Minimum udspændende Træer (MST)

Størrelse: px
Starte visningen fra side:

Download "Minimum udspændende Træer (MST)"

Transkript

1 Minimum udspændende Træer (MST)

2 Træer Et (frit/u-rodet) træ er en uorienteret graf G = (V, E) som er Sammenhængende: der er en sti mellem alle par af knuder. Acyklisk: der er ingen kreds af kanter.

3 Træer Et (frit/u-rodet) træ er en uorienteret graf G = (V, E) som er Sammenhængende: der er en sti mellem alle par af knuder. Acyklisk: der er ingen kreds af kanter. Træ Skov Graf med kreds (ikke træ) (Uorienteret, acyklisk graf = skov af træer.).

4 Træer Sætning (B.2): For uorienteret graf G = (V, E) er flg. ækvivalent (gælder det ene, gælder det andet): G er et træ (dvs. sammenhængende og acyklisk). G er sammenhængende, men er det ikke hvis nogen kant fjernes. G er sammenhængende og m = n 1. G er acyklisk, men er det ikke hvis nogen kant tilføjes. G er acyklisk og m = n 1. Mellem alle par af knuder er der præcis én vej.

5 Træer Sætning (B.2): For uorienteret graf G = (V, E) er flg. ækvivalent (gælder det ene, gælder det andet): G er et træ (dvs. sammenhængende og acyklisk). G er sammenhængende, men er det ikke hvis nogen kant fjernes. G er sammenhængende og m = n 1. G er acyklisk, men er det ikke hvis nogen kant tilføjes. G er acyklisk og m = n 1. Mellem alle par af knuder er der præcis én vej. Bevis (ikke pensum): se appendix B.5. Læs (pensum) appendix B.4 og B.5 for basale definitioner for grafer.

6 Minimum Spanning Tree (MST) Udspændende træ for sammenhængende graf G = (V, E): En delgraf T = (V, E ), E E, som er et træ. NB: samme knudemængde V.

7 Minimum Spanning Tree (MST) Udspændende træ for sammenhængende graf G = (V, E): En delgraf T = (V, E ), E E, som er et træ. NB: samme knudemængde V.

8 Minimum Spanning Tree (MST) Udspændende træ for sammenhængende graf G = (V, E): En delgraf T = (V, E ), E E, som er et træ. NB: samme knudemængde V. Iflg. sætning ovenfor har alle udspændende træer samme antal kanter (m = n 1).

9 Minimum Spanning Tree (MST) Udspændende træ for sammenhængende graf G = (V, E): En delgraf T = (V, E ), E E, som er et træ. NB: samme knudemængde V. Iflg. sætning ovenfor har alle udspændende træer samme antal kanter (m = n 1). Minimum udspændende Træ (MST) for en vægtet sammenhængende graf G: et udspændende træ for G som har mindst mulig sum af kantvægte (intet udspændende træ har mindre sum).

10 Minimum Spanning Tree (MST) Udspændende træ for sammenhængende graf G = (V, E): En delgraf T = (V, E ), E E, som er et træ. NB: samme knudemængde V. Iflg. sætning ovenfor har alle udspændende træer samme antal kanter (m = n 1). Minimum udspændende Træ (MST) for en vægtet sammenhængende graf G: et udspændende træ for G som har mindst mulig sum af kantvægte (intet udspændende træ har mindre sum). Motivation: forbind punkter i et forsyningsnetværk (elektricitet, olie,... ) billigst muligt. Kant i G: mulig forbindelse, vægt: pris for at etablere forbindelse. Dette var motivationen for den første algoritme for problemet (Bor uvka, 1926, Østrig-Ungarn, nu Tjekkiet).

11 Algoritmer for MST Grundidé (grådig algoritme): Byg MST ved at vælge kanterne én efter én. Vedligehold følgende Invariant: Der findes et MST som indeholder de valgte kanter A.

12 Algoritmer for MST Grundidé (grådig algoritme): Byg MST ved at vælge kanterne én efter én. Vedligehold følgende Invariant: Der findes et MST som indeholder de valgte kanter A. Safe kant for A: kant som kan tilføjes uden at ødelægge invarianten (mindst én må findes når invarianten gælder og A < n 1).

13 Algoritmer for MST Grundidé (grådig algoritme): Byg MST ved at vælge kanterne én efter én. Vedligehold følgende Invariant: Der findes et MST som indeholder de valgte kanter A. Safe kant for A: kant som kan tilføjes uden at ødelægge invarianten (mindst én må findes når invarianten gælder og A < n 1). Initialisering: Enhver sammenhængende graf har et mindst ét ST (via sætningen fra B.5, punkt 2 - fjern kanter til betingelsen nås), og har derfor et MST. Dette indeholder kantmængden.

14 Algoritmer for MST Grundidé (grådig algoritme): Byg MST ved at vælge kanterne én efter én. Vedligehold følgende Invariant: Der findes et MST som indeholder de valgte kanter A. Safe kant for A: kant som kan tilføjes uden at ødelægge invarianten (mindst én må findes når invarianten gælder og A < n 1). Initialisering: Enhver sammenhængende graf har et mindst ét ST (via sætningen fra B.5, punkt 2 - fjern kanter til betingelsen nås), og har derfor et MST. Dette indeholder kantmængden. Vedligeholdelse: Per definition af safe.

15 Algoritmer for MST Grundidé (grådig algoritme): Byg MST ved at vælge kanterne én efter én. Vedligehold følgende Invariant: Der findes et MST som indeholder de valgte kanter A. Safe kant for A: kant som kan tilføjes uden at ødelægge invarianten (mindst én må findes når invarianten gælder og A < n 1). Initialisering: Enhver sammenhængende graf har et mindst ét ST (via sætningen fra B.5, punkt 2 - fjern kanter til betingelsen nås), og har derfor et MST. Dette indeholder kantmængden. Vedligeholdelse: Per definition af safe. Terminering: ethvert (M)ST indeholder præcis n 1 kanter. Da A vokser med én kant per iteration, giver invarianten at algoritmen terminerer, og at A da er et MST (A er indeholdt i et MST, og har samme antal kanter som dette, er derfor lig dette).

16 Cuts Hvordan finde en safe kant?

17 Cuts Hvordan finde en safe kant? Cut: En delmængde S af knuderne. Kan ses som en to-deling af knuderne i to mængder S og V S.

18 Cuts Hvordan finde en safe kant? Cut: En delmængde S af knuderne. Kan ses som en to-deling af knuderne i to mængder S og V S. Kant henover cut: en kant i S (V S).

19 Cut-sætning Sætning: Hvis så der eksisterer et MST som indeholder A, S er et cut som A ikke har kanter henover, e er en letteste kant blandt kanterne henover cuttet, er e safe for A (dvs. der der eksisterer et MST som indeholder A {e}).

20 Cut-sætning Bevis: Der findes et MST T som indeholder A. Vi skal lave et MST T som indeholder A {e}.

21 Cut-sætning Bevis: Der findes et MST T som indeholder A. Vi skal lave et MST T som indeholder A {e}. Lad e = (u, v) være en letteste kant henover cuttet S. Da T er sammenhængdende, må der være en sti i T mellem u og v, hvorpå der er mindst én kant (x, y) henover cuttet S. Lad T være T med (x, y) udskiftet til e = (u, v): (Kanter = T, fede kanter = A, cut er angivet med knudefarver.)

