Om Følger og Rækker. Nyttige Grænseværdier. Nyttige Rækker. Carsten Lunde Petersen. lim. lim = 0. lim (1 + x n n )n = e x. n n n.

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "Om Følger og Rækker. Nyttige Grænseværdier. Nyttige Rækker. Carsten Lunde Petersen. lim. lim = 0. lim (1 + x n n )n = e x. n n n."

Transkript

1 IMFUFA Carste Lude Peterse Om Følger og Ræer Nyttige Græseværdier lim = 1 lim! = x = 0! lim lim (1 + x ) = e x! lim = e 1 Nyttige Ræer 1 p < p > 1 1 log p ( + 1) < p > 1 x = = x 1 x for x < 1 og Z, diverget for x 1

2 Kovergesriterier for Ræer Når ma sal udersøge om e ræe S = med afsitssummer s =, N er overget eller ej og evt sal fide ræes sum s = lim s sal ma først og fremmest bruge si sude foruft og se om ræe er e edt ræe eller ved algebraise eller adre midler a briges på e form, hvor de a idetificeres som e edt ræe Hvis dette ie umiddelbart lyes a følgede værtøjer eller stadard metoder hvoraf de fleste er edte som overgesriterier, ofte være til stor ytte Det første værtøj er: Ræer med æste positive led Hvis 0 for store, ie for alle N hvor N N Da er ræe S overget hviss afsitsfølge (s ) er begræset og s = sup{s N} For sådae ræer bruger vi også udtryet < som syoymt med udsaget S er overget og udtryet = som syoymt med udsaget S er diverget Absolut overges Hvis ræe < siges ræe S at være absolut overget I såfald er S også overget og s s = Absolut overges er altså fiere eller stærere ed overges E ræe a godt være såaldt betiget overget dvs overget, me ie absolut overget Me hvis ræes led alle har det samme forteg for store og ræe ie er absolut overget, da er ræe heller ie overget Absolut overges går ige i æste alle overges riterier 2

3 (Græse) Sammeligigsriteriet Hvis b < er e overget ræe med positive led og der fides K > 0, N N med Kb for alle N Da er ræe S absolut overget og for alle N : s s K b Hvis b = er e diverget ræe med positive led og der fides K > 0, N N med b K for alle N Da er ræe S ie absolut overget, dvs = Itegralriteriet Hvis f(t)dt < hvor f : [N, [ ]0, [ er e aftagede positiv futio og for alle N : f(), da er ræe S absolut overget og N for alle N : s s f(t)dt Hvis derimod f(t)dt = hvor f : [N, [ ]0, [ er e aftagede loalt N itegrabel positiv futio og for alle N : f(), da er ræe S ie absolut overget Kvotietriteriet (u for 0 for store ) Hvis q s = lim sup < 1, da er da er S absolut overget Edvidere givet r, q s < r < 1 og N N med r for alle N, gælder der for alle N : s s a +1 r (+1) = a +1 1 r Hvis derimod q i = lim if > 1, da er da er S divverget 3

4 Hvis edelig q i 1 q s votietriteriet ie afgøre ræes overges Rodriteriet Lad q = lim sup a Hvis q < 1 da er S absolut overget Edvidere givet r, q s < r < 1 og N N med r for alle N gælder der for alle N : s s = r = r+1 1 r Hvis derimod 1 < q, da er S diverget Edelig hvis r = 1 a rodriteriet ie afgøre ræes overges Det er værd at bemære at rodriteriet er stærere ed votiet riteriet, hvilet er e oseves af følgede ulighed (for et bevis for dee se afsittet beviser og hevisiger edefor): lim if lim if a lim sup a lim sup (1) Ved første øjeast er det ie så emt at fide positive følger ( ) hvor fes lim sup < lim sup +1 Dette syldes at (1) viser at hvis a lim +1 esisterer da er lim = lim if = lim sup = lim E følge hvor ogle af ulighedere i (1) er sarpe sal altså have a lim if +1 a < lim sup +1 Her er et esempel, lad 0 < r < s og defier { r lige c = s ulige Da er lim if c +1 c = 0 < r = lim if c < lim sup c = s < = lim sup c +1 c 4

5 Kvotiet riteriet a derfor ie bruges til at afgøre om c er overget Derimod giver rodteste her lart svar Ræe er overget hviss s < 1 Idet log = 1 log er betigelse lim sup 1 i rodriteriet ævivalet med betigelse lim if log 1 0 Det følgede logaritme riterium er derfor stærere ed rodriteriet: Logaritmeriteriet (u for 0 for store ) Lad p = lim if log 1 log Hvis 1 < p da er S absolut overget Edvidere givet q, 1 < q < p og N N med 1/ q for alle N gælder der for alle N : s s Hvis derimod p < 1, da er S ie absolut overget, medes hvis p = 1 a logaritmeriteriet ie afgøre overgese Edelig har vi 1 q Derichlets riterie Atag der fides følger (b ) N og (c ) N så for alle N: = b c og således at c 0 samtidigt med at afsitssummere b er begræsede Da er summe S = = b c overget Edvidere givet K > 0, N N med b < M for alle N gælder 5

6 der for alle N : s s = 2Mc +1 Alteerede ræer Hvis ( ) er e aftagede følge med positive led, da er de alteerede ræe S = ( 1) +1 overget Edvidere gælder der at 0 ( 1) (s s ) = ( 1) ( 1) +1 a +1 Dvs reste er umeris midre ed det først bortastede led og har samme forteg som dette Beviser og hevisiger Lemma 1 For e hver følge ( ) N med positive led er lim if lim if a lim sup a lim sup Hvis specielt følge ( / ) er overget, da er lim = lim Bevis : Vi viser de højre ulighed, idet de midterste er triviel og de a vestre er aalog til de højre Lad q = lim sup +1 Hvis q = er højre ulighed opfyldt uaset værdie af lim sup Hvis 0 q < vil vi vise at for ethvert ɛ > 0 er lim sup a q + ɛ := r Højre ulighed følger da af Th 19 i Wade Af defiitioe på lim sup følger at der fides N N så for alle N : r For N har vi derfor r N a N = r (a N r N ) 6

