Mundtlighed i matematikundervisningen

Størrelse: px
Starte visningen fra side:

Download "Mundtlighed i matematikundervisningen"

Transkript

1 Mundtlighed i matematikundervisningen 1

2 Mundtlighed Annette Lilholt Side 2

3 Udsagn! Det er nemt at give karakter i færdighedsregning. Mine elever får generelt højere standpunktskarakter i færdighedsregning end i problemregning. Jeg har givet 12 i standpunktskarakter i færdighedsregning. Jeg har sjældent givet 12 i standpunktskarakter i mundtlig matematik. 3

4 Mundtlig matematik er? 1. Hver enkel deltager skal, uden at diskutere det med de andre deltagere, finde fem udsagn om mundtlig matematik. 2. Udvælg de 2 vigtigste. 3. Læs de 2 udsagn op for gruppen. Forklar udsagnene for gruppen, så alle er klar over meningen med udsagnet. De andre deltagere må her ikke have en holdning til udsagnet, men må godt spørge nysgerrigt. 4. Hvilke udsagn er i mest/mindst enige om? 4

5 Mundtlighed er.

6 Mundtlig matematik hvordan? Hvilke tegn skal vi kigge efter, for at se mundtligheden hos eleverne? Hvordan tilrettelægges en undervisning der fokuseres på mundtlighed? Hvordan høres alle? Hvordan registrerer vi elevens mundtlighed? Hvordan stiller vi de rigtige spørgsmål som lærer?

7 Det er især målene i 1. CKF (Matematiske kompetencer) og 4. CKF (Matematiske arbejdsmåder) der kommer i spil ved mundtligheden Fælles Mål 2009 : Matematiske arbejdsmåder deltage i udvikling af strategier og metoder med støtte i bl.a. it undersøge, systematisere og ræsonnere med henblik på at generalisere veksle mellem praktiske og teoretiske overvejelser ved løsningen af matematiske problemstillinger forberede og gennemføre mundtlige og skriftlige præsentationer af eget arbejde med matematik, bl.a. med inddragelse af it arbejde individuelt og sammen med andre om praktiske og teoretiske problemstillinger, bl.a. i projektorienterede forløb arbejde individuelt og sammen med andre om problemløsning i mundtligt og skriftligt arbejde give respons til andre i arbejdet med matematik, bl.a. ved at spørge aktivt. Hvilket trinmål har I nemmest ved at medtænke i undervisningen? Trinmål Annette Lilholt 7 Hvilket trinmål har I sværest ved at tænke ind i undervisningen?

8 Kende/ Enkel Forstå/ Middel Anvende / kompleks Tegnskema Navn: Angriber problemstilling Oversætter mellem hverdags sprog og matematisk sprog Kan beskrive matematiske problemstilling Anvender matematiske begreber Argumenterer for valg Matematisere: Bringer det virkelige problem over i matematikkens verden Færdigheder/Analyse: Behandler problemet i matematikkens verden Vurdere matematiske resultater i forholde til den virkelige verden Valg og anvendelse af hjælpemidler

9 Design af emballage I bliver ansat i et firma, der fremstiller emballager til mange forskellige ting. En kunde har henvendt sig for at få designet en ny emballage. Kunden har følgende krav til emballagen: Den skal kunne indeholde en liter. Grundfladen skal helst være regulær. Den skal kunne pakkes hensigtsmæssigt i større antal for at blive transporteret til andre dele af landet. Kunden vil gerne have, at I også tænker på forbruget af materiale til emballagen, ikke bare af økonomiske grunde, men også af hensyn til miljøet. Problemstilling I skal udarbejde et forslag til en form, som opfylder kundens ønsker. Forslaget skal indeholde skitser, tegninger og beregninger. Hvilke tegn på mundtlighed ville I kigge efter hos eleven under dette projekt? Prøv at udarbejde et tegnskema, som evt. kunne bruges til dokumentation af elevens mundtlighed. Hvilke færdigheder får eleven brug for? 9

10 Tegnskema design af emballage Navn: Kende Forstå Anvende Hvordan I angriber problemstillingen (Initiativ, kreativitet og samarbejde) Under middel Middel Over middel Anvender matematiske begreber (Fx areal, rumfang, overfladeareal, skitse, arbejdstegning, omregning Liter, formler) Argumenterer for valg Vi har valgt dette fordi. Vurdere matematiske resultater i forholde til den virkelige verden. Valg og anvendelse af hjælpemidler Hvilke hjælpemidler er i brug og hvordan? 10

11 Modelleringskompetencen Annette Lilholt, CFU Nordjylland

12 Annette Lilholt, CFU Nordjylland

13 Modellerringskompetence Opstille, behandle, afkode, analysere og forholde sig kritisk til modeller, der gengiver træk fra virkeligheden, bl.a. ved hjælp af regneudtryk, tegninger, diagrammer, ligninger, funktioner og formler. Kolorit 9 Emne om matematisk modellering: - Hvor meget sover vi? - Hvorfor er tagrender buede? - Hvad koster en bil? - Kan vi spare på emballagen? Kolorit 8 Design jeres egen dartskive MatematriX 8 Hvordan fastsættes prisen på en vare? Pyramidedrik Arranger en koncert MatematriX 9 Skat Hvad koster jeg? Transport Tag udgangspunkt i et af oplæggene Prøv at opstille en eller flere problemstillinger, som ville tvinge eleverne ud I at arbejde med den mundtlige dimension. Hvilke tegn ville I kigge efter når det handler om matematisk modellering? Hvilke færdigheder får eleven brug for? 13

14 Modelleringskompetencen Væsentlige opmærksomhedsfelter/ tegn: Kan eleven opstille en matematisk model, der kan bruges i forbindelse med problemstillingen? Kan eleven udarbejde en matematisk løsning med brug af modellen? Kan eleven analysere sine resultater i forhold til problemstillingen? Kan eleven forholde sig kritisk til egne og andres modeller? Annette Lilholt 14

15 Problembehandlingskompetencen Opstille, afgrænse og løse både rent faglige og anvendelsesorienterede matematiske problemer og vurdere løsninger, bl.a. med henblik på at generalisere resultater Annette Lilholt, CFU Nordjylland

16 Problembehandlingskompetence Væsentlige opmærksomhedsfelter/tegn: Kan eleven forholde sig til de matematiske problemer? Har eleven en løsningsstrategi, og kan eleven løse problemet? Gennemfører eleven en matematisk undersøgelse? Opstiller eleven eventuelt selv et matematisk problem? 16

17 Ræsonnementskompetencen At udføre og gennemføre egne ræsonnementer til begrundelse af matematiske påstande og følger og vurdere andres matematiske ræsonnementer. En produktiv side: På baggrund af en række observationer slutte sig frem til en regel Kombination af forskellige videndele til ny viden En undersøgende side: At følge og undersøge andres ræsonnementer, at kunne tænke med.. Evaluere på konklusionerne på baggrund af en kæde af argumenter Man har overblik og kan stille spørgsmålet Hvad nu hvis.. så Annette Lilholt, CFU Nordjylland

