: Lektion 4 F -test Justeret R 2 Aymptotiske resultater y = β 0 + β 1 x 2 + β 2 x 2 + + β k x k + u. Vi ønsker at teste hypotesen H

Læs mere

Anvendt Statistik Lektion 8. Multipel Lineær Regression

Anvendt Statistik Lektion 8. Multipel Lineær Regression Anvendt Statistik Lektion 8 Multipel Lineær Regression 1 Simpel Lineær Regression (SLR) y Sammenhængen mellem den afhængige variabel (y) og den forklarende variabel (x) beskrives vha. en SLR: ligger ikke

Læs mere

Økonometri lektion 5 Multipel Lineær Regression. Inferens Modelkontrol Prædiktion

Økonometri lektion 5 Multipel Lineær Regression. Inferens Modelkontrol Prædiktion Økonometri lektion 5 Multipel Lineær Regression Inferens Modelkontrol Prædiktion Multipel Lineær Regression Data: Sæt af oservationer (x i, x i,, x ki, y i, i,,n y i er den afhængige variael x i, x i,,

Læs mere

Økonometri: Lektion 2 Multipel Lineær Regression 1/27

Økonometri: Lektion 2 Multipel Lineær Regression 1/27 Økonometri: Lektion 2 Multipel Lineær Regression 1/27 Multipel Lineær Regression Sidst så vi på simpel lineær regression, hvor y er forklaret af én variabel. Der er intet, der forhindre os i at have mere

Læs mere

men nu er Z N((µ 1 µ 0 ) n/σ, 1)!! Forkaster hvis X 191 eller X 209 eller

men nu er Z N((µ 1 µ 0 ) n/σ, 1)!! Forkaster hvis X 191 eller X 209 eller Type I og type II fejl Type I fejl: forkast når hypotese sand. α = signifikansniveau= P(type I fejl) Program (8.15-10): Hvis vi forkaster når Z < 2.58 eller Z > 2.58 er α = P(Z < 2.58) + P(Z > 2.58) =

Læs mere

Økonometri: Lektion 2 Multipel Lineær Regression 1/33

Økonometri: Lektion 2 Multipel Lineær Regression 1/33 Økonometri: Lektion 2 Multipel Lineær Regression 1/33 Simpel Lineær Regression: Model Sidst så vi på simpel lineære regression. Det er en statisisk model på formen y = β 0 +β 1 x +u, hvor fejlledet u,

Læs mere

Oversigt. 1 Gennemgående eksempel: Højde og vægt. 2 Korrelation. 3 Regressionsanalyse (kap 11) 4 Mindste kvadraters metode

Oversigt. 1 Gennemgående eksempel: Højde og vægt. 2 Korrelation. 3 Regressionsanalyse (kap 11) 4 Mindste kvadraters metode Kursus 02402 Introduktion til Statistik Forelæsning 11: Kapitel 11: Regressionsanalyse Oversigt 1 Gennemgående eksempel: Højde og vægt 2 Korrelation 3 Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse

Læs mere

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA) Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:

Læs mere

Økonometri: Lektion 7 Emne: Prædiktionsintervaller, RESET teset, proxy variable og manglende data.

Økonometri: Lektion 7 Emne: Prædiktionsintervaller, RESET teset, proxy variable og manglende data. Økonometri: Lektion 7 Emne: Prædiktionsintervaller, RESET teset, proxy variable og manglende data. 1 / 32 Motivation Eksempel: Savings = β 0 + β 1 Income + u Vi ved allerede, hvordan vi estimerer regresseionlinjen:

Læs mere

Simpel Lineær Regression: Model

Simpel Lineær Regression: Model Simpel Lineær Regression: Model Sidst så vi på simpel lineære regression. Det er en statisisk model på formen y = β 0 + β 1 x + u, hvor fejlledet u, har egenskaben E[u x] = 0. Dette betyder bl.a. E[y x]

Læs mere

Program. Indhold af kursus i overskrifter. Farlighed af GM-majs? (Ingeniøren Generel lineær model/multipel regression

Program. Indhold af kursus i overskrifter. Farlighed af GM-majs? (Ingeniøren Generel lineær model/multipel regression Program Indhold af kursus i overskrifter 1. overblik over kursus (opgaver fra sidst samt huspriser som eksempler). 2. p-værdi 3. uformel evaluering 1. sandsynlighedsregning sandsynlighedsfordelinger (normal,