7 Idet a N r N er e ostat følger det at lim sup a lim sup r (a N r N ) = r lim sup (an r N ) = r qed De yttige græseværdier som er ævt forrest er udledt i Wade s bog Lad mig dog vise styre af Lemma 1 ved at udlede disse græseværdier x 0 : ( + 1)!! = lim = 1 (2) = + 1 = lim! = (3) x +1! ( + 1)! x = x + 1 for x = 0 har vi umiddelbart lim 0 = lim 0 = 0! x! = 0, (4) x 0 : log (1 + x ) = 1 log(1 + x ) = xlog(1 + x ) log(1 + 0) x 0 = x d dt log(1 + t) t=0 = x 1 = x, = exp(log (1 + x ) ) = (1 + x ) e x (5) For x = 0 har vi umiddelbart (1 + 0 ) = 1 = e 0 for alle ( + 1)! ( + 1) +1! = 1 e 1! = lim (1 + 1 ) = e 1 (6) 7

8 Nyttige Futios Ræer e x = cos x = si x = =0 =0 =0 x! ( 1) x 2 2! x R ( 1) x 2+1 (2 + 1)! 1 1 x = x x < 1 log(1 + x) = (1 + x) α = =0 ( 1) x ( ) α x =0 x R x < 1 x R x < 1, α R I sidste formel er ( ) α := α(α 1)(α 2) (α + 1) = 1 m=0 (α m)! og i dee sidste formel sal symbolet 1 m=0 (α m) læses som produtet af (α m) for m = 0 til 1, altså er et produttegsalog til sumteget 8

Analyse 1, Prøve maj 2009

Analyse 1, Prøve maj 2009 Aalyse, Prøve 5. maj 009 Alle hevisiger til TL er hevisiger til Kalkulus (006, Tom Lidstrøm). Direkte opgavehevisiger til Kalkulus er agivet med TLO, ellers er alle hevisiger til steder i de overordede

Læs mere

Noter om kombinatorik, Kirsten Rosenkilde, februar 2008 1. Kombinatorik

Noter om kombinatorik, Kirsten Rosenkilde, februar 2008 1. Kombinatorik Noter om ombiatori, Kirste Roseilde, februar 008 Kombiatori Disse oter er e itrodutio til ombiatori og starter helt fra bude, så e del af det idledede er siert edt for dig allerede, me der ommer også hurtigt

Læs mere

Supplerende noter II til MM04

Supplerende noter II til MM04 Supplerede oter II til MM4 N.J. Nielse 1 Uiform koverges af følger af fuktioer Vi starter med følgede defiitio: Defiitio 1.1 Lad S være e vilkårlig mægde og (X, d et metrisk rum. E følge (f af fuktioer

Læs mere

Projekt 4.8 De reelle tal og 1. hovedsætning om kontinuerte funktioner

Projekt 4.8 De reelle tal og 1. hovedsætning om kontinuerte funktioner Projekter: Kapitel 4 Projekt 48 De reelle tal og hovedsætig om kotiuerte fuktioer Projekt 48 De reelle tal og hovedsætig om kotiuerte fuktioer Kotiuitet og kotiuerte fuktioer Ord som kotiuert og kotiuerlig

Læs mere

Noter om kombinatorik, Kirsten Rosenkilde, februar Kombinatorik

Noter om kombinatorik, Kirsten Rosenkilde, februar Kombinatorik Noter om ombiatori, Kirste Roseilde, februar 008 Kombiatori Disse oter er e itrodutio til ombiatori og starter helt fra bude, så e del af det idledede er siert edt for dig allerede, me der ommer også hurtigt

Læs mere

Matematikkens mysterier - på et obligatorisk niveau. 7. Ligninger, polynomier og asymptoter

Matematikkens mysterier - på et obligatorisk niveau. 7. Ligninger, polynomier og asymptoter Matematikkes mysterier - på et obligatorisk iveau af Keeth Hase 7. Ligiger, polyomier og asymptoter Hvad er e asymotote? Og hvorda fides de? 7. Ligiger, polyomier og asymptoter Idhold 7.0 Idledig 7.1 Udsag

Læs mere

cos(t), v(t) = , w(t) = e t, z(t) = e t.

cos(t), v(t) = , w(t) = e t, z(t) = e t. Aalyse Øvelser Rasmus Sylvester Bryder. og. oktober 3 Bevis for Cotiuity lemma Theorem. Geemgås af Michael Staal-Olse. Bevis for Lemma.8 Dee har vi faktisk allerede vist; se Opgave 9.5 fra Uge. Det er

Læs mere

Elementær Matematik. Polynomier

Elementær Matematik. Polynomier Elemetær Matematik Polyomier Ole Witt-Hase 2008 Køge Gymasium Idhold 1. Geerelle polyomier...1 2. Divisio med hele tal....1 3. Polyomiers divisio...2 4. Polyomiers rødder....4 5. Bestemmelse af røddere

Læs mere

Sandsynlighedsteori 1.2 og 2 Uge 5.

Sandsynlighedsteori 1.2 og 2 Uge 5. Istitut for Matematiske Fag Aarhus Uiversitet De 27. jauar 25. Sadsylighedsteori.2 og 2 Uge 5. Forelæsiger: Geemgage af emere karakteristiske fuktioer og Mometproblemet afsluttes, og vi starter på afsittet

Læs mere

DATV: Introduktion til optimering og operationsanalyse, 2007. Følsomhed af Knapsack Problemet

DATV: Introduktion til optimering og operationsanalyse, 2007. Følsomhed af Knapsack Problemet DATV: Itroduktio til optimerig og operatiosaalyse, 2007 Følsomhed af Kapsack Problemet David Pisiger, Projektopgave 1 Dette er de første obligatoriske projektopgave på kurset DATV: Itroduktio til optimerig

Læs mere

De reelle tal. Morten Grud Rasmussen 5. november Se Sætning 3.6 og 3.7 for forskellige formuleringer af egenskaben og dens negation.

