Kaos og fraktaler i dynamiske systemer. Bodil Branner Institut for Matematik Danmarks Teniske Universitet (DTU)

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "Kaos og fraktaler i dynamiske systemer. Bodil Branner Institut for Matematik Danmarks Teniske Universitet (DTU)"

Transkript

1 Kaos og fraktaler i dynamiske systemer Bodil Branner Institut for Matematik Danmarks Teniske Universitet (DTU) UNF Matematik Camp 2010

2 Oversigt tre simple eksempler på klassiske fraktaler deterministiske og ikke-deterministiske dynamiske systemer det simpleste eksempel på et kaotisk dynamisk system eksempler på Julia mængder Mandelbrot mængden

3 Ordforklaring fra Den Danske Ordbog Kompliceret geometrisk figur, hvis detaljer genfindes i figuren under stadig større forstørrelser Ordet fraktal: lanceret af Mandelbrot i 1975 Benoit B. Mandelbrot ( )

4 Georg Cantor ( ) Cantor s konstruktion (1883) frembringer for iterationen Georg Cantor, iteration = gentagen proces I grænsen efter uendeligt mange iterationer opnås den klassiske Cantor mængde. Egenskaber for Cantor mængden består af uendeligt mange punkter ingen af punkterne er isolerede Alle mængder med de egenskaber kaldes nu for Cantor mængder

5 Helge von Koch ( ) Helge von Koch s konstruktion (1904) frembringer for iterationen snefnugkurven On a continuous curve without tangents, constructible from elementary geometry iskrystaller

6 Waclaw Sierpinski ( ) Sierpinski s konstruktion (1916) frembringer for iterationen I grænsen efter uendeligt mange iterationer opnås Sierpinski s trekant - også kaldet - si.

7 De klassiske fraktaler er strengt selvsimilære dimension = ln 2 ln 3 Cantor mængden består af to kopier af hele Cantor mængden formindsket med faktoren 1/3 dimension = ln 3 ln 2 Koch kurven består af fire dele, der hver for sig forstørret med faktoren 3, dækker hele kurven dimension = ln 4 ln 3 Sierpinski sien består af tre dele, der hver for sig forstørret med faktoren 2, dækker hele sien

8 Ordforklaring fra Den Store Danske Encyclopædi dynamisk system, matematisk begreb, der benyttes til at beskrive tidslige udviklinger, og som har sit udspring i de naturlove, som Newton opstillede til bestemmelse af legemers bevægelse. Som matematisk disciplin er dynamiske systemer tæt forbundet med de fleste hovedgrene af matematikken og i høj grad stimuleret af problemer fra naturvidenskab, bl.a. celest mekanik, hydrodynamik, statistisk mekanik og andre dele af matematisk fysik samt reaktionskemi og populationsdynamik. Der er to hovedgrupper af dynamiske systemer: de kontinuerte og de diskrete. i de kontinuerte dynamiske systemer indgår differentialregning i de diskrete dynamiske systemer indgår iteration

9 Ordforklaring fra Den Danske Ordbog Eksempel på ikke-deterministisk system: FORKLARES PÅ TAVLE Eksempler på deterministisk system: slå plat eller krone vinkelfordobling rotation med en fast vinkel

10 Ordforklaring fra Den Danske Ordbog Meteorologen Edward Lorenz ( ) studerede omkring 1960 en simplificeret model for luftstrømninger og dermed vejrforudsigelser. Han opdagede fænomenet: følsomhed på begyndelsesbetingelserne. Han beskrev det poetisk som sommerfugleeffekten: Does the Flap of a Butterfly's Wings in Brazil set off a Tornado in Texas?

11 Egenskaber Vinkelfordobling på en cirkel Det simpleste eksempel på deterministisk kaos de periodiske punkter ligger tæt der findes baner, der ligger tæt der er følsomhed på begyndelsesbetingelserne Rotation af punkterne på en cirkel med en fast vinkel Egenskaber enten er alle punkter periodiske eller alle baner ligger tæt der er ingen følsomhed på begyndelsesbetingelserne Systemet er ikke kaotisk

12 Den komplekse talplan C z = x + iy (engelsk: complex) z C en udvidelse af den relle tallinie R x, y R FORKLARES PÅ TAVLE

13 Den komplekse talplan C z = x + iy (engelsk: complex) z C en udvidelse af den relle tallinie R x, y R Inden for dynamiske systemer bruges komplekse dynamiske systemer nogle gange synonymt med komplicerede systemer. De systemer, vi ser på, er komplekse i to betydninger: vi bruger de komplekse tal, og dynamikken er kompliceret.

14 Eksemplet med vinkelfordobling udvidet til C P 0 (z) =z 2 Banen for z 0 z 0,z 1 = P 0 (z 0 ),...,z n+1 = P 0 (z n ),... Vi interesserer os for langtids-opførslen. Hvis z 0 < 1, så z n 0 for n Hvis z 0 > 1, så z n for n Hvis z 0 =1, så z n =1. Banerne er som i eksemplet med vinkelfordobling. Dynamikken er kaotisk på enhedscirklen og forudsigelig inden for og uden for enhedscirklen.