Læs mere

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA) Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:

Læs mere

Analysestrategi. Lektion 7 slides kompileret 27. oktober 200315:24 p.1/17

Analysestrategi. Lektion 7 slides kompileret 27. oktober 200315:24 p.1/17 nalysestrategi Vælg statistisk model. Estimere parametre i model. fx. lineær regression Udføre modelkontrol beskriver modellen data tilstrækkelig godt og er modellens antagelser opfyldte fx. vha. residualanalyse

Læs mere

Simpel Lineær Regression

Simpel Lineær Regression Simpel Lineær Regression Mål: Forklare variablen y vha. variablen x. Fx forklare Salg (y) vha. Reklamebudget (x). Vi antager at sammenhængen mellem y og x er beskrevet ved y = β 0 + β 1 x + u. y: Afhængige

Læs mere

Multipel regression. M variable En afhængig (Y) M-1 m uafhængige / forklarende / prædikterende (X 1 til X m ) Model

Multipel regression. M variable En afhængig (Y) M-1 m uafhængige / forklarende / prædikterende (X 1 til X m ) Model Multipel regression M variable En afhængig (Y) M-1 m uafhængige / forklarende / prædikterende (X 1 til X m ) Model Y j 1 X 1j 2 X 2j... m X mj j eller m Y j 0 i 1 i X ij j BEMÆRK! j svarer til individ

Læs mere

Model. k = 3 grupper: hvor ǫ ij uafhængige og normalfordelte med middelværdi nul og varians σi 2, i = 1,2,3.

Model. k = 3 grupper: hvor ǫ ij uafhængige og normalfordelte med middelværdi nul og varians σi 2, i = 1,2,3. Model Program (8.15-10): 1. ensidet variansanalyse. 2. forsøgsplanlægning: blocking. Bruger nu to indices: i = 1,...,k for gruppenr. og j = 1,...,n i for observation indenfor gruppe. k = 3 grupper: µ 1

Læs mere

Økonometri 1. Dummyvariabler 13. oktober Økonometri 1: F10 1

Økonometri 1. Dummyvariabler 13. oktober Økonometri 1: F10 1 Økonometri 1 Dummyvariabler 13. oktober 2006 Økonometri 1: F10 1 Dagens program Dummyvariabler i den multiple regressionsmodel (Wooldridge kap. 7.3-7.6) Dummy variabler for kvalitative egenskaber med flere

Læs mere

Anvendt Statistik Lektion 7. Simpel Lineær Regression

Anvendt Statistik Lektion 7. Simpel Lineær Regression Anvendt Statistik Lektion 7 Simpel Lineær Regression 1 Er der en sammenhæng? Plot af mordraten () mod fattigdomsraten (): Scatterplot Afhænger mordraten af fattigdomsraten? 2 Scatterplot Et scatterplot

Læs mere

Lineær regression. Simpel regression. Model. ofte bruges følgende notation:

Lineær regression. Simpel regression. Model. ofte bruges følgende notation: Lineær regression Simpel regression Model Y i X i i ofte bruges følgende notation: Y i 0 1 X 1i i n i 1 i 0 Findes der en linie, der passer bedst? Metode - Generel! least squares (mindste kvadrater) til

Læs mere

Oversigt. 1 Motiverende eksempel: Højde-vægt. 2 Lineær regressionsmodel. 3 Mindste kvadraters metode (least squares)

Oversigt. 1 Motiverende eksempel: Højde-vægt. 2 Lineær regressionsmodel. 3 Mindste kvadraters metode (least squares) Kursus 02402/02323 Introducerende Statistik Forelæsning 8: Simpel lineær regression Oversigt Motiverende eksempel: Højde-vægt 2 Lineær regressionsmodel 3 Mindste kvadraters metode (least squares) Klaus

Læs mere

(studienummer) (underskrift) (bord nr)

(studienummer) (underskrift) (bord nr) Danmarks Tekniske Universitet Side 1 af 22 sider. Skriftlig prøve: 13. december 2010 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (studienummer)

Læs mere

Klasseøvelser dag 2 Opgave 1

Klasseøvelser dag 2 Opgave 1 Klasseøvelser dag 2 Opgave 1 1.1. Vi sætter først working directory og data indlæses: library( foreign ) d

Læs mere

Statistik og Sandsynlighedsregning 2. Repetition og eksamen. Overheads til forelæsninger, mandag 7. uge