22 Cut-sætning Lad T være T med (x, y) udskiftet til e = (u, v):

23 Cut-sætning Lad T være T med (x, y) udskiftet til e = (u, v): Som T er T stadig sammenhængende (i alle stier kan (x, y) erstattes af resten af stien fra u til v, samt kanten (u, v)), og har n knuder og n 1 kanter. Det er derfor et træ (pga. sætning tidligere). Det kan kun være lettere end T. Det indeholder A {e} (da fjernede kant (x, y) ikke er i A).

24 Prim-Jarnik MST-algoritmen (Prim 1957, Jarnik 1930) A er ét træ. Bruger cut-sætningen med S = alle knuder i A.

25 Prim-Jarnik MST-algoritmen (Prim 1957, Jarnik 1930) A er ét træ. Bruger cut-sætningen med S = alle knuder i A. Invariant: En knude v V S opbevarer information om sin korteste kant henover cut i v.key og v.π. V S opbevares i en (min-)prioritetskø.

26 Prim-Jarnik MST-algoritmen (Prim 1957, Jarnik 1930) A er ét træ. Bruger cut-sætningen med S = alle knuder i A. Invariant: En knude v V S opbevarer information om sin korteste kant henover cut i v.key og v.π. V S opbevares i en (min-)prioritetskø.

27 Prim-Jarnik MST-algoritmen (Prim 1957, Jarnik 1930) A er ét træ. Bruger cut-sætningen med S = alle knuder i A. Invariant: En knude v V S opbevarer information om sin korteste kant henover cut i v.key og v.π. V S opbevares i en (min-)prioritetskø. Korrekthed: via cut-sætningen og invarianten.

28 Prim-Jarnik MST-algoritmen (Prim 1957, Jarnik 1930) A er ét træ. Bruger cut-sætningen med S = alle knuder i A. Invariant: En knude v V S opbevarer information om sin korteste kant henover cut i v.key og v.π. V S opbevares i en (min-)prioritetskø. Korrekthed: via cut-sætningen og invarianten. Køretid:

29 Prim-Jarnik MST-algoritmen (Prim 1957, Jarnik 1930) A er ét træ. Bruger cut-sætningen med S = alle knuder i A. Invariant: En knude v V S opbevarer information om sin korteste kant henover cut i v.key og v.π. V S opbevares i en (min-)prioritetskø. Korrekthed: via cut-sætningen og invarianten. Køretid: n Insert, n ExtractMin, m DecreaseKey

30 Prim-Jarnik MST-algoritmen (Prim 1957, Jarnik 1930) A er ét træ. Bruger cut-sætningen med S = alle knuder i A. Invariant: En knude v V S opbevarer information om sin korteste kant henover cut i v.key og v.π. V S opbevares i en (min-)prioritetskø. Korrekthed: via cut-sætningen og invarianten. Køretid: n Insert, n ExtractMin, m DecreaseKey på prioritetskø af størrelse O(n),

31 Prim-Jarnik MST-algoritmen (Prim 1957, Jarnik 1930) A er ét træ. Bruger cut-sætningen med S = alle knuder i A. Invariant: En knude v V S opbevarer information om sin korteste kant henover cut i v.key og v.π. V S opbevares i en (min-)prioritetskø. Korrekthed: via cut-sætningen og invarianten. Køretid: n Insert, n ExtractMin, m DecreaseKey på prioritetskø af størrelse O(n), i alt O(m log n).

32 Kruskal MST-algoritmen (1956) A er en skov. Bruger cut-sætningen med S = knuderne i et af træerne i A.

33 Kruskal MST-algoritmen (1956) A er en skov. Bruger cut-sætningen med S = knuderne i et af træerne i A. Forsøger at tilføje kanter til A i letteste-først-orden.

34 Kruskal MST-algoritmen (1956) A er en skov. Bruger cut-sætningen med S = knuderne i et af træerne i A. Forsøger at tilføje kanter til A i letteste-først-orden. Tilføjer kun kant (u, v) til A hvis der ikke laves en kreds, dvs. hvis u og v ligger i forskellige træer. Hvis (u, v) tilføjes, vil disse to træer blive til ét bagefter.

35 Kruskal MST-algoritmen (1956)

36 Kruskal MST-algoritmen (1956)

37 Kruskal MST-algoritmen (1956) Vedligeholder opdelingen i træer i A ved hjælp af en disjoint-set datastruktur på V : Make-Set(x), Union(x, y) Find-Set(x)

38 Kruskal MST-algoritmen (1956) Vedligeholder opdelingen i træer i A ved hjælp af en disjoint-set datastruktur på V : Mere præcist: Make-Set(x), Union(x, y) Find-Set(x)

39 Kruskal MST-algoritmen (1956) Fra tidligere kendes: Der findes en datastruktur for disjoint-sets hvor n Make-Set(x) n 1 Union(x, y) m Find-Set(x) tager i alt O(m + n log n) tid.

40 Kruskal MST-algoritmen (1956)

41 Kruskal MST-algoritmen (1956) Invariant for enhver for-løkke som ovenfor (uanset kanternes orden): Lad E være de hidtil undersøgte kanter i for-løkken. 1. u og v ligger i samme mængde i Disjoint-Set datastrukturen der er en sti mellem v og u af kanter i A. 2. Alle kanter i E har begge sine endepunkter i samme mængde i Disjoint-Set datastrukturen.

42 Kruskal MST-algoritmen (1956) Invariant for enhver for-løkke som ovenfor (uanset kanternes orden): Lad E være de hidtil undersøgte kanter i for-løkken. 1. u og v ligger i samme mængde i Disjoint-Set datastrukturen der er en sti mellem v og u af kanter i A. 2. Alle kanter i E har begge sine endepunkter i samme mængde i Disjoint-Set datastrukturen. Bevis: nemt via induktion på E.

43 Kruskal MST-algoritmen (1956) Invariant for enhver for-løkke som ovenfor (uanset kanternes orden): Lad E være de hidtil undersøgte kanter i for-løkken. 1. u og v ligger i samme mængde i Disjoint-Set datastrukturen der er en sti mellem v og u af kanter i A. 2. Alle kanter i E har begge sine endepunkter i samme mængde i Disjoint-Set datastrukturen. Bevis: nemt via induktion på E. Af 1) og 2) følger 3): Mængderne i Disjoint-Set datastrukturen er præcis sammenhængskomponenterne i grafen (V, E ).

44 Kruskal MST-algoritmen (1956) Korrekthed: Når algoritmen tilføjer en kant (u, v) til A ser vi på cuttet givet ved knudemængden Find-Set(u)). Del 2) af invarianten viser at A ikke har kanter hen over dette cut, da A E. Algoritmens sortering af kanterne viser sammen med del 2) af invarianten at (u, v) er en letteste kant henover dette cut. Derfor kan cutsætningen bruges, og A ligger derfor hele tiden inde i et MST.