De reelle tal. Morten Grud Rasmussen 5. november Se Sætning 3.6 og 3.7 for forskellige formuleringer af egenskaben og dens negation. De reelle tal Morte Grud Rasmusse 5. ovember 2015 Ordede mægder Defiitio 3.1 (Ordet mægde). pm, ăq kaldes e ordet mægde såfremt: For alle x, y P M gælder etop ét af følgede: x ă y, x y, y ă x @x, y, z

Læs mere

Opgave 1. a) f : [a, b] R er en begrænset funktion for hvilken. A ε = {x [a + ε, b] f(x) 0}

Opgave 1. a) f : [a, b] R er en begrænset funktion for hvilken. A ε = {x [a + ε, b] f(x) 0} Opgve ) f : [, b] R er e begræset fuktio for hvilke er edelig for ethvert < ε < b. Vi skl vise t f er itegrbel og t A ε = { [ + ε, b] } d =. Vi bemærker først t f er itegrbel på [, b] hvis og ku hvis de

Læs mere

Besvarelses forslag til Tag-hjemeksamen Vinteren 02 03

Besvarelses forslag til Tag-hjemeksamen Vinteren 02 03 IMFUFA Carsten Lunde Petersen Besvarelses forslag til Tag-hjemeksamen Vinteren 02 0 Hvor ikke andet er angivet er henvisninger til W.R.Wade An Introduction to analysis. Opgave a) Idet udtrykket e x2 cos

Læs mere

Formelskrivning i Word 2. Sådan kommer du i gang 4. Eksempel med skrivning af brøker 5. Brøker skrevet med småt 6. Hævet og sænket skrift 6

Formelskrivning i Word 2. Sådan kommer du i gang 4. Eksempel med skrivning af brøker 5. Brøker skrevet med småt 6. Hævet og sænket skrift 6 Dee udgave er til geemkig på ettet. Boge ka købes for kr. 5 hos EH-Mat. E y og udvidet udgave med title»symbol- og formelskrivig«er udkommet september 00. Se mere om de her. Idholdsfortegelse Formelskrivig

Læs mere

Talfølger og -rækker

Talfølger og -rækker Da Beltoft og Klaus Thomse Aarhus Uiversitet 2009 Talfølger og -rækker Itroduktio til Matematisk Aalyse Zeos paradoks om Achilleus og skildpadde Achilleus løber om kap med e skildpadde. Achilleus løber

Læs mere

Vejledende besvarelser til opgaver i kapitel 15

Vejledende besvarelser til opgaver i kapitel 15 Vejledede besvarelser til opgaver i apitel 5 Opgave a) De teststatistier, ma aveder til at teste om to middelværdier er es, består af et estimat på forselle mellem middelværdiere,, divideret med et udtry

Læs mere

Bilag 5: DEA-modellen Bilaget indeholder en teknisk beskrivelse af DEA-modellen

Bilag 5: DEA-modellen Bilaget indeholder en teknisk beskrivelse af DEA-modellen Bilag 5: DEA-odelle Bilaget ideholder e teis besrivelse af DEA-odelle FRSYNINGSSERETARIATET FEBRUAR 2013 INDLEDNING... 3 INPUTSTYRET DEA-MDEL... 3 UTPUTSTYRET DEA-MDEL... 7 SALAAFAST... 12 2 Idledig Data

Læs mere

Bjørn Grøn. Analysens grundlag

Bjørn Grøn. Analysens grundlag Bjør Grø Aalyses grudlag Aalyses grudlag Side af 4 Idholdsfortegelse Kotiuerte og differetiable fuktioer 3 Differetial- og itegralregiges udviklig 5 3 Hovedsætiger om differetiable fuktioer 8 Opgaver til

Læs mere

A. Appendix: Løse ender.

A. Appendix: Løse ender. Løse ender A.1 A. Appendix: Løse ender. (A.1). I dette appendix giver vi et bevis for Bertrand s Postulat, nævnt i Kapitel 1. Som nævnt følger Postulatet af en tilstræelig nøjagtig vurdering af primtalsfuntionen

Læs mere

TEKST NR 435 2004. TEKSTER fra IMFUFA

TEKST NR 435 2004. TEKSTER fra IMFUFA TEKST NR 435 2004 Basisstatisti 2. udgave Jørge Larse August 2006 TEKSTER fra IMFUFA INSTITUT ROSKILDE UNIVERSITETSCENTER FOR STUDIET AF MATEMATIK OG FYSIK SAMT DERES FUNKTIONER I UNDERVISNING, FORSKNING

Læs mere

Introduktion til uligheder

Introduktion til uligheder Itroduktio til uligheder, marts 0, Kirste Rosekilde Itroduktio til uligheder Dette er e itroduktio til ogle basale uligheder om det aritmetiske geemsit, det geometriske geemsit, det harmoiske geemsit og

Læs mere

Matematik A. Studentereksamen. Forberedelsesmateriale. Forsøg med digitale eksamensopgaver med adgang til internettet.

Matematik A. Studentereksamen. Forberedelsesmateriale. Forsøg med digitale eksamensopgaver med adgang til internettet. Matematik A Studetereksame Forsøg med digitale eksamesopgaver med adgag til iterettet Forberedelsesmateriale Vejledede opgave Forår 0 til stx-a-net MATEMATIK Der skal afsættes 6 timer af holdets sædvalige

Læs mere

6 Populære fordelinger

6 Populære fordelinger 6 Populære fordeliger I apitel 4 itroducerede vi stoastise variabler so e åde at repræsetere udfald af et esperiet på. De stoastise variabler ue være både disrete (fx terigslag) og otiuerte (fx vareægder).

Læs mere

Kontinuitet og Konvergens. Matematik: Videnskaben om det uendelige 5

Kontinuitet og Konvergens. Matematik: Videnskaben om det uendelige 5 Kotiuitet og Koverges Matemati: Videsabe om det uedelige 5 2 Newtos Fluet og Fluio E variabel størrelse, z, aldes e fluet, og des ædrigstilstad (rate of chage) aldes des fluio, og beteges ż. De fluet,

Læs mere

Foldningsintegraler og Doobs martingale ulighed

Foldningsintegraler og Doobs martingale ulighed Foldningsintegraler og Doobs martingale ulighed N.J. Nielsen Indledning I dette notat vil vi vise en sætning om foldningsintegraler, som blev benyttet trin 2 i onstrutionen af Itointegralet, gennemgå esempel

Læs mere

Analyse 1, Prøve maj Lemma 2. Enhver konstant funktion f : R R, hvor f(x) = a, a R, er kontinuert.