Statistik og Sandsynlighedsregning 2. Repetition og eksamen. Overheads til forelæsninger, mandag 7. uge Statistik og Sandsynlighedsregning 2 Repetition og eksamen Overheads til forelæsninger, mandag 7. uge 1 Normalfordelingen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange

Læs mere

Kursus 02402/02323 Introducerende Statistik

Kursus 02402/02323 Introducerende Statistik Kursus 02402/02323 Introducerende Statistik Forelæsning 8: Simpel lineær regression Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark

Læs mere

(studienummer) (underskrift) (bord nr)

(studienummer) (underskrift) (bord nr) Danmarks Tekniske Universitet Side 1 af 20 sider. Skriftlig prøve: 15. december 2012 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (studienummer)

Læs mere

Appendiks Økonometrisk teori... II

Appendiks Økonometrisk teori... II Appendiks Økonometrisk teori... II De klassiske SLR-antagelser... II Hypotesetest... VII Regressioner... VIII Inflation:... VIII Test for SLR antagelser... IX Reset-test... IX Plots... X Breusch-Pagan

Læs mere

Statistik Lektion 17 Multipel Lineær Regression

Statistik Lektion 17 Multipel Lineær Regression Statistik Lektion 7 Multipel Lineær Regression Polynomiel regression Ikke-lineære modeller og transformation Multi-kolinearitet Auto-korrelation og Durbin-Watson test Multipel lineær regression x,x,,x

Læs mere

To samhørende variable

To samhørende variable To samhørende variable Statistik er tal brugt som argumenter. - Leonard Louis Levinsen Antagatviharn observationspar x 1, y 1,, x n,y n. Betragt de to tilsvarende variable x og y. Hvordan måles sammenhængen

Læs mere

(studienummer) (underskrift) (bord nr)

(studienummer) (underskrift) (bord nr) Danmarks Tekniske Universitet Side 1 af 20 sider. Skriftlig prøve: 1. december 2011 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (studienummer)

Læs mere

Side 1 af 19 sider. Danmarks Tekniske Universitet. Skriftlig prøve: 15. december 2007 Kursus navn og nr: Introduktion til Statistik, 02402

Side 1 af 19 sider. Danmarks Tekniske Universitet. Skriftlig prøve: 15. december 2007 Kursus navn og nr: Introduktion til Statistik, 02402 Danmarks Tekniske Universitet Side 1 af 19 sider. Skriftlig prøve: 15. december 2007 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (studienummer)

Læs mere

enote 5: Simpel lineær regressions analyse Kursus 02402/02323 Introducerende Statistik Oversigt

enote 5: Simpel lineær regressions analyse Kursus 02402/02323 Introducerende Statistik Oversigt enote 5: Simpel lineær regressions analse Kursus 02402/02323 Introducerende Statistik Forelæsning 8: Simpel lineær regression To variable: og Beregn mindstekvadraters estimat af ret linje Inferens med

Læs mere

Modul 6: Regression og kalibrering

Modul 6: Regression og kalibrering Forskningsenheden for Statistik ST501: Science Statistik Bent Jørgensen Modul 6: Regression og kalibrering 6.1 Årsag og virkning................................... 1 6.2 Kovarians og korrelation...............................

Læs mere

(tæt på N(0,1) hvis n ikke alt for lille). t i god til at checke for outliers som kan have stor indflydelse på estimaterne s 2 og ˆσ 2 e i

(tæt på N(0,1) hvis n ikke alt for lille). t i god til at checke for outliers som kan have stor indflydelse på estimaterne s 2 og ˆσ 2 e i Da er r i = e i ˆσ ei t(n 3) (tæt på N(0,1) hvis n ikke alt for lille). Program 1. lineær regression: opgave 3 og 13 (sukker-temperatur). 2. studentiserede residualer, multipel regression. Tommelfinger-regel:

Læs mere

Normalfordelingen. Statistik og Sandsynlighedsregning 2

Normalfordelingen. Statistik og Sandsynlighedsregning 2 Statistik og Sandsynlighedsregning 2 Repetition og eksamen T-test Normalfordelingen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange variable, blandt andet tilfældige

Læs mere

Statikstik II 2. Lektion. Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression

Statikstik II 2. Lektion. Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression Statikstik II 2. Lektion Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression Sandsynlighedsregningsrepetition Antag at Svar kan være Ja og Nej. Sandsynligheden for at Svar Ja skrives

Læs mere

(studienummer) (underskrift) (bord nr)