15 En familie af komplekse andengrads polynomier P c (z) =z 2 + c, hvor c = a + ib C og a, b R Vi undersøger dynamikken for hvert fastholdt c z planen opdeles i de z 0, hvor z n for n og de z 0, hvor det ikke gælder. Grænsen mellem de to forskellige opførslen kaldes Julia mængden efter den franske matematiker Gaston Julia ( ). Dynamikken er kaotisk på Julia mængden og forudsigelig uden for Julia mængden. For c = 0 er Julia mængden J(P 0 ) lig med enhedscirklen.

16 Douady s kanin Vælg c så 0 c c 2 + c (c 2 + c) 2 + c = 0 og b>0. Julia mængden J(P c ) kaninen i sort Adrien Douady ( )

17 Ideen bag farvelægningen forklaret for c =0 FORKLARES PÅ TAVLE

18 For c valgt som før: Punkterne i den periodiske bane 0 c c 2 + c 0 ses som hvidt punkt i kaninens blå mave, det røde øre og det blå øre henholdsvis Julia mængden J(P c ) er den fælles grænse for de blå, de røde og de grønne punkter

19 Julia mængder er invariante forlæns P c (J(P c )) = J(P c ) baglæns P 1 c (J(P c )) = J(P c ) Julia mængder er selvsimilære

20 ZOO af forskellige arter af Julia mængder Vi ønsker at klassificere Julia mængderne ved at opdele c-planen, så forskellige områder svarer til forskellige arter.

21 Første grove inddeling i de c-værdier, hvor Julia mængden er sammenhængende og de c-værdier, hvor Julia mængden er usammenhængende faktisk altid en Cantor mængde.

22 Et eksempel på en usammenhængende Julia mængde, en Cantor mængde

23 M a n d e l b r o t m æ n g d e n

24 Mandelbrot mængden M består af de c-værdier, hvor J(P c ) er sammenhængende Hvordan kan det afgøres? Der gælder c M banen for z 0 = 0 opfylder z n 2 for alle n hvor z 1 = c, z 2 = c 2 + c,... en karakteristik, der let kan implementeres på computer

25 Randen af Mandelbrot mængden - og ikke Mandelbrot mængden selv - giver os den ønskede klassifikation M Fjern randen og tilbage er uendeligt mange forskellige sammenhængende områder, der hver svarer til netop een art.

26 Illustreret ved et eksempel c/ M To artsfæller c M En nærbeslægtet artsfælle c M

27 Asymptotisk similaritet mellem specielle Julia Mængder og Mandelbrot mængden De specielle c-værdier svarer til at z 0 =0 er præperiodisk. Eksempel

28 Asymptotisk similaritet mellem specielle Julia Mængder og Mandelbrot mængden Konklusion: Mandelbrot mængden er ikke selvsimilær

29 Mandelbrot mængden inderholder uendeligt mange kopier af sig selv, mere eller mindre deformerede, altså dog en form for selvsimilaritet.

30 Den samme kopi men med dekorationerne skrællet af.

31 Computerbilleder og -programmer kan findes på nettet Søg under Mandelbrot set Julia set

Smuk matematik eller hvorfor vejrudsigten aldrig passer?

Smuk matematik eller hvorfor vejrudsigten aldrig passer? Smuk matematik eller hvorfor vejrudsigten aldrig passer? Indhold 1. Vejrudsigter 2. Solsystemet 3. Lemminger 4. Fraktaler Overordnet handler det hele om kaos. Vejrudsigter Matematikken der beskriver vejret

Læs mere

FRAKTALER. Hans Fogedby Institut for fysik og astronomi

FRAKTALER. Hans Fogedby Institut for fysik og astronomi FRAKTALER Hans Fogedby Institut for fysik og astronomi OVERSIGT Hvad er en fraktal Lidt historie Fraktaler i matematikken Den fraktale dimension Fraktaler i fysikken Fraktaler i biologien Fraktaler som

Læs mere

Fraktaler. Vejledning. Et snefnug

Fraktaler. Vejledning. Et snefnug Fraktaler Vejledning Denne note kan benyttes i gymnasieundervisningen i matematik i 1g, eventuelt efter gennemgangen af emnet logaritmer. Min hensigt har været at give en lille introduktion til en anderledes

Læs mere

Klassisk kaos. Kaotiske systemer. Visse regulariteter universalitet

Klassisk kaos. Kaotiske systemer. Visse regulariteter universalitet Klassisk kaos 11.1 Deterministiske bevægelsesligninger kan under visse omstændigheder udvise løsninger som er uforudsigelige, dvs. løsninger der opfører sig kaotisk: Faserum Forudsigelige Integrable systemer

Læs mere

Fra tilfældighed over fraktaler til uendelighed

Fra tilfældighed over fraktaler til uendelighed Fra tilfældighed over fraktaler til uendelighed Tilfældighed Hvor tilfældige kan vi være? I skemaet ved siden af skal du sætte 0 er og 1-taller, ét tal i hvert felt. Der er 50 felter. Du skal prøve at

Læs mere

Fraktaler Mandelbrots Mængde

Fraktaler Mandelbrots Mængde Fraktaler Mandelbrots Mængde Foredragsnoter Af Jonas Lindstrøm Jensen Institut For Matematiske Fag Århus Universitet Indhold Indhold 1 1 Indledning 3 2 Komplekse tal 5 2.1 Definition.......................................

