Statistik II Lektion 5 Modelkontrol. Modelkontrol Modelsøgning Større eksempel

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "Statistik II Lektion 5 Modelkontrol. Modelkontrol Modelsøgning Større eksempel"

Transkript

1 Statstk II Lekton 5 Modelkontrol Modelkontrol Modelsøgnng Større eksempel

2 Opbygnng af statstsk model Eksploratv data-analyse Specfcer model Lgnnger og antagelser Estmer parametre Modelkontrol Er modellen passende? Ja Anvend modellen Nej Herunder test, modelsøgnng, prædktoner og fortolknnger.

3 Generel Lneær Model Y afhængg skala varabel 1,, k forklarende varable, skala eller bnære Model: hvor fejlleddet ε er normalfordelt med mddelværd 0 og varans σ 2, ε ~N(0, σ 2 ). Mddelværden for Y gvet = ( 1,, k ) er Dvs. regressons- lnjen angver mddelværden. + = = = k k k X Y E ) ( β α β β α ε β α ε β β α + + = = = k k k Y 1 1 1

4 Generel Lneær Model Mere præcst: te observaton y ud af n er gvet ved Y α + ε = + β1 1, + + βk k, Systematsk del Tlfældg del j, er j te forklarende varabel for den te observaton. ε 1,,ε n er uafhængge og dentsk fordelt ε ~ N(0,σ 2 ) Idependent and Identcally Dstrbuted - IID

5 Estmater og prædkton Lad a være et estmat af α Lad b 1 være et estmat af β 1, osv Defner den prædkterede værd som ŷ y ˆ = a + b + + b k k Dvs. er et estmat af mddelværden 1 1 E ( Y X ) = α + β + + β 1 1 k k

6 Resdual I den sande model har v Det kan v skrve om tl Resdualet, e, er derfor et estmat af fejlleddet: Da ε erne er normalfordelte bør e erne også være det (hvs modellen da ellers er korrekt). ε ε β β α + = = ] [ 1 1 X E Y Y k k ] [ X = Y E Y ε y y e ˆ =

7 Estmaton Vores estmater, a, b 1, b 2,, b k, er fundet ved at mnmere summen af de kvadrerede resdualer: SSE = n = 1 e 2 = n ( y yˆ ) = 1 2 Metoden kaldes mndste kvadraters metode SSE står for Sum of Squared Errors SSE angver også størrelsen af den uforklarede varaton data.

8 Modelkontrol For at kunne stole på test og estmater skal v skre os, at modellens antagelser er overholdt! Antagelse: Mddelværd-strukturen modellen er E( Y X ) = α + β + + β Kan være svært at checke drekte, hvs v har mange forklarende varable. Hvs mddelværd-strukturen modellen er korrekt, så bør mddelværden af e erne være ca. nul uanset værden af. ŷ erne eller erne. Grafsk check: plot af af e mod. 1 1 ŷ k k

9 Modelkontrol Antagelse: Fejlleddene ε 1,, ε n uafhænge? Der må kke vær nogen systematsk sammenhæng mellem e erne og ŷ erne eller erne. Grafsk check: Et plot at e mod eller. Antagelse: Fejlleddene ε 1,, ε n ~ N(0,σ 2 )? Hvs sandt regner v med at e erne er crka normalfordelte. ŷ Et plot at e mod kan afsløre om varansen er konstant (homoskedatske fejlled). Et hstogram eller QQ-plot kan afsløre om e erne er normalfordelte ŷ

10 Resdualplot Resdualer Resdualer 0 eller yˆ 0 eller yˆ Homoskedastsk: Resdualerne ser ud tl at varere ufahænggt af hnanden og (eller ŷ). Resdualer Heteroskedastsk: Varansen for resdualerne ændrer sg når ændrer sg. Resdualer 0 Td 0 eller yˆ Resdualerne udvser lneær trend med tden (eller en anden varabel v kke har brugt). Dette ndkerer at td skulle nkluderes modellen. Det buede mønster ndkerer en underlæggende kke-lneær sammenhæng.

11 Eksempel: Salg og Reklame Data: n = 30 par af observatoner (,y ) Model: y = Ugentlge salg = Ugentlge reklame-budget y α + β + ε = Hvor ε ~N(0,σ 2 )

12 Resdualer SPSS I Lnear Regresson vnduet vælges Save I Save vnduet vælges Unstandardzed både under Reresduals (e erne) og ŷ Predcted Values ( erne).

13 Efter endt regresson skaber SPSS to nye søjler Data Edtor, der ndeholder resdualer ( RES_1 ) prædktoner ( PRE_1 ). Derefter kan man f lave scatter plots.

14 Scatter plot af resdualer (e erne) mod højde ( erne) (øverst) resdualer (e erne) mod prædktonerne ( erne) (nederst). ŷ Ser jo ganske usystematsk ud!

15 Hstogram af resdualer Hstogrammet burde lgne en normalfordelng. Det gør det også sådan crka så ngen problemer her

16 Normalfordelngsplot (Q-Q plot) Konstruer et kunstge data u 1,u 2,,u n som følger en normalfordelng. I et Q-Q plot plotter man u. mod e. Bemærk at både u erne og e erne er sorterede. Hvs resdualerne er normalfordelte, vl v have e u. Dvs (e,u ) lgge usystematsk omkrng en lnje med hældnng 1 og skærng 0.

17 Normalfordelngsplot (Q-Q plot) Det kunstge data (u erne) opnås ved at nddele normalfordelngen n+1 lge store stykker. Areal = 1/(n+1) u 5

18 Vælg Analyze Descrptve Statstcs Q-Q plots Ser helt fnt ud snor sg kke alt for systematsk omkrng lnjen. Punkterne lgger rmlg usystematsk omkrng lnjen: Altså ca. normalfordelt

19 Determnatons-koeffcenten R 2 Defnton R 2 SSR = = 1 SST SSE SST Fordel: Nem at fortolke: Andel af den totale varaton der er forklaret af modellen. Ulempe: R 2 vokser når v tlføjer flere forklarende varable. Dvs. ved at tlføje flere og flere forklarende varable kan v få et vlkårlgt stort R 2. Mål: V jagter den smplest mulge model, der forklarer data tlfredsstllende.

20 Justeret R 2 Defnton: R 2 = 1 SSE SST ( n k 1) ( n 1) Trade-off mellem forklarngsgrad, R 2, og antallet af parametre, k. Fordel: Vokser kun, hvs ekstra forklarende varabels forklarngsgrad er stor forhold tl antal ekstra parametre. Ulempe: Ikke samme smple fortolknng som R 2.

21 Hypotese-test Generelt vl v teste om en eller flere β er kan sættes lg nul. Det svarer tl at fjerne de tlsvarende led fra modellen. Formelle hypoteser H 0 : β 1 = = β q = 0 q β er efter eget valg H 1 : β 0 for mndst et af de q parametre Testes vha. af et F-test. Teststørrelsen F 0 og følger en F-fordelng Jo større F er jo mere krtsk for H 0. V konkluderer som sædvanlgt på baggrund af p-værd.

22 F-test detaljer for de nysgerrge Teststørrelsen er F = ( * SSE SSE) SSE q ( n k 1) SSE er summen af de kvadrerede fejl en model, hvor når β 1,, β q er med (den oprndelge model) SSE * er summen af de kvadrede fejl når β 1,, β q kke er med. Der gælder SSE * SSE. Intuton: Jo større forskel (SSE * -SSE) jo mere betyder β 1,, β q for modellen og jo mndre tror v på F.