(studienummer) (underskrift) (bord nr) Danmarks Tekniske Universitet Side 1 af 20 sider. Skriftlig prøve: 15. december 2008 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (studienummer)

Læs mere

(studienummer) (underskrift) (bord nr)

(studienummer) (underskrift) (bord nr) Danmarks Tekniske Universitet Side 1 af 19 sider. Skriftlig prøve: 14. december 2013 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (studienummer)

Læs mere

Normalfordelingen. Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: 1 2πσ

Normalfordelingen. Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: 1 2πσ Normalfordelingen Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: f(x) = ( ) 1 exp (x µ)2 2πσ 2 σ 2 Frekvensen af observationer i intervallet

Læs mere

Normalfordelingen. Statistik og Sandsynlighedsregning 2

Normalfordelingen. Statistik og Sandsynlighedsregning 2 Normalfordelingen Statistik og Sandsynlighedsregning 2 Repetition og eksamen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange variable, blandt andet tilfældige fejl på

Læs mere

Plot af B j + ǫ ij (Y ij µ α i )): σ 2 : within blocks variance. σb 2 : between blocks variance

Plot af B j + ǫ ij (Y ij µ α i )): σ 2 : within blocks variance. σb 2 : between blocks variance Plot af B j + ǫ ij (Y ij µ α i )): Program: res 4 2 0 2 B1 B2 B3 B4 B5 1. vi starter med at gennemgå opgave 3 side 513. 2. nyt: to-sidet variansanalyse 1 2 3 4 5 block σ 2 : within blocks variance σb 2

Læs mere

Opgave I.1 I.2 II.1 II.2 III.1 III.2 IV.1 V.1 VI.1 VI.2 Spørgsmål (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) Svar

Opgave I.1 I.2 II.1 II.2 III.1 III.2 IV.1 V.1 VI.1 VI.2 Spørgsmål (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) Svar Danmarks Tekniske Universitet Side 1 af 18 sider. Skriftlig prøve: 15. december 2006 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (navn) (underskrift)

Læs mere

Løsning eksamen d. 15. december 2008

Løsning eksamen d. 15. december 2008 Informatik - DTU 02402 Introduktion til Statistik 2010-2-01 LFF/lff Løsning eksamen d. 15. december 2008 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition, 7th

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Kvantitative metoder 2 Den multiple regressionsmodel 5. marts 2007 regressionsmodel 1 Dagens program Emnet for denne forelæsning er stadig den multiple regressionsmodel (Wooldridge kap. 3.4-3.5, E.2) Variansen

Læs mere

Anvendt Statistik Lektion 6. Kontingenstabeller χ 2- test [ki-i-anden-test]

Anvendt Statistik Lektion 6. Kontingenstabeller χ 2- test [ki-i-anden-test] Anvendt Statistik Lektion 6 Kontingenstabeller χ 2- test [ki-i-anden-test] Kontingenstabel Formål: Illustrere/finde sammenhænge mellem to kategoriske variable Opbygning: En celle for hver kombination af

Læs mere

Logistisk Regression - fortsat

Logistisk Regression - fortsat Logistisk Regression - fortsat Likelihood Ratio test Generel hypotese test Modelanalyse Indtil nu har vi set på to slags modeller: 1) Generelle Lineære Modeller Kvantitav afhængig variabel. Kvantitative

Læs mere

Program. Logistisk regression. Eksempel: pesticider og møl. Odds og odds-ratios (igen)

Program. Logistisk regression. Eksempel: pesticider og møl. Odds og odds-ratios (igen) Faculty of Life Sciences Program Logistisk regression Claus Ekstrøm E-mail: ekstrom@life.ku.dk Odds og odds-ratios igen Logistisk regression Estimation og inferens Modelkontrol Slide 2 Statistisk Dataanalyse

Læs mere

Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Institut for Biostatistik. Regressionsanalyse

Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Institut for Biostatistik. Regressionsanalyse Epidemiologi og biostatistik. Uge, torsdag. Erik Parner, Institut for Biostatistik. Lineær regressionsanalyse - Simpel lineær regression - Multipel lineær regression Regressionsanalyse Regressionsanalyser