Analyse 1, Prøve maj Lemma 2. Enhver konstant funktion f : R R, hvor f(x) = a, a R, er kontinuert. Alyse, Prøve. mj 9 Alle hevisiger til TL er hevisiger til Klkulus 6, Tom Lidstrøm. Direkte opgvehevisiger til Klkulus er givet med TLO, ellers er lle hevisiger til steder i de overordede fsit. Hevises

Læs mere

Kommunikation over støjfyldte kanaler

Kommunikation over støjfyldte kanaler Istitut for Matematise Fag wwwmathaaud Kommuiatio over støjfyldte aaler MAT2-projetrapport af G3-7 forårssemestret 2008 Istitut for Matematise Fag Fredri Bajers Vej 7G 9220 Aalborg Øst Telefo 99 40 88

Læs mere

vejer (med fortegn). Det vil vi illustrere visuelt og geometrisk for (2 2)-matricer og (3 3)-matricer i enote 6.

vejer (med fortegn). Det vil vi illustrere visuelt og geometrisk for (2 2)-matricer og (3 3)-matricer i enote 6. enote 5 enote 5 Determiater I dee enote ser vi på kvadratiske matricer. Deres type er altså for 2, se enote 4. Det er e fordel, me ikke absolut ødvedigt, at kede determiatbegrebet for (2 2)-matricer på

Læs mere

antal gange krone sker i første n kast = n

antal gange krone sker i første n kast = n 1 Uge 15 Teoretisk Statistik, 5. april 004 1. Store tals lov Eksempel: møtkast Koverges i sadsylighed Tchebychevs ulighed Sætig: Store tals lov. De cetrale græseværdisætig 3. Approksimatio af sadsyligheder

Læs mere

Lidt Om Fibonacci tal

Lidt Om Fibonacci tal Lidt om Fioi tl Lidt Om Fioi tl Idhold. Defiitio f Fioi tllee.... Kivl... 3. Telefokæder....3 4. E formel for Fioi tllee...4 Ole Witt-Hse 008 Lidt om Fioi tl. Defiitio f Fioi tllee Fioi tllee er opkldt

Læs mere

Stikprøvefordelinger og konfidensintervaller

Stikprøvefordelinger og konfidensintervaller Stikprøvefordeliger og kofidesitervaller Stikprøvefordelige for middelværdi De Cetrale Græseværdi Sætig Egeskaber Ved Estimatore Kofidesitervaller t-fordelige Estimator og estimat E stikprøve statistik

Læs mere

DATV: Introduktion til optimering og operationsanalyse, 2007. Bin Packing Problemet

DATV: Introduktion til optimering og operationsanalyse, 2007. Bin Packing Problemet DATV: Itroduktio til optimerig og operatiosaalyse, 2007 Bi Packig Problemet David Pisiger, Projektopgave 2 Dette er de ade obligatoriske projektopgave på kurset DATV: Itroduktio til optimerig og operatiosaalyse.

Læs mere

Georg Mohr Konkurrencen Noter om uligheder. Søren Galatius Smith

Georg Mohr Konkurrencen Noter om uligheder. Søren Galatius Smith Georg Mohr Kokurrece Noter om uligheder Søre Galatius Smith. juli 2000 Resumé Kapitel geemgår visse metoder fra gymasiepesum, som ka bruges til at løse ulighedsopgaver, og ideholder ikke egetligt yt stof.

Læs mere

Baggrundsnote til sandsynlighedsregning

Baggrundsnote til sandsynlighedsregning Baggrudsote til sadsylighedsregig Kombiatorik. Multiplikatiospricippet E mægde beståede af forskellige elemeter kaldes her e -mægde. Elemetere i e m-mægde og elemetere i e -mægde ka parres på i alt m forskellige

Læs mere

3.-årsopgave, matematik Tønder Gymnasium & HF 21.12.01

3.-årsopgave, matematik Tønder Gymnasium & HF 21.12.01 .-årsopgve, teti Tøder Gysiu HF.. Idholdsfortegelse: Idledig / forord s.. Mtricer, geerelt s. -. Nogle egeser for tricer s. -6. Deteriter s. 6-. Deterit-sætiger s. -. Miorer, oftorer og opleeter s. - 6.

Læs mere

Renteformlen. Erik Vestergaard

Renteformlen. Erik Vestergaard Reteformle Erik Vestergaard 2 Erik Vestergaard www.matematikfysik.dk Erik Vestergaard, 2010. Billeder: Forside: istock.com/ilbusca Side 4: istock.com/adresrimagig Desude ege illustratioer. Erik Vestergaard

Læs mere

UGESEDDEL 7 LØSNINGER. ) og ɛ > 0 N N : (1 + konvergerer ikke, thi følgen x 1 + = ( 1)k

UGESEDDEL 7 LØSNINGER. ) og ɛ > 0 N N : (1 + konvergerer ikke, thi følgen x 1 + = ( 1)k UGESEDDEL 7 LØSNINGER Opgave 7.2. Definition. En følge {x } in R n onvergerer mod puntet x, dersom der, for ethvert ɛ > 0, findes et N N sådan at x x < ɛ for alle N. Her definerer vi ) x x 2 = x ) x )

Læs mere

StudyGuide til Matematik B.

StudyGuide til Matematik B. StudyGuide til Matematik B. OVERSIGT. Dee study guide ideholder følgede afsit Geerel itroduktio. Emeliste. Eksame. Bilag 1: Udervisigsmiisteriets bekedtgørelse for matematik B. Bilag 2: Bilag 3: Uddrag

Læs mere

Kvadratisk 0-1 programmering. David Pisinger

Kvadratisk 0-1 programmering. David Pisinger Kvadratisk - programmerig David Pisiger 27-8 MAX-CUT problemet Givet e ikke-orieteret graf G = (V, E) er MAX-CUT problemet defieret som MAX-CUT = {< G > : fid et sit S, T i grafe G som maksimerer atal

Læs mere

Noter om polynomier, Kirsten Rosenkilde, Marts Polynomier

Noter om polynomier, Kirsten Rosenkilde, Marts Polynomier Noter om polyomier, Kirste Rosekilde, Marts 2006 1 Polyomier Disse oter giver e kort itroduktio til polyomier, og de fleste sætiger æves ude bevis. Udervejs er der forholdsvis emme opgaver, mes der til

Læs mere

Asymptotisk optimalitet af MLE

Asymptotisk optimalitet af MLE Kapitel 4 Asymptotisk optimalitet af MLE Lad Y 1, Y 2,... være uafhægige, idetisk fordelte variable med værdier i et rum (Y,K). Vi har givet e model (ν θ ) θ Θ for fordelige af Y 1 (og dermed også for