23 F-fordelngen F-fordelng f( F ) Areal = p-værd F 4 5 F

24 Modelform Sdst så v på en model for forbruget af gas (Gas) forklaret ved temperatur (Temp) og om huset var soleret (Insulate) Y α + β + β + β + ε = Temp Temp Før Før Temp, Før Temp, Før Her er Før dummy varabel At skrve formlen op kan hurtgt blve uoverskuelgt. Modellens modelform kan skrves som Gas = Temp + Insulate + Temp*Insulate I forbndelse med analyse eller fortolknng af modellen er det stadg nyttgt at skrve den matematske formel op.

25 Modelsøgnng Formål: Fnd den smplest mulg model, der beskrver data tlfredsstllende. Kanddater: V vl kun bruge modeller der overholder det herarkske prncp: Hvs en model ndeholder en nterakton, så skal hovedeffekterne også være med. F. Hvs modellen ndeholder nteraktonen A*B, så skal den også ndeholde A og B. Hvs modellen ndeholder A*B*C, så skal A*B, A*C, B*C, A, B og C være med. Osv Nav søgnng: Gennemgå alle modeller og vælg den der er bedst efter et eller andet krtere, f R 2. Backwards søgnng: Start med en komplceret model og fjern derefter en efter en led, der kke er sgnfkante.

26 Backwards søgnng Backwards-søgnng: Startmodel: Vælg tl at starte med en model, der ndeholder alle varable og vekselvrknnger, der menes at være (faglgt) nteressante som forklarng den afhængge varabel. Undgå at specfcere en model der er vanskelg at fortolke. Test hvlke led modellen, der kan fjernes. Mndst sgnfkante led fjernes, dvs F-test med højest p-værd, dog så Det herarkske prncp er overholdt p-værden > α (typsk α = 0.05) Reduceret model: Når et led er fjernet udføres en ny analyse på den nye og mndre model. Slutmodel: Når kke flere led kan fjernes har v vores slutmodel. Forbehold: Før hver test-runde skal man afklare om modellens antagelser er opfyldt ellers kan man kke stole på p-værderne.

27 Stort Eksempel: Bolgprser prce: Bolgens prs $ sqft: Bolgens størrelse kvadrat-fod bedrooms: Antal soveværelser baths: Antal badeværelser garage: Antal bler, der er plads tl garagen.

28 Eksploratv analyse

29 Krydstabel garage vs bedrooms Bemærk: Mange epected counts <5, så v kan kke bruge en χ 2 test. Løsnng: Slå kategorer sammen

30 Omkodnng af Garage Omkodnng: garage = 0 tl 1 garage2 = 0 garage 2 garage2 = 1 SPSS: Transform Recode nto Dfferent Varables

31 Omkodnng af Bedrooms Omkodnng: bedroom = 1 tl 2 bedroom2 = 2 bedroom = 3 bedroom2 = 3 bedroom = 4 tl 5 bedroom2 = 4

32 Krydstabel garage2 vs bedrooms2 Hypotese: H 0 : Uafhængghed H 1 : Afhængghed Teststørrelse: χ 2 P-værd < Konkluson: V afvser H 0, dvs. der er afhængghed.

33 Logstsk Regresson Afhængg varabel garage2 Forklarende varabel prce Output: Konkluson: Prs har en betydnng, hvs modellen er god men det er modellen kke

34 Varansanalyse Afhængg: Bolgprs Forklarende: Garage2 og Bedroom2 Model(formel): y = α + β g 0 g 0, + β b2 β b2, g 0b2 + β g 0, b3 b2, b3, + + β g 0b3 g 0, b3, + ε Dummy varable: g0 = 1 garage2 = 0 ε ~ N(0, σ b2 = 1 garage2 = 2 b3 = 1 garage2 = 3 2 )

35 Modelform Slpper for detaljerne: Brug modelform Modelform: Garage2 + Bedroom2 + Garage2*Bedroom2 Denne model kaldes mættet, da alle tænkelg vekselvrknnger er medtaget. Er man ekstra doven, så skrver man kun Garage2*Bedroom2 De resterende led følger af det herarkske prncp.

36 SPSS: Test af model-led V afvser hypotesen om at vekselvrknngsleddet kan udelades. Konkluson: Prsen på bolg kan kke forklares af antal soveværelser og størrelsen på garagen alene. Et vekselvrknngsled mellem antal soveværelser og størrelsen på garagen er nødvendg. Næste skrdt burde være modelkontrol.

37 Bolgprs og Bolgareal

38 Badeværelser og Bolgprs

39 Generel Lneære Model - Startmodel Afhængg: Bolgprs Forklarende: sqft, baths og bedroom2 Modelform: sqft + baths + bedroom2 + sqft*bedroom2 + baths*bedroom2 + sqft*baths

40 Model-formel Den tlsvarende model-formel er y = α + β β β sqft* b2 sqft baths* b2 sqft, sqft, baths, + β b2, b2, baths + β baths, sqft* b3 + β sqft, baths* b3 + β b2 b3, baths, b2, + b3, + β + ε b3 b3, + ε ~ N(0, σ 2 ) b2 og b3 er dummyvarable kodet som før.

41 Modelkontrol Scatterplot af e mod ^y Godt: Usystematsk Skdt: Varansen er kke konstant. Løsnnger? Indfør prce2 = log(prce) Indfør prce2 = prce

42 Normalfordelte Resdualer Fordelngen er ldt for spds tl at være normalfordelt. Men lad det nu lgge

43 Test SPSS Ingen af nteraktonsleddene er sgnfkante! Fjerner mndst sgnfkante led (baths*sqft)

44 Reduceret Model Begge tlbageværende vekselvrknngsled er mndre sgnfkante end før ldt atypsk. V fjerner bedrooms2*baths

45 Slutmodel Nu er bedrooms2*sqrt stærkt sgnfkant! Modelsøgnngen er slut pånær modelkontrol.

46 Estmater Antal badeværelser har betydnng for prsen Lgeledes har antal soveværelser og bolgareal Prsen for en ekstra sqft afhænger af antal værelser.

47 Mn-Projekt Omfang: Ca. 30 sder (kke noget krav sådan ender det som regel) Indhold: Beskrvelse af data Opstllng af (kvaltatve) hypoteser Anvend modeller og metoder fra kurset Afleverng: Senest mandag. d. 26/11 kl. 12. pr. e-mal tl og en hard-copy tl Dorte. Eksamen: Torsdag 5. November.