Læs mere

Fra tilfældighed over fraktaler til uendelighed

Fra tilfældighed over fraktaler til uendelighed Fra tilfældighed over fraktaler til uendelighed Dette undervisningsforløb har jeg lavet til et forløb på UCC Nordsjælland for særligt interesserede elever i 8. klasse. Alt, der står med rødt, er henvendt

Læs mere

Fraktaler. Mandelbrots Mængde. Foredragsnoter. Af Jonas Lindstrøm Jensen. Institut For Matematiske Fag Århus Universitet

Fraktaler. Mandelbrots Mængde. Foredragsnoter. Af Jonas Lindstrøm Jensen. Institut For Matematiske Fag Århus Universitet Fraktaler Mandelbrots Mængde Foredragsnoter Af Jonas Lindstrøm Jensen Institut For Matematiske Fag Århus Universitet Indhold Indhold 1 1 Komplekse tal 3 1.1 Definition.......................................

Læs mere

Naturens fraktale geometri

Naturens fraktale geometri to vidt forskellige ting. Ganske små forskelle kan være ansvarlige for udvælgelsen af helt andre udviklingsbaner. Det er derfor ofte kun muligt at belyse de kvalitative aspekter, det vil sige fænomenernes

Læs mere

Projekt 5.9. Geometriske fraktaler og fraktale dimensioner

Projekt 5.9. Geometriske fraktaler og fraktale dimensioner Projekt 5.9. Geometriske fraktaler og fraktale dimensioner Indhold 1. Fraktaler og vækstmodeller... 2 2. Kløverøen... 2 3. Fraktal dimension... 4 3.1 Skridtlængdemetoden... 4 3.2 Netmaskemetoden... 7 3.3

Læs mere

På opdagelse i Mandelbrot-fraktalen En introduktion til programmet Mandelbrot

På opdagelse i Mandelbrot-fraktalen En introduktion til programmet Mandelbrot Jørgen Erichsen På opdagelse i Mandelbrot-fraktalen En introduktion til programmet Mandelbrot Hvad er en fraktal? Noget forenklet kan man sige, at en fraktal er en geometrisk figur, der udmærker sig ved

Læs mere

Anden grads polynomier og populations dynamik

Anden grads polynomier og populations dynamik matkt@imf.au.dk Institut for Matematiske Fag Det Naturvidenskabelige Fakultet Aarhus Universitet 23. marts 2007 P = antal individer i en population Mennesker, mider, blomster, bakterier eller noget helt

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Aug juni 2009-2010 Institution Uddannelse Fag og niveau Lærer(e) Grenaa Tekniske Skole HTX Fysik A Niels Gustav

Læs mere

Læs selv om UENDELIGHED. Erik Bjerre og Pernille Pind Forlaget Mañana

Læs selv om UENDELIGHED. Erik Bjerre og Pernille Pind Forlaget Mañana Læs selv om UENDELIGHED Erik Bjerre og Pernille Pind Forlaget Mañana Læs selv om UENDELIGHED Erik Bjerre og Pernille Pind Forlaget Mañana 2 Uendelighed - et matematisk symbol Der kan være uendeligt lang

Læs mere

Invarianter og kombinatoriske beviser

Invarianter og kombinatoriske beviser Invarianter og kombinatoriske beviser Anders Nedergaard Jensen Institut for Matematik, Aarhus Universitet Matematiklærerdag, Aarhus, 24. Marts 2017 En invariant er en værdi/udsagn der forbliver konstant

Læs mere

Billeder af Julia-mængder

Billeder af Julia-mængder 1 Billeder af Julia-mængder af Gert Buschmann Vi identificerer planen med de komplekse tal og lader f(z) være en afbildning af planen på sig selv som er defineret og kontinuert-differentiabel næsten overalt.

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj-juni 2016 Marie

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 15/16 Institution Horsens HF og VUC Uddannelse Fag og niveau Lærer(e) Hold hfe Matematik B Bodil

Læs mere

Symmetri og matematik i natur og forståelse

Symmetri og matematik i natur og forståelse Institut for Matematik Aarhus Universitet 26. september 2017 Felix Kleins Erlangen program (1872) Geometriske objekter skal klassificeres ved egenskaber, der er invariante under transformationer (symmetrier)

Læs mere

Første konstruktion af Cantor mængden

Første konstruktion af Cantor mængden DYNAMIK PÅ CANTOR MÆNGDEN KLAUS THOMSEN Første konstruktion af Cantor mængden For de fleste der har hørt on Cantor-mængden, er den blevet defineret på flg måde: I = 0 I = I = 0 0 OSV Cantor mængden C er

Læs mere

Her er et spørgsmål, du måske aldrig har overvejet: kan man finde to trekanter med samme areal?