Læs mere

Naturvidenskabelig Bacheloruddannelse Forår 2006 Matematisk Modellering 1 Side 1

Naturvidenskabelig Bacheloruddannelse Forår 2006 Matematisk Modellering 1 Side 1 Matematisk Modellering 1 Side 1 I nærværende opgavesæt er der 16 spørgsmål fordelt på 4 opgaver. Ved bedømmelsen af besvarelsen vægtes alle spørgsmål lige. Endvidere lægges der vægt på, at det af besvarelsen

Læs mere

Økonometri 1. Dagens program. Den simple regressionsmodel 15. september 2006

Økonometri 1. Dagens program. Den simple regressionsmodel 15. september 2006 Dagens program Økonometri Den simple regressionsmodel 5. september 006 Den simple lineære regressionsmodel (Wooldridge kap.4-.6) Eksemplet fortsat: Løn og uddannelse på danske data Funktionel form Statistiske

Læs mere

1. Lav en passende arbejdstegning, der illustrerer samtlige enkeltobservationer.

1. Lav en passende arbejdstegning, der illustrerer samtlige enkeltobservationer. Vejledende besvarelse af hjemmeopgave Basal statistik, efterår 2008 En gruppe bestående af 45 patienter med reumatoid arthrit randomiseres til en af 6 mulige behandlinger, nemlig placebo, aspirin eller

Læs mere

Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19

Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19 Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19 For test med signifikansniveau α: p < α forkast H 0 2/19 p-værdi Betragt tilfældet med test for H 0 : µ = µ 0 (σ kendt). Idé: jo større

Læs mere

Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Afdeling for Biostatistik. Eksempel: Systolisk blodtryk

Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Afdeling for Biostatistik. Eksempel: Systolisk blodtryk Eksempel: Systolisk blodtryk Udgangspunkt: Vi ønsker at prædiktere det systoliske blodtryk hos en gruppe af personer. Epidemiologi og biostatistik. Uge, torsdag. Erik Parner, Afdeling for Biostatistik.

Læs mere

Statistik II Lektion 3. Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable

Statistik II Lektion 3. Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable Statistik II Lektion 3 Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable Setup: To binære variable X og Y. Statistisk model: Konsekvens: Logistisk regression: 2 binære var. e e X Y P

Læs mere

Opsamling Modeltyper: Tabelanalyse Logistisk regression Generaliserede lineære modeller Log-lineære modeller

Opsamling Modeltyper: Tabelanalyse Logistisk regression Generaliserede lineære modeller Log-lineære modeller Opsamling Modeltyper: Tabelanalyse Logistisk regression Binær respons og kategorisk eller kontinuerte forklarende variable. Generaliserede lineære modeller Normalfordelt respons og kategoriske forklarende

Læs mere

12. september Epidemiologi og biostatistik. Forelæsning 4 Uge 3, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Regressionsanalyse

12. september Epidemiologi og biostatistik. Forelæsning 4 Uge 3, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Regressionsanalyse . september 5 Epidemiologi og biostatistik. Forelæsning Uge, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Lineær regressionsanalyse - Simpel lineær regression - Multipel lineær regression

Læs mere

Log-lineære modeller. Analyse af symmetriske sammenhænge mellem kategoriske variable. Ordinal information ignoreres.

Log-lineære modeller. Analyse af symmetriske sammenhænge mellem kategoriske variable. Ordinal information ignoreres. Log-lineære modeller Analyse af symmetriske sammenhænge mellem kategoriske variable. Ordinal information ignoreres. Kontingenstabel Contingency: mulighed/tilfælde Kontingenstabel: antal observationer (frekvenser)

Læs mere

Økonometri 1. Dagens program. Den multiple regressionsmodel 18. september 2006

Økonometri 1. Dagens program. Den multiple regressionsmodel 18. september 2006 Dagens program Økonometri Den multiple regressionsmodel 8. september 006 Opsamling af statistiske resultater om den simple lineære regressionsmodel (W kap..5). Den multiple lineære regressionsmodel (W

Læs mere

Module 9: Residualanalyse

Module 9: Residualanalyse Mathematical Statistics ST6: Linear Models Bent Jørgensen og Pia Larsen Module 9: Residualanalyse 9 Rå residualer 92 Standardiserede residualer 3 93 Ensidig variansanalyse 4 94 Studentiserede residualer

Læs mere

Multipel regression 22. Maj, 2012

Multipel regression 22. Maj, 2012 Data: Det færøske kviksølv-studie Simpel linær regression Confounding Multipel lineær regression Fortolkning af parametre Vekselvirkning Kollinearitet Modelkontrol Multipel regression 22. Maj, 2012 Esben