Statistik II Lektion 5 Modelkontrol. Modelkontrol Modelsøgning Større eksempel

Statistik II Lektion 5 Modelkontrol. Modelkontrol Modelsøgning Større eksempel Statstk II Lekton 5 Modelkontrol Modelkontrol Modelsøgnng Større eksempel Generel Lneær Model Y afhængg skala varabel 1,, k forklarende varable, skala eller bnære Model: Mddelværden af Y gvet =( 1,, k

Læs mere

Statistik Lektion 15 Mere Lineær Regression. Modelkontrol Prædiktion Multipel Lineære Regression

Statistik Lektion 15 Mere Lineær Regression. Modelkontrol Prædiktion Multipel Lineære Regression Statstk Lekton 15 Mere Lneær Regresson Modelkontrol Prædkton Multpel Lneære Regresson Smpel Lneær Regresson - repetton Spørgsmål: Afhænger y lneært af x?. Model: y = β + β x + ε ε d N(0, σ 0 1 2 ) Systematsk

Læs mere

Anvendt Statistik Lektion 10. Regression med både kvantitative og kvalitative forklarende variable Modelkontrol

Anvendt Statistik Lektion 10. Regression med både kvantitative og kvalitative forklarende variable Modelkontrol Anvendt Statstk Lekton 0 Regresson med både kvanttatve og kvaltatve forklarende varable Modelkontrol Opsummerng I forbndelse med multpel lneær regresson så v på modeller på formen E y] = α... [ 3 3 4 4

Læs mere

Opsamling. Simpel/Multipel Lineær Regression Logistisk Regression Ikke-parametriske Metoder Chi-i-anden Test

Opsamling. Simpel/Multipel Lineær Regression Logistisk Regression Ikke-parametriske Metoder Chi-i-anden Test Opsamlng Smpel/Multpel Lneær Regresson Logstsk Regresson Ikke-parametrske Metoder Ch--anden Test Opbygnng af statstsk model Specfcer model Lgnnger og antagelser Estmer parametre Modelkontrol Er modellen

Læs mere

Anvendt Statistik Lektion 10. Regression med både kvantitative og kvalitative forklarende variable Modelsøgning Modelkontrol

Anvendt Statistik Lektion 10. Regression med både kvantitative og kvalitative forklarende variable Modelsøgning Modelkontrol Anvendt Statstk Lekton 0 Regresson med både kvanttatve og kvaltatve forklarende varable Modelsøgnng Modelkontrol Opsummerng I forbndelse med multpel lneær regresson så v på modeller på formen E[ y] = α...

Læs mere

Statistik II Lektion 4 Generelle Lineære Modeller. Simpel Lineær Regression Multipel Lineær Regression Flersidet Variansanalyse (ANOVA)

Statistik II Lektion 4 Generelle Lineære Modeller. Simpel Lineær Regression Multipel Lineær Regression Flersidet Variansanalyse (ANOVA) Statstk II Lekton 4 Generelle Lneære Modeller Smpel Lneær Regresson Multpel Lneær Regresson Flersdet Varansanalyse (ANOVA) Logstsk regresson Y afhængg bnær varabel X 1,,X k forklarende varable, skala eller

Læs mere

Statikstik II 4. Lektion. Generelle Lineære Modeller

Statikstik II 4. Lektion. Generelle Lineære Modeller Statkstk II 4. Lekton Generelle Lneære Modeller Generel Lneær Model Y afhængg skala varabel X 1,,X k forklarende varable, skala eller bnære Model: Mddelværden af Y gvet X + k = E( Y X ) = α + β x + + β

Læs mere

Statikstik II 3. Lektion. Multipel Logistisk regression Generelle Lineære Modeller

Statikstik II 3. Lektion. Multipel Logistisk regression Generelle Lineære Modeller Statkstk II 3. Lekton Multpel Logstsk regresson Generelle Lneære Modeller Defntoner: Repetton Sandsynlghed for at Ja tl at være en god læser gvet at man er en dreng skrves: P( God læser Ja Køn Dreng) Sandsynlghed

Læs mere

Økonometri lektion 7 Multipel Lineær Regression. Testbaseret Modelkontrol

Økonometri lektion 7 Multipel Lineær Regression. Testbaseret Modelkontrol Økonometr lekton 7 Multpel Lneær Regresson Testbaseret Modelkontrol MLR Model på Matrxform Den multple lneære regressons model kan skrves som X y = Xβ + Hvor og Mndste kvadraters metode gver følgende estmat

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Program for dag: Kvanttatve metoder Den smple regressonsmodel 9. februar 007 Regressonsmodel med en forklarende varabel (W..3-5) Varansanalyse og goodness of ft Enheder og funktonel form af varabler modellen

Læs mere

Regressionsanalyse. Epidemiologi og Biostatistik. 1.Simpel lineær regression (Kapitel 11) systolisk blodtryk og alder

Regressionsanalyse. Epidemiologi og Biostatistik. 1.Simpel lineær regression (Kapitel 11) systolisk blodtryk og alder Regressonsanalyse Epdemolog og Bostatstk Mogens Erlandsen, Insttut for Bostatstk Uge, torsdag (forelæsnng) 1.Smpel lneær regresson (Kaptel 11) systolsk blodtryk og alder. Multpel lneær regresson (Kaptel

Læs mere

Økonometri 1. Heteroskedasticitet 27. oktober Økonometri 1: F12 1

Økonometri 1. Heteroskedasticitet 27. oktober Økonometri 1: F12 1 Økonometr 1 Heteroskedastctet 27. oktober 2006 Økonometr 1: F12 1 Dagens program: Heteroskedastctet (Wooldrdge kap. 8.3-4) Sdste gang: I dag: Konsekvenser af heteroskedastctet for OLS Korrekton af varansen

Læs mere

Statistik Lektion 4. Variansanalyse Modelkontrol

Statistik Lektion 4. Variansanalyse Modelkontrol Statistik Lektion 4 Variansanalyse Modelkontrol Eksempel Spørgsmål: Er der sammenhæng mellem udetemperaturen og forbruget af gas? Y : Forbrug af gas (gas) X : Udetemperatur (temp) Scatterplot SPSS: Estimerede

Læs mere

Lineær regressionsanalyse8

Lineær regressionsanalyse8 Lneær regressonsanalyse8 336 8. Lneær regressonsanalyse Lneær regressonsanalyse Fra kaptel 4 Mat C-bogen ved v, at man kan ndtegne en række punkter et koordnatsystem, for at afgøre, hvor tæt på en ret

Læs mere

Simpel Lineær Regression - repetition

Simpel Lineær Regression - repetition Smpel Leær Regresso - repetto Spørgsmål: Afhæger leært af?. Model: β + β + ε ε d N(0, σ 0 ) Sstematsk kompoet + Stokastsk kompoet Estmato - repetto Vha. Mdste Kvadraters Metode fder v regressosle hvor

Læs mere

Økonometri 1 Efterår 2006 Ugeseddel 9

Økonometri 1 Efterår 2006 Ugeseddel 9 Økonometr 1 Efterår 006 Ugeseddel 9 Program for øvelserne: Opsamlng på Ugeseddel 8 Gruppearbejde SAS øvelser Ugeseddel 9 består at undersøge, om der er heteroskedastctet vores model for væksten og så fald,

Læs mere

Morten Frydenberg Biostatistik version dato:

Morten Frydenberg Biostatistik version dato: Morten Frydenberg Bostatstk verson dato: -4- Bostatstk uge mandag Morten Frydenberg, Afdelng for Bostatstk Resume: Hvad har v været gennem ndtl nu Lneær (normal) regresson en kontnuert forklarende varabel

Læs mere

6. SEMESTER Epidemiologi og Biostatistik Opgaver til 3. uge, fredag

6. SEMESTER Epidemiologi og Biostatistik Opgaver til 3. uge, fredag Afdelng for Epdemolog Afdelng for Bostatstk 6. SEESTER Epdemolog og Bostatstk Opgaver tl 3. uge, fredag Data tl denne opgave stammer fra. Bland: An Introducton to edcal Statstcs (Exercse 11E ). V har hentet

Læs mere

Bilag 6: Økonometriske

Bilag 6: Økonometriske Marts 2015 Blag 6: Økonometrske analyser af energselskabernes omkostnnger tl energsparendsatsen Energstyrelsen Indholdsfortegnelse 1. Paneldataanalyse 3 Specfkaton af anvendte panel regressonsmodeller

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Dagens program: Heteroskedastctet (Wooldrdge kap. 8.4) Kvanttatve metoder Heteroskedastctet 6. aprl 007 Sdste gang: Konsekvenser af heteroskedastctet for OLS Whte s korrekton af OLS varansen Test for heteroskedastctet

Læs mere

Økonometri 1. Lineær sandsynlighedsmodel. Hvad nu hvis den afhængige variabel er en kvalitativ variabel (med to kategorier)?