Her er et spørgsmål, du måske aldrig har overvejet: kan man finde to trekanter med samme areal? Her er et spørgsmål, du måske aldrig har overvejet: kan man finde to trekanter med samme areal? Det er ret let at svare på: arealet af en trekant, husker vi fra vor kære folkeskole, findes ved at gange

Læs mere

Kvantefysik. Objektivitetens sammenbrud efter 1900

Kvantefysik. Objektivitetens sammenbrud efter 1900 Kvantefysik Objektivitetens sammenbrud efter 1900 Indhold 1. Formål med foredraget 2. Den klassiske fysik og determinismen 3. Hvad er lys? 4. Resultater fra atomfysikken 5. Kvantefysikken og dens konsekvenser

Læs mere

Komplekse tal og Kaos

Komplekse tal og Kaos Komplekse tal og Kaos Jon Sporring Datalogisk Institut ved Københavns Universitet Universitetsparken 1, 2100 København Ø August, 2006 1 Forord Denne opgave er tiltænkt gymnasiestuderende med matematik

Læs mere

Mere om differentiabilitet

Mere om differentiabilitet Mere om differentiabilitet En uddybning af side 57 i Spor - Komplekse tal Kompleks funktionsteori er et af de vigtigste emner i matematikken og samtidig et af de smukkeste I bogen har vi primært beskæftiget

Læs mere

Almen Matematisk Dannelse

Almen Matematisk Dannelse Almen Matematisk Dannelse af De Studerende ved kurset Almen Matematisk Dannelse Foråret 2002 Matematisk Afdeling KU Foråret 2002 Indledning Disse noter er skrevet af de studerende på et kursus med titlen

Læs mere

Kalkulus 1 - Opgaver. Anne Ryelund, Anders Friis og Mads Friis. 20. januar 2015

Kalkulus 1 - Opgaver. Anne Ryelund, Anders Friis og Mads Friis. 20. januar 2015 Kalkulus 1 - Opgaver Anne Ryelund, Anders Friis og Mads Friis 20. januar 2015 Mængder Opgave 1 Opskriv følgende mængder med korrekt mængdenotation. a) En mængde A indeholder alle hele tal fra og med 1

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj-juni 2017 Marie

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni, 16/17 Institution Hf i Nørre Nissum VIA UC Uddannelse Fag og niveau Lærer(e) Hold Hf Matematik B

Læs mere

Klassisk kaos. Kaotiske systemer. Visse regulariteter universalitet

Klassisk kaos. Kaotiske systemer. Visse regulariteter universalitet Klassisk kaos Deterministiske bevægelsesligninger kan under visse omstændigheder udvise løsninger som er uforudsigelige, dvs. løsninger der opfører sig kaotisk: Faserum Forudsigelige Integrable systemer

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2015 Institution VUC Vest Uddannelse Fag og niveau Lærer(e) Hold stx Matematik A Claus Simonsen 14MABA61

Læs mere

Knuder, lænker og fletninger.

Knuder, lænker og fletninger. Regionalmøde Esbjerg 2012 Aalborg Universitet Hvorfor dette emne? Der er god matematik i knuder. Der er flotte billeder. Der er splinternye anvendelser i biologi/kemi. Gymnasieelever kan arbejde med knuder.

Læs mere

Faglig årsplan 2010-2011 Skolerne i Oure Sport & Performanc. Læringsmål Faglige aktiviteter. Emne Tema Materialer. ITinddragelse.

Faglig årsplan 2010-2011 Skolerne i Oure Sport & Performanc. Læringsmål Faglige aktiviteter. Emne Tema Materialer. ITinddragelse. Fag:matematik Hold:18 Lærer:ym Undervisningsmål 9/10 klasse Læringsmål Faglige aktiviteter Emne Tema Materialer ITinddragelse Evaluering 33-37 Hovedvægten er elevernes forståelse for matematiske begreber.

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Vinter 2015-2016 Institution Vestegnen HF & VUC Uddannelse Fag og niveau Lærer Hold HF: E-learning Matematik

Læs mere

Introduktion til cosinus, sinus og tangens

Introduktion til cosinus, sinus og tangens Introduktion til cosinus, sinus og tangens Jes Toft Kristensen 24. maj 2010 1 Forord Her er en lille introduktion til cosinus, sinus og tangens. Det var et af de emner jeg selv havde svært ved at forstå,

Læs mere

Termin maj-juni 13-14 Institution HF uddannelsen i Nørre Nissum, VIA University College Uddannelse Hf. Matematik B, hfe bekendtgørelsen.