45 Kruskal MST-algoritmen (1956) Korrekthed: Når algoritmen tilføjer en kant (u, v) til A ser vi på cuttet givet ved knudemængden Find-Set(u)). Del 2) af invarianten viser at A ikke har kanter hen over dette cut, da A E. Algoritmens sortering af kanterne viser sammen med del 2) af invarianten at (u, v) er en letteste kant henover dette cut. Derfor kan cutsætningen bruges, og A ligger derfor hele tiden inde i et MST. Når algoritmen stopper, er E = E. Da den oprindelige graf (V, E) er sammenhængende, giver 3) at der én mængde i Disjoint-Set datastrukturen. Derfor er der lavet præcis n 1 unions, og dermed er A = n 1. Så A er selv dette MST.

46 Kruskal MST-algoritmen (1956) Korrekthed: Når algoritmen tilføjer en kant (u, v) til A ser vi på cuttet givet ved knudemængden Find-Set(u)). Del 2) af invarianten viser at A ikke har kanter hen over dette cut, da A E. Algoritmens sortering af kanterne viser sammen med del 2) af invarianten at (u, v) er en letteste kant henover dette cut. Derfor kan cutsætningen bruges, og A ligger derfor hele tiden inde i et MST. Når algoritmen stopper, er E = E. Da den oprindelige graf (V, E) er sammenhængende, giver 3) at der én mængde i Disjoint-Set datastrukturen. Derfor er der lavet præcis n 1 unions, og dermed er A = n 1. Så A er selv dette MST. Køretid:

47 Kruskal MST-algoritmen (1956) Korrekthed: Når algoritmen tilføjer en kant (u, v) til A ser vi på cuttet givet ved knudemængden Find-Set(u)). Del 2) af invarianten viser at A ikke har kanter hen over dette cut, da A E. Algoritmens sortering af kanterne viser sammen med del 2) af invarianten at (u, v) er en letteste kant henover dette cut. Derfor kan cutsætningen bruges, og A ligger derfor hele tiden inde i et MST. Når algoritmen stopper, er E = E. Da den oprindelige graf (V, E) er sammenhængende, giver 3) at der én mængde i Disjoint-Set datastrukturen. Derfor er der lavet præcis n 1 unions, og dermed er A = n 1. Så A er selv dette MST. Køretid: Sortér m kanter, lav n Make-Set, n 1 Union, m Find-Set.

48 Kruskal MST-algoritmen (1956) Korrekthed: Når algoritmen tilføjer en kant (u, v) til A ser vi på cuttet givet ved knudemængden Find-Set(u)). Del 2) af invarianten viser at A ikke har kanter hen over dette cut, da A E. Algoritmens sortering af kanterne viser sammen med del 2) af invarianten at (u, v) er en letteste kant henover dette cut. Derfor kan cutsætningen bruges, og A ligger derfor hele tiden inde i et MST. Når algoritmen stopper, er E = E. Da den oprindelige graf (V, E) er sammenhængende, giver 3) at der én mængde i Disjoint-Set datastrukturen. Derfor er der lavet præcis n 1 unions, og dermed er A = n 1. Så A er selv dette MST. Køretid: Sortér m kanter, lav n Make-Set, n 1 Union, m Find-Set. I alt O(m log m) [eftersom m n 1, da grafen er sammenhængende].

Minimum udspændende Træer (MST)

Minimum udspændende Træer (MST) Minimum udspændende Træer (MST) Træer Et (frit/u-rodet) træ er en uorienteret graf G = (V, E) som er Sammenhængende: der er en sti mellem alle par af knuder. Acyklisk: der er ingen kreds af kanter. Træ

Læs mere

Minimum udspændende Træer (MST)

Minimum udspændende Træer (MST) Minimum udspændende Træer (MST) Træer Et (frit/u-rodet) træ er en uorienteret graf G = (V, E) som er Sammenhængende: der er en sti mellem alle par af knuder. Acyklisk: der er ingen lukket kreds af kanter

Læs mere

Mindste udspændende træ

Mindste udspændende træ Mindste udspændende træ Introduktion Repræsentation af vægtede grafer Egenskaber for mindste udspændende træer Prims algoritme Kruskals algoritme Philip Bille Mindste udspændende træ Introduktion Repræsentation

Læs mere

Mindste udspændende træ. Mindste udspændende træ. Introduktion. Introduktion

Mindste udspændende træ. Mindste udspændende træ. Introduktion. Introduktion Philip Bille Introduktion (MST). Udspændende træ af minimal samlet vægt. Introduktion (MST). Udspændende træ af minimal samlet vægt. 0 0 Graf G Ikke sammenhængende Introduktion (MST). Udspændende træ af

Læs mere

Mindste udspændende træ. Mindste udspændende træ. Introduktion. Introduktion

Mindste udspændende træ. Mindste udspændende træ. Introduktion. Introduktion Philip Bille Introduktion (MST). Udspændende træ af minimal samlet vægt. Introduktion (MST). Udspændende træ af minimal samlet vægt. 0 0 Graf G Ikke sammenhængende Introduktion (MST). Udspændende træ af

Læs mere

Sammenhængskomponenter i grafer

Sammenhængskomponenter i grafer Sammenhængskomponenter i grafer Ækvivalensrelationer Repetition: En relation R på en mængde S er en delmængde af S S. Når (x, y) R siges x at stå i relation til y. Ofte skrives x y, og relationen selv

Læs mere

Korteste veje i vægtede grafer. Længde af sti = sum af vægte af kanter på sti.

Korteste veje i vægtede grafer. Længde af sti = sum af vægte af kanter på sti. Korteste veje Korteste veje i vægtede grafer Længde af sti = sum af vægte af kanter på sti. Korteste veje i vægtede grafer Længde af sti = sum af vægte af kanter på sti. δ(u, v) = længden af en korteste

Læs mere

Korteste veje i vægtede grafer. Længde af sti = sum af vægte af kanter på sti.

Korteste veje i vægtede grafer. Længde af sti = sum af vægte af kanter på sti. Korteste veje Korteste veje i vægtede grafer Længde af sti = sum af vægte af kanter på sti. Korteste veje i vægtede grafer Længde af sti = sum af vægte af kanter på sti. δ(u, v) = længden af en korteste

Læs mere

Korteste veje i vægtede grafer. Længde af sti = sum af vægte af kanter på sti.

Korteste veje i vægtede grafer. Længde af sti = sum af vægte af kanter på sti. Korteste veje Korteste veje i vægtede grafer Længde af sti = sum af vægte af kanter på sti. Korteste veje i vægtede grafer Længde af sti = sum af vægte af kanter på sti. δ(u, v) = længden af en korteste

Læs mere

Mindste udspændende træ

Mindste udspændende træ Mindste udspændende træ Introduktion Repræsentation af vægtede grafer Egenskaber for mindste udspændende træer Prims algoritme Kruskals algoritme Philip Bille Mindste udspændende træ Introduktion Repræsentation

Læs mere

Grådige algoritmer. Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer.

Grådige algoritmer. Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Grådige algoritmer Grådige algoritmer Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Grådige algoritmer Et generelt algoritme-konstruktionsprincip ( paradigme ) for

Læs mere

Grådige algoritmer. Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer.