Økonometri 1. Lineær sandsynlighedsmodel. Hvad nu hvis den afhængige variabel er en kvalitativ variabel (med to kategorier)? Dagens program Økonometr Heteroskedastctet 6. oktober 004 Hovedemnet for denne forelæsnng er heteroskedastctet (kap. 8.-8.3) Lneære sandsynlghedsmodel (kap 7.5) Konsekvenser af heteroskedastctet Hvordan

Læs mere

Prøveeksamen Indtjening, konkurrencesituation og produktudvikling i danske virksomheder Kommenteret vejledende besvarelse

Prøveeksamen Indtjening, konkurrencesituation og produktudvikling i danske virksomheder Kommenteret vejledende besvarelse Økonometr Prøveeksamen Indtjenng, konkurrencestuaton og produktudvklng danske vrksomheder Kommenteret vejledende besvarelse Resultaterne denne besvarelse er fremkommet ved brug af eksamensnummer 7. Dne

Læs mere

Statistik Lektion 14 Simpel Lineær Regression. Simpel lineær regression Mindste kvadraters metode Kovarians og Korrelation

Statistik Lektion 14 Simpel Lineær Regression. Simpel lineær regression Mindste kvadraters metode Kovarians og Korrelation Statstk Lekto 4 Smpel Leær Regresso Smpel leær regresso Mdste kvadraters metode Kovaras og Korrelato Scatterplot Scatterplot kf Advertsg Epedtures ( ad Sales ( Et scatterplot vser par (, af observatoer.

Læs mere

Landbrugets efterspørgsel efter Kunstgødning. Angelo Andersen

Landbrugets efterspørgsel efter Kunstgødning. Angelo Andersen Landbrugets efterspørgsel efter Kunstgødnng Angelo Andersen.. Problemformulerng I forbndelse med ønsket om at reducere kvælstof udlednngen fra landbruget kan det være nyttgt at undersøge hvordan landbruget

Læs mere

Logistisk regression. Logistisk regression. Probit model Fortolkning udfra latent variabel. Odds/Odds ratio

Logistisk regression. Logistisk regression. Probit model Fortolkning udfra latent variabel. Odds/Odds ratio Logstsk regresson Logstsk regresson Odds/Odds rato Probt model Fortolknng udfra latent varabel En varabel Y parameter p P( Y 1 Bernoull/bnomal fordelngen 1 1 p. er Bernoull- fordelt med sandsynlgheds hvs

Læs mere

Økonometri 1 Efterår 2006 Ugeseddel 13

Økonometri 1 Efterår 2006 Ugeseddel 13 Økonometr 1 Efterår 2006 Ugeseddel 13 Prram for øvelserne: Gruppearbejde plenumdskusson SAS øvelser Øvelsesopgave: Vækstregressoner (fortsat) Ugeseddel 13 fortsætter den emprske analyse af vækstregressonen

Læs mere

Anvendt Statistik Lektion 8. Multipel Lineær Regression

Anvendt Statistik Lektion 8. Multipel Lineær Regression Anvendt Statistik Lektion 8 Multipel Lineær Regression 1 Simpel Lineær Regression (SLR) y Sammenhængen mellem den afhængige variabel (y) og den forklarende variabel (x) beskrives vha. en SLR: ligger ikke

Læs mere

Indtjening, konkurrencesituation og produktudvikling i danske virksomheder

Indtjening, konkurrencesituation og produktudvikling i danske virksomheder Kvanttatve metoder 2 Forår 2007 Oblgatorsk opgave 2 Indtjenng, konkurrencestuaton og produktudvklng danske vrksomheder Opgavens prmære formål er at lgne formen på tag-hjem delen af eksamensopgaven. Der

Læs mere

Vægtet model. Landmålingens fejlteori - Lektion4 - Vægte og Fordeling af slutfejl. Vægte. Vægte: Eksempel. Definition: Vægtrelationen

Vægtet model. Landmålingens fejlteori - Lektion4 - Vægte og Fordeling af slutfejl. Vægte. Vægte: Eksempel. Definition: Vægtrelationen Vægtet model Landmålngens fejlteor Lekton 4 Vægtet gennemsnt Fordelng af slutfejl - kkb@mathaaudk http://peoplemathaaudk/ kkb/undervsnng/lf3 Insttut for Matematske Fag Aalborg Unverstet Gvet n uafhængge

Læs mere

Repetition. Forårets højdepunkter

Repetition. Forårets højdepunkter Repetto Forårets højdepukter Forårets højdepukter Smpel Leær Regresso Smpel leær regresso: Mdste kvadraters metode Kovaras og Korrelato Scatterplot Scatterplot kf Advertsg Epedtures (X ad Sales (Y Et scatterplot

Læs mere

Anvendt Statistik Lektion 7. Simpel Lineær Regression

Anvendt Statistik Lektion 7. Simpel Lineær Regression Anvendt Statistik Lektion 7 Simpel Lineær Regression 1 Er der en sammenhæng? Plot af mordraten () mod fattigdomsraten (): Scatterplot Afhænger mordraten af fattigdomsraten? 2 Scatterplot Et scatterplot

Læs mere

Kvantitative metoder 2 Forår 2007 Ugeseddel 10

Kvantitative metoder 2 Forår 2007 Ugeseddel 10 Kvanttatve metoder 2 Forår 2007 Ugeseddel 0 Program for øvelserne: Gennemgang af teoropgave fra Ugesedel 9 Gruppearbejde og plenumdskusson SAS øvelser, spørgsmål -4. Sdste øvelsesgang (uge 2): SAS øvelser,

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Kvanttatve metoder 2 Instrumentvarabel estmaton 14. maj 2007 KM2: F25 1 y = cy ( c 0) Plan for resten af gennemgangen F25: Instrumentvarabel (IV) estmaton: Introdukton tl endogentet og nstrumentvarabler

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 y = cy ( c 0) Plan for resten af gennemgangen Kvanttatve metoder Instrumentvarabel estmaton 4. maj 007 F5: Instrumentvarabel (IV) estmaton: Introdukton tl endogentet og nstrumentvarabler En regressor,

Læs mere

Fagblok 4b: Regnskab og finansiering 2. del Hjemmeopgave - 28.01 2005 kl. 14.00 til 31.01 2004 kl. 14.00