18 Ræsonnementskompetencen 18

19 Ræsonnementskompetencen Væsentlige opmærksomhedsfelter/tegn: Kan eleven gennemføre ræsonnementer med præmisser argumenter konklusion? Kan eleven forholde sig kritisk til egne og andres ræsonnementer? Bruger eleven ræsonnementer frem for påstande? Kan eleven gennemføre et enkelt matematisk bevis? Annette Lilholt 19

20 Opmærksomhedsfelter /Tegn Kommunikationskompetencen: Kan eleven indgå i en faglig dialog med lærer/censor og med sin gruppe? Kan eleven fremlægge sit arbejde med præcision, brug af fagsprog, vekslen mellem dagligt og matematisk sprog? Hjælpemiddelkompetencen: Kan eleven bruge relevante hjælpemidler og bruge dem på en hensigtsmæssig måde? Annette Lilholt 20

21 Undersøgelsesbaseret matematik - IBSME Læring sker gennem kommunikation. Eleverne opnår en undrende, spørgende, søgende og kritisk tilgang Eleverne bruger deres sprog, faglig viden Eleverne arbejder på en videnskabelig måde Eleverne lærer af (egne og andres) fejl Fremme samarbejde mellem eleverne Selvstændig læring! Trin 1: Observationer og undren Trin 2: Planlæg og design Trin 3: Undersøgelser Trin 4: Konklusioner Trin 5: Dokumentation 21

22 Undersøgelsesbaseret matematik - IBSME Trin 1: Observationer og undren Introduktion (fænomen, film, lille forsøg ) at observere at dele viden at undre sig Vi skalsikre at: elevernes erfaringer og forståelse kortlægges der skabe en undren hos eleverne der sikre vidensdelingen mellem eleverne Trin 2: Planlæg og design fordyber sig i deres undringsspørgsmål eleverne opstiller en hypotese eleverne beskriver hvilke undersøgelser, de vil foretage for at efterprøve deres hypotese Vi skal sikre at der stilles åbne spørgsmål, så eleverne får opstillet hypoteser at materialer er til stede for elevernes undersøgelser

23 Trin 3 - Undersøgelser Hvilke andre matematiske former kan anvendes til et timeglas? Hvor meget sand skal der buges til 1 minut? 2 minutter? 3 minutter? Hvad sker der med tiden, hvis vi ændrer på hullets størrelse? Hvis der er dobbelt så meget sand i timeglasset, tager det så også dobbelt så lang tid? Vil det tage samme tid hvis der er samme mængde sand som hvis det var ris? Hvis diameter i hullet halveres, tager det så kun halvt så lang tid?

24 Undersøgelsesbaseret matematik - IBSME Trin 4: Forklaring Det er her, eleverne skal flyttes fra det konkrete til det abstrakte, fra den gamle viden til den nye viden. Eleverne skal forklare, hvordan de er kommet frem til sin nye viden. (arbejdsprocessen begrundes og evt. konkluderes). Læreren er ansvarlig for at den faglige standard er høj: eleverne skal præsenteres for alternative metoder, løsninger og meninger Læreren skal evaluere de forklaringer, som eleverne er kommet frem til og få elever med meget ensidige forklaringer til at uddybe og være mere nuancerede ved at fremkomme med nye dilemmaer eller problemer Trin 5: Dokumentation (evidens) Vidensdeling dokumentere ny viden formidle ny viden (rapport, samtaler ) Stille gode spørgsmål: Evaluering: hvad lærte eleverne om emnet, og hvordan viste de dette? 24

25

26 Gode Spørgsmål Vælg et eller to, som du vil tage med i din praksis i næste uge. Hvorfor og i hvilken kontekst? Lyt til dine egne spørgsmål i praksis og forestil dig hvad de afstedkommer. Begrund, hvorfor du tror det. Hvordan er du kommet frem til det resultat? Hvad tror du er problemet? Mangler du noget for at kunne løse problemet? Kan du huske noget fra tidligere, som kan bruges her? Hvad sker der hvis den faktor ændres? Kan du finde nogen sammenhænge? Hvorfor har du valgt et cirkeldiagram? Hvordan har du fremstillet dit cirkeldiagram? Er der overflødige oplysninger?` Hvordan vil du vise det? Hvad er argumentet for at bruge den beregning her? Er det muligt at formulere problemet på en anden måde? Er det muligt at løse problemet på en anden måde? Kan du finde et mønster? Kan man vise det ved hjælp af en model? Hvad ved du og hvilke antagelser gør du? Hvordan vil du finde ud af om dine antagelser er rigtige? Holder dit argument for alle tilfælde? Kan du vise mig det gennem en tegning? Kan du vise mig det på lommeregneren? Hvad er det samme og hvad er forskelligt her? Er dette virkelig et problem som kan løses på denne måde? Hvad har du bemærket her? Hvad nu hvis du prøver med andre tal eller figurer? Giv et eksempel på sammenhængen mellem et rektangel og et parallelogram - addition og subtraktion - multiplikation og division Fortæl mig en til egenskab ved... 26

27 Fremragende - 12 Godt - 7 Tilstrækkeligt - 02 Eleven arbejder på en sikker måde undersøgende og systematisk med problemstillinger. Eleven viser initiativ og kan samarbejde fagligt med sin gruppe på en hensigtsmæssig måde. Eleven arbejder undersøgende og delvist systematisk med problemstillinger. Eleven viser initiativ og kan samarbejde fagligt med sin gruppe. Eleven viser usikkerhed i undersøgende arbejde med problemstillinger. Eleven viser kun få initiativer og er usikker i det faglige samarbejde med sin gruppe Annette Lilholt Side 27

28 Forslag til mundtlighed i undervisningen Hvilke tegn vil vi kigge efter: Design en emballage Brug de eksemplariske prøveoplæg på ministeriet hjemmeside til at diskutere hvilke tegn, vi ser sig på mundtlighed, når vi sætter disse prøveoplæg i spil. Kompetencebaseret matematik arbejde med de tre kompetencer: modellerings-, problembehandlings- og ræsonnements kompetence Se efter tegnene for at eleverne anvender disse kompetencer Undersøgelsesbaseret matematik læring gennem en undrende, spørgende, søgende og kritisk tilgang Hvordan stiller vi de gode spørgsmål? Hvordan forholder vi os, når eleverne har testen? Andre materialer der kan inspirere jer: Søren Østergård Gamle oplæg til mundtlighed MatematriX (kompetencerne) Kolorit 28

29 Utvikler matematisk språk gjennom aktiviteter som fremmer kommunikasjon. Matematikk er et språk som setter oss i stand til å beskrive og modellere situasjoner, tenke logisk, framføre og vurdere argumenter og kommunisere ideer med presisjon. Elevene kan ikke matematikk før de kan snakke matematikk. Effektiv undervisning fokuserer derfor på kommunikative aspekter ved matematikken ved å utvikle muntlig og skriftlig matematisk språk 29

30 Fremragende - 12 Godt - 7 Tilstrækkeligt - 02 Eleven fremlægger velstruktureret med sikker brug af faglige begrundelser og udtrykker sig klart med sikker anvendelse af hverdagssprog i samspil med matematikkens sprog. Eleven indgår på en sikker måde i dialog om forelagte problemer. Eleven fremlægger sammenhængende med en del faglige begrundelser og udtrykker sig med anvendelse af hverdagssprog i samspil med matematikkens sprog. Eleven indgår i dialog om forelagte problemer. Eleven fremlægger noget usammenhængende med få faglige begrundelser og med usikker anvendelse af hverdagssprog i samspil med matematikkens sprog Annette Lilholt Side 30

Mundtlig matematik. - et udviklingsarbejde Startet på Skovshoved Skole fortsætter her. Ikke bare en proces, men i proces..