Læs mere

Pearsons formel for χ 2 test. Den teoretiske forklaring

Pearsons formel for χ 2 test. Den teoretiske forklaring Pearsos formel for χ test De teoretse forlarg Ole Wtt-Hase 04 Idhold. Normalfordelge og χ.... Pearsos formel for χ test... 3. Forlarg på Pearsos formel....4 Pearsos formel for χ test. Normalfordelge og

Læs mere

Differentiation af potensfunktioner

Differentiation af potensfunktioner Hvd er mtemti? B, i-bog ISBN 978 87 766 494 3 Hjemmesideevisig: Differetitio f potesfutioer, Kpitel 4, side 76 Differetitio f potesfutioer. Pscls tret og biomilformle Vi strter med t mide om t poteser

Læs mere

Uge 40 I Teoretisk Statistik, 30. september 2003

Uge 40 I Teoretisk Statistik, 30. september 2003 Uge 40 Teoretis tatisti, 30. september 003 Esidet variasaalyse Model, otatio, hypotese og hælpehypotese Test af hælpehypotese Opdaterig af variasestimat Test af hypotese om es middelværdier Variasaalysesema

Læs mere

Kompendie Komplekse tal

Kompendie Komplekse tal Kompedie Komplekse tal Prebe Holm 08-06-003 "!#!%$'&($)+*-,. cos(s + t) )0/ si(s + t) Trigoometri er måske ikke så relevat, år ma såda umiddelbart sakker om komplekse tal. Me faktisk avedes de trigoometriske

Læs mere

Tankegangskompetence. Kapitel 9 Algebraiske strukturer i skolen 353

Tankegangskompetence. Kapitel 9 Algebraiske strukturer i skolen 353 Takegagskompetece Hesigte med de følgede afsit er først og fremmest at skabe klarhed over de mere avacerede regeregler i skole og give resultatet i de almee form, der er karakteristisk for algebra. Vi

Læs mere

Branchevejledning. ulykker indenfor. lager. området. Branchearbejdsmiljørådet for transport og engros

Branchevejledning. ulykker indenfor. lager. området. Branchearbejdsmiljørådet for transport og engros Brachevejledig ulykker idefor lager området Brachearbejdsmiljørådet for trasport og egros Baggrud Udersøgelser på lager- og trasportområdet har vist, at beskrivelse af hædelsesforløbet ved udfyldelse

Læs mere

Økonometri 1. Definition og motivation. Definition og motivation. Dagens program. Den multiple regressionsmodel 15. februar 2006

Økonometri 1. Definition og motivation. Definition og motivation. Dagens program. Den multiple regressionsmodel 15. februar 2006 Dages program Økoometri De multiple regressiosmodel 5. februar 006 Emet for dee forelæsig er de multiple regressiosmodel (Wooldridge kap 3.-3.3+appedix E.-E.) Defiitio og motivatio Fortolkig af parametree

Læs mere

Den hurtige Fouriertransformation

Den hurtige Fouriertransformation Polyomier De hurtige Fouriertrasformatio Polyomium: Geerelt: p + 2 3 4 ( x) = 5 + 2x + 8x + 3x 4x p(x) =! " eller x i p(x) = a + a x + a 2 x 2 +!+ a! x! Jea Baptiste Joseph Fourier (768-83) 2 Evaluerig

Læs mere

Den flerdimensionale normalfordeling

Den flerdimensionale normalfordeling De flerdimesioale ormalfordelig Stokastiske vektorer Ved e stokastisk vektor skal vi forstå e vektor, hvor de ekelte kompoeter er sædvalige stokastiske variable. For de stokastiske vektor Y = Y,..., Y

Læs mere

Motivation. En tegning

Motivation. En tegning Motivatio Scatter-plot at det mådelige salg mod det måedlige reklamebudget. R: plot(salg ~ budget, data = salg) Økoometri Lektio Simpel Lieær Regressio salg 400 450 500 550 20 25 30 35 40 45 50 budget

Læs mere

Analyse af algoritmer. Algoritmedesign med internetanvendelser ved Keld Helsgaun. Køretid. Algoritmebegrebet D. E. Knuth (1968)

Analyse af algoritmer. Algoritmedesign med internetanvendelser ved Keld Helsgaun. Køretid. Algoritmebegrebet D. E. Knuth (1968) Algoritmedesig med iteretavedelser ved Keld Helsgau Aalyse af algoritmer Iput Algoritme Output E algoritme er e trivis metode til løsig af et problem i edelig tid 1 2 Algoritmebegrebet D. E. Kuth (1968)

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Dages program Kvatitative metoder De multiple regressiosmodel 6. februar 007 Emet for dee forelæsig er de multiple regressiosmodel (Wooldridge kap 3.- 3.+appedix E.) Defiitio og motivatio Fortolkig af

Læs mere

Udskiftning af et tag antages at vare 2-6 dage. Denne tidsperiode antages at være fastlagt ved følgende symmetriske tæthedsfunktion

Udskiftning af et tag antages at vare 2-6 dage. Denne tidsperiode antages at være fastlagt ved følgende symmetriske tæthedsfunktion STATISTIK Sriftlig evluerig, 3. semester, torsdg de. ur l. 9.-3.. Alle hælpemidler er tilldt. Opgveløsige forses med v og CPR-r. OPGAVE Udsiftig f et tg tges t vre -6 dge. Dee tidsperiode tges t være fstlgt

Læs mere

JanusCentret. Psykologisk udredning og behandling til børn og unge med seksuelt bekymrende eller krænkende adfærd

JanusCentret. Psykologisk udredning og behandling til børn og unge med seksuelt bekymrende eller krænkende adfærd JausCetret Psykologisk udredig og behadlig til bør og uge med seksuelt bekymrede eller krækede adfærd Edvidere rådgivig, supervisio og udervisig til forældre og professioelle JausCetret JausCetret har

Læs mere

Claus Munk. kap. 1-3

Claus Munk. kap. 1-3 Claus Muk kap. 1-3 1 Dages forelæsig Grudlæggede itroduktio til obligatioer Betaligsrækker og låeformer Det daske obligatiosmarked Pris og kurs Effektive reter 2 1 Obligatioer Grudlæggede Itro Debitor