Fagblok 4b: Regnskab og finansiering 2. del Hjemmeopgave - 28.01 2005 kl. 14.00 til 31.01 2004 kl. 14.00 Fagblok 4b: Regnskab og fnanserng 2. del Hjemmeopgave - 28.01 2005 kl. 14.00 tl 31.01 2004 kl. 14.00 Dette opgavesæt ndeholder følgende: Opgave 1 (vægt 50%) p. 2-4 Opgave 2 (vægt 25%) samt opgave 3 (vægt

Læs mere

Kvantitative metoder 2 Forår 2007 Ugeseddel 9

Kvantitative metoder 2 Forår 2007 Ugeseddel 9 Kvanttatve metoder 2 Forår 2007 Ugeseddel 9 Program for øvelserne: Introdukton af problemstllng og datasæt Gruppearbejde SAS øvelser Paneldata for tlbagetræknngsalder Ugesedlen analyserer et datasæt med

Læs mere

Binomialfordelingen. Erik Vestergaard

Binomialfordelingen. Erik Vestergaard Bnomalfordelngen Erk Vestergaard Erk Vestergaard www.matematkfysk.dk Erk Vestergaard,. Blleder: Forsde: Stock.com/gnevre Sde : Stock.com/jaroon Sde : Stock.com/pod Desuden egne fotos og llustratoner. Erk

Læs mere

Multipel Lineær Regression

Multipel Lineær Regression Multipel Lineær Regression Trin i opbygningen af en statistisk model Repetition af MLR fra sidst Modelkontrol Prædiktion Kategoriske forklarende variable og MLR Opbygning af statistisk model Specificer

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Program for dag: Kvanttatve metoder Opsamlng vedr. nferens uden MLR.5: Beregnng af robuste standardfejl og kovarans under heteroskedastctet (W8.) W.6: Flere emner en multpel regressonsmodel Inferens den

Læs mere

Økonometri 1. Lineær sandsynlighedsmodel (Wooldridge 8.5). Dagens program: Heteroskedasticitet 30. oktober 2006

Økonometri 1. Lineær sandsynlighedsmodel (Wooldridge 8.5). Dagens program: Heteroskedasticitet 30. oktober 2006 Dagens program: Øonometr 1 Heterosedastctet 30. otober 006 Effcent estmaton under heterosedastctet (Wooldrdge 8.4): Sdste gang: Kendte vægte - Weghted Least Squares (WLS) Generalzed Least Squares (GLS)

Læs mere

Økonometri 1. Avancerede Paneldata Metoder I 24.november F18: Avancerede Paneldata Metoder I 1

Økonometri 1. Avancerede Paneldata Metoder I 24.november F18: Avancerede Paneldata Metoder I 1 Økonometr 1 Avancerede Paneldata Metoder I 24.november 2006 F18: Avancerede Paneldata Metoder I 1 Paneldatametoder Sdste gang: Paneldata begreber og to-perode tlfældet (kap 13.3-4) Uobserveret effekt modellen:

Læs mere

Forberedelse til den obligatoriske selvvalgte opgave

Forberedelse til den obligatoriske selvvalgte opgave MnFremtd tl OSO 10. klasse Forberedelse tl den oblgatorske selvvalgte opgave Emnet for dn oblgatorske selvvalgte opgave (OSO) skal tage udgangspunkt dn uddannelsesplan og dt valg af ungdomsuddannelse.

Læs mere

Udvikling af en metode til effektvurdering af Miljøstyrelsens Kemikalieinspektions tilsyn og kontrol

Udvikling af en metode til effektvurdering af Miljøstyrelsens Kemikalieinspektions tilsyn og kontrol Udvklng af en metode tl effektvurderng af Mljøstyrelsens Kemkalenspektons tlsyn og kontrol Orenterng fra Mljøstyrelsen Nr. 10 2010 Indhold 1 FORORD 5 2 EXECUTIVE SUMMARY 7 3 INDLEDNING 11 3.1 AFGRÆNSNING

Læs mere

Løsninger til kapitel 12

Løsninger til kapitel 12 Løsnnger tl kaptel 1 Opgave 1.1 HypoStat gver umddelbart: ft = 7 En P Teststørrelse H 0 : Alle P passer mandag 80 0,14857 48,8571 3,89737 H 1 : Ikke alle P passer trsdag 30 0,14857 48,8571 1,48899 onsdag

Læs mere

Beregning af strukturel arbejdsstyrke

Beregning af strukturel arbejdsstyrke VERION: d. 2.1.215 ofe Andersen og Jesper Lnaa Beregnng af strukturel arbedsstyrke Der er betydelg forskel Fnansmnsterets (FM) og Det Økonomske Råds (DØR) vurderng af det aktuelle output gap. Den væsentlgste

Læs mere

Økonometri 1. Avancerede Paneldata Metoder II Introduktion til Instrumentvariabler 27. november 2006

Økonometri 1. Avancerede Paneldata Metoder II Introduktion til Instrumentvariabler 27. november 2006 Økonometr 1 Avancerede Paneldata Metoder II Introdukton tl Instrumentvarabler 27. november 2006 Paneldata metoder Sdste gang: Paneldata med to eller flere peroder og fxed effects estmaton. Første-dfferens

Læs mere

Inertimoment for arealer

Inertimoment for arealer 13-08-006 Søren Rs nertmoment nertmoment for arealer Generelt Defntonen på nertmoment kan beskrves som Hvor trægt det er at få et legeme tl at rotere eller Hvor stort et moment der skal tlføres et legeme

Læs mere

Økonometri 1. Funktionel form. Funktionel form (fortsat) Dagens program. Den simple regressionsmodel 14. september 2005

Økonometri 1. Funktionel form. Funktionel form (fortsat) Dagens program. Den simple regressionsmodel 14. september 2005 Dages program Økoometr De smple regressosmodel 4. september 5 Dee forelæsg drejer sg stadg om de smple regressosmodel (Wooldrdge kap.4-.6) Fuktoel form Hvorår er OLS mddelret? Varase på OLS estmatore Regressosmodelle

Læs mere

Brugerhåndbog. Del IX. Formodel til beregning af udlandsskøn

Brugerhåndbog. Del IX. Formodel til beregning af udlandsskøn Brugerhåndbog Del IX Formodel tl beregnng af udlandsskøn September 1999 Formodel tl beregnng af udlandsskøn 3 Formodel tl beregnng af udlandsskøn 1. Indlednng FUSK er en Formodel tl beregnng af UdlandsSKøn.