Mundtlig matematik. - et udviklingsarbejde Startet på Skovshoved Skole fortsætter her. Ikke bare en proces, men i proces.. Mundtlig matematik - et udviklingsarbejde Startet på Skovshoved Skole fortsætter her. Ikke bare en proces, men i proces.. Hjørring 7. sep. 2012 Line Engsig matematikvejleder på Skovshoved Skole og Mikael

Læs mere

Evaluering af matematik undervisning

Evaluering af matematik undervisning Evaluering af matematik undervisning Udarbejdet af Khaled Zaher, matematiklærer 6-9 klasse og Boushra Chami, matematiklærer 2-5 klasse Matematiske kompetencer. Fællesmål efter 3.klasse indgå i dialog om

Læs mere

3. klasse 6. klasse 9. klasse

3. klasse 6. klasse 9. klasse Børne- og Undervisningsudvalget 2012-13 BUU Alm.del Bilag 326 Offentligt Elevplan 3. klasse 6. klasse 9. klasse Matematiske kompetencer Status tal og algebra sikker i, er usikker i de naturlige tals opbygning

Læs mere

Matematik. Matematiske kompetencer

Matematik. Matematiske kompetencer Matematiske kompetencer skelne mellem definitioner og sætninger, mellem enkelttilfælde og generaliseringer og anvende denne indsigt til at udforske og indgå i dialog om forskellige matematiske begrebers

Læs mere

Årsplan 8. klasse matematik 2013-2014 Uge Emne Faglige mål Trinmål Materialer/ systemer 33 og løbende

Årsplan 8. klasse matematik 2013-2014 Uge Emne Faglige mål Trinmål Materialer/ systemer 33 og løbende Årsplan 8. klasse matematik 2013-2014 33 løbende 33-34 løbende Løbende Problemregning ( faglig læsning) Mundtlig matematik (forberede oplæg til 6. klasse) - flere forskellige trinmål Ben, formelsamlingen,

Læs mere

Selam Friskole Fagplan for Matematik

Selam Friskole Fagplan for Matematik Selam Friskole Fagplan for Matematik Formål Formålet med undervisningen er, at eleverne udvikler matematiske kompetencer og opnår viden og kunnen således, at de bliver i stand til at begå sig hensigtsmæssigt

Læs mere

Årsplan for 7. klasse, matematik

Årsplan for 7. klasse, matematik Årsplan for 7. klasse, matematik I matematik bruger vi bogsystemet Sigma som grundmateriale. I systemet er der, ud over grundbogen, også kopiark og tests tilknyttet de enkelte kapitler. Systemet er udarbejdet

Læs mere

Space Challenge og Undervisningsminsteriets Fælles Mål for folkeskolen

Space Challenge og Undervisningsminsteriets Fælles Mål for folkeskolen Space Challenge og Undervisningsminsteriets Fælles Mål for folkeskolen I dette kapitel beskrives det, hvilke Fælles Mål man kan nå inden for udvalgte fag, når man i skolen laver aktiviteter med Space Challenge.

Læs mere

Fælles Mål 2009. Matematik. Faghæfte 12

Fælles Mål 2009. Matematik. Faghæfte 12 Fælles Mål 2009 Matematik Faghæfte 12 Undervisningsministeriets håndbogsserie nr. 14 2009 Fælles Mål 2009 Matematik Faghæfte 12 Undervisningsministeriets håndbogsserie nr. 14 2009 Indhold Formål for faget

Læs mere

Fælles Mål 2009. Matematik. Faghæfte 12

Fælles Mål 2009. Matematik. Faghæfte 12 Fælles Mål 2009 Matematik Faghæfte 12 Undervisningsministeriets håndbogsserie nr. 14 2009 Fælles Mål 2009 Matematik Faghæfte 12 Undervisningsministeriets håndbogsserie nr. 14 2009 Indhold Formål for faget

Læs mere

Årsplan for matematik 2012-13

Årsplan for matematik 2012-13 Årsplan for matematik 2012-13 Uge Tema/emne Metode/mål 32 Matematiske arbejdsmåder(metode) 33 Intro 34 Tal + talforståelse 35 Brøker-procent 36 Potens+kvadrat-og kubikrod 37 Emneuge 38 Ligninger-uligheder

Læs mere

Matematik. Matematiske kompetencer

Matematik. Matematiske kompetencer Matematiske kompetencer formulere sig skriftligt og mundtligt om matematiske påstande og spørgsmål og have blik for hvilke typer af svar, der kan forventes (tankegangskompetence) løse matematiske problemer

Læs mere

Undervisningsplan for matematik

Undervisningsplan for matematik Undervisningsplan for matematik Formål for faget Formålet med undervisningen i matematik er, at eleverne udvikler kompetencer og opnår viden og kunnen således, at de bliver i stand til at begå sig hensigtsmæssigt

Læs mere

Årsplan for matematik

Årsplan for matematik Årsplan for matematik 2016-17 Uge Tema/emne Metode/mål 33 Brøker + talforståelse Matematiske arbejdsmåder(metode) 34 Brøker + procent 35 Excel 35 GeoGebra/Geometri 36 Geometri 37 Emneuge 38 Geometri 39

Læs mere

Årsplan 9. klasse matematik 2013-2014 Uge Emne Faglige mål Trinmål Materialer/ systemer 33 Årsprøven i matematik

Årsplan 9. klasse matematik 2013-2014 Uge Emne Faglige mål Trinmål Materialer/ systemer 33 Årsprøven i matematik Årsplan 9. klasse matematik 2013-2014 33 Årsprøven i matematik Årsprøve og rettevejledledning 34-35 36 og løbe nde Talmængder og regnemetoder Mundtlig matematik 37 Fordybelses uge 38-39 Procent - Gennemgå

Læs mere

Der er ikke væsentlig niveauforskel i opgaverne inden for de fire emner, men der er fokus på forskellige matematiske områder.