Termin maj-juni 13-14 Institution HF uddannelsen i Nørre Nissum, VIA University College Uddannelse Hf. Matematik B, hfe bekendtgørelsen. Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni 13-14 Institution HF uddannelsen i Nørre Nissum, VIA University College Uddannelse Hf Fag og niveau

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: Maj-juni 14/15 Hf

Læs mere

Matema10k. Matematik for gymnasiet. Bind 3 A-niveau. af Thomas Jensen, Claus Jessen og Morten Overgård Nielsen

Matema10k. Matematik for gymnasiet. Bind 3 A-niveau. af Thomas Jensen, Claus Jessen og Morten Overgård Nielsen Matema10k Matematik for gymnasiet Bind 3 A-niveau af Thomas Jensen, Claus Jessen og Morten Overgård Nielsen 4 Thomas Jensen, Claus Jessen og Morten Overgård Nielsen Matema10k Matematik for stx. Bind 3.

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Aug 09- jun 10 Institution Uddannelse Fag og niveau Lærer(e) Hold Grenaa Tekniske Gymnasium htx Matematik

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2016 Institution VUC Vest Uddannelse Fag og niveau Lærer(e) Hold stx Matematik A Claus Simonsen 15MABA61

Læs mere

z j 2. Cauchy s formel er værd at tænke lidt nærmere over. Se på specialtilfældet 1 dz = 2πi z

z j 2. Cauchy s formel er værd at tænke lidt nærmere over. Se på specialtilfældet 1 dz = 2πi z Matematik F2 - sæt 3 af 7 blok 4 f(z)dz = 0 Hovedemnet i denne uge er Cauchys sætning (den der står i denne sides hoved) og Cauchys formel. Desuden introduceres nulpunkter og singulariteter: simple poler,

Læs mere

Differentialregning Infinitesimalregning

Differentialregning Infinitesimalregning Udgave 2.1 Differentialregning Infinitesimalregning Noterne gennemgår begreberne differentialregning, og anskuer dette som et derligere redskab til vækst og funktioner. Noterne er supplement til kapitel

Læs mere

Skønheden begynder med

Skønheden begynder med Skønheden begynder med En matematisk fraktal den lille tabel Matematik på C-niveau er obligatorisk i alle 4 gymnasiale ungdomsuddannelser: Hf, hhx, htx, stx I denne lille pjece kan du få et indtryk af,

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj-juni 2017 Marie

Læs mere

Studieplan. Stamoplysninger til brug ved prøver til gymnasiale uddannelser. Oversigt over gennemførte undervisningsforløb. Termin Aug 10- jun 11

Studieplan. Stamoplysninger til brug ved prøver til gymnasiale uddannelser. Oversigt over gennemførte undervisningsforløb. Termin Aug 10- jun 11 Studieplan Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Aug 10- jun 11 Institution Uddannelse Fag og niveau Lærer(e) Hold Grenaa Tekniske Gymnasium HTX Matematik B1 Klavs Skjold

Læs mere

UVB. Skoleår: 2013-2014. Claus Vestergaard og Franka Gallas

UVB. Skoleår: 2013-2014. Claus Vestergaard og Franka Gallas UVB Skoleår: 2013-2014 Institution: Fag og niveau: Lærer(e): Hold: Teknisk Gymnasium Skive Matematik A Claus Vestergaard og Franka Gallas 3. A Titel 1: Rep af 1. og 2. år + Gocart Titel 2: Vektorer i rummet

Læs mere

Komplekse tal. Mikkel Stouby Petersen 27. februar 2013

Komplekse tal. Mikkel Stouby Petersen 27. februar 2013 Komplekse tal Mikkel Stouby Petersen 27. februar 2013 1 Motivationen Historien om de komplekse tal er i virkeligheden historien om at fjerne forhindringerne og gøre det umulige muligt. For at se det, vil

Læs mere

Newton-Raphsons metode

Newton-Raphsons metode Newton-Raphsons metode af John V. Petersen Indhold Indledning: Numerisk analyse og Newton-Raphsons metode... 2 Udlede Newtons iterations formel... 2 Sætning 1 Newtons metode... 4 Eksempel 1 konvergens...

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj-juni 2015 Københavns

Læs mere

Computerstøttet beregning

Computerstøttet beregning CSB 2009 p. 1/16 Computerstøttet beregning Lektion 1. Introduktion Martin Qvist qvist@math.aau.dk Det Ingeniør-, Natur-, og Sundhedsvidenskabelige Basisår, Aalborg Universitet, 3. februar 2009 people.math.aau.dk/

Læs mere

Københavns Universitet, Det naturvidenskabelige Fakultet. Afleveringsopgave 3

Københavns Universitet, Det naturvidenskabelige Fakultet. Afleveringsopgave 3 Københavns Universitet, Det naturvidenskabelige Fakultet 1 Lineær Algebra (LinAlg) Afleveringsopgave 3 Eventuelle besvarelser laves i grupper af 2-3 personer og afleveres i to eksemplarer med 3 udfyldte

Læs mere

Svar til eksamen i Matematik F2 d. 23. juni 2016

Svar til eksamen i Matematik F2 d. 23. juni 2016 Svar til eksamen i Matematik F d. 3. juni 06 FORBEHOLD FOR FEJL! Bemærk, i modsætning til herunder, så skal det i besvarelsen fremgå tydeligt, hvordan polerne ndes og hvordan de enkelte residuer udregnes.