Læs mere

Dagens forelæsning. Claus Munk. kap. 1-3. Obligationer Grundlæggende Intro. Obligationer Grundlæggende Intro. Obligationer Grundlæggende Intro

Dagens forelæsning. Claus Munk. kap. 1-3. Obligationer Grundlæggende Intro. Obligationer Grundlæggende Intro. Obligationer Grundlæggende Intro Dages forelæsig Grudlæggede itroduktio til obligatioer Claus Muk kap. - 3 Betaligsrækker og låeformer Det daske obligatiosmarked Effektive reter 2 Obligatioer Grudlæggede Itro Obligatioer Grudlæggede Itro

Læs mere

og Fermats lille sætning

og Fermats lille sætning Projekter: Kaitel 0. Projekt 0. Modulo-regig, restklassegruer og Fermats lille sætig Projekt 0. Modulo-regig, restklassegruere ( { 0 }, ) og Fermats lille sætig Vi aveder moduloregig og restklasser mage

Læs mere

Termodynamik. Indhold. Termodynamik. Første og anden hovedsætning 1/18

Termodynamik. Indhold. Termodynamik. Første og anden hovedsætning 1/18 ermodyamik. Første og ade hovedsætig /8 ermodyamik Idhold. Isoterme og adiabatiske tilstadsædriger for gasser...3 3. ermodyamikkes. hovedsætig....5 4. Reversibilitet...6 5. Reversibel maskie og maksimalt

Læs mere

Mikroøkonomi, matematik og statistik Eksamenshjemmeopgave 14. 20. december 2007

Mikroøkonomi, matematik og statistik Eksamenshjemmeopgave 14. 20. december 2007 Mikroøkoomi, matematik og statistik Eksameshjemmeopgave 14. 20. december 2007 Helle Buzel, Tom Egsted og Michael H.J. Stæhr 14. december 2007 R E T N I N G S L I N I E R F O R E K S A M E N S H J E M M

Læs mere

Kalkulus 2 - Grænseovergange, Kontinuitet og Følger

Kalkulus 2 - Grænseovergange, Kontinuitet og Følger Kalkulus - Grænseovergange, Kontinuitet og Følger Mads Friis 8. januar 05 Indhold Grundlæggende uligheder Grænseovergange 3 3 Kontinuitet 9 4 Følger 0 5 Perspektivering 4 Grundlæggende uligheder Sætning

Læs mere

Kombinatorik. 1 Kombinationer. Indhold

Kombinatorik. 1 Kombinationer. Indhold Kombator, marts 04, Krste Roselde Georg Mohr-Kourrece Kombator Kombator går ud på at tælle atallet af ombatoer af et eller adet, og for at ue tælle atallet af ombatoer smart har ma brug for forsellge tællestrateger

Læs mere

Deskriptiv teori: momenter

Deskriptiv teori: momenter Kapitel 13 Deskriptiv teori: mometer Vi vil i dette og det følgede kapitel idføre e række begreber der bruges til at beskrive sadsylighedsmål på (R, B). Samtlige begreber udspriger i e eller ade forstad

Læs mere

Taylors Formel og Rækkeudviklinger

Taylors Formel og Rækkeudviklinger Tylors Formel og Ræeuviliger Køge Gymsium Ole Wi-Hse Iol. Tylors ormel... Ræeuviliger or e.. Ræeuviliger or si og cos.. Ræeuviliger or l... Ræeuviliger or + α 6. Ræeuviliger or si - og -..6 Tylors Formel.

Læs mere

Statistik Lektion 7. Hypotesetest og kritiske værdier Type I og Type II fejl Styrken af en test Sammenligning af to populationer

Statistik Lektion 7. Hypotesetest og kritiske værdier Type I og Type II fejl Styrken af en test Sammenligning af to populationer Statistik Lektio 7 Hpotesetest og kritiske værdier Tpe I og Tpe II fejl Strke af e test Sammeligig af to populatioer 1 Tri I e Hpotesetest E hpotesetest består af 5 elemeter: I. Atagelser Primært hvilke

Læs mere

MOGENS ODDERSHEDE LARSEN. Fourieranalyse

MOGENS ODDERSHEDE LARSEN. Fourieranalyse MOGENS ODDERSHEDE LARSEN Fourieraalyse. udgave 7 FORORD Dette otat giver e kort idførig i teorie for fourierrækker og fouriertrasformatio. Det forudsættes i dette otat, at ma har rådighed over matematiklommeregere

Læs mere

Velkommen. Program. Statistik og Sandsynlighedsregning 2 Sandsynlighedstætheder og kontinuerte fordelinger på R. Praktiske ting og sager

Velkommen. Program. Statistik og Sandsynlighedsregning 2 Sandsynlighedstætheder og kontinuerte fordelinger på R. Praktiske ting og sager Program Statistik og Sadsylighedsregig 2 Sadsylighedstætheder og kotiuerte fordeliger på R Helle Sørese Uge 6, madag Velkomme I dag: Praktiske bemærkiger Hvad skal vi lave på SaSt2? Sadsylighedstætheder

Læs mere

Definition: Normalfordelingen. siges at være normalfordelt med middelværdi µ og varians σ 2, hvor µ og σ er reelle tal og σ > 0.

Definition: Normalfordelingen. siges at være normalfordelt med middelværdi µ og varians σ 2, hvor µ og σ er reelle tal og σ > 0. Repetitio: Normalfordelige Ladmåliges fejlteori Lektio Trasformatio af stokastiske variable - kkb@math.aau.dk http://people.math.aau.dk/ kkb/udervisig/lf13 Istitut for Matematiske Fag Aalborg Uiversitet

Læs mere

Komplekse tal Matematik og naturfag i verdensklasse, 2004. Komplekse tal

Komplekse tal Matematik og naturfag i verdensklasse, 2004. Komplekse tal Komplekse tl Mtemtik og turfg i verdesklsse, 004 Komplekse tl Dette mterile er ereget til udervisig i mtemtik i gymsiet. Der forudsættes kedsk til løsig f degrdsligiger, trigoometri og e lille smule vektorregig.