Der er ikke væsentlig niveauforskel i opgaverne inden for de fire emner, men der er fokus på forskellige matematiske områder. Dette tema lægger forskellige vinkler på temaet biografen. Udgangspunktet er således ikke et bestemt matematisk område, men et stykke virkelighed, der bl.a. kan beskrives ved hjælp af matematik. I dette

Læs mere

Årsplan for 5. klasse, matematik

Årsplan for 5. klasse, matematik Årsplan for 5. klasse, matematik I matematik bruger vi bogsystemet Sigma som grundmateriale. I systemet er der, ud over også kopiark og tests tilknyttet de enkelte kapitler. Systemet er udarbejdet så det

Læs mere

Undervisningsplan: Matematik Skoleåret 2014/2015 Strib Skole: 5B Ugenumre: Hovedområder: Emner og temaer: Side 1 af 5

Undervisningsplan: Matematik Skoleåret 2014/2015 Strib Skole: 5B Ugenumre: Hovedområder: Emner og temaer: Side 1 af 5 Ugenumre: Hovedområder: Emner og temaer: 33 Addition og subtraktion Anvendelse af regningsarter 34 Multiplikation og division Anvendelse af regningsarter 35 Multiplikation med decimaltal Anvendelse af

Læs mere

Odense, den 4. marts 2013 Heidi Kristiansen. 04-03-2013 Heidi Kristiansen - Folkeskolens afsluttende prøver i matematik

Odense, den 4. marts 2013 Heidi Kristiansen. 04-03-2013 Heidi Kristiansen - Folkeskolens afsluttende prøver i matematik Odense, den 4. marts 2013 Heidi Kristiansen Oplæg til mundtlig gruppeprøve, der gør det muligt at evaluere kompetencer hvordan??? indeholde tydelige problemstillinger rene eller anvendte matematiske problemer,

Læs mere

UCC - Matematikdag - 08.04.14

UCC - Matematikdag - 08.04.14 UCSJ Målstyret + 21 PD - UCC - 25.02.14 www.mikaelskaanstroem.dk Der var engang. Skovshoved Skole Hvad svarer du på elevspørgsmålet: Hvad skal jeg gøre for at få en højere karakter i mundtlig matematik?

Læs mere

10.klasse. Naturfaglige fag: Matematik, Fysik/kemi. Matematik. Formål for faget matematik

10.klasse. Naturfaglige fag: Matematik, Fysik/kemi. Matematik. Formål for faget matematik 10.klasse Naturfaglige fag: Matematik, Fysik/kemi Matematik Formål for faget matematik Formålet med undervisningen er, at eleverne udvikler matematiske kompetencer og opnår viden og kunnen således, at

Læs mere

Fag- og indholdsplan 9. kl.:

Fag- og indholdsplan 9. kl.: Fag- og indholdsplan 9. kl.: Indholdsområder: Tal og algebra: Tal - regneregler og formler Størrelser måling, beregning og sammenligning. Matematiske udtryk Algebra - teoretiske sammenhænge absolut og

Læs mere

MATEMATIK. Formål for faget

MATEMATIK. Formål for faget MATEMATIK Formål for faget Formålet med undervisningen er, at eleverne udvikler matematiske kompetencer og opnår viden og kunnen således, at de bliver i stand til at begå sig hensigtsmæssigt i matematikrelaterede

Læs mere

Års- og aktivitetsplan i matematik hold 4 2014/2015

Års- og aktivitetsplan i matematik hold 4 2014/2015 Års- og aktivitetsplan i matematik hold 4 2014/2015 Der arbejdes hen mod slutmålene i matematik efter 10. klassetrin. www.uvm.dk => Fælles Mål 2009 => Faghæfter alfabetisk => Matematik => Slutmål for faget

Læs mere

Mundtlig gruppeprøve i matematik. 17-09-2012 klaus.fink@uvm.dk Mobil: 2041 0721 Side 1

Mundtlig gruppeprøve i matematik. 17-09-2012 klaus.fink@uvm.dk Mobil: 2041 0721 Side 1 Mundtlig gruppeprøve i matematik 2012 klaus.fink@uvm.dk Mobil: 2041 0721 Side 1 Hvorfor en mundtlig prøve? Der er trinmål, vi ikke kan prøve eleverne i ved en skriftlig prøve Eller kun delvist kan prøve

Læs mere

Tal og algebra. I kapitlet arbejdes med følgende centrale matematiske begreber: algebra variable. Huskeliste: Tændstikker (til side 146) FRA FAGHÆFTET

Tal og algebra. I kapitlet arbejdes med følgende centrale matematiske begreber: algebra variable. Huskeliste: Tændstikker (til side 146) FRA FAGHÆFTET I kapitlet skal eleverne arbejde med fire forskellige vinkler på algebra de præsenteres på kapitlets første mundtlige opslag. De fire vinkler er algebra som et redskab til at løse matematiske problemer.

Læs mere

MATEMATIK. Formål for faget

MATEMATIK. Formål for faget Fælles Mål II MATEMATIK Formål for faget Fælles Mål Formålet med undervisningen i matematik er, at eleverne bliver i stand til at forstå og anvende matematik i sammenhænge, der vedrører dagligliv, samfundsliv

Læs mere

Årsplan matematik 4.klasse - skoleår 11/12- Ida Skov Andersen Med ret til ændringer og justeringer

Årsplan matematik 4.klasse - skoleår 11/12- Ida Skov Andersen Med ret til ændringer og justeringer Basis: Klassen består af 22 elever og der er afsat 4 ugentlige timer. Grundbog: Vi vil arbejde ud fra Matematrix 4, arbejds- og grundbog, kopisider, Rema, ekstraopgaver og ugentlige afleveringsopgaver

Læs mere

Matematikken og naturens kræfter

Matematikken og naturens kræfter INTRO Omdrejningspunktet for dette tema er matematikkens anvendelse som beskrivelsesmiddel i forbindelse med fysiske love. Temaet er inddelt i følgende fire emner: Pendulure Frit fald Bremselængder og

Læs mere

MATEMATIK. GIDEONSKOLENS UNDERVISNINGSPLAN Oversigt over undervisning i forhold til trinmål og slutmål

MATEMATIK. GIDEONSKOLENS UNDERVISNINGSPLAN Oversigt over undervisning i forhold til trinmål og slutmål MATEMATIK GIDEONSKOLENS UNDERVISNINGSPLAN Oversigt over undervisning i forhold til trinmål og slutmål KOMMENTAR Vi har i det følgende foretaget en analyse og en sammenstilling af vore materialer til skriftlig

Læs mere

Klassen er sammenlæst, altså 5 og 6 klasse på en og samme tid. Samtidig er klassen pt på ca 11 elever ialt.