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/juni 2015 Institution Vestegnen HF & Vuc Uddannelse Fag og niveau Lærer Hf-enkeltfag Matematik B Gert

Læs mere

Forbedring af efterføderteknologier til energibesparelse i jernstøberier

Forbedring af efterføderteknologier til energibesparelse i jernstøberier Slutrapport for projekt: Forbedring af efterføderteknologier til energibesparelse i jernstøberier Niels Skat Tiedje DTU Mekanik 29. august 2014 Indhold Indhold... 2 Introduktion og mål... 3 Del 1: anvendelse

Læs mere

Kapitel 4. Trigonometri. Matematik C (må anvendes på Ørestad Gymnasium) Kapitel 4

Kapitel 4. Trigonometri. Matematik C (må anvendes på Ørestad Gymnasium) Kapitel 4 Matematik C (må anvendes på Ørestad Gymnasium) Trigonometri Den del af matematik, der beskæftiger sig med figurer og deres egenskaber, kaldes for geometri. Selve ordet geometri er græsk og betyder jord(=geo)måling(=metri).

Læs mere

Tal. Vi mener, vi kender og kan bruge følgende talmængder: N : de positive hele tal, Z : de hele tal, Q: de rationale tal.

Tal. Vi mener, vi kender og kan bruge følgende talmængder: N : de positive hele tal, Z : de hele tal, Q: de rationale tal. 1 Tal Tal kan forekomme os nærmest at være selvfølgelige, umiddelbare og naturgivne. Men det er kun, fordi vi har vænnet os til dem. Som det vil fremgå af vores timer, har de mange overraskende egenskaber

Læs mere

Matematik 1 Semesteruge 5 6 (1. oktober oktober 2001) side 1 Komplekse tal Arbejdsplan

Matematik 1 Semesteruge 5 6 (1. oktober oktober 2001) side 1 Komplekse tal Arbejdsplan Matematik 1 Semesteruge 5 6 (1. oktober - 12. oktober 2001) side 1 Komplekse tal Arbejdsplan I semesterugerne 5 og 6 erstattes den regulære undervisning (forelæsninger og fællestimer) af selvstudium med

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/Juni 2017 Institution Vestegnen HF & Vuc Uddannelse Fag og niveau Lærer Hold Hf-enkeltfag Matematik B

Læs mere

Kan formler overraske?

Kan formler overraske? Kan formler overraske? Af Neli Demitrova Institute of Mathematics and Informatics Bulgarian Academy of Sciences 1 Introduktion I vore dage kan man se computerfremstillede fraktale mønstre alle vegne, lige

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj-juni 2016 Marie

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 14/15 Institution Horsens HF og VUC Uddannelse Fag og niveau Lærer(e) Hold hfe Matematik B Mette

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Vinter 2014 Institution 414 Københavns VUC Uddannelse HFE Fag og niveau Matematik B Lærer(e) Hold Nils Hagstrøm

Læs mere

Wavelet Analyse. Arne Jensen Institut for Matematiske Fag Aalborg Universitet

Wavelet Analyse. Arne Jensen Institut for Matematiske Fag Aalborg Universitet Wavelet Analyse Arne Jensen Institut for Matematiske Fag Aalborg Universitet 1 Introduktion Numb3rs episoden on pengeforfalskning brugte wavelet analyse. Wavelet analyse er en relativt ny opdagelse, som

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Som 2015 Institution VUC Vest Uddannelse Fag og niveau Lærer(e) Hold Hf/hfe Mat B Niels Johansson 14MACB11E14

Læs mere

Uddrag af studieordningen for Adgangskursus til Ingeniøruddannelserne

Uddrag af studieordningen for Adgangskursus til Ingeniøruddannelserne Uddrag af studieordningen for Adgangskursus til Ingeniøruddannelserne 21 Matematik B Kurset svarer til det gymnasiale niveau B 21.2.2 Kernestof Kernestoffet er: regningsarternes hierarki, det udvidede

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2014 Institution VUC Vejle Uddannelse Fag og niveau Lærer(e) Hold Hf e Matematik B MATO,BM mabu Oversigt

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Som 2014 Institution VUC Vestegnen Uddannelse Fag og niveau Lærer(e) Hold Hf/hfe Mat B Niels Johansson 7Bma1S14

Læs mere

Fjern/Flex 8maB114 14-15 Matematik C->B, HFE

Fjern/Flex 8maB114 14-15 Matematik C->B, HFE Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Termin hvori undervisningen afsluttes: maj-juni 2014/15 Institution Uddannelse Fag og niveau Lærer(e) Hold