Læs mere

Program. Modelkontrol og prædiktion. Multiple sammenligninger. Opgave 5.2: fosforkoncentration

Program. Modelkontrol og prædiktion. Multiple sammenligninger. Opgave 5.2: fosforkoncentration Faculty of Life Sciences Program Modelkontrol og prædiktion Claus Ekstrøm E-mail: ekstrom@life.ku.dk Test af hypotese i ensidet variansanalyse F -tests og F -fordelingen. Multiple sammenligninger. Bonferroni-korrektion

Læs mere

Epidemiologi og Biostatistik Opgaver i Biostatistik Uge 10: 13. april

Epidemiologi og Biostatistik Opgaver i Biostatistik Uge 10: 13. april Århus 8. april 2011 Morten Frydenberg Epidemiologi og Biostatistik Opgaver i Biostatistik Uge 10: 13. april Opgave 1 ( gruppe 1: sp 1-4, gruppe 5: sp 5-9 og gruppe 6: 10-14) I denne opgaveser vi på et

Læs mere

Module 3: Statistiske modeller

Module 3: Statistiske modeller Department of Statistics ST502: Statistisk modellering Pia Veldt Larsen Module 3: Statistiske modeller 31 ANOVA 1 32 Variabelselektion 4 321 Multipel determinationskoefficient 5 322 Variabelselektion med

Læs mere

To-sidet varians analyse

To-sidet varians analyse To-sidet varians analyse Repetition En-sidet ANOVA Parvise sammenligninger, Tukey s test Model begrebet To-sidet ANOVA Tre-sidet ANOVA Blok design SPSS ANOVA - definition ANOVA (ANalysis Of VAriance),

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Kvantitative metoder Heteroskedasticitet 11. april 007 KM: F18 1 Oversigt: Heteroskedasticitet OLS estimation under heteroskedasticitet (W.8.1-): Konsekvenser af heteroskedasticitet for OLS Gyldige test

Læs mere

Statistik og skalavalidering Synopsis. Eksamensnumre 15, 33 og 45

Statistik og skalavalidering Synopsis. Eksamensnumre 15, 33 og 45 Statistik og skalavalidering Synopsis Københavns Universitet Folkesundhedsvidenskab, 7. semester Typografiske enheder: 22.615 December 2010 Indholdsfortegnelse 1.0 Indledning... 3 1.1 Karakteristika af

Læs mere

Anvendt Statistik Lektion 6. Kontingenstabeller χ 2 -test [ki-i-anden-test]

Anvendt Statistik Lektion 6. Kontingenstabeller χ 2 -test [ki-i-anden-test] Anvendt Statistik Lektion 6 Kontingenstabeller χ 2 -test [ki-i-anden-test] 1 Kontingenstabel Formål: Illustrere/finde sammenhænge mellem to kategoriske variable Opbygning: En celle for hver kombination

Læs mere

Dagens Emner. Likelihood-metoden. MLE - fortsat MLE. Likelihood teori. Lineær regression (intro) Vi har, at

Dagens Emner. Likelihood-metoden. MLE - fortsat MLE. Likelihood teori. Lineær regression (intro) Vi har, at Likelihood teori Lineær regression (intro) Dagens Emner Likelihood-metoden M : X i N(µ,σ 2 ) hvor µ og σ 2 er ukendte Vi har, at L(µ,σ 2 1 ) = ( 2πσ 2)n/2 e 1 2 P n (xi µ)2 er tætheden som funktion af

Læs mere

Module 12: Mere om variansanalyse

Module 12: Mere om variansanalyse Module 12: Mere om variansanalyse 12.1 Parreded observationer.................. 1 12.2 Faktor med 2 niveauer (0-1 variabel)......... 3 12.3 Tosidig variansanalyse med tilfældig virkning..... 9 12.3.1 Uafhængighedsbetragtninger..........