Klassen er sammenlæst, altså 5 og 6 klasse på en og samme tid. Samtidig er klassen pt på ca 11 elever ialt. Introduktion til mat i 5/6 klasse Vejle Privatskole 13/14: Klassen er sammenlæst, altså 5 og 6 klasse på en og samme tid. Samtidig er klassen pt på ca 11 elever ialt. Udgangspunktet bliver en blød screening,

Læs mere

Årsplan for Matematik 8. klasse 2011/2012

Årsplan for Matematik 8. klasse 2011/2012 Årsplan for Matematik 8. klasse 2011/2012 Formål for faget matematik Formålet med undervisningen er, at eleverne udvikler matematiske kompetencer og opnår viden og kunnen således, at de bliver i stand

Læs mere

Fagårsplan 10/11 Fag: Matematik Klasse: 7.ABC Lærer: Henrik Stillits. Fagområde/ emne

Fagårsplan 10/11 Fag: Matematik Klasse: 7.ABC Lærer: Henrik Stillits. Fagområde/ emne Fagårsplan 10/11 Fag: Matematik Klasse: 7.ABC Lærer: Henrik Stillits. Fagområde/ emne Matematiske færdigheder Grundlæggende færdigheder - plus, minus, gange, division (hele tal, decimaltal og brøker) Identificer

Læs mere

Undervisningsplan for faget matematik. Ørestad Friskole

Undervisningsplan for faget matematik. Ørestad Friskole Undervisningsplan for faget matematik Ørestad Friskole 1. af 11 sider Undervisningsplan for faget matematik. Ørestad Friskole Undervisningsplanens indhold Undervisningens organisering og omfang side 2

Læs mere

Årsplan 2012/2013. 9. årgang: Matematik. Lyreskovskolen. FORMÅL OG FAGLIGHEDSPLANER - Fælles Mål II 2009

Årsplan 2012/2013. 9. årgang: Matematik. Lyreskovskolen. FORMÅL OG FAGLIGHEDSPLANER - Fælles Mål II 2009 Årsplan 2012/2013 9. årgang: Matematik FORMÅL OG FAGLIGHEDSPLANER - Fælles Mål II 2009 Formålet med undervisningen i matematik er, at eleverne udvikler matematiske r og opnår viden og kunnen således, at

Læs mere

Vejledende karakterbeskrivelser for matematik

Vejledende karakterbeskrivelser for matematik Vejledende karakterbeskrivelser for matematik Folkeskolens Afgangsprøve efter 9. klasse Karakterbeskrivelse for matematiske færdigheder. Der prøves i tal og algebra geometriske begreber og fremgangsmåder

Læs mere

Andreas Nielsen Kalbyrisskolen 2009

Andreas Nielsen Kalbyrisskolen 2009 Andreas Nielsen Kalbyrisskolen 2009 Matematiske kompetencer. Matematiske emner (tal og algebra, geometri, statistik og sandsynlighed). Matematik i anvendelse. Matematiske arbejdsmåder. Tankegangskompetence

Læs mere

I kapitlet arbejdes med følgende centrale matematiske objekter og begreber:

I kapitlet arbejdes med følgende centrale matematiske objekter og begreber: INTRO Efter mange års pause er trigonometri med Fælles Mål 2009 tilbage som fagligt emne i grundskolens matematikundervisning. Som det fremgår af den følgende sides udpluk fra faghæftets trinmål, er en

Læs mere

Fagårsplan 10/11 Fag: Matematik Klasse: 8.A Lærer: Henrik Stillits Fagområde/ emne Færdighedsregning - Typer af opgaver - Systematik

Fagårsplan 10/11 Fag: Matematik Klasse: 8.A Lærer: Henrik Stillits Fagområde/ emne Færdighedsregning - Typer af opgaver - Systematik Fagårsplan 10/11 Fag: Matematik Klasse: 8.A Lærer: Henrik Stillits Fagområde/ emne Færdighedsregning - Typer af opgaver - Systematik Periode Mål Eleverne skal: 32/33 Få kendskab til opgavetypen og få rutine.

Læs mere

Geometri i plan og rum

Geometri i plan og rum INTRO I kapitlet arbejder eleverne med plane og rumlige figurers egenskaber og med deres anvendelse som geometriske modeller. I den forbindelse kommer de bl.a. til at beskæftige sig med beregninger af

Læs mere

Skolens formål med faget matematik følger beskrivelsen af formål i folkeskolens Fælles Mål:

Skolens formål med faget matematik følger beskrivelsen af formål i folkeskolens Fælles Mål: Formål: Skolens formål med faget matematik følger beskrivelsen af formål i folkeskolens Fælles Mål: Formålet med undervisningen i matematik er, at eleverne bliver i forstå og anvende matematik i sammenhænge,

Læs mere

Matematik på Viby Friskole

Matematik på Viby Friskole Matematik på Viby Friskole Formålet for faget matematik Formålet med undervisningen er, at eleverne udvikler matematiske kompetencer og opnår viden og kunnen således, at de bliver i stand til at begå sig

Læs mere

Årsplan for 2. kl. matematik

Årsplan for 2. kl. matematik Undervisningen i 2. kl. tager primært udgangspunkt i matematikbøgerne Kolorit 2A og 2B. Årets emner med delmål Gange (kopiark) ræsonnerer sig frem til multiplikationsalgoritmen i teams, ved hjælp af additionsalgoritmer.

Læs mere

Årsplan for matematik i 3. klasse

Årsplan for matematik i 3. klasse www.aalborg-friskole.dk Sohngårdsholmsvej 47, 9000 Aalborg, Tlf.98 14 70 33, E-mail: kontor@aalborg-friskole.dk Årsplan for matematik i 3. klasse Mål Eleverne bliver i stand til at forstå og anvende matematik

Læs mere

Mundtlig prøve i matematik

Mundtlig prøve i matematik Mundtlig prøve i matematik Onsdag d. 5. december 2012 CFU Sjælland Mari-Ann Skovlund & Mikael Scheby Hvorfor en mundtlig prøve? Der er trinmål, vi ikke kan prøve eleverne i ved en skriftlig prøve, eller

Læs mere

Fagplan for matematik

Fagplan for matematik Fagplan for matematik Formål Undervisningen i matematik skal give eleverne lyst til, forståelse for og teoretisk baggrund for at analysere, vurdere, kontrollere og argumentere, når de i deres dagligdag

Læs mere

ræsonnere og argumentere intuitivt om konkrete matematiske aktiviteter og følge andres mundtlige argumenter (ræsonnementskompetence)

ræsonnere og argumentere intuitivt om konkrete matematiske aktiviteter og følge andres mundtlige argumenter (ræsonnementskompetence) Matematiske kompetencer indgå i dialog om spørgsmål og svar, som er karakteristiske i arbejdet med matematik (tankegangskompetence) løse matematiske problemer knyttet til en kontekst, der giver mulighed

Læs mere

It i Fælles mål 2009- Matematik

It i Fælles mål 2009- Matematik It i Fælles mål 2009- Matematik Markeringer af hvor it er nævnt. Markeringen er ikke udtømmende og endelig. Flemming Holt, PITT Aalborg Kommune Fælles Mål 2009 - Matematik Faghæfte 12 Formål for faget

Læs mere

Årsplan 9. klasse matematik 2014-2015 Uge Emne Faglige mål Trinmål Materialer/ systemer 33-34

Årsplan 9. klasse matematik 2014-2015 Uge Emne Faglige mål Trinmål Materialer/ systemer 33-34 Årsplan 9. klasse matematik 2014-2015 33-34 Årsprøve og rettevejledledning 34-36 Årsprøven i matematik Talmængder og regnemetoder 37 Fordybelses uge 38-39 40 Termins-prøve 41 Studieturen 42 Efterårsferie

Læs mere

Årsplan for 5. klasse, matematik

Årsplan for 5. klasse, matematik Ringsted Lilleskole, Uffe Skak Årsplan for 5. klasse, matematik Som det fremgår af nedenstående uddrag af undervisningsministeriets publikation om fælles trinmål til matematik efter 6. klasse, bliver faget

Læs mere

Mundtlig gruppeprøve. Odense 13. maj 2013

Mundtlig gruppeprøve. Odense 13. maj 2013 Mundtlig gruppeprøve Odense 13. maj 2013 Den store positive nyhed Aldrig før har så mange matematiklærere været på kursus som i 2012-2013 2000 til de generelle foredrag Mindst 1500 til workshops med fremstilling

Læs mere

Geometriske eksperimenter

Geometriske eksperimenter I kapitlet arbejder eleverne med nogle af de egenskaber, der er knyttet til centrale geometriske figurer og begreber (se listen her under). Set fra en emneorienteret synsvinkel handler kapitlet derfor

Læs mere

Emmas og Frederiks nye værelser - maling eller tapet?