Grådige algoritmer. Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Grådige algoritmer Grådige algoritmer Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Grådige algoritmer Et generelt algoritme-konstruktionsprincip ( paradigme ) for

Læs mere

Grådige algoritmer. Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer.

Grådige algoritmer. Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Grådige algoritmer Grådige algoritmer Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Grådige algoritmer Et generelt algoritme-konstruktionsprincip ( paradigme ) for

Læs mere

Grafer og graf-gennemløb

Grafer og graf-gennemløb Grafer og graf-gennemløb Grafer En mængde V af knuder (vertices). En mængde E V V af kanter (edges). Dvs. ordnede par af knuder. Grafer En mængde V af knuder (vertices). En mængde E V V af kanter (edges).

Læs mere

Grafer og graf-gennemløb

Grafer og graf-gennemløb Grafer og graf-gennemløb Grafer En mængde V af knuder (vertices). En mængde E V V af kanter (edges). Dvs. ordnede par af knuder. Grafer En mængde V af knuder (vertices). En mængde E V V af kanter (edges).

Læs mere

Grafer og graf-gennemløb

Grafer og graf-gennemløb Grafer og graf-gennemløb Grafer En mængde V af knuder (vertices). En mængde E V V af kanter (edges). Dvs. ordnede par af knuder. Grafer En mængde V af knuder (vertices). En mængde E V V af kanter (edges).

Læs mere

Grafer og graf-gennemløb

Grafer og graf-gennemløb Grafer og graf-gennemløb Grafer En mængde V af knuder (vertices). En mængde E V V af kanter (edges). Dvs. ordnede par af knuder. Grafer En mængde V af knuder (vertices). En mængde E V V af kanter (edges).

Læs mere

Grafer og graf-gennemløb

Grafer og graf-gennemløb Grafer og graf-gennemløb Grafer En mængde V af knuder (vertices). En mængde E V V af kanter (edges). Dvs. ordnede par af knuder. Figur: Terminologi: n = V, m = E (eller V og E (mis)bruges som V og E ).

Læs mere

Grådige algoritmer. Et algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer.

Grådige algoritmer. Et algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Grådige algoritmer Grådige algoritmer Et algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Grådige algoritmer Et algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer.

Læs mere

DM02 Kogt ned. Kokken. Januar 2006

DM02 Kogt ned. Kokken. Januar 2006 DM02 Kogt ned Kokken Januar 2006 1 INDHOLD Indhold 1 Asymptotisk notation 2 2 Algoritme analyse 2 3 Sorterings algoritmer 2 4 Basale datastrukturer 3 5 Grafer 5 6 Letteste udspændende træer 7 7 Disjunkte

Læs mere

Prioritetskøer og hobe. Philip Bille

Prioritetskøer og hobe. Philip Bille Prioritetskøer og hobe Philip Bille Plan Prioritetskøer Træer Hobe Repræsentation Prioritetskøoperationer Konstruktion af hob Hobsortering Prioritetskøer Prioritetskø Vedligehold en dynamisk mængde S af

Læs mere

Skriftlig Eksamen DM507 Algoritmer og Datastrukturer

Skriftlig Eksamen DM507 Algoritmer og Datastrukturer Skriftlig Eksamen DM507 Algoritmer og Datastrukturer Institut for Matematik og Datalogi Syddansk Universitet, Odense Tirsdag den 24. juni 2014, kl. 10:00 14:00 Besvarelsen skal afleveres elektronisk. Se

Læs mere

Datastrukturer (recap)

Datastrukturer (recap) Dictionaries Datastrukturer (recap) Data: Datastruktur = data + operationer herpå En ID (nøgle) + associeret data. Operationer: Datastrukturens egenskaber udgøres af de tilbudte operationer (API for adgang

Læs mere

.. if L(u) + w(u, v) < L(v) then.. begin... L(v) := L(u) + w(u, v)... F (v) := u.. end. med længde L(z)}

.. if L(u) + w(u, v) < L(v) then.. begin... L(v) := L(u) + w(u, v)... F (v) := u.. end. med længde L(z)} Procedure Dijkstra(G = (V, E): vægtet sh. graf,. a, z: punkter) { Det antages at w(e) > 0 for alle e E} For alle v V : L(v) := L(a) := 0, S := while z / S begin. u := punkt ikke i S, så L(u) er mindst

Læs mere

Skriftlig Eksamen Algoritmer og Datastrukturer 2 (2003-ordning)

Skriftlig Eksamen Algoritmer og Datastrukturer 2 (2003-ordning) Skriftlig Eksamen Algoritmer og Datastrukturer 2 (2003-ordning) Datalogisk Institut Aarhus Universitet Fredag den 28. maj 2004, kl. 9.00 13.00 Opgave 1 (20%) En (r, k) kryds-graf er en orienteret graf

Læs mere

02105 Eksamensnoter. Lasse Herskind S maj Sortering 3

02105 Eksamensnoter. Lasse Herskind S maj Sortering 3 02105 Eksamensnoter Lasse Herskind S153746 12. maj 2017 Indhold 1 Sortering 3 2 Analyse af algoritme 4 2.1 Køretid.......................................... 4 2.2 Pladsforbrug.......................................

Læs mere

Løs til optimalitet i eksponentiel tid Find tilnærmet løsning i polynomiel tid

Løs til optimalitet i eksponentiel tid Find tilnærmet løsning i polynomiel tid 6 april Løsning af N P -hårde problemer Løs til optimalitet i eksponentiel tid Find tilnærmet løsning i polynomiel tid Oversigt Grænseværdier (repetition) Branch-and-bound algoritmens komponenter Eksempler

Læs mere

Algoritmeanalyse. Øvre grænse for algoritme. Øvre grænse for problem. Nedre grænse for problem. Identificer essentiel(le) operation(er)

Algoritmeanalyse. Øvre grænse for algoritme. Øvre grænse for problem. Nedre grænse for problem. Identificer essentiel(le) operation(er) Algoritmeanalyse Identificer essentiel(le) operation(er) Øvre grænse for algoritme Find øvre grænse for antallet af gange de(n) essentielle operation(er) udføres. Øvre grænse for problem Brug øvre grænse

Læs mere

Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Ideen er simpel:

Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Ideen er simpel: Grådige algoritmer Grådige algoritmer Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Ideen er simpel: Opbyg løsningen skridt for skridt ved hele tiden af vælge lige

Læs mere

Prioritetskøer. Prioritetskøer Træer og hobe Repræsentation af hobe Algoritmer på hobe Hobkonstruktion Hobsortering. Philip Bille

Prioritetskøer. Prioritetskøer Træer og hobe Repræsentation af hobe Algoritmer på hobe Hobkonstruktion Hobsortering. Philip Bille Prioritetskøer Prioritetskøer Træer og hobe Repræsentation af hobe Algoritmer på hobe Hobkonstruktion Hobsortering Philip Bille Prioritetskøer Prioritetskøer Træer og hobe Repræsentation af hobe Algoritmer

Læs mere

Datastrukturer (recap) Datastruktur = data + operationer herpå

Datastrukturer (recap) Datastruktur = data + operationer herpå Dictionaries Datastrukturer (recap) Datastruktur = data + operationer herpå Datastrukturer (recap) Data: Datastruktur = data + operationer herpå En ID (nøgle) + associeret data (ofte underforstået, også

Læs mere

DATALOGISK INSTITUT, AARHUS UNIVERSITET

DATALOGISK INSTITUT, AARHUS UNIVERSITET DATALOGISK INSTITUT, AARHUS UNIVERSITET Det Naturvidenskabelige Fakultet EKSAMEN Grundkurser i Datalogi Antal sider i opgavesættet (incl. forsiden): 6 (seks) Eksamensdag: Onsdag den 11. august 2004, kl.