Læs mere

Statistik Lektion 16 Multipel Lineær Regression

Statistik Lektion 16 Multipel Lineær Regression Statistik Lektion 6 Multipel Lineær Regression Trin i opbygningen af en statistisk model Repetition af MLR fra sidst Modelkontrol Prædiktion Kategoriske forklarende variable og MLR Opbygning af statistisk

Læs mere

Tabsberegninger i Elsam-sagen

Tabsberegninger i Elsam-sagen Tabsberegnnger Elsam-sagen Resumé: Dette notat beskrver, hvordan beregnngen af tab foregår. Første del beskrver spot tabene, mens anden del omhandler de afledte fnanselle tab. Indhold Generelt Tab spot

Læs mere

Luftfartens vilkår i Skandinavien

Luftfartens vilkår i Skandinavien Luftfartens vlkår Skandnaven - Prsens betydnng for valg af transportform Af Mette Bøgelund og Mkkel Egede Brkeland, COWI Trafkdage på Aalborg Unverstet 2000 1 Luftfartens vlkår Skandnaven - Prsens betydnng

Læs mere

Økonometri 1. For mange variable i modellen. For få variable. Dagens program. Den multiple regressionsmodel 21. september 2004

Økonometri 1. For mange variable i modellen. For få variable. Dagens program. Den multiple regressionsmodel 21. september 2004 Dages program Økoometr De multple regressosmodel. september 004 Emet for dee forelæsg er stadg de multple regressosmodel (Wooldrdge kap. 3.4-3.5) Praktske bemærkg Opsamlg fra sdst Irrelevate varable og

Læs mere

Analysestrategi. Lektion 7 slides kompileret 27. oktober 200315:24 p.1/17

Analysestrategi. Lektion 7 slides kompileret 27. oktober 200315:24 p.1/17 nalysestrategi Vælg statistisk model. Estimere parametre i model. fx. lineær regression Udføre modelkontrol beskriver modellen data tilstrækkelig godt og er modellens antagelser opfyldte fx. vha. residualanalyse

Læs mere

Vægtet model. Landmålingens fejlteori - Lektion4 - Vægte og Fordeling af slutfejl. Vægte. Vægte: Eksempel. Definition: Vægtrelationen

Vægtet model. Landmålingens fejlteori - Lektion4 - Vægte og Fordeling af slutfejl. Vægte. Vægte: Eksempel. Definition: Vægtrelationen Vægtet model Landmålngens fejlteor Lekton 4 Vægtet gennemsnt Fordelng af slutfejl - kkb@mathaaudk http://peoplemathaaudk/ kkb/undervsnng/lf Gvet n uafhængge målnger x,, x n af n størrelser µ,, µ n Målnger

Læs mere

Validering og test af stokastisk trafikmodel

Validering og test af stokastisk trafikmodel Valderng og test af stokastsk trafkmodel Maken Vldrk Sørensen M.Sc., PhDstud. Otto Anker Nelsen Cv.Ing., PhD, Professor Danmarks Teknske Unverstet/ Banestyrelsen Rådgvnng 1. Indlednng Trafkmodeller har

Læs mere

Husholdningsbudgetberegner

Husholdningsbudgetberegner Chrstophe Kolodzejczyk & Ncola Krstensen Husholdnngsbudgetberegner En model for husholdnngers daglgvareforbrug udarbejdet for Penge- og Pensonspanelet Publkatonen Husholdnngsbudgetberegner En model for

Læs mere

Simpel Lineær Regression. Opsplitning af variationen Determinations koefficient Variansanalyse F-test Model-kontrol

Simpel Lineær Regression. Opsplitning af variationen Determinations koefficient Variansanalyse F-test Model-kontrol Simpel Lieær Regressio Opsplitig af variatioe Determiatios koefficiet Variasaalse F-test Model-kotrol Opbgig af statistisk model Specificer model Ligiger og atagelser Estimer parametre Modelkotrol Er modelle

Læs mere

Økonometri lektion 5 Multipel Lineær Regression. Inferens Modelkontrol Prædiktion

Økonometri lektion 5 Multipel Lineær Regression. Inferens Modelkontrol Prædiktion Økonometri lektion 5 Multipel Lineær Regression Inferens Modelkontrol Prædiktion Multipel Lineær Regression Data: Sæt af oservationer (x i, x i,, x ki, y i, i,,n y i er den afhængige variael x i, x i,,

Læs mere

Vi ønsker også at teste hypoteser om parametrene. F.eks: Kan µ tænkes at være 0 (eller anden fast, kendt værdi)? Eksempel: dollarkurser

Vi ønsker også at teste hypoteser om parametrene. F.eks: Kan µ tænkes at være 0 (eller anden fast, kendt værdi)? Eksempel: dollarkurser Uge 37 I Teoretsk Statstk, 9.sept. 003. Fordelger kyttet tl N-ford. Gvet: uafhægge observatoer af samme N(µ,σ )-fordelte stokastske varabel. Formelt: X,X,,X uafhægge, alle N(µ,σ )-fordelt. Mddelværd µ

Læs mere

Nøglebegreber: Objektivfunktion, vægtning af residualer, optimeringsalgoritmer, parameterusikkerhed og korrelation, vurdering af kalibreringsresultat.

Nøglebegreber: Objektivfunktion, vægtning af residualer, optimeringsalgoritmer, parameterusikkerhed og korrelation, vurdering af kalibreringsresultat. Håndbog grundvandsmodellerng, Sonnenborg & Henrksen (eds 5/8 GEUS Kaptel 14 IVERS MODELLERIG Torben Obel Sonnenborg Geologsk Insttut, Københavns Unverstet Anker Laer Høberg Hydrologsk Afdelng, GEUS øglebegreber:

Læs mere

PRODUKTIONSEFFEKTEN AF AVL FOR HANLIG FERTILITET I DUROC

PRODUKTIONSEFFEKTEN AF AVL FOR HANLIG FERTILITET I DUROC PRODUKTIONSEFFEKTEN AF AVL FOR HANLIG FERTILITET I DUROC MEDDELELSE NR. 1075 Vrknngsgraden (gennemslaget) tl en produktonsbesætnng for avlsværdtallet for hanlg fertltet Duroc blev fundet tl 1,50, hvlket

Læs mere

Antag X 1,..., X n stokastiske variable med fælles middelværdi µ og varians σ 2. Hvis µ er ukendt estimeres σ 2 ved 1/36.

Antag X 1,..., X n stokastiske variable med fælles middelværdi µ og varians σ 2. Hvis µ er ukendt estimeres σ 2 ved 1/36. Estmaton af varans/sprednng Landmålngens fejlteor Lekton 4 Vægtet gennemsnt Fordelng af slutfejl - rw@math.aau.dk Insttut for Matematske Fag Aalborg Unverstet Antag X,..., X n stokastske varable med fælles

Læs mere

Økonometri: Lektion 5. Multipel Lineær Regression: Interaktion, log-transformerede data, kategoriske forklarende variable, modelkontrol

Økonometri: Lektion 5. Multipel Lineær Regression: Interaktion, log-transformerede data, kategoriske forklarende variable, modelkontrol Økonometri: Lektion 5 Multipel Lineær Regression: Interaktion, log-transformerede data, kategoriske forklarende variable, modelkontrol 1 / 35 Veksekvirkning: Motivation Vi har set på modeller som Price

Læs mere

Økonomisk Kandidateksamen 2005II Økonometri 1. Lønpræmier

Økonomisk Kandidateksamen 2005II Økonometri 1. Lønpræmier Økonomsk Kanddateksamen 005II Økonometr 1 Lønpræmer Praktske anvsnnger tl ndvduel tag-hjem eksamen Økonometr 1: Start med at skre dg at du kan få adgang tl data og blag (se næste sde). Opgaven skal besvares

Læs mere

Sandsynlighedsregning 12. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 12. forelæsning Bo Friis Nielsen Sandsynlghedsregnng. forelæsnng Bo Frs Nelsen Matematk og Computer Scence Danmarks Teknske Unverstet 800 Kgs. Lyngby Danmark Emal: bfn@mm.dtu.dk Dagens nye emner afsnt 6.5 Den bvarate normalfordelng Y

Læs mere

Eksempel: PEFR. Epidemiologi og biostatistik. Uge 1, tirsdag. Erik Parner, Institut for Biostatistik.