Emmas og Frederiks nye værelser - maling eller tapet? Emmas og Frederiks nye værelser - maling eller tapet? Emmas og Frederiks familie skal flytte til et nyt hus. De har fået lov til at bestemme, hvordan væggene på deres værelser skal se ud. Emma og Frederik

Læs mere

Matematik på Viby Friskole

Matematik på Viby Friskole Matematik på Viby Friskole Formålet for faget matematik Formålet med undervisningen er, at eleverne udvikler matematiske kompetencer og opnår viden og kunnen således, at de bliver i stand til at begå sig

Læs mere

LÆRINGSMÅL PÅ NIF MATEMATIK 2014-15

LÆRINGSMÅL PÅ NIF MATEMATIK 2014-15 LÆRINGSMÅL PÅ NIF MATEMATIK 2014-15 Mål for undervisningen i Matematik på NIF Følgende er baseret på de grønlandske læringsmål, tilføjelser fra de danske læringsmål står med rød skrift. Læringsmål Yngstetrin

Læs mere

Undersøgelser af trekanter

Undersøgelser af trekanter En rød tråd igennem kapitlet er en søgen efter svar på spørgsmålet: Hvordan kan vi beregne os frem til længder, vi ikke kan komme til at måle?. Hvordan kan vi fx beregne højden på et træ eller et hus,

Læs mere

Matematik på Humlebæk lille Skole

Matematik på Humlebæk lille Skole Matematik på Humlebæk lille Skole Matematikundervisningen på HLS er i overensstemmelse med Undervisningsministeriets Fælles Mål, dog med få justeringer som passer til vores skoles struktur. Det betyder

Læs mere

Når vi forbereder et nyt emne eller område vælger vi de metoder, materialer og evalueringsformer, der egner sig bedst til forløbet.

Når vi forbereder et nyt emne eller område vælger vi de metoder, materialer og evalueringsformer, der egner sig bedst til forløbet. MATEMATIK Delmål for fagene generelt. Al vores undervisning hviler på de i Principper for skole & undervisning beskrevne områder (- metoder, materialevalg, evaluering og elevens personlige alsidige udvikling),

Læs mere

Faglige delmål og slutmål i faget Matematik. Trin 1

Faglige delmål og slutmål i faget Matematik. Trin 1 Faglige delmål og slutmål i faget Matematik. Trin 1 Faglige delmål for matematik i 1. og 2. klasse. Undervisningen skal lede frem mod, at eleverne efter 2. klasse har tilegnet sig kundskaber og færdigheder,

Læs mere

Symbolbehandlingskompetencen er central gennem arbejdet med hele kapitlet i elevernes arbejde med tal og regneregler.

Symbolbehandlingskompetencen er central gennem arbejdet med hele kapitlet i elevernes arbejde med tal og regneregler. Det første kapitel i grundbogen til Kolorit i 8. klasse handler om tal og regning. Kapitlet indledes med, at vores titalssystem som positionssystem sættes i en historisk sammenhæng. Gennem arbejdet med

Læs mere

Eleverne skal lære at:

Eleverne skal lære at: PK: Årsplan 8.Ga. M, matematik Tid og fagligt område Aktivitet Læringsmål Uge 32 uge 50 Tal og algebra Eleverne skal arbejde med at: kende de reelle tal og anvende dem i praktiske og teoretiske sammenhænge

Læs mere

Læseplan for faget matematik. 1. 9. klassetrin

Læseplan for faget matematik. 1. 9. klassetrin Læseplan for faget matematik 1. 9. klassetrin Matematikundervisningen bygger på elevernes mange forudsætninger, som de har med når de starter i skolen. Der bygges videre på elevernes forskellige faglige

Læs mere

Eleven kan handle med overblik i sammensatte situationer med matematik. Eleven kan anvende rationale tal og variable i beskrivelser og beregninger

Eleven kan handle med overblik i sammensatte situationer med matematik. Eleven kan anvende rationale tal og variable i beskrivelser og beregninger Kompetenceområde Efter klassetrin Efter 6. klassetrin Efter 9. klassetrin Matematiske kompetencer handle hensigtsmæssigt i situationer med handle med overblik i sammensatte situationer med handle med dømmekraft

Læs mere

Matematiklærernes dag 08.11.2010. Modellering

Matematiklærernes dag 08.11.2010. Modellering Matematiklærernes dag 08.11.2010 Modellering 0745 - Modellering Matematiklærernes dag 08.11.2010 Matematisk modellering I kursusbeskrivelsen Når man bruger matematik til at beskrive og forstå virkeligheden

Læs mere

Matematik. Matematikundervisningen tager udgangspunkt i Folkeskolens Fælles Mål

Matematik. Matematikundervisningen tager udgangspunkt i Folkeskolens Fælles Mål Matematik Matematikundervisningen tager udgangspunkt i Folkeskolens Fælles Mål Formålet med undervisningen i matematik er, at eleverne bliver i stand til at forstå og anvende matematik i sammenhænge, der

Læs mere

Matematik. Matematiske kompetencer

Matematik. Matematiske kompetencer Matematiske kompetencer stille spørgsmål, som er karakteristiske for matematik og have blik for hvilke typer af svar, som kan forventes(tankegangskompetence) erkende, formulere, afgrænse og løse matematiske

Læs mere

Hvilke trinmål fra Fælles Mål opfyldes?

Hvilke trinmål fra Fælles Mål opfyldes? Hvilke trinmål fra Fælles Mål opfyldes? Det giver en lang række fordele, at eleverne aktivt bygger, undersøger, afprøver, stiller spørgsmål og diskuterer sammen. Her er et overblik: Fysik Udføre praktiske

Læs mere

Emne Tema Materiale r - - - - - aktiviteter

Emne Tema Materiale r - - - - - aktiviteter Fag: Matematik Hold: 24 Lærer: TON Undervisningsmål Læringsmål 9 klasse 32-34 Introforløb: række tests, som viser eleverne faglighed og læringsstil. Faglige aktiviteter Emne Tema Materiale r IT-inddragelse

Læs mere

Dette kapitel tager især udgangspunkt i det centrale kundskabs- og færdighedsområde: Matematik i anvendelse med økonomi som omdrejningspunktet.