Læs mere

P (n): rekursiv beregning af f n kræver f n beregninger af f 1. P (n) er sand for alle n 2.

P (n): rekursiv beregning af f n kræver f n beregninger af f 1. P (n) er sand for alle n 2. P (n): rekursiv beregning af f n kræver f n beregninger af f 1. P (n) er sand for alle n 2. Bevis ved stærk induktion. Basisskridt: P (2) er sand og P (3) er sand. Induktionsskridt: Lad k 2 og antag P

Læs mere

INSTITUT FOR DATALOGI, AARHUS UNIVERSITET

INSTITUT FOR DATALOGI, AARHUS UNIVERSITET INSTITUT FOR DTLOGI, RHUS UNIVERSITET Science and Technology EKSEN lgoritmer og Datastrukturer (00-ordning) ntal sider i opgavesættet (incl. forsiden): 11 (elleve) Eksamensdag: Torsdag den 1. juni 01,

Læs mere

Prioritetskøer. Prioritetskøer. Prioritetskøer. Prioritetskøer

Prioritetskøer. Prioritetskøer. Prioritetskøer. Prioritetskøer Philip Bille. Vedligehold en dynamisk mængde S af elementer. Hver element x er tilknyttet en nøgle x.key og satellitdata x.data. MAX(): returner element med største nøgle. EXTRACTMAX(): returner og fjern

Læs mere

Datastrukturer (recap)

Datastrukturer (recap) Dictionaries Datastrukturer (recap) Data: Datastruktur = data + operationer herpå En ID (nøgle) + associeret data. Operationer: Datastrukturens egenskaber udgøres af de tilbudte operationer (API for adgang

Læs mere

Skriftlig Eksamen DM507 Algoritmer og Datastrukturer

Skriftlig Eksamen DM507 Algoritmer og Datastrukturer Skriftlig Eksamen DM507 Algoritmer og Datastrukturer Institut for Matematik og Datalogi Syddansk Universitet, Odense Mandag den 6. juni 2016, kl. 15:00 19:00 Besvarelsen skal afleveres elektronisk. Se

Læs mere

INSTITUT FOR DATALOGI, AARHUS UNIVERSITET

INSTITUT FOR DATALOGI, AARHUS UNIVERSITET INSTITUT FOR DTOI, RUS UNIVERSITET Science and Technology ESEN lgoritmer og Datastrukturer (00-ordning) ntal sider i opgavesættet (incl. forsiden): (elleve) Eksamensdag: Fredag den. juni 0, kl. 9.00-.00

Læs mere

Prioritetskøer. Prioritetskøer. Prioritetskøer. Prioritetskøer

Prioritetskøer. Prioritetskøer. Prioritetskøer. Prioritetskøer Philip Bille (priority-queues). Vedligehold en dynamisk mængde S af elementer. Hver element x er tilknyttet en nøgle x.key og satellitdata x.data. MAX(): returner element med største nøgle. EXTRACTMAX():

Læs mere

Vægtede grafer. I en vægtet graf har enhver kant tilknyttet en numerisk værdi, kaldet kantens vægt

Vægtede grafer. I en vægtet graf har enhver kant tilknyttet en numerisk værdi, kaldet kantens vægt Korteste veje 1 Vægtede grafer HNL I en vægtet graf har enhver kant tilknyttet en numerisk værdi, kaldet kantens vægt Vægte kan repræsentere afstande, omkostninger, o.s.v. Eksempel: I en flyrutegraf repræsenterer

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af sider Danmarks Tekniske Universitet Skriftlig prøve, den 6. maj 0. Kursusnavn: Algoritmer og datastrukturer Kursus nr. 06. Tilladte hjælpemidler: Skriftlige hjælpemidler. Varighed: timer Vægtning

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af sider Danmarks Tekniske Universitet Skriftlig prøve, den 6. maj 0. Kursusnavn: Algoritmer og datastrukturer I Kursus nr. 005. Tilladte hjælpemidler: Skriftlige hjælpemidler. Varighed: timer Vægtning

Læs mere

INSTITUT FOR DATALOGI, AARHUS UNIVERSITET

INSTITUT FOR DATALOGI, AARHUS UNIVERSITET STTUT FR DTG, RUS UVERSTET Science and Technology ESE ntal sider i opgavesættet (incl. forsiden): (elleve) Eksamensdag: Fredag den. juni 0, kl. 9.00-.00 Tilladte medbragte hjælpemidler: lle sædvanlige

Læs mere

Grafer / Otto Knudsen 20-11-06

Grafer / Otto Knudsen 20-11-06 Grafer / Otto Knudsen -- Grafer Definition En graf er pr. definition et par G = (V, E). Grafen består af en mængde knuder V (eng: vertices) og en mængde kanter E (eng: edges), som forbinder knuderne. A

Læs mere

Forén og find. Introduktion Hurtig find Hurtig forening Vægtet forening Stikompression Dynamiske sammenhængskomponenter.

Forén og find. Introduktion Hurtig find Hurtig forening Vægtet forening Stikompression Dynamiske sammenhængskomponenter. Forén og find Introduktion Hurtig find Hurtig forening Vægtet forening Stikompression Dynamiske sammenhængskomponenter Philip Bille Forén og find Introduktion Hurtig find Hurtig forening Vægtet forening

Læs mere

Forén og find. Introduktion Hurtig find Hurtig forening Vægtet forening Stikompression Dynamiske sammenhængskomponenter.

Forén og find. Introduktion Hurtig find Hurtig forening Vægtet forening Stikompression Dynamiske sammenhængskomponenter. Forén og find Introduktion Hurtig find Hurtig forening Vægtet forening Stikompression Dynamiske sammenhængskomponenter Philip Bille Forén og find Introduktion Hurtig find Hurtig forening Vægtet forening

Læs mere

INSTITUT FOR DATALOGI, AARHUS UNIVERSITET

INSTITUT FOR DATALOGI, AARHUS UNIVERSITET STTUT R T, RUS UVRSTT Science and Technology S lgoritmer og atastrukturer (00-ordning) ntal sider i opgavesættet (incl. forsiden): (elleve) ksamensdag: Tirsdag den. august 0, kl. 9.00-.00 Tilladte medbragte

Læs mere

INSTITUT FOR DATALOGI, AARHUS UNIVERSITET

INSTITUT FOR DATALOGI, AARHUS UNIVERSITET NSTTUT OR TO, RUS UNVRSTT Science and Technology SN lgoritmer og atastrukturer (00-ordning) ntal sider i opgavesættet (incl. forsiden): 11 (elleve) ksamensdag: redag den 1. august 015, kl. 9.00-.00 Tilladte

Læs mere

Skriftlig Eksamen Algoritmer og Datastrukturer (dads)

Skriftlig Eksamen Algoritmer og Datastrukturer (dads) Skriftlig Eksamen Algoritmer og Datastrukturer (dads) Datalogisk Institut Aarhus Universitet Mandag den 27. maj 2002, kl. 9.00 13.00 Opgave 1 (25%) Denne opgave handler om multiplikation af positive heltal.