Læs mere

Numerisk løsning af differentialligninger

Numerisk løsning af differentialligninger KU-LIFE; Matemati og modeller 009 Numeris løsning af differentialligninger Thomas Vils Pedersen 1 Numerise metoder Ved numeris analyse forstås tilnærmet, talmæssig løsning af problemer, som ie, eller un

Læs mere

Dagens program. Estimation: Kapitel Eksempler på middelrette og/eller konsistente estimator (de sidste fra sidste forelæsning)

Dagens program. Estimation: Kapitel Eksempler på middelrette og/eller konsistente estimator (de sidste fra sidste forelæsning) Dages program Estimatio: Kapitel 9.4-9.7 Eksempler på middelrette og/eller kosistete estimator (de sidste fra sidste forelæsig) Ko desiterval for store datasæt kap. 9.4 Ko desiterval for små datasæt kap.

Læs mere

Forelæsningsnoter til Stokastiske Processer E05. Svend-Erik Graversen Revideret af Jan Pedersen Kapitel 12 og Appendix B og G af Jan Pedersen

Forelæsningsnoter til Stokastiske Processer E05. Svend-Erik Graversen Revideret af Jan Pedersen Kapitel 12 og Appendix B og G af Jan Pedersen Forelæsigsoter til Stokastiske Processer E5 Sved-Erik Graverse Revideret af Ja Pederse Kapitel 12 og Appedix B og G af Ja Pederse 16. august 25 Forord Nærværede otesæt skal bruges i forbidelse med kurset

Læs mere

Løsninger til kapitel 7

Løsninger til kapitel 7 Løsiger til kapitel 7 Opgave 7.1 a) HpoStat giver resultatet: Pop. varias er ukedt, me 30, så Normalf. bruges approksimativt = 54,400 s 1.069,90 = 00,000 0,95 49,868 58,93 Dette betder, at med 95% sikkerhed

Læs mere

Projekt 2.3 Det gyldne snit og Fibonaccitallene

Projekt 2.3 Det gyldne snit og Fibonaccitallene Projekter: Kapitel Projekt.3 Det glde sit og Fiboaccitallee Forslag til hvorda klasses arbejde med projektet ka tilrettelægges: Forløbet:. Præsetatio af emet med vægt på det glde sit.. Grppere arbejder

Læs mere

Rettevejledning til HJEMMEOPGAVE 1 Makro 1, 2. årsprøve, foråret 2007 Peter Birch Sørensen

Rettevejledning til HJEMMEOPGAVE 1 Makro 1, 2. årsprøve, foråret 2007 Peter Birch Sørensen Rettevejledig til HJEMMEOPGAVE Makro, 2. årsprøve, foråret 2007 Peter Birch Sørese Opgave... Udsaget er forkert. De omtalte skatteomlægig må atages at øge beskæftigelse p.gr.a. e positiv substitutioseffekt

Læs mere

Asymptotisk estimationsteori

Asymptotisk estimationsteori Kapitel 5 Asymptotisk estimatiosteori De fleste eksperimeter har e idbygget størrelse, som regel kaldet eller N. Dette repræseterer typisk atallet af foretage måliger, atallet af udersøgte idivider, atallet

Læs mere

Sandsynlighedsteori 1.2

Sandsynlighedsteori 1.2 Forelæsigsoter til Sadsylighedsteori.2 Sved Erik Graverse Jauar 2006 Istitut for Matematiske Fag Det Naturvideskabelige Fakultet Aarhus Uiversitet. Mometproblemet. I dette afsit beteger X e stokastisk

Læs mere

BEVISER TIL KAPITEL 7

BEVISER TIL KAPITEL 7 BEVISER TIL KAPITEL 7 A. Komplemetærhædelse Det er klart, at e hædelse A og de komplemetære hædelse A udgør hele udfaldsrummet U, dvs. A A = Da fås P(U = U P(A A = P (A + P(A = da de to hædelser er dsjukte

Læs mere

Test i to populationer. Hypotesetest for parrede observationer Test for ens varians Gensyn med flyskræk!

Test i to populationer. Hypotesetest for parrede observationer Test for ens varians Gensyn med flyskræk! Test i to populatioer Hypotesetest for parrede observatioer Test for es varias Gesy med flyskræk! Afhægige og uafhægige stikprøver Ved e uafhægig stikprøve udtages e stikprøve fra hver gruppe.. Mæd og

Læs mere

Finitisme og Konstruktivisme. 22. November 2010

Finitisme og Konstruktivisme. 22. November 2010 Fiitisme og Kostruktivisme 22. November 2010 Frktler Hilbert Mdelbrot Feigebum Lorez Lorez-Ligigere σ = 10 β = 8/3 ρ =28 Logistisk vækst x -> rx(1-x) Mdelbrots frktl z -> P c (z) = z 2 +c 0-> P c (0) ->P

Læs mere

Projekt 1.3 Brydningsloven

Projekt 1.3 Brydningsloven Projekt 1.3 Brydigslove Når e bølge, fx e lysbølge, rammer e græseflade mellem to stoffer, vil bølge ormalt blive spaltet i to: Noget af bølge kastes tilbage (spejlig), hvor udfaldsvikle u er de samme

Læs mere

DATV: Introduktion til optimering og operationsanalyse, Følsomhed af Knapsack Problemet

DATV: Introduktion til optimering og operationsanalyse, Følsomhed af Knapsack Problemet DATV: Itroduktio til optimerig og operatiosaalyse, 2007 Følsomhed af Kapsack Problemet David Pisiger, Projektopgave 1 Dette er de første obligatoriske projektopgave på kurset DATV: Itroduktio til optimerig

Læs mere

Gamle eksamensopgaver. Diskret Matematik med Anvendelser (DM72) & Diskrete Strukturer(DM504)

Gamle eksamensopgaver. Diskret Matematik med Anvendelser (DM72) & Diskrete Strukturer(DM504) Gamle eksamesopgaver Diskret Matematik med Avedelser (DM72) & Diskrete Strukturer(DM504) Istitut for Matematik& Datalogi Syddask Uiversitet, Odese Alle sædvalige hjælpemidler(lærebøger, otater etc.), samt

Læs mere

DATV: Introduktion til optimering og operationsanalyse. Asymmetric Traveling Salesman Problem

DATV: Introduktion til optimering og operationsanalyse. Asymmetric Traveling Salesman Problem DATV: Itroduktio til optimerig og operatiosaalyse Asymmetric Travelig Salesma Problem David Pisiger, Efterår 2004 Dette er de ade obligatoriske projektopgave på kurset DATV: Itroduktio til optimerig og