Dette kapitel tager især udgangspunkt i det centrale kundskabs- og færdighedsområde: Matematik i anvendelse med økonomi som omdrejningspunktet. Dette kapitel tager især udgangspunkt i det centrale kundskabs- og færdighedsområde: Matematik i anvendelse med økonomi som omdrejningspunktet. Kapitlet indledes med fokus på løn og skat og lægger op til,

Læs mere

Matematikvejlederkonference 27. august Matematikvejlederkonference Odense 2015

Matematikvejlederkonference 27. august Matematikvejlederkonference Odense 2015 Matematikvejlederkonference 27. august Læringskonsulenterne Rasmus Ulsøe Kær Martin Villumsen Rikke Kjærup De tværgående temaer i et matematisk perspektiv Innovation og entreprenørskab It og medier Sproglig

Læs mere

Introduktion til mat i 4 klasse Vejle Privatskole 2013/14:

Introduktion til mat i 4 klasse Vejle Privatskole 2013/14: Introduktion til mat i 4 klasse Vejle Privatskole 2013/14: Udgangspunktet bliver en blød screening, der skal synliggøre summen af elevernes standpunkt. Det betyder i realiteten, at der uddeles 4 klasses

Læs mere

Scenariet kan benyttes ud fra flere forskellige fokusområder. I udarbejdelsen af scenariet har forfatterne særligt haft følgende mål i tankerne:

Scenariet kan benyttes ud fra flere forskellige fokusområder. I udarbejdelsen af scenariet har forfatterne særligt haft følgende mål i tankerne: Lærervejledningen giver supplerende oplysninger og forslag til scenariet. En generel lærervejledning fortæller om de gennemgående træk ved alle scenarier samt om intentionerne i Matematikkens Univers.

Læs mere

Årsplan for matematik i 1. klasse 2011-12

Årsplan for matematik i 1. klasse 2011-12 Årsplan for matematik i 1. klasse 2011-12 Klasse: 1. Fag: Matematik Lærer: Ali Uzer Lektioner pr. uge: 5 Formål for faget matematik Formålet med undervisningen er, at eleverne udvikler matematiske kompetencer

Læs mere

Opgave 1 -Tages kvadrat

Opgave 1 -Tages kvadrat Opgave 1 -Tages kvadrat Den danske matematiker, Tage Werner, fandt på figuren, som ses herunder. Figuren kan laves ved 1) at tegne et kvadrat, 2) markere midtpunkterne på kvadratets sider og 3) tegne linjestykker

Læs mere

M A T E M A T I K FAGBESKRIVELSE FOR UNDERVISNING I MATEMATIK PÅ HARESKOVENS LILLESKOLE:

M A T E M A T I K FAGBESKRIVELSE FOR UNDERVISNING I MATEMATIK PÅ HARESKOVENS LILLESKOLE: M A T E M A T I K FAGBESKRIVELSE FOR UNDERVISNING I MATEMATIK PÅ HARESKOVENS LILLESKOLE: Udgangspunktet for Hareskovens Lilleskoles matematikundervisning er vores menneskesyn: det hele menneske. Der lægges

Læs mere

Matematik - undervisningsplan

Matematik - undervisningsplan I 4. klasse starter man på andet forløb i matematik, der skal lede frem mod at eleverne kan opfylde fagets trinmål efter 6. klasse. Det er dermed det som undervisningen tilrettelægges ud fra og målsættes

Læs mere

Matematik UVMs Trinmål synoptisk fremstillet

Matematik UVMs Trinmål synoptisk fremstillet Matematik UVMs Trinmål synoptisk fremstillet Matematiske kompetencer Trinmål efter 3. klassetrin Trinmål efter 6. klassetrin Trinmål efter 9. klassetrin indgå i dialog om spørgsmål og svar, som er karakteristiske

Læs mere

Matematik 2. klasse Årsplan. Årets emner med delmål

Matematik 2. klasse Årsplan. Årets emner med delmål Matematik 2. klasse Årsplan Årets emner med delmål Regn (side 1 14 + kopisider) opnå større fortrolighed med plus og minus anvende plus og minus til antalsbestemmelse anvende forskellige metoder til løsning

Læs mere

Matematik. Matematiske kompetencer

Matematik. Matematiske kompetencer Matematiske kompetencer skelne mellem definitioner og sætninger, mellem enkelttilfælde og generaliseringer og anvende denne indsigt til at udforske og indgå i dialog om forskellige matematiske begrebers

Læs mere

Matematiske kompetencer - hvad og hvorfor? DLF-Kursus Frederikshavn 24.-25.9 2015 Eva Rønn UCC

Matematiske kompetencer - hvad og hvorfor? DLF-Kursus Frederikshavn 24.-25.9 2015 Eva Rønn UCC Matematiske kompetencer - hvad og hvorfor? DLF-Kursus Frederikshavn 24.-25.9 2015 Eva Rønn UCC Komrapporten Kompetencer og matematiklæring. Ideer og inspiration til udvikling af matematikundervisningen

Læs mere

Årsplan for 2.kl i Matematik

Årsplan for 2.kl i Matematik Årsplan for 2.kl i Matematik Vi følger matematiksystemet "Matematrix". Her skal vi i år arbejde med bøgerne 2A og 2B. Eleverne i 2. klasse skal i 2. klasse gennemgå de fire regningsarter. Specielt skal

Læs mere

Opgave design - oplæg til mundtlig prøve i matematik i 9. og 10. klasse - udvalgt baggrundsmateriale/ Mikael Skånstrøm

Opgave design - oplæg til mundtlig prøve i matematik i 9. og 10. klasse - udvalgt baggrundsmateriale/ Mikael Skånstrøm Opgave design - oplæg til mundtlig prøve i matematik i 9. og 10. klasse - udvalgt baggrundsmateriale/ Mikael Skånstrøm KOM-rapporten Prøvevejledning Fælles Mål http://pub.uvm.dk/2002/kom/hel.pdf http://qa.uvm.dk/uddannelser-og-dagtilbud/folkeskolen/afsluttendeproever/om-afsluttende-proever/proevevejledninger

Læs mere

Mundtlig prøve i Matematik

Mundtlig prøve i Matematik Mundtlig prøve i Matematik Mandag d. 9. september 2013 CFU Sjælland Mikael Scheby Dagens indhold Velkomst, præsentation, formål med dagen Vekselvirkning mellem formalia, oplæg og arbejde med eksempler

Læs mere

Mål Kompetencer Matematiske arbejdsmåder. Problembehandling. Ræsonnement

Mål Kompetencer Matematiske arbejdsmåder. Problembehandling. Ræsonnement Forslag til årsplan for 9. klasse, matematik Udarbejdet af Susanne Nielson og Pernille Peiter revideret august 2011 af pædagogisk konsulent Rikke Teglskov 33-38 Rumgeometri Kende og anvende forskellige

Læs mere

Årsplan matematik 1.klasse - skoleår 12/13- Ida Skov Andersen Med ret til ændringer og justeringer