Læs mere

Grafteori. 1 Terminologi. Grafteori, Kirsten Rosenkilde, august fra V. (Engelsk: subgraph, spanning subgraph, the subgraph

Grafteori. 1 Terminologi. Grafteori, Kirsten Rosenkilde, august fra V. (Engelsk: subgraph, spanning subgraph, the subgraph Grafteori, Kirsten Rosenkilde, august 2010 1 Grafteori Dette er en introduktion til de vigtigste begreber i grafteori, udvalgt teori samt eksempler på opgavetyper inden for emnet med fokus på den type

Læs mere

Orienterede grafer. Orienterede grafer. Orienterede grafer. Vejnetværk

Orienterede grafer. Orienterede grafer. Orienterede grafer. Vejnetværk Philip Bille Orienteret graf (directed graph). Mængde af knuder forbundet parvis med orienterede kanter. Vejnetværk Knude = vejkryds, kant = ensrettet vej. deg + (6) =, deg - (6) = sti fra til 6 8 7 9

Læs mere

Grafteori. 1 Terminologi. Indhold

Grafteori. 1 Terminologi. Indhold Grafteori Dette er en introduktion til de vigtigste begreber i grafteori, udvalgt teori samt eksempler på opgavetyper inden for emnet med fokus på de opgavetyper der typisk er til internationale matematikkonkurrencer.

Læs mere

Skriftlig Eksamen Algoritmer og Datastrukturer (DM507)

Skriftlig Eksamen Algoritmer og Datastrukturer (DM507) Skriftlig Eksamen Algoritmer og Datastrukturer (DM507) Institut for Matematik og Datalogi Syddansk Universitet, Odense Mandag den 7. juni 00, kl. 9 Alle sædvanlige hjælpemidler (lærebøger, notater, osv.)

Læs mere

DATALOGISK INSTITUT, AARHUS UNIVERSITET

DATALOGISK INSTITUT, AARHUS UNIVERSITET DTLOS NSTTUT, RUS UNVERSTET Det Naturvidenskabelige akultet ESMEN rundkurser i Datalogi ntal sider i opgavesættet (incl. forsiden): 7 (syv) Eksamensdag: Torsdag den 14. juni 007, kl. 9.00-1.00 Eksamenslokale:

Læs mere

Mm6: More sorting algorithms: Heap sort and quick sort - October 29, 2008

Mm6: More sorting algorithms: Heap sort and quick sort - October 29, 2008 Algorithms and Architectures I Rasmus Løvenstein Olsen (RLO), Jimmy Jessen Nielsen (JJE) Mm6: More sorting algorithms: Heap sort and quick sort - October 9, 008 Algorithms and Architectures II. Introduction

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af sider Danmarks Tekniske Universitet Skriftlig prøve, den. maj 00. Kursusnavn Algoritmer og datastrukturer Kursus nr. 06. Tilladte hjælpemidler: Alle hjælpemidler. Vægtning af opgaverne: Opgave

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet ksamen 06, F side af sider anmarks Tekniske Universitet Skriftlig prøve, den 9. maj 0. ursusnavn: lgoritmer og datastrukturer ursus nr. 06. jælpemidler: Skriftlige hjælpemidler. et er ikke tilladt at medbringe

Læs mere

Algoritmer og datastrukturer Course No. 02105 Cheat Sheet 2012. May 15, 2012

Algoritmer og datastrukturer Course No. 02105 Cheat Sheet 2012. May 15, 2012 Algoritmer og datastrukturer Course No. 02105 Cheat Sheet 2012 May 15, 2012 1 CONTENTS 2012 CONTENTS Contents 1 Kompleksitet 3 1.1 Køretid................................................ 3 1.2 Asymptotisk

Læs mere

Reeksamen i Diskret Matematik

Reeksamen i Diskret Matematik Reeksamen i Diskret Matematik Første studieår ved Det Teknisk-Naturvidenskabelige Fakultet 23. august, 2016, 9.00-13.00 Dette eksamenssæt består af 11 nummerede sider med 16 opgaver. Alle opgaver er multiple

Læs mere

INSTITUT FOR DATALOGI, AARHUS UNIVERSITET

INSTITUT FOR DATALOGI, AARHUS UNIVERSITET INSTITUT FOR DATALOGI, AARHUS UNIVERSITET Science and Technology EKSAMEN Antal sider i opgavesættet (incl. forsiden): 6 (seks) Eksamensdag: Fredag den 22. juni 2012, kl. 9.00-13.00 Eksamenslokale: Finlandsgade

Læs mere

Skriftlig Eksamen Kombinatorik, sandsynlighed og randomiserede algoritmer (DM528)

Skriftlig Eksamen Kombinatorik, sandsynlighed og randomiserede algoritmer (DM528) Skriftlig Eksamen Kombinatorik, sandsynlighed og randomiserede algoritmer (DM528) Institut for Matematik & Datalogi Syddansk Universitet Mandag den 3 Januar 2011, kl. 9 13 Alle sædvanlige hjælpemidler

Læs mere

Korteste veje. Introduktion Egenskaber for korteste veje Dijkstras algoritme Korteste veje på DAGs. Philip Bille

Korteste veje. Introduktion Egenskaber for korteste veje Dijkstras algoritme Korteste veje på DAGs. Philip Bille Korteste veje Introduktion Egenskaber for korteste veje Dijkstras algoritme Korteste veje på DAGs Philip Bille Korteste veje Introduktion Egenskaber for korteste veje Dijkstras algoritme Korteste veje

Læs mere

INSTITUT FOR DATALOGI, AARHUS UNIVERSITET

INSTITUT FOR DATALOGI, AARHUS UNIVERSITET INSTITUT FOR DTLOGI, RHUS UNIVERSITET Science and Technology EKSMEN ntal sider i opgavesættet (incl. forsiden): (elleve) Eksamensdag: Mandag den. august 07, kl. 9.00-.00 Tilladte medbragte hjælpemidler:

Læs mere

DM507 Algoritmer og datastrukturer

DM507 Algoritmer og datastrukturer DM507 Algoritmer og datastrukturer Forår 2010 Projekt, del III Institut for matematik og datalogi Syddansk Universitet 24. april, 2010 (let justeret 10. maj og 21. maj 2010) Dette projekt udleveres i tre

Læs mere

DM507 - Algoritmer og datastrukturer

DM507 - Algoritmer og datastrukturer - Algoritmer og datastrukturer Køretid g(n) Udtryk Beskrivelse lim n f(n) o(f) Vokser langsommere end f = 0 O(f) Vokser højst så hurtigt som f < Θ(f) Vokser som f = c(c > 0) Ω(f) Vokser mindst så hurtigt