Læs mere

F I N N H. K R I S T I A N S E N DET GYLDNE SNIT TES REGNING MED REGNEARK KUGLE SIMULATIONER G Y L D E N D A L LANDMÅLING

F I N N H. K R I S T I A N S E N DET GYLDNE SNIT TES REGNING MED REGNEARK KUGLE SIMULATIONER G Y L D E N D A L LANDMÅLING F I N N H. K R I S T I A N S E N 6 DET GYLDNE SNIT 4 TES REGNING MED REGNEARK KUGLE G Y L D E N D A L SIMULATIONER 5 LANDMÅLING Faglige mål: Demonstrere viden om matematikanvendelse samt eksempler på matematikkens

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 15/16 Institution Horsens HF og VUC Uddannelse Fag og niveau Lærer(e) Hold hfe Matematik B Mette

Læs mere

Fraktaler Af Hans Marius Kjærsgaard

Fraktaler Af Hans Marius Kjærsgaard Fraktaler Af Hans Marius Kjærsgaard Side 1 Indholdsfortegnelse Indledning... 2 Prolemformulering... 3 Grundlæggende teori og introduktion til IFS... 3 Definition af gruppens iterativ systemet... 3 Beregning

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin August 2008-juni 2011 Institution Sukkertoppen/Københavns tekniske skole Uddannelse Fag og niveau Lærer(e)

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj 2016. Afsluttes: 27/05-2016 Institution Den Jydske Haanværkerskole Uddannelse EUX Fag og niveau Lærer(e)

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2013 Institution VUC Vejle Uddannelse Fag og niveau Lærer(e) Hold Hf e Matematik B BM mabu Oversigt

Læs mere

Dynamisk programmering. Flere eksempler

Dynamisk programmering. Flere eksempler Dynamisk programmering Flere eksempler Eksempel 1: Længste fælles delstreng Alfabet = mængde af tegn: {a,b,c,...,z}, {A,C,G,T}, {,1} Streng = sekvens x 1 x 2 x 3... x n af tegn fra et alfabet: helloworld

Læs mere

Programmering, algoritmik og matematik en nødvendig sammenblanding?

Programmering, algoritmik og matematik en nødvendig sammenblanding? Programmering, algoritmik og matematik en nødvendig sammenblanding? Oplæg til IDA møde, 29. november 2004 Martin Zachariasen DIKU 1 Egen baggrund B.Sc. i datalogi 1989; Kandidat i datalogi 1995; Ph.D.

Læs mere

Skriftlig Eksamen Algoritmer og Datastrukturer (DM507)

Skriftlig Eksamen Algoritmer og Datastrukturer (DM507) Skriftlig Eksamen Algoritmer og Datastrukturer (DM507) Institut for Matematik og Datalogi Syddansk Universitet, Odense Onsdag den 0. juni 009, kl. 9 Alle sædvanlige hjælpemidler (lærebøger, notater, osv.)

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/juni, 2016 Institution HF &VUC Nordsjælland, Hillerød afdeling Uddannelse Fag og niveau Lærer(e) Hold

Læs mere

Studieretningen Matematik A - Fysik A - Kemi B

Studieretningen Matematik A - Fysik A - Kemi B Studieretningen Matematik A - Fysik A - Kemi B Billedet til venstre viser et lille stykke af den 27 km lange accelerator LHC på Cern i Genève, hvor man forsøger at genskabe de fysiske egenskaber, som stoffet

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Vinter 2014 Institution 414 Københavns VUC Uddannelse Fag og niveau Lærer(e) hfe Matematik B Najib Faizi Hold

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2011 Institution HF uddannelsen i Nørre Nissum, VIA University College Uddannelse Fag og niveau Lærer(e)

Læs mere

Korteste veje i vægtede grafer. Længde af sti = sum af vægte af kanter på sti.

Korteste veje i vægtede grafer. Længde af sti = sum af vægte af kanter på sti. Korteste veje Korteste veje i vægtede grafer Længde af sti = sum af vægte af kanter på sti. Korteste veje i vægtede grafer Længde af sti = sum af vægte af kanter på sti. δ(u, v) = længden af en korteste

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Termin 2011-2012 Institution Favrskov Gymnasium Uddannelse Fag og niveau Lærer Hold stx Matematik B Bente Madsen 1e mab Oversigt over gennemførte undervisningsforløb Titel 1 Titel

Læs mere

Undervisningsplan Side 1 af 9

Undervisningsplan Side 1 af 9 Undervisningsplan Side 1 af 9 Lektionsantal: 12 UV lektioner pr. uge I alt ca. 220 lektioner. Fordelt mellem underviserne således: Erik Kyster (EK) 9 lektioner pr. uge og Regnar Andersen (RA) 3 lektioner

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin August 2015 April 2016 Institution VUC Vest, Esbjerg afdeling Uddannelse Fag og niveau Lærer(e) Hold Hf Netundervisning

Læs mere

Indholdsfortegnelse Side 1. Abstract: Infinity and Periodicity Side 2. Indledning Side 3. De komplekse tal Side 3