Eksempel: PEFR. Epidemiologi og biostatistik. Uge 1, tirsdag. Erik Parner, Institut for Biostatistik. Epdemolog og bostatstk. Uge, trsdag. Erk Parer, Isttut for Bostatstk. Geerelt om statstk Dataaalyse - Deskrptv statstk - Statstsk feres Sammelgg af to grupper med kotuerte data - Geemst og spredg - Parametre

Læs mere

Statistik 9. gang 1 REGRESSIONSANALYSE. Korrelation (kontrol af model) Regression (tilpasning af model)

Statistik 9. gang 1 REGRESSIONSANALYSE. Korrelation (kontrol af model) Regression (tilpasning af model) Statstk 9. gag REGRESSIONSANALYSE Korrelato kotrol af model Regresso tlpasg af model Statstk 9. gag KORRELATIONS ANALYSE. Grad af fælles varato mellem X og Y. Område og fordelg af sample data 3. Optræde

Læs mere

Estimation af CES - forbrugssystemet med og uden dynamik: -fcf/fcfv sammenhold med fcv/fcfv -fct/fcts sammenhold med fcs/fcts

Estimation af CES - forbrugssystemet med og uden dynamik: -fcf/fcfv sammenhold med fcv/fcfv -fct/fcts sammenhold med fcs/fcts Danmarks Statstk MODELGRUPPEN Arbejdspapr [udkast] Andreas Østergaard Iversen 140609 Estmaton af CES - forbrugssystemet med og uden dynamk: -fcf/fcfv sammenhold med fcv/fcfv -fct/fcts sammenhold med fcs/fcts

Læs mere

Rettevejledning til Økonomisk Kandidateksamen 2005II, Økonometri 1

Rettevejledning til Økonomisk Kandidateksamen 2005II, Økonometri 1 Rettevejlednng tl Økonomsk Kanddateksamen 005II, Økonometr 1 Vurderngsgrundlaget er selve opgavebesvarelsen og blaget, nklusve det afleverede SAS program. Materalet på dskette/cd bedømmes som sådan kke,

Læs mere

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA) Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:

Læs mere

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA) Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:

Læs mere

Stadig ligeløn blandt dimittender

Stadig ligeløn blandt dimittender Stadg lgeløn blandt dmttender Kvnder og mænd får stadg stort set lge meget løn deres første job, vser DJs dmttendstatstk for oktober 2013. Og den gennemsntlge startløn er nu på den pæne sde af 32.000 kr.

Læs mere

Note til Generel Ligevægt

Note til Generel Ligevægt Mkro. år. semester Note tl Generel Lgevægt Varan kap. 9 Generel lgevægt bytteøkonom Modsat partel lgevægt betragter v nu hele økonomen på én gang; v betragter kke længere nogle prser for gvet etc. Den

Læs mere

1. Beskrivelse af opgaver inden for øvrig folkeskolevirksomhed

1. Beskrivelse af opgaver inden for øvrig folkeskolevirksomhed Bevllngsområde 30.32 Øvrg folkeskolevrksomhed Udvalg Børne- og Skoleudvalget 1. Beskrvelse opgaver nden for øvrg folkeskolevrksomhed Området omfatter aktvteter tlknytnng tl den almndelge folkeskoledrft

Læs mere

Forelæsning 11: Kapitel 11: Regressionsanalyse

Forelæsning 11: Kapitel 11: Regressionsanalyse Kursus 02402 Introduktion til Statistik Forelæsning 11: Kapitel 11: Regressionsanalyse Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression

Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression Logistisk Regression Repetition Fortolkning af odds Test i logistisk regression Logisitks Regression: Repetition Y {0,} binær afhængig variabel X skala forklarende variabel π P( Y X x) Odds(Y X x) π /(-π

Læs mere

Oversigt. 1 Gennemgående eksempel: Højde og vægt. 2 Korrelation. 3 Regressionsanalyse (kap 11) 4 Mindste kvadraters metode

Oversigt. 1 Gennemgående eksempel: Højde og vægt. 2 Korrelation. 3 Regressionsanalyse (kap 11) 4 Mindste kvadraters metode Kursus 02402 Introduktion til Statistik Forelæsning 11: Kapitel 11: Regressionsanalyse Oversigt 1 Gennemgående eksempel: Højde og vægt 2 Korrelation 3 Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse

Læs mere

To-sidet variansanalyse

To-sidet variansanalyse Program 1. To-sidet variansanalyse 2. Hierarkisk princip 3. Tre (og flere) sidet variansanalyse 4. Variansanalyse med blocking 5. Flersidet variansanalyse med tilfældige faktorer 6. En oversigtsslide til

Læs mere

2. Sandsynlighedsregning

2. Sandsynlighedsregning 2. Sandsynlghedsregnng 2.1. Krav tl sandsynlgheder (Sandsynlghedens aksomer) Hvs A og B er hændelser, er en sandsynlghed, hvs: 1. 0 ( A) 1 n 2. ( A ) 1 1 3. ( A B) ( A) + ( B), hvs A og B ngen udfald har

Læs mere

Indtjening, konkurrencesituation og produktudvikling i danske virksomheder

Indtjening, konkurrencesituation og produktudvikling i danske virksomheder Økonometr 1 Efterår 2006 Ugeseddel 10: Prøveeksamen Indtjenng, konkurrencestuaton og produktudvklng danske vrksomheder Om opgavens formål: Opgavesættets prmære formål er - så vdt mulgt - at lgne formen

Læs mere

Fysik 3. Indhold. 1. Sandsynlighedsteori

Fysik 3. Indhold. 1. Sandsynlighedsteori Fysk 3 Indhold Termodynamk John Nclasen 1. Sandsynlghedsteor 1.1 Symboler 1.2 Boolsk Algebra 1.3 Betngede Udsagn 1.4 Regneregler 1.5 Bayes' formel 2. Fordelnger 2.1 Symboler 2.2 Bnomal Fordelngen 2.3 ultnomal

Læs mere

Notat om porteføljemodeller

Notat om porteføljemodeller Notat om porteføljemodeller Svend Jakobsen 1 Insttut for fnanserng Handelshøjskolen Århus 15. februar 2004 1 mndre modfkatoner af Mkkel Svenstrup 1 INDLEDNING 1 1 Indlednng Dette notat ndeholder en opsummerng

Læs mere

HVIS FOLK OMKRING DIG IKKE VIL LYTTE, SÅ KNÆL FOR DEM OG BED OM TILGIVELSE, THI SKYLDEN ER DIN. Fjordor Dostojevskij

HVIS FOLK OMKRING DIG IKKE VIL LYTTE, SÅ KNÆL FOR DEM OG BED OM TILGIVELSE, THI SKYLDEN ER DIN. Fjordor Dostojevskij HVIS FOLK OMKRING DIG IKKE VIL LYTTE, SÅ KNÆL FOR DEM OG BED OM TILGIVELSE, THI SKYLDEN ER DIN. Fjordor Dostojevskj Den store russske forfatter tænkte naturlgvs kke på markedsførng, da han skrev dsse lner.