Læs mere

Motivation. En tegning

Motivation. En tegning Motivatio Scatter-plot at det mådelige salg mod det måedlige reklamebudget. R: plot(salg ~ budget, data = salg) Økoometri Lektio Simpel Lieær Regressio salg 400 450 500 550 20 25 30 35 40 45 50 budget

Læs mere

Eksamen i Statistik for biokemikere. Blok

Eksamen i Statistik for biokemikere. Blok Eksamen i Statistik for biokemikere. Blok 2 2007. Vejledende besvarelse 22-01-2007, Niels Richard Hansen Bemærkning: Flere steder er der givet en argumentation (f.eks. baseret på konfidensintervaller)

Læs mere

Uge 43 I Teoretisk Statistik, 21. oktober Forudsigelser

Uge 43 I Teoretisk Statistik, 21. oktober Forudsigelser Uge 43 I Teoretisk Statistik,. oktober 3 Simpel lineær regressionsanalyse Forudsigelser Fortolkning af regressionsmodellen Ekstreme observationer Transformationer Sammenligning af to regressionslinier

Læs mere

! Variansen på OLS estimatoren. ! Multikollinaritet. ! Variansen i misspecificerede modeller. ! Estimat af variansen på fejlleddet

! Variansen på OLS estimatoren. ! Multikollinaritet. ! Variansen i misspecificerede modeller. ! Estimat af variansen på fejlleddet Dagens program Økonometri Den multiple regressionsmodel 4. februar 003 regressionsmodel Emnet for denne forelæsning er stadig den multiple regressionsmodel (Wooldridge kap. 3.4-3.5)! Opsamling fra sidst

Læs mere

Konfidensintervaller og Hypotesetest

Konfidensintervaller og Hypotesetest Konfidensintervaller og Hypotesetest Konfidensinterval for andele χ -fordelingen og konfidensinterval for variansen Hypoteseteori Hypotesetest af middelværdi, varians og andele Repetition fra sidst: Konfidensintervaller

Læs mere

Økonometri 1. Prediktion. Dummyvariabler 9. oktober Økonometri 1: F9 1

Økonometri 1. Prediktion. Dummyvariabler 9. oktober Økonometri 1: F9 1 Økonometri 1 Prediktion. Dummyvariabler 9. oktober 2006 Økonometri 1: F9 1 Program frem til efterårsferien Om goodness-of-fit, prediktion og residualer (kap. 6.3-4) Kvalitative egenskaber i den multiple

Læs mere

Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression

Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression Logistisk Regression Repetition Fortolkning af odds Test i logistisk regression Logisitks Regression: Repetition Y {0,} binær afhængig variabel X skala forklarende variabel π P( Y X x) Odds(Y X x) π /(-π

Læs mere

Basal statistik. 21. oktober 2008

Basal statistik. 21. oktober 2008 Basal statistik 21. oktober 2008 Den generelle lineære model Repetition af variansanalyse og multipel regression Interaktion Parametriseringer Kovariansanalyse Esben Budtz-Jørgensen, Biostatistisk Afdeling

Læs mere

Det kunne godt se ud til at ikke-rygere er ældre. Spredningen ser ud til at være nogenlunde ens i de to grupper.

Det kunne godt se ud til at ikke-rygere er ældre. Spredningen ser ud til at være nogenlunde ens i de to grupper. 1. Indlæs data. * HUSK at angive din egen placering af filen; data framing; infile '/home/sro00/mph2016/framing.txt' firstobs=2; input id sex age frw sbp sbp10 dbp chol cig chd yrschd death yrsdth cause;

Læs mere

(studienummer) (underskrift) (bord nr)

(studienummer) (underskrift) (bord nr) Danmarks Tekniske Universitet Side 1 af 21 sider. Skriftlig prøve: 27. maj 2010 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (studienummer)

Læs mere

Multipel Lineær Regression. Polynomiel regression Ikke-lineære modeller og transformation Multi-kolinearitet Auto-korrelation og Durbin-Watson test

Multipel Lineær Regression. Polynomiel regression Ikke-lineære modeller og transformation Multi-kolinearitet Auto-korrelation og Durbin-Watson test Multipel Lineær Regression Polynomiel regression Ikke-lineære modeller og transformation Multi-kolinearitet Auto-korrelation og Durbin-Watson test Multipel lineær regression x,x,,x k uafhængige variable

Læs mere

Dagens Emner. Likelihood teori. Lineær regression (intro) p. 1/22

Dagens Emner. Likelihood teori. Lineær regression (intro) p. 1/22 Dagens Emner Likelihood teori Lineær regression (intro) p. 1/22 Likelihood-metoden M : X i N(µ,σ 2 ) hvor µ og σ 2 er ukendte Vi har, at L(µ,σ 2 ) = ( 1 2πσ 2)n/2 e 1 2σ 2 P n (x i µ) 2 er tætheden som

Læs mere

Side 1 af 17 sider. Danmarks Tekniske Universitet. Skriftlig prøve: 25. maj 2007 Kursus navn og nr: Introduktion til Statistik, 02402