Læs mere

Definition : Et træ er en sammenhængende ikke-orienteret graf uden simple kredse. Sætning : En ikke-orienteret graf er et træ hvis og kun hvis der er

Definition : Et træ er en sammenhængende ikke-orienteret graf uden simple kredse. Sætning : En ikke-orienteret graf er et træ hvis og kun hvis der er Definition : Et træ er en sammenhængende ikke-orienteret graf uden simple kredse. Sætning : En ikke-orienteret graf er et træ hvis og kun hvis der er en unik simpel vej mellem ethvert par af punkter i

Læs mere

INSTITUT FOR DATALOGI, AARHUS UNIVERSITET

INSTITUT FOR DATALOGI, AARHUS UNIVERSITET INSTITUT FOR DATALOGI, AARHUS UNIVERSITET Science and Technology EKSAMEN Antal sider i opgavesættet (incl. forsiden): (fjorten) Eksamensdag: Mandag den. juni 0, kl. 9.00-.00 Tilladte medbragte hjælpemidler:

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af 2 sider Danmarks Tekniske Universitet Skriftlig prøve, den 2. maj 200. Kursusnavn Algoritmer og datastrukturer I Kursus nr. 0205. Tilladte hjælpemidler: Alle skriftlige hjælpemidler. Vægtning af

Læs mere

DATALOGISK INSTITUT, AARHUS UNIVERSITET

DATALOGISK INSTITUT, AARHUS UNIVERSITET DATALOGISK INSTITUT, AARHUS UNIVERSITET Det Naturvidenskabelige Fakultet EKSAMEN Grundkurser i Datalogi Algoritmer og Datastrukturer (00-ordning) Antal sider i opgavesættet (incl. forsiden): 7 (syv) Eksamensdag:

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af sider Danmarks Tekniske Universitet Skriftlig prøve, den. maj 00. Kursusnavn Algoritmer og datastrukturer I Kursus nr. 005. Tilladte hjælpemidler: Alle skriftlige hjælpemidler. Vægtning af opgaverne:

Læs mere

INSTITUT FOR DATALOGI, AARHUS UNIVERSITET

INSTITUT FOR DATALOGI, AARHUS UNIVERSITET STTUT R T, RUS UVERSTET Science and Technology ESE ntal sider i opgavesættet (incl. forsiden): (elleve) Eksamensdag: redag den. juni 0, kl..00-3.00 Tilladte medbragte hjælpemidler: lle sædvanlige hjælpemidler

Læs mere

Skriftlig Eksamen Algoritmer og Datastrukturer (DM507)

Skriftlig Eksamen Algoritmer og Datastrukturer (DM507) Skriftlig Eksamen Algoritmer og Datastrukturer (DM507) Institut for Matematik og Datalogi Syddansk Universitet, Odense Onsdag den 0. juni 009, kl. 9 Alle sædvanlige hjælpemidler (lærebøger, notater, osv.)

Læs mere

DM507 Algoritmer og datastrukturer

DM507 Algoritmer og datastrukturer DM507 Algoritmer og datastrukturer Forår 2012 Projekt, del III Institut for matematik og datalogi Syddansk Universitet 29. april, 2012 Dette projekt udleveres i tre dele. Hver del har sin deadline, således

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Eksamen 0205, Forår 205 side af 5 Danmarks Tekniske Universitet Skriftlig prøve, den 22. maj 205. Kursusnavn: Algoritmer og datastrukturer Kursusnummer: 0205 Hjælpemidler: Skriftlige hjælpemidler. Det

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af 2 sider Danmarks Tekniske Universitet Skriftlig prøve, den 2. maj 200. Kursusnavn Algoritmer og datastrukturer Kursus nr. 02326. Tilladte hjælpemidler: Alle hjælpemidler. Vægtning af opgaverne:

Læs mere

DATALOGISK INSTITUT, AARHUS UNIVERSITET

DATALOGISK INSTITUT, AARHUS UNIVERSITET DATALOGISK INSTITUT, AARHUS UNIVERSITET Det Naturvidenskabelige Fakultet EKSAMEN Grundkurser i Datalogi Algoritmer og Datastrukturer (00-ordning) Antal sider i opgavesættet (incl. forsiden): 6 (seks) Eksamensdag:

Læs mere

Sommeren 2001, opgave 1

Sommeren 2001, opgave 1 Sommeren 2001, opgave 1 Vi antager at k 3, da det ellers er uklart hvordan trekanterne kan sættes sammen i en kreds. Vi ser nu at for hver trekant er der en knude i kredsen, og en spids. Derfor er n =

Læs mere

Skriftlig Eksamen Kombinatorik, sandsynlighed og randomiserede algoritmer (DM528)

Skriftlig Eksamen Kombinatorik, sandsynlighed og randomiserede algoritmer (DM528) Skriftlig Eksamen Kombinatorik, sandsynlighed og randomiserede algoritmer (DM58) Institut for Matematik & Datalogi Syddansk Universitet Torsdag den 7 Januar 010, kl. 9 13 Alle sædvanlige hjælpemidler (lærebøger,

Læs mere

Korteste veje. Introduktion Egenskaber for korteste veje Dijkstras algoritme Korteste veje på DAGs. Philip Bille

Korteste veje. Introduktion Egenskaber for korteste veje Dijkstras algoritme Korteste veje på DAGs. Philip Bille Korteste veje Introduktion Egenskaber for korteste veje Dijkstras algoritme Korteste veje på DAGs Philip Bille Korteste veje Introduktion Egenskaber for korteste veje Dijkstras algoritme Korteste veje

Læs mere

Kapitel 9: Netværksmodeller

Kapitel 9: Netværksmodeller Kapitel 9: Netværksmodeller Terminologi: Et netværk eller en graf bestar af et sæt punkter samt et sæt linier, der forbinder par af punkter; netværket betegnes som komplet, hvis ethvert par af punkter

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af 2 sider Danmarks Tekniske Universitet Skriftlig prøve, den 26. maj 2009. Kursusnavn Algoritmik og datastrukturer I Kursus nr. 0205. Tilladte hjælpemidler: Alle skriftlige hjælpemidler. Vægtning

Læs mere

Invarianter. Invariant: Et forhold, som vedligeholdes af algoritmen gennem (dele af) dens udførelse. Udgør ofte kernen af ideen bag algoritmen.

Invarianter. Invariant: Et forhold, som vedligeholdes af algoritmen gennem (dele af) dens udførelse. Udgør ofte kernen af ideen bag algoritmen. Invariant: Et forhold, som vedligeholdes af algoritmen gennem (dele af) dens udførelse. Udgør ofte kernen af ideen bag algoritmen. Invariant: Et forhold, som vedligeholdes af algoritmen gennem (dele af)

Læs mere

DATALOGISK INSTITUT, AARHUS UNIVERSITET

DATALOGISK INSTITUT, AARHUS UNIVERSITET DATALOGISK INSTITUT, AARHUS UNIVERSITET Det Naturidenskabelige Fakultet EKSAMEN Grundkurser i Datalogi Antal sider i opgaesættet (incl. forsiden): 7 (sy) Eksamensdag: Mandag den 20. juni 2005, kl. 9.00-13.00

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Eksamen 005, F0 side af sider Danmarks Tekniske Universitet Skriftlig prøve, den 6. maj 00. Kursusnavn Algoritmik og datastrukturer I Kursus nr. 005. Tilladte hjælpemidler: Alle skriftlige hjælpemidler.