Læs mere

Støbning af plade. Køreplan 01005 Matematik 1 - FORÅR 2005

Støbning af plade. Køreplan 01005 Matematik 1 - FORÅR 2005 Støbnng af plade Køreplan 01005 Matematk 1 - FORÅR 2005 1 Ldt hstorsk baggrund Det første menneske beboede Jorden for over 100.000 år sden. Arkæologske studer vser, at det allerede havde opdaget fænomenet

Læs mere

Elektromagnetisk induktion

Elektromagnetisk induktion Elektromagnetsme 11 Sde 1 af 8 Elektromotorsk kraft Elektromagnetsk ndukton Den elektromotorske kraft en lukket kreds er defneret som det elektromagnetske arbede pr. ladnng på en prøveladnng q, der føres

Læs mere

Økonometri: Lektion 6 Emne: Heteroskedasticitet

Økonometri: Lektion 6 Emne: Heteroskedasticitet Økonometri: Lektion 6 Emne: Heteroskedasticitet 1 / 32 Konsekvenser af Heteroskedasticitet Antag her (og i resten) at MLR.1 til MLR.4 er opfyldt. Antag MLR.5 ikke er opfyldt, dvs. vi har heteroskedastiske

Læs mere

MfA. V Udstyr. Trafikspejle. Vejregler for trafikspejles egenskaber og anvendelse. Vejdirektoratet -Vejregeludvalget Oktober 1998

MfA. V Udstyr. Trafikspejle. Vejregler for trafikspejles egenskaber og anvendelse. Vejdirektoratet -Vejregeludvalget Oktober 1998 > MfA V Udstyr Trafkspejle Vejregler for trafkspejles egenskaber og anvendelse Vejdrektoratet -Vejregeludvalget Oktober 1998 Vejreglernes struktur I henhold tl 6, stk. 1 lov om offentlge veje (Trafkmnsterets

Læs mere

Variansanalyse (ANOVA) Repetition, ANOVA Tjek af model antagelser Konfidensintervaller for middelværdierne Tukey s test for parvise sammenligninger

Variansanalyse (ANOVA) Repetition, ANOVA Tjek af model antagelser Konfidensintervaller for middelværdierne Tukey s test for parvise sammenligninger Vaansanalyse (ANOVA) Repetton, ANOVA Tjek af model antagelse Konfdensntevalle fo mddelvædene Tukey s test fo pavse sammenlgnnge ANOVA - defnton ANOVA (ANalyss Of VAance), også kaldet vaansanalyse e en

Læs mere

Scorer FCK "for mange" mål i det sidste kvarter?

Scorer FCK for mange mål i det sidste kvarter? Uge 7 I Teoretsk Statstk, 9. aprl 2004. Hvor er v? Hvor var v: opstllg af statstske modeller Hvor skal v he: tro om estmato og test 2. Eksempel: FCK Estmato (tutvt) Test Maksmum lkelhood estmato Scorer

Læs mere

Kreditrisiko efter IRBmetoden

Kreditrisiko efter IRBmetoden Kredtrsko efter IRBmetoden Vacceks formel Arbejdspapr, oktober 2013 1 KRAKAfnans - Fnanskrsekommssonens sekretarat Teknsk arbejdspapr udkast 15. oktober 2013 Indlednng Det absolutte mndstekrav tl et kredtnsttut

Læs mere

Baggrundsnotat omhandlende metode til Elforbrugspanelerne

Baggrundsnotat omhandlende metode til Elforbrugspanelerne Baggrundsnoa omhandlende meode l Elforbrugspanelerne 8. maj 01 1 Formål... 1 Modelbeskrvelse... 1 3 Forudsænnger for og mulge es af den lneære regressonsmodel... 3.1 OLS modellen og dens opbygnng... 3.

Læs mere

Elektromagnetisk induktion

Elektromagnetisk induktion Elektromagnetsme 11 Sde 1 af 9 Elektromotorsk kraft: Elektromagnetsk ndukton Den elektromotorske kraft en lukket kreds er defneret som det elektromagnetske arbede pr. ladnng på en prøveladnng q, der føres

Læs mere

Undersøgelse af pris- og indkomstelasticiteter i forbrugssystemet - estimeret med AIDS

Undersøgelse af pris- og indkomstelasticiteter i forbrugssystemet - estimeret med AIDS Danmarks Statstk MODELGRUPPEN Arbedspapr* Mads Svendsen-Tune 13. marts 2008 Undersøgelse af prs- og ndkomstelastcteter forbrugssystemet - estmeret med AIDS Resumé: For at efterse nestnngsstrukturen forbrugssystemet

Læs mere

TO-BE BRUGERREJSE // Tænder

TO-BE BRUGERREJSE // Tænder TO-BE BRUGERREJSE // Tænder PROCES FØR SITUATION / HANDLING Jørgen er 75 år og folkepensonst. Da han er vanskelgt stllet økonomsk, har han tdlgere modtaget hjælp fra kommunen, bl.a. forbndelse med fodbehandlng

Læs mere

Økonometri 1. Definition og motivation. Definition og motivation. Dagens program. Den multiple regressionsmodel 21. september 2005

Økonometri 1. Definition og motivation. Definition og motivation. Dagens program. Den multiple regressionsmodel 21. september 2005 Dages program Økoometr De multple regressosmodel. september 005 Emet for dee forelæsg er de multple regressosmodel (Wooldrdge kap 3.-3.3+appedx E.-E.) Defto og motvato Fortolkg af parametree de multple

Læs mere

FRIE ABELSKE GRUPPER. Hvis X er delmængde af en abelsk gruppe, har vi idet vi som sædvanligt i en abelsk gruppe bruger additiv notation at:

FRIE ABELSKE GRUPPER. Hvis X er delmængde af en abelsk gruppe, har vi idet vi som sædvanligt i en abelsk gruppe bruger additiv notation at: FRIE ABELSKE GRUPPER. IAN KIMING Hvs X er delmængde af en abelsk gruppe, har v det v som sædvanlgt en abelsk gruppe bruger addtv notaton at: X = {k 1 x 1 +... + k t x t k Z, x X} (jfr. tdlgere sætnng angående

Læs mere

Økonometri Lektion 1 Simpel Lineær Regression 1/31

Økonometri Lektion 1 Simpel Lineær Regression 1/31 Økonometri Lektion 1 Simpel Lineær Regression 1/31 Simpel Lineær Regression Mål: Forklare variablen y vha. variablen x. Fx forklare Salg (y) vha. Reklamebudget (x). Statistisk model: Vi antager at sammenhængen

Læs mere

FTF dokumentation nr. 3 2014. Viden i praksis. Hovedorganisation for 450.000 offentligt og privat ansatte

FTF dokumentation nr. 3 2014. Viden i praksis. Hovedorganisation for 450.000 offentligt og privat ansatte FTF dokumentaton nr. 3 2014 Vden prakss Hovedorgansaton for 450.000 offentlgt og prvat ansatte Sde 2 Ansvarshavende redaktør: Flemmng Andersen, kommunkatonschef Foto: Jesper Ludvgsen Layout: FTF Tryk:

Læs mere

Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression

Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression Logistisk Regression Repetition Fortolkning af odds Test i logistisk regression Logistisk Regression: Definitioner For en binær (0/) variabel Y antager vi P(Y)p P(Y0)-p Eksempel: Bil til arbejde vs alder

Læs mere