Side 1 af 17 sider. Danmarks Tekniske Universitet. Skriftlig prøve: 25. maj 2007 Kursus navn og nr: Introduktion til Statistik, 02402 Danmarks Tekniske Universitet Side 1 af 17 sider. Skriftlig prøve: 25. maj 2007 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (navn) (underskrift)

Læs mere

Økonometri 1. Inferens i den lineære regressionsmodel 2. oktober Økonometri 1: F8 1

Økonometri 1. Inferens i den lineære regressionsmodel 2. oktober Økonometri 1: F8 1 Økonometri 1 Inferens i den lineære regressionsmodel 2. oktober 2006 Økonometri 1: F8 1 Dagens program Opsamling om asymptotiske egenskaber: Asymptotisk normalitet Asymptotisk efficiens Test af flere lineære

Læs mere

Modul 11: Simpel lineær regression

Modul 11: Simpel lineær regression Forskningsenheden for Statistik ST01: Elementær Statistik Bent Jørgensen Modul 11: Simpel lineær regression 11.1 Regression uden gentagelser............................. 1 11.1.1 Oversigt....................................

Læs mere

β 2 : forskel i skæring polymer 1 og 2. β 3 forskel i skæring polymer 1 og 3.

β 2 : forskel i skæring polymer 1 og 2. β 3 forskel i skæring polymer 1 og 3. Program suspended 200 250 300 350 400 1 2 3 6.5 7.0 7.5 8.0 8.5 9.0 1. kategoriske variable - kodning som indikator variable. 2. model selektion, R 2, F-test samt eksempler. ph Model: forskellig skæring

Læs mere

Opgavebesvarelse, brain weight

Opgavebesvarelse, brain weight Opgavebesvarelse, brain weight (Matthews & Farewell: Using and Understanding Medical Statistics, 2nd. ed.) Spørgsmål 1 Data er indlagt på T:/Basalstatistik/brain.txt og kan indlæses direkte i Analyst med

Læs mere

Økonometri 1. FunktioneI form i den lineære regressionsmodel 19. oktober Dagens program

Økonometri 1. FunktioneI form i den lineære regressionsmodel 19. oktober Dagens program Dagens program Økonometri 1 FunktioneI form i den lineære regressionsmodel 19. oktober 004 Mere om funktionel form (kap 6.) Log transformation Kvadratisk form Interaktionseffekter Goodness of fit (kap.

Læs mere

Økonometri 1. Kvalitative variabler. Kvalitative variabler. Dagens program. Kvalitative variable 8. marts 2006

Økonometri 1. Kvalitative variabler. Kvalitative variabler. Dagens program. Kvalitative variable 8. marts 2006 Dagens program Økonometri 1 Kvalitative variable 8. marts 2006 Kvalitative variabler som forklarende variabler i en lineær regressionsmodel (Wooldridge kap. 7.1-7.4) Kvalitative variabler generelt Dummy

Læs mere

Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved

Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved Matematisk Modellering 1 (reeksamen) Side 1 Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved { 1 hvis x {1, 2, 3}, p X (x) = 3 0 ellers,

Læs mere

1 Multipel lineær regression

1 Multipel lineær regression 1 Multipel lineær regression Regression med 2 eksponeringsvariable Fortolkning og estimation AnovaTabel og multipel R 2 Ensidet variansanalyse: Dummy kodning Kovariansanalyse og effektmodifikation Tosidet

Læs mere

Statistik II 4. Lektion. Logistisk regression

Statistik II 4. Lektion. Logistisk regression Statistik II 4. Lektion Logistisk regression Logistisk regression: Motivation Generelt setup: Dikotom(binær) afhængig variabel Kontinuerte og kategoriske forklarende variable (som i lineær reg.) Eksempel:

Læs mere

Program. Sammenligning af grupper Ensidet ANOVA. Case 3, del II: Fiskesmag i lammekød. Case 3, del I: A-vitamin i leveren

Program. Sammenligning af grupper Ensidet ANOVA. Case 3, del II: Fiskesmag i lammekød. Case 3, del I: A-vitamin i leveren Faculty of Life Sciences Program Sammenligning af grupper Ensidet ANOVA Claus Ekstrøm E-mail: ekstrom@life.ku.dk Sammenligning af to grupper: tre eksempler Sammenligning af mere end to grupper: ensidet

Læs mere