Læs mere

Vindmøllesekretariatet og Biogassekretariatet

Vindmøllesekretariatet og Biogassekretariatet og Biogass Brugertilfredshedsudersøgelse af og Biogasss sagsbehadlig og ydelser bladt ommuer Tabelrapport, telefoudersøgelse December Projetosuleter Asger H. Nielse Coie F. Larse Alle rettigheder til udersøgelsesmaterialet

Læs mere

Estimation ved momentmetoden. Estimation af middelværdiparameter

Estimation ved momentmetoden. Estimation af middelværdiparameter Statistik og Sadsylighedsregig 1 STAT kapitel 4.2 4.3 Susae Ditlevse Istitut for Matematiske Fag Email: susae@math.ku.dk http://math.ku.dk/ susae Estimatio ved mometmetode Idimellem ka det være svært (eller

Læs mere

Prisfastsættelse af digitale goder - Microsoft

Prisfastsættelse af digitale goder - Microsoft Iteretøkoomi: risfastsættelse af digitale goder Afleveret d. 9 maj 003 Af Julie ech og Malee Aja org risfastsættelse af digitale goder - Microsoft Af Julie ech og Malee Aja org.0.0 DIGITALE GODER....0.0

Læs mere

MOGENS ODDERSHEDE LARSEN. Komplekse tal

MOGENS ODDERSHEDE LARSEN. Komplekse tal MOGENS ODDERSHEDE LARSEN Komplekse tal a b. udgave 004 FORORD Dette otat giver e kort idførig i teorie for komplekse tal, regeregler, røddere i polyomier bl.a. med heblik på avedelser ved løsig af lieære

Læs mere

Yngre Lægers medlemsundersøgelse om det lægelige arbejdsmarked, 2016

Yngre Lægers medlemsundersøgelse om det lægelige arbejdsmarked, 2016 Ygre Læger, 23. maj 216 Ygre Lægers medlemsudersøgelse om det lægelige arbejdsmarked, 216 - svarfordeliger på ladspla Idholdsfortegelse 1. Idledig... 2 2. Baggrudsvariable... 2 3. Vide om arbejdspladse

Læs mere

9. Binomialfordelingen

9. Binomialfordelingen 9. Biomialfordelige 9.. Gekedelse Hvert forsøg ka ku resultere i to mulige udfald; succes og fiasko. I modsætig til poissofordelige er atallet af forsøg edeligt. 9.. Model X : Stokastisk variabel, der

Læs mere

MATEMATISK FORMELSAMLING

MATEMATISK FORMELSAMLING MATEMATISK FORMELSAMLING GUX Grøld Mtemtisk formelsmlig til C-iveu, GUX Grøld Deprtemetet for uddelse 05 Redktio: Rsmus Aderse, Jes Thostrup MtemtiskformelsmligtilC-iveu GUX Grøld FORORD Dee formelsmlig

Læs mere

Generelle lineære modeller

Generelle lineære modeller Geerelle lieære modeller Regressiosmodeller med é uafhægig itervalskala variabel: Y e eller flere uafhægige variable: X,..,X k De betigede fordelig af Y givet X,..,X k atages at være ormal med e middelværdi,

Læs mere

Duo HOME Duo OFFICE. Programmeringsmanual DK 65.044.50-1

Duo HOME Duo OFFICE. Programmeringsmanual DK 65.044.50-1 Duo HOME Duo OFFICE Programmerigsmaual DK 65.044.50-1 INDHOLD Tekiske data Side 2 Systemiformatio, brugere Side 3-4 Ligge til og slette brugere Side 5-7 Ædrig af sikkerhedsiveau Side 8 Programmere: Nødkode

Læs mere

24. januar Epidemiologi og biostatistik. Forelæsning 1 Uge 1, tirsdag. Niels Trolle Andersen, Afdelingen for Biostatistik.

24. januar Epidemiologi og biostatistik. Forelæsning 1 Uge 1, tirsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Epidemiologi og biostatistik. Forelæsig Uge, tirsdag. Niels Trolle Aderse, Afdelige for Biostatistik. Geerelt om kurset: - Formål - Forelæsiger - Øvelser - Forelæsigsoter - Bøger - EpiBasic: http://www.biostat.au.dk/teachig/software

Læs mere

Denne kaldes også potensmængden over Ω og betegnes ofte 2 Ω. Notationen beror på, at man via relationen

Denne kaldes også potensmængden over Ω og betegnes ofte 2 Ω. Notationen beror på, at man via relationen Idledig. De modere sadsylighedsteori, hvis aksiomatiske basis blev formuleret af russere A.N. Kolmogorov i 1933 i boge Grudbegriffe der Wahrscheilichkeitrechug, er bygget op omkrig et tripel ofte beteget

Læs mere

Forslag til besvarelser af opgaver m.m. i ε-bogen, Matematik for lærerstuderende

Forslag til besvarelser af opgaver m.m. i ε-bogen, Matematik for lærerstuderende Forslag til besvarelser af opgaver m.m. i ε-boge, Matematik for lærerstuderede Dette er førsteudgave af opgavebesvarelser udarbejdet i sommere 008. Dokumetet ideholder forslag til besvarelser af de fleste

Læs mere

Sammenligning af to grupper

Sammenligning af to grupper Sammeligig af to gruer Reetitio, heruder om kritiske værdier Sammeligig af to gruer Sammeligig af to middelværdier Sammeligig af to adele Sammeligig af to variaser yoteser og hyotesetest. E hyotese er

Læs mere

r n E[ X n ]/n! for alle r > 0 ifølge monoton konvergens, giver potensrækketeori, at ( ) er ækvivalent med, at ρ n E[ X n ]/n!

r n E[ X n ]/n! for alle r > 0 ifølge monoton konvergens, giver potensrækketeori, at ( ) er ækvivalent med, at ρ n E[ X n ]/n! Mometproblemet. Lad i dette afsit X betege e stokastisk variabel med mometer af ehver orde. Mometfølge (E[X ]) er derfor e vel defieret reel talfølge bestemt ved fordelige, og spørgsmålet om, de omvedt

Læs mere

Undersøgelse af numeriske modeller

Undersøgelse af numeriske modeller Udersøgelse af umeriske modeller Formål E del af målsætige med dette delprojekt er at give kedskab til de begræsiger, fejl og usikkerheder, som optræder ved modellerig. I de forbidelse er følgede udersøgelse

Læs mere