Årsplan matematik 1.klasse - skoleår 12/13- Ida Skov Andersen Med ret til ændringer og justeringer BASIS: Klassen består af 26 elever og der er afsat 5 ugentlige timer. Grundbog: Vi vil arbejde ud fra Matematrix 1A og 1B, de tilhørende kopisider + CD-rom, Rema samt evt. ekstraopgaver. Derudover vil

Læs mere

Årsplan matematik 2.klasse - skoleår 14/15- Majbrit Trampedach

Årsplan matematik 2.klasse - skoleår 14/15- Majbrit Trampedach BASIS: Klassen består af 25 elever og der er afsat 5 ugentlige timer, hvoraf en af timerne bliver en fast Regne-time. Grundbog: Vi vil arbejde ud fra Matematrix 2A og 2B, de tilhørende kopisider + CD-rom,

Læs mere

Uddybning Undervisning form IT Færdigheds- og vidensmål

Uddybning Undervisning form IT Færdigheds- og vidensmål Årsplan 2016/17 Fag Matematik 9.kl Gymnastikefterskolen Stevns Lærer Christina Permin Caspersen Årgang 2016/17 Undervisningen opbygges således, at eleverne igennem deres daglige arbejde med matematikken

Læs mere

Funktioner og ligninger

Funktioner og ligninger Eleverne har både i Kolorit på mellemtrinnet og i Kolorit 7 matematik grundbog arbejdet med funktioner. I 7. klasse blev funktionsbegrebet defineret, og eleverne arbejdede med forskellige måder at beskrive

Læs mere

Matematik. Formål for faget matematik. Slutmål for faget matematik efter 9. klasse. Matematiske kompetencer. Matematiske emner

Matematik. Formål for faget matematik. Slutmål for faget matematik efter 9. klasse. Matematiske kompetencer. Matematiske emner Formål for faget matematik Matematik Formålet med undervisningen er, at eleverne udvikler matematiske kompetencer og opnår viden og kunnen således, at de bliver i stand til at begå sig hensigtsmæssigt

Læs mere

8:30-14:30 Sproglig udvikling Kort aktivitet Planlægning af undervisningsforløb Fremlæggelse af undervisningsforløb

8:30-14:30 Sproglig udvikling Kort aktivitet Planlægning af undervisningsforløb Fremlæggelse af undervisningsforløb 8:30-14:30 Sproglig udvikling Kort aktivitet Planlægning af undervisningsforløb Fremlæggelse af undervisningsforløb Kaffepause 10:00-10:15 Frokost 12:15-13:00 Kaffepause 13:45-14:00 SPROGLIG UDVIKLING

Læs mere

Årsplan 2013/2014 6. ÅRGANG: MATEMATIK. Lyreskovskolen. FORMÅL OG FAGLIGHEDSPLANER - Fælles Mål II 2009

Årsplan 2013/2014 6. ÅRGANG: MATEMATIK. Lyreskovskolen. FORMÅL OG FAGLIGHEDSPLANER - Fælles Mål II 2009 Årsplan 2013/2014 6. ÅRGANG: MATEMATIK FORMÅL OG FAGLIGHEDSPLANER - Fælles Mål II 2009 Formålet med undervisningen i matematik er, at eleverne udvikler matematiske r og opnår viden og kunnen således, at

Læs mere

Årsplan matematik 3.klasse - skoleår 14/15- Ida Skov Andersen

Årsplan matematik 3.klasse - skoleår 14/15- Ida Skov Andersen BASIS: Klassen består af 25 elever og der er afsat 5 ugentlige timer. Grundbog: Vi vil arbejde ud fra Matematrix 3A og 3B, de tilhørende kopisider (123-mappen) + CD-rom, Rema samt evt. ekstraopgaver. Derudover

Læs mere

Matematik i marts. nu i april

Matematik i marts. nu i april Matematik i marts nu i april Dagens fødselar 2 127 1 1857 1876 Diofantiske ligninger En løsning for N>1: N = 24 og M = 70 François Édouard Anatole Lucas (4 April 1842 3 October 1891) 2, 1, 3, 4, 7, 11,

Læs mere

Vi har valgt at tage udgangspunkt i de hidtil gældende fælles mål, da de er let-omsættelige i forhold til det konkrete undervisningsmateriale.

Vi har valgt at tage udgangspunkt i de hidtil gældende fælles mål, da de er let-omsættelige i forhold til det konkrete undervisningsmateriale. Vi har valgt at tage udgangspunkt i de hidtil gældende fælles mål, da de er let-omsættelige i forhold til det konkrete undervisningsmateriale. Natur/teknologi Undervisningsmaterialet kan anvendes til at

Læs mere

Årsplan matematik 5 kl 2015/16

Årsplan matematik 5 kl 2015/16 Årsplan matematik 5 kl 2015/16 I matematik bruger vi bogsystemet Sigma som grundmateriale, og har matematikfessor som suplerende materiale, samt kopisider. I systemet er der,ud over grundbogen, også kopiark

Læs mere

Kommentarer til matematik B-projektet 2015

Kommentarer til matematik B-projektet 2015 Kommentarer til matematik B-projektet 2015 Mandag d. 13/4 udleveres årets eksamensprojekt i matematik B. Dette brev er tænkt som en hjælp til vejledningsprocessen for de lærere, der har elever, som laver

Læs mere

Årsplan matematik 1.klasse - skoleår 14/15- Ida Skov Andersen

Årsplan matematik 1.klasse - skoleår 14/15- Ida Skov Andersen BASIS: Klassen består af 20 elever og der er afsat 5 ugentlige timer. Grundbog og materialer: Vi vil arbejde ud fra Matematrix 1A og 1B, de tilhørende kopisider (123-mappen) + CD-rom, Rema samt evt. ekstraopgaver.

Læs mere

Tavleundervisning og samarbejde 2 og 2. Eleverne arbejder selvstændigt med opgaver. Løbende opsamling ved tavlen.

Tavleundervisning og samarbejde 2 og 2. Eleverne arbejder selvstændigt med opgaver. Løbende opsamling ved tavlen. Fag: Matematik Hold: 21 Lærer: ASH 33-34 35-36 lære at læse og forstå en lønseddel samt vide hvordan deres skat bliver beregnet. Se i øvrigt fælles mål Arbejde med regnehieraki og regneregler. 36-38 Elevere

Læs mere

TW 2011/12. Fag: Matematik Klasse: 9. Mandag, Tirsdag, fredag. Formål for faget matematik:

TW 2011/12. Fag: Matematik Klasse: 9. Mandag, Tirsdag, fredag. Formål for faget matematik: TW 2011/12 Fag: Matematik Klasse: 9. Mandag, Tirsdag, fredag Formål for faget matematik: Formålet med undervisningen er, at eleverne udvikler matematiske kompetencer og opnår viden og kunnen således, at

Læs mere

Årsplan for matematik i 1. klasse 2010-11

Årsplan for matematik i 1. klasse 2010-11 Årsplan for matematik i 1. klasse 2010-11 Vanløse den 6. juli 2010 af Musa Kronholt Formål for faget matematik Formålet med undervisningen er, at eleverne udvikler matematiske kompetencer og opnår viden

Læs mere