Læs mere

Eksamen i Diskret Matematik

Eksamen i Diskret Matematik Eksamen i Diskret Matematik Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet 10. juni, 2016. Kl. 9-13. Nærværende eksamenssæt består af 11 nummererede sider med ialt 16 opgaver. Alle opgaver

Læs mere

INSTITUT FOR DATALOGI, AARHUS UNIVERSITET

INSTITUT FOR DATALOGI, AARHUS UNIVERSITET INSTITUT FOR ATALOGI, AARHUS UNIVERSITET Science and Technology EKSAMEN Algoritmer og atastrukturer (00-ordning) Antal sider i opgavesættet (incl. forsiden): (elleve) Eksamensdag: Fredag den. august 0,

Læs mere

Kapitel 9: Netværksmodeller

Kapitel 9: Netværksmodeller Kapitel 9: Netværksmodeller Terminologi: Et netværk eller en JUDI bestar af et sæt punkter samt et sæt linier, der forbinder par af punkter; netværket betegnes som komplet, hvis ethvert par af punkter

Læs mere

Divide-and-Conquer algoritmer

Divide-and-Conquer algoritmer Divide-and-Conquer algoritmer Divide-and-Conquer algoritmer Det samme som rekursive algoritmer. 1. Opdel problem i mindre delproblemer (af samme type). 2. Løs delproblemerne ved rekursion (dvs. kald algoritmen

Læs mere

DATALOGISK INSTITUT, AARHUS UNIVERSITET

DATALOGISK INSTITUT, AARHUS UNIVERSITET DATALOGISK INSTITUT, AARHUS UNIVERSITET Det Naturvidenskabelige Fakultet EKSAMEN Grundkurser i Datalogi Antal sider i opgavesættet (incl. forsiden): 6 (seks) Eksamensdag: Fredag den 0. august 00, kl. 9.00-.00

Læs mere

Sortering i lineær tid

Sortering i lineær tid Sortering i lineær tid Nedre grænse for sammenligningsbaseret sortering Nedre grænser kræver en præcis beregningsmodel. Nedre grænse for sammenligningsbaseret sortering Nedre grænser kræver en præcis beregningsmodel.

Læs mere

Orienterede grafer. Introduktion Repræsentation Søgning Topologisk sortering og DAGs Stærke sammenhængskomponenter Implicitte grafer.

Orienterede grafer. Introduktion Repræsentation Søgning Topologisk sortering og DAGs Stærke sammenhængskomponenter Implicitte grafer. Orienterede grafer Introduktion Repræsentation Søgning Topologisk sortering og DAGs Stærke sammenhængskomponenter Implicitte grafer Philip Bille Orienterede grafer Introduktion Repræsentation Søgning Topologisk

Læs mere

DATALOGISK INSTITUT, AARHUS UNIVERSITET

DATALOGISK INSTITUT, AARHUS UNIVERSITET DATALOGISK INSTITUT, AARHUS UNIVERSITET Det Naturvidenskabelige Fakultet EKSAMEN Grundkurser i Datalogi Antal sider i opgavesættet (incl. forsiden): 6 (seks) Eksamensdag: Mandag den 11. august 008, kl.

Læs mere

Oplæg og øvelser, herunder frugt og vand Gerth Stølting Brodal

Oplæg og øvelser, herunder frugt og vand Gerth Stølting Brodal Oplæg og øvelser, herunder frugt og vand Gerth Stølting Brodal Datalogisk Institut Aarhus Universitet MasterClass Matematik, Mærsk Mc-Kinney Møller Videncenter, Sorø, 29-31. oktober 2009 Algoritmer: Matricer

Læs mere

Orienterede grafer. Orienterede grafer. Orienterede grafer. Orienterede grafer

Orienterede grafer. Orienterede grafer. Orienterede grafer. Orienterede grafer Philip Bille Orienteret graf. Mængde af knuder forbundet parvis med orienterede kanter. deg + (7) =, deg - (7) = Lemma. v V deg - (v) = v V deg + (v) = m. Bevis. Hver kant har netop en startknude og slutknude.

Læs mere

K 7 - og K 4,4 -minors i grafer

K 7 - og K 4,4 -minors i grafer Aalborg Universitet Det Teknisk-Naturvidenskabelige Fakultet Institut for Matematiske Fag K 7 - og K 4,4 -minors i grafer Aalborg Universitet Det Teknisk-Naturvidenskabelige Fakultet Institut for Matematiske

Læs mere

Divide-and-Conquer algoritmer

Divide-and-Conquer algoritmer Divide-and-Conquer algoritmer Divide-and-Conquer algoritmer Det samme som rekursive algoritmer. Divide-and-Conquer algoritmer Det samme som rekursive algoritmer. 1. Opdel problem i mindre delproblemer

Læs mere

Bevisteknikker. Bevisteknikker (relevant både ved design og verifikation) Matematisk induktion. Matematisk induktion uformel beskrivelse

Bevisteknikker. Bevisteknikker (relevant både ved design og verifikation) Matematisk induktion. Matematisk induktion uformel beskrivelse Bevisteknikker Bevisteknikker (relevant både ved design og verifikation) Bevisførelse ved modstrid (indirekte bevis) Antag, at det givne teorem er falsk Konkluder, at dette vil føre til en modstrid Teorem:

Læs mere

Skriftlig Eksamen Algoritmer og Datastrukturer 1. Datalogisk Institut Aarhus Universitet. Mandag den 22. marts 2004, kl

Skriftlig Eksamen Algoritmer og Datastrukturer 1. Datalogisk Institut Aarhus Universitet. Mandag den 22. marts 2004, kl Skriftlig Eksamen Algoritmer og Datastrukturer 1 Datalogisk Institut Aarhus Universitet Mandag den. marts 00, kl..00 11.00 Navn Gerth Stølting Brodal Årskort 1 Dette eksamenssæt består af en kombination

Læs mere

Forén og find. Forén og find. Forén og find. Anvendelser

Forén og find. Forén og find. Forén og find. Anvendelser Phlp Blle (unon-fnd). Vedlgehold en dynamsk famle af mængder under operatoner: INIT(n): opret mængder {}, {},, {n} UNION(,): forener de to mængder der ndeholder og. Hvs og er samme mængde skal der ngentng

Læs mere

DATALOGISK INSTITUT, AARHUS UNIVERSITET

DATALOGISK INSTITUT, AARHUS UNIVERSITET DATALOGISK INSTITUT, AARHUS UNIVERSITET Det Naturvidenskabelige Fakultet EKSAMEN Grundkurser i Datalogi Antal sider i opgavesættet (incl. forsiden): 6 (seks) Eksamensdag: Fredag den 24. juni 2011, kl.

Læs mere