Indholdsfortegnelse Side 1. Abstract: Infinity and Periodicity Side 2. Indledning Side 3. De komplekse tal Side 3 Indholdsfortegnelse Indholdsfortegnelse Side 1 Abstract: Infinity and Periodicity Side Indledning Side 3 De komplekse tal Side 3 Komplekse tal på formen a 1 + ia Side 4 Regneregler for komplekse tal Side

Læs mere

Simulering af stokastiske fænomener med Excel

Simulering af stokastiske fænomener med Excel Simulering af stokastiske fænomener med Excel John Andersen, Læreruddannelsen i Aarhus, VIA Det kan være en ret krævende læreproces at udvikle fornemmelse for mange begreber fra sandsynlighedsregningen

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Termin hvori undervisningen afsluttes: Maj-juni, 11. Denne beskrivelse

Læs mere

Undervisningsplan. Oversigt over planlagte undervisningsforløb. Udarbejdet august Termin Januar 2017 Juni Uddannelse HTX.

Undervisningsplan. Oversigt over planlagte undervisningsforløb. Udarbejdet august Termin Januar 2017 Juni Uddannelse HTX. Undervisningsplan Udarbejdet august 2017 Termin Januar 2017 Juni 2019 Institution Rybners HTX Uddannelse HTX Fag og niveau Lærer Fysik A Steffen Podlech Hold 3a Oversigt over planlagte undervisningsforløb

Læs mere

Undervisningsfaget matematik et fag i udvikling? Claus Michelsen, Syddansk Universitet MaP kick off, 14. august 2012

Undervisningsfaget matematik et fag i udvikling? Claus Michelsen, Syddansk Universitet MaP kick off, 14. august 2012 Undervisningsfaget matematik et fag i udvikling? Claus Michelsen, Syddansk Universitet MaP kick off, 14. august 2012 Undervisningsfaget og didaktiske transpositioner Videnskabsfaglig viden Praksisviden

Læs mere

Korteste veje i vægtede grafer. Længde af sti = sum af vægte af kanter på sti.

Korteste veje i vægtede grafer. Længde af sti = sum af vægte af kanter på sti. Korteste veje Korteste veje i vægtede grafer Længde af sti = sum af vægte af kanter på sti. Korteste veje i vægtede grafer Længde af sti = sum af vægte af kanter på sti. δ(u, v) = længden af en korteste

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution 414 Københavns VUC Uddannelse Fag og niveau Lærer(e) Hold hfe Matematik B Henrik Sandler

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Afsluttende: Maj-juni 2015 Institution Uddannelse Fag og niveau Lærer(e) Hold Favrskov Gymnasium Stx Matematik

Læs mere

Formelsamling Kaos 2005

Formelsamling Kaos 2005 Formelsamling Kaos 2005 Lykke Pedersen Indhold 1 En dimension 2 1.1 Fixpunkter og stabiliet...................... 2 1.2 Bifurkationer........................... 3 2 To dimensioner 4 2.1 Lineære systemer.........................

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin 3. semester efterår 2010 Titel 5 til og med Titel 10 Institution Grenaa Tekniske Gymnasium Uddannelse Fag

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Termin hvori undervisningen afsluttes: Maj/juni 2012 HTX Vibenhus

Læs mere

Dynamisk programmering. Flere eksempler

Dynamisk programmering. Flere eksempler Dynamisk programmering Flere eksempler Eksempel 1: Længste fælles delstreng Alfabet = mængde af tegn: {a,b,c,...,z}, {A,C,G,T}, {,1} Eksempel 1: Længste fælles delstreng Alfabet = mængde af tegn: {a,b,c,...,z},

Læs mere

Prøveeksamen MR1 januar 2008

Prøveeksamen MR1 januar 2008 Skriftlig eksamen Matematik 1A Prøveeksamen MR1 januar 2008 Tilladte hjælpemidler Alle sædvanlige hjælpemidler er tilladt (lærebøger, notater, osv.), og også elektroniske hjælpemidler som lommeregner og

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin December 2016 & Maj-juni 2017 Institution VUC Holstebro Uddannelse Fag og niveau Lærer(e) Hold STX Matematik

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Årstid/årstal Institution Uddannelse Hf/hfe/hhx/htx/stx /gsk/gif/fagpakke/hf+ Fag og niveau Fagbetegnelsen

Læs mere

7 QNL 9DULDEOH 6DPPHQK QJ +27I\VLN. Trekanter & firkanter. Dåser. Angiv hvilke variable i Figur 2, der er sammenhæng mellem:

7 QNL 9DULDEOH 6DPPHQK QJ +27I\VLN. Trekanter & firkanter. Dåser. Angiv hvilke variable i Figur 2, der er sammenhæng mellem: Trekanter & firkanter Se på Figur 1: Angiv de variable og deres værdier Variabel Værdi(er) Angiv hvilke variable i Figur 2, der er sammenhæng mellem: Angiv sammenhængen: Hvilke af de variable er der sammenhæng

